1/* 2 Madge Horizon ATM Adapter driver. 3 Copyright (C) 1995-1999 Madge Networks Ltd. 4 5 This program is free software; you can redistribute it and/or modify 6 it under the terms of the GNU General Public License as published by 7 the Free Software Foundation; either version 2 of the License, or 8 (at your option) any later version. 9 10 This program is distributed in the hope that it will be useful, 11 but WITHOUT ANY WARRANTY; without even the implied warranty of 12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 GNU General Public License for more details. 14 15 You should have received a copy of the GNU General Public License 16 along with this program; if not, write to the Free Software 17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 19 The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian 20 system and in the file COPYING in the Linux kernel source. 21*/ 22 23/* 24 IMPORTANT NOTE: Madge Networks no longer makes the adapters 25 supported by this driver and makes no commitment to maintain it. 26*/ 27 28#include <linux/module.h> 29#include <linux/kernel.h> 30#include <linux/mm.h> 31#include <linux/pci.h> 32#include <linux/errno.h> 33#include <linux/atm.h> 34#include <linux/atmdev.h> 35#include <linux/sonet.h> 36#include <linux/skbuff.h> 37#include <linux/time.h> 38#include <linux/delay.h> 39#include <linux/uio.h> 40#include <linux/init.h> 41#include <linux/interrupt.h> 42#include <linux/ioport.h> 43#include <linux/wait.h> 44#include <linux/slab.h> 45 46#include <asm/system.h> 47#include <asm/io.h> 48#include <linux/atomic.h> 49#include <asm/uaccess.h> 50#include <asm/string.h> 51#include <asm/byteorder.h> 52 53#include "horizon.h" 54 55#define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>" 56#define description_string "Madge ATM Horizon [Ultra] driver" 57#define version_string "1.2.1" 58 59static inline void __init show_version (void) { 60 printk ("%s version %s\n", description_string, version_string); 61} 62 63/* 64 65 CREDITS 66 67 Driver and documentation by: 68 69 Chris Aston Madge Networks 70 Giuliano Procida Madge Networks 71 Simon Benham Madge Networks 72 Simon Johnson Madge Networks 73 Various Others Madge Networks 74 75 Some inspiration taken from other drivers by: 76 77 Alexandru Cucos UTBv 78 Kari Mettinen University of Helsinki 79 Werner Almesberger EPFL LRC 80 81 Theory of Operation 82 83 I Hardware, detection, initialisation and shutdown. 84 85 1. Supported Hardware 86 87 This driver should handle all variants of the PCI Madge ATM adapters 88 with the Horizon chipset. These are all PCI cards supporting PIO, BM 89 DMA and a form of MMIO (registers only, not internal RAM). 90 91 The driver is only known to work with SONET and UTP Horizon Ultra 92 cards at 155Mb/s. However, code is in place to deal with both the 93 original Horizon and 25Mb/s operation. 94 95 There are two revisions of the Horizon ASIC: the original and the 96 Ultra. Details of hardware bugs are in section III. 97 98 The ASIC version can be distinguished by chip markings but is NOT 99 indicated by the PCI revision (all adapters seem to have PCI rev 1). 100 101 I believe that: 102 103 Horizon => Collage 25 PCI Adapter (UTP and STP) 104 Horizon Ultra => Collage 155 PCI Client (UTP or SONET) 105 Ambassador x => Collage 155 PCI Server (completely different) 106 107 Horizon (25Mb/s) is fitted with UTP and STP connectors. It seems to 108 have a Madge B154 plus glue logic serializer. I have also found a 109 really ancient version of this with slightly different glue. It 110 comes with the revision 0 (140-025-01) ASIC. 111 112 Horizon Ultra (155Mb/s) is fitted with either a Pulse Medialink 113 output (UTP) or an HP HFBR 5205 output (SONET). It has either 114 Madge's SAMBA framer or a SUNI-lite device (early versions). It 115 comes with the revision 1 (140-027-01) ASIC. 116 117 2. Detection 118 119 All Horizon-based cards present with the same PCI Vendor and Device 120 IDs. The standard Linux 2.2 PCI API is used to locate any cards and 121 to enable bus-mastering (with appropriate latency). 122 123 ATM_LAYER_STATUS in the control register distinguishes between the 124 two possible physical layers (25 and 155). It is not clear whether 125 the 155 cards can also operate at 25Mbps. We rely on the fact that a 126 card operates at 155 if and only if it has the newer Horizon Ultra 127 ASIC. 128 129 For 155 cards the two possible framers are probed for and then set 130 up for loop-timing. 131 132 3. Initialisation 133 134 The card is reset and then put into a known state. The physical 135 layer is configured for normal operation at the appropriate speed; 136 in the case of the 155 cards, the framer is initialised with 137 line-based timing; the internal RAM is zeroed and the allocation of 138 buffers for RX and TX is made; the Burnt In Address is read and 139 copied to the ATM ESI; various policy settings for RX (VPI bits, 140 unknown VCs, oam cells) are made. Ideally all policy items should be 141 configurable at module load (if not actually on-demand), however, 142 only the vpi vs vci bit allocation can be specified at insmod. 143 144 4. Shutdown 145 146 This is in response to module_cleaup. No VCs are in use and the card 147 should be idle; it is reset. 148 149 II Driver software (as it should be) 150 151 0. Traffic Parameters 152 153 The traffic classes (not an enumeration) are currently: ATM_NONE (no 154 traffic), ATM_UBR, ATM_CBR, ATM_VBR and ATM_ABR, ATM_ANYCLASS 155 (compatible with everything). Together with (perhaps only some of) 156 the following items they make up the traffic specification. 157 158 struct atm_trafprm { 159 unsigned char traffic_class; traffic class (ATM_UBR, ...) 160 int max_pcr; maximum PCR in cells per second 161 int pcr; desired PCR in cells per second 162 int min_pcr; minimum PCR in cells per second 163 int max_cdv; maximum CDV in microseconds 164 int max_sdu; maximum SDU in bytes 165 }; 166 167 Note that these denote bandwidth available not bandwidth used; the 168 possibilities according to ATMF are: 169 170 Real Time (cdv and max CDT given) 171 172 CBR(pcr) pcr bandwidth always available 173 rtVBR(pcr,scr,mbs) scr bandwidth always available, up to pcr at mbs too 174 175 Non Real Time 176 177 nrtVBR(pcr,scr,mbs) scr bandwidth always available, up to pcr at mbs too 178 UBR() 179 ABR(mcr,pcr) mcr bandwidth always available, up to pcr (depending) too 180 181 mbs is max burst size (bucket) 182 pcr and scr have associated cdvt values 183 mcr is like scr but has no cdtv 184 cdtv may differ at each hop 185 186 Some of the above items are qos items (as opposed to traffic 187 parameters). We have nothing to do with qos. All except ABR can have 188 their traffic parameters converted to GCRA parameters. The GCRA may 189 be implemented as a (real-number) leaky bucket. The GCRA can be used 190 in complicated ways by switches and in simpler ways by end-stations. 191 It can be used both to filter incoming cells and shape out-going 192 cells. 193 194 ATM Linux actually supports: 195 196 ATM_NONE() (no traffic in this direction) 197 ATM_UBR(max_frame_size) 198 ATM_CBR(max/min_pcr, max_cdv, max_frame_size) 199 200 0 or ATM_MAX_PCR are used to indicate maximum available PCR 201 202 A traffic specification consists of the AAL type and separate 203 traffic specifications for either direction. In ATM Linux it is: 204 205 struct atm_qos { 206 struct atm_trafprm txtp; 207 struct atm_trafprm rxtp; 208 unsigned char aal; 209 }; 210 211 AAL types are: 212 213 ATM_NO_AAL AAL not specified 214 ATM_AAL0 "raw" ATM cells 215 ATM_AAL1 AAL1 (CBR) 216 ATM_AAL2 AAL2 (VBR) 217 ATM_AAL34 AAL3/4 (data) 218 ATM_AAL5 AAL5 (data) 219 ATM_SAAL signaling AAL 220 221 The Horizon has support for AAL frame types: 0, 3/4 and 5. However, 222 it does not implement AAL 3/4 SAR and it has a different notion of 223 "raw cell" to ATM Linux's (48 bytes vs. 52 bytes) so neither are 224 supported by this driver. 225 226 The Horizon has limited support for ABR (including UBR), VBR and 227 CBR. Each TX channel has a bucket (containing up to 31 cell units) 228 and two timers (PCR and SCR) associated with it that can be used to 229 govern cell emissions and host notification (in the case of ABR this 230 is presumably so that RM cells may be emitted at appropriate times). 231 The timers may either be disabled or may be set to any of 240 values 232 (determined by the clock crystal, a fixed (?) per-device divider, a 233 configurable divider and a configurable timer preload value). 234 235 At the moment only UBR and CBR are supported by the driver. VBR will 236 be supported as soon as ATM for Linux supports it. ABR support is 237 very unlikely as RM cell handling is completely up to the driver. 238 239 1. TX (TX channel setup and TX transfer) 240 241 The TX half of the driver owns the TX Horizon registers. The TX 242 component in the IRQ handler is the BM completion handler. This can 243 only be entered when tx_busy is true (enforced by hardware). The 244 other TX component can only be entered when tx_busy is false 245 (enforced by driver). So TX is single-threaded. 246 247 Apart from a minor optimisation to not re-select the last channel, 248 the TX send component works as follows: 249 250 Atomic test and set tx_busy until we succeed; we should implement 251 some sort of timeout so that tx_busy will never be stuck at true. 252 253 If no TX channel is set up for this VC we wait for an idle one (if 254 necessary) and set it up. 255 256 At this point we have a TX channel ready for use. We wait for enough 257 buffers to become available then start a TX transmit (set the TX 258 descriptor, schedule transfer, exit). 259 260 The IRQ component handles TX completion (stats, free buffer, tx_busy 261 unset, exit). We also re-schedule further transfers for the same 262 frame if needed. 263 264 TX setup in more detail: 265 266 TX open is a nop, the relevant information is held in the hrz_vcc 267 (vcc->dev_data) structure and is "cached" on the card. 268 269 TX close gets the TX lock and clears the channel from the "cache". 270 271 2. RX (Data Available and RX transfer) 272 273 The RX half of the driver owns the RX registers. There are two RX 274 components in the IRQ handler: the data available handler deals with 275 fresh data that has arrived on the card, the BM completion handler 276 is very similar to the TX completion handler. The data available 277 handler grabs the rx_lock and it is only released once the data has 278 been discarded or completely transferred to the host. The BM 279 completion handler only runs when the lock is held; the data 280 available handler is locked out over the same period. 281 282 Data available on the card triggers an interrupt. If the data is not 283 suitable for our existing RX channels or we cannot allocate a buffer 284 it is flushed. Otherwise an RX receive is scheduled. Multiple RX 285 transfers may be scheduled for the same frame. 286 287 RX setup in more detail: 288 289 RX open... 290 RX close... 291 292 III Hardware Bugs 293 294 0. Byte vs Word addressing of adapter RAM. 295 296 A design feature; see the .h file (especially the memory map). 297 298 1. Bus Master Data Transfers (original Horizon only, fixed in Ultra) 299 300 The host must not start a transmit direction transfer at a 301 non-four-byte boundary in host memory. Instead the host should 302 perform a byte, or a two byte, or one byte followed by two byte 303 transfer in order to start the rest of the transfer on a four byte 304 boundary. RX is OK. 305 306 Simultaneous transmit and receive direction bus master transfers are 307 not allowed. 308 309 The simplest solution to these two is to always do PIO (never DMA) 310 in the TX direction on the original Horizon. More complicated 311 solutions are likely to hurt my brain. 312 313 2. Loss of buffer on close VC 314 315 When a VC is being closed, the buffer associated with it is not 316 returned to the pool. The host must store the reference to this 317 buffer and when opening a new VC then give it to that new VC. 318 319 The host intervention currently consists of stacking such a buffer 320 pointer at VC close and checking the stack at VC open. 321 322 3. Failure to close a VC 323 324 If a VC is currently receiving a frame then closing the VC may fail 325 and the frame continues to be received. 326 327 The solution is to make sure any received frames are flushed when 328 ready. This is currently done just before the solution to 2. 329 330 4. PCI bus (original Horizon only, fixed in Ultra) 331 332 Reading from the data port prior to initialisation will hang the PCI 333 bus. Just don't do that then! We don't. 334 335 IV To Do List 336 337 . Timer code may be broken. 338 339 . Allow users to specify buffer allocation split for TX and RX. 340 341 . Deal once and for all with buggy VC close. 342 343 . Handle interrupted and/or non-blocking operations. 344 345 . Change some macros to functions and move from .h to .c. 346 347 . Try to limit the number of TX frames each VC may have queued, in 348 order to reduce the chances of TX buffer exhaustion. 349 350 . Implement VBR (bucket and timers not understood) and ABR (need to 351 do RM cells manually); also no Linux support for either. 352 353 . Implement QoS changes on open VCs (involves extracting parts of VC open 354 and close into separate functions and using them to make changes). 355 356*/ 357 358/********** globals **********/ 359 360static void do_housekeeping (unsigned long arg); 361 362static unsigned short debug = 0; 363static unsigned short vpi_bits = 0; 364static int max_tx_size = 9000; 365static int max_rx_size = 9000; 366static unsigned char pci_lat = 0; 367 368/********** access functions **********/ 369 370/* Read / Write Horizon registers */ 371static inline void wr_regl (const hrz_dev * dev, unsigned char reg, u32 data) { 372 outl (cpu_to_le32 (data), dev->iobase + reg); 373} 374 375static inline u32 rd_regl (const hrz_dev * dev, unsigned char reg) { 376 return le32_to_cpu (inl (dev->iobase + reg)); 377} 378 379static inline void wr_regw (const hrz_dev * dev, unsigned char reg, u16 data) { 380 outw (cpu_to_le16 (data), dev->iobase + reg); 381} 382 383static inline u16 rd_regw (const hrz_dev * dev, unsigned char reg) { 384 return le16_to_cpu (inw (dev->iobase + reg)); 385} 386 387static inline void wrs_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) { 388 outsb (dev->iobase + reg, addr, len); 389} 390 391static inline void rds_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) { 392 insb (dev->iobase + reg, addr, len); 393} 394 395/* Read / Write to a given address in Horizon buffer memory. 396 Interrupts must be disabled between the address register and data 397 port accesses as these must form an atomic operation. */ 398static inline void wr_mem (const hrz_dev * dev, HDW * addr, u32 data) { 399 // wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr); 400 wr_regl (dev, MEM_WR_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW)); 401 wr_regl (dev, MEMORY_PORT_OFF, data); 402} 403 404static inline u32 rd_mem (const hrz_dev * dev, HDW * addr) { 405 // wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr); 406 wr_regl (dev, MEM_RD_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW)); 407 return rd_regl (dev, MEMORY_PORT_OFF); 408} 409 410static inline void wr_framer (const hrz_dev * dev, u32 addr, u32 data) { 411 wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr | 0x80000000); 412 wr_regl (dev, MEMORY_PORT_OFF, data); 413} 414 415static inline u32 rd_framer (const hrz_dev * dev, u32 addr) { 416 wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr | 0x80000000); 417 return rd_regl (dev, MEMORY_PORT_OFF); 418} 419 420/********** specialised access functions **********/ 421 422/* RX */ 423 424static inline void FLUSH_RX_CHANNEL (hrz_dev * dev, u16 channel) { 425 wr_regw (dev, RX_CHANNEL_PORT_OFF, FLUSH_CHANNEL | channel); 426 return; 427} 428 429static void WAIT_FLUSH_RX_COMPLETE (hrz_dev * dev) { 430 while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & FLUSH_CHANNEL) 431 ; 432 return; 433} 434 435static inline void SELECT_RX_CHANNEL (hrz_dev * dev, u16 channel) { 436 wr_regw (dev, RX_CHANNEL_PORT_OFF, channel); 437 return; 438} 439 440static void WAIT_UPDATE_COMPLETE (hrz_dev * dev) { 441 while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & RX_CHANNEL_UPDATE_IN_PROGRESS) 442 ; 443 return; 444} 445 446/* TX */ 447 448static inline void SELECT_TX_CHANNEL (hrz_dev * dev, u16 tx_channel) { 449 wr_regl (dev, TX_CHANNEL_PORT_OFF, tx_channel); 450 return; 451} 452 453/* Update or query one configuration parameter of a particular channel. */ 454 455static inline void update_tx_channel_config (hrz_dev * dev, short chan, u8 mode, u16 value) { 456 wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF, 457 chan * TX_CHANNEL_CONFIG_MULT | mode); 458 wr_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF, value); 459 return; 460} 461 462static inline u16 query_tx_channel_config (hrz_dev * dev, short chan, u8 mode) { 463 wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF, 464 chan * TX_CHANNEL_CONFIG_MULT | mode); 465 return rd_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF); 466} 467 468/********** dump functions **********/ 469 470static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) { 471#ifdef DEBUG_HORIZON 472 unsigned int i; 473 unsigned char * data = skb->data; 474 PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc); 475 for (i=0; i<skb->len && i < 256;i++) 476 PRINTDM (DBG_DATA, "%02x ", data[i]); 477 PRINTDE (DBG_DATA,""); 478#else 479 (void) prefix; 480 (void) vc; 481 (void) skb; 482#endif 483 return; 484} 485 486static inline void dump_regs (hrz_dev * dev) { 487#ifdef DEBUG_HORIZON 488 PRINTD (DBG_REGS, "CONTROL 0: %#x", rd_regl (dev, CONTROL_0_REG)); 489 PRINTD (DBG_REGS, "RX CONFIG: %#x", rd_regw (dev, RX_CONFIG_OFF)); 490 PRINTD (DBG_REGS, "TX CONFIG: %#x", rd_regw (dev, TX_CONFIG_OFF)); 491 PRINTD (DBG_REGS, "TX STATUS: %#x", rd_regw (dev, TX_STATUS_OFF)); 492 PRINTD (DBG_REGS, "IRQ ENBLE: %#x", rd_regl (dev, INT_ENABLE_REG_OFF)); 493 PRINTD (DBG_REGS, "IRQ SORCE: %#x", rd_regl (dev, INT_SOURCE_REG_OFF)); 494#else 495 (void) dev; 496#endif 497 return; 498} 499 500static inline void dump_framer (hrz_dev * dev) { 501#ifdef DEBUG_HORIZON 502 unsigned int i; 503 PRINTDB (DBG_REGS, "framer registers:"); 504 for (i = 0; i < 0x10; ++i) 505 PRINTDM (DBG_REGS, " %02x", rd_framer (dev, i)); 506 PRINTDE (DBG_REGS,""); 507#else 508 (void) dev; 509#endif 510 return; 511} 512 513/********** VPI/VCI <-> (RX) channel conversions **********/ 514 515/* RX channels are 10 bit integers, these fns are quite paranoid */ 516 517static inline int channel_to_vpivci (const u16 channel, short * vpi, int * vci) { 518 unsigned short vci_bits = 10 - vpi_bits; 519 if ((channel & RX_CHANNEL_MASK) == channel) { 520 *vci = channel & ((~0)<<vci_bits); 521 *vpi = channel >> vci_bits; 522 return channel ? 0 : -EINVAL; 523 } 524 return -EINVAL; 525} 526 527static inline int vpivci_to_channel (u16 * channel, const short vpi, const int vci) { 528 unsigned short vci_bits = 10 - vpi_bits; 529 if (0 <= vpi && vpi < 1<<vpi_bits && 0 <= vci && vci < 1<<vci_bits) { 530 *channel = vpi<<vci_bits | vci; 531 return *channel ? 0 : -EINVAL; 532 } 533 return -EINVAL; 534} 535 536/********** decode RX queue entries **********/ 537 538static inline u16 rx_q_entry_to_length (u32 x) { 539 return x & RX_Q_ENTRY_LENGTH_MASK; 540} 541 542static inline u16 rx_q_entry_to_rx_channel (u32 x) { 543 return (x>>RX_Q_ENTRY_CHANNEL_SHIFT) & RX_CHANNEL_MASK; 544} 545 546/* Cell Transmit Rate Values 547 * 548 * the cell transmit rate (cells per sec) can be set to a variety of 549 * different values by specifying two parameters: a timer preload from 550 * 1 to 16 (stored as 0 to 15) and a clock divider (2 to the power of 551 * an exponent from 0 to 14; the special value 15 disables the timer). 552 * 553 * cellrate = baserate / (preload * 2^divider) 554 * 555 * The maximum cell rate that can be specified is therefore just the 556 * base rate. Halving the preload is equivalent to adding 1 to the 557 * divider and so values 1 to 8 of the preload are redundant except 558 * in the case of a maximal divider (14). 559 * 560 * Given a desired cell rate, an algorithm to determine the preload 561 * and divider is: 562 * 563 * a) x = baserate / cellrate, want p * 2^d = x (as far as possible) 564 * b) if x > 16 * 2^14 then set p = 16, d = 14 (min rate), done 565 * if x <= 16 then set p = x, d = 0 (high rates), done 566 * c) now have 16 < x <= 2^18, or 1 < x/16 <= 2^14 and we want to 567 * know n such that 2^(n-1) < x/16 <= 2^n, so slide a bit until 568 * we find the range (n will be between 1 and 14), set d = n 569 * d) Also have 8 < x/2^n <= 16, so set p nearest x/2^n 570 * 571 * The algorithm used below is a minor variant of the above. 572 * 573 * The base rate is derived from the oscillator frequency (Hz) using a 574 * fixed divider: 575 * 576 * baserate = freq / 32 in the case of some Unknown Card 577 * baserate = freq / 8 in the case of the Horizon 25 578 * baserate = freq / 8 in the case of the Horizon Ultra 155 579 * 580 * The Horizon cards have oscillators and base rates as follows: 581 * 582 * Card Oscillator Base Rate 583 * Unknown Card 33 MHz 1.03125 MHz (33 MHz = PCI freq) 584 * Horizon 25 32 MHz 4 MHz 585 * Horizon Ultra 155 40 MHz 5 MHz 586 * 587 * The following defines give the base rates in Hz. These were 588 * previously a factor of 100 larger, no doubt someone was using 589 * cps*100. 590 */ 591 592#define BR_UKN 1031250l 593#define BR_HRZ 4000000l 594#define BR_ULT 5000000l 595 596// d is an exponent 597#define CR_MIND 0 598#define CR_MAXD 14 599 600// p ranges from 1 to a power of 2 601#define CR_MAXPEXP 4 602 603static int make_rate (const hrz_dev * dev, u32 c, rounding r, 604 u16 * bits, unsigned int * actual) 605{ 606 // note: rounding the rate down means rounding 'p' up 607 const unsigned long br = test_bit(ultra, &dev->flags) ? BR_ULT : BR_HRZ; 608 609 u32 div = CR_MIND; 610 u32 pre; 611 612 // br_exp and br_man are used to avoid overflowing (c*maxp*2^d) in 613 // the tests below. We could think harder about exact possibilities 614 // of failure... 615 616 unsigned long br_man = br; 617 unsigned int br_exp = 0; 618 619 PRINTD (DBG_QOS|DBG_FLOW, "make_rate b=%lu, c=%u, %s", br, c, 620 r == round_up ? "up" : r == round_down ? "down" : "nearest"); 621 622 // avoid div by zero 623 if (!c) { 624 PRINTD (DBG_QOS|DBG_ERR, "zero rate is not allowed!"); 625 return -EINVAL; 626 } 627 628 while (br_exp < CR_MAXPEXP + CR_MIND && (br_man % 2 == 0)) { 629 br_man = br_man >> 1; 630 ++br_exp; 631 } 632 // (br >>br_exp) <<br_exp == br and 633 // br_exp <= CR_MAXPEXP+CR_MIND 634 635 if (br_man <= (c << (CR_MAXPEXP+CR_MIND-br_exp))) { 636 // Equivalent to: B <= (c << (MAXPEXP+MIND)) 637 // take care of rounding 638 switch (r) { 639 case round_down: 640 pre = DIV_ROUND_UP(br, c<<div); 641 // but p must be non-zero 642 if (!pre) 643 pre = 1; 644 break; 645 case round_nearest: 646 pre = DIV_ROUND_CLOSEST(br, c<<div); 647 // but p must be non-zero 648 if (!pre) 649 pre = 1; 650 break; 651 default: /* round_up */ 652 pre = br/(c<<div); 653 // but p must be non-zero 654 if (!pre) 655 return -EINVAL; 656 } 657 PRINTD (DBG_QOS, "A: p=%u, d=%u", pre, div); 658 goto got_it; 659 } 660 661 // at this point we have 662 // d == MIND and (c << (MAXPEXP+MIND)) < B 663 while (div < CR_MAXD) { 664 div++; 665 if (br_man <= (c << (CR_MAXPEXP+div-br_exp))) { 666 // Equivalent to: B <= (c << (MAXPEXP+d)) 667 // c << (MAXPEXP+d-1) < B <= c << (MAXPEXP+d) 668 // 1 << (MAXPEXP-1) < B/2^d/c <= 1 << MAXPEXP 669 // MAXP/2 < B/c2^d <= MAXP 670 // take care of rounding 671 switch (r) { 672 case round_down: 673 pre = DIV_ROUND_UP(br, c<<div); 674 break; 675 case round_nearest: 676 pre = DIV_ROUND_CLOSEST(br, c<<div); 677 break; 678 default: /* round_up */ 679 pre = br/(c<<div); 680 } 681 PRINTD (DBG_QOS, "B: p=%u, d=%u", pre, div); 682 goto got_it; 683 } 684 } 685 // at this point we have 686 // d == MAXD and (c << (MAXPEXP+MAXD)) < B 687 // but we cannot go any higher 688 // take care of rounding 689 if (r == round_down) 690 return -EINVAL; 691 pre = 1 << CR_MAXPEXP; 692 PRINTD (DBG_QOS, "C: p=%u, d=%u", pre, div); 693got_it: 694 // paranoia 695 if (div > CR_MAXD || (!pre) || pre > 1<<CR_MAXPEXP) { 696 PRINTD (DBG_QOS, "set_cr internal failure: d=%u p=%u", 697 div, pre); 698 return -EINVAL; 699 } else { 700 if (bits) 701 *bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1); 702 if (actual) { 703 *actual = DIV_ROUND_UP(br, pre<<div); 704 PRINTD (DBG_QOS, "actual rate: %u", *actual); 705 } 706 return 0; 707 } 708} 709 710static int make_rate_with_tolerance (const hrz_dev * dev, u32 c, rounding r, unsigned int tol, 711 u16 * bit_pattern, unsigned int * actual) { 712 unsigned int my_actual; 713 714 PRINTD (DBG_QOS|DBG_FLOW, "make_rate_with_tolerance c=%u, %s, tol=%u", 715 c, (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest", tol); 716 717 if (!actual) 718 // actual rate is not returned 719 actual = &my_actual; 720 721 if (make_rate (dev, c, round_nearest, bit_pattern, actual)) 722 // should never happen as round_nearest always succeeds 723 return -1; 724 725 if (c - tol <= *actual && *actual <= c + tol) 726 // within tolerance 727 return 0; 728 else 729 // intolerant, try rounding instead 730 return make_rate (dev, c, r, bit_pattern, actual); 731} 732 733/********** Listen on a VC **********/ 734 735static int hrz_open_rx (hrz_dev * dev, u16 channel) { 736 // is there any guarantee that we don't get two simulataneous 737 // identical calls of this function from different processes? yes 738 // rate_lock 739 unsigned long flags; 740 u32 channel_type; // u16? 741 742 u16 buf_ptr = RX_CHANNEL_IDLE; 743 744 rx_ch_desc * rx_desc = &memmap->rx_descs[channel]; 745 746 PRINTD (DBG_FLOW, "hrz_open_rx %x", channel); 747 748 spin_lock_irqsave (&dev->mem_lock, flags); 749 channel_type = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK; 750 spin_unlock_irqrestore (&dev->mem_lock, flags); 751 752 // very serious error, should never occur 753 if (channel_type != RX_CHANNEL_DISABLED) { 754 PRINTD (DBG_ERR|DBG_VCC, "RX channel for VC already open"); 755 return -EBUSY; // clean up? 756 } 757 758 // Give back spare buffer 759 if (dev->noof_spare_buffers) { 760 buf_ptr = dev->spare_buffers[--dev->noof_spare_buffers]; 761 PRINTD (DBG_VCC, "using a spare buffer: %u", buf_ptr); 762 // should never occur 763 if (buf_ptr == RX_CHANNEL_DISABLED || buf_ptr == RX_CHANNEL_IDLE) { 764 // but easy to recover from 765 PRINTD (DBG_ERR|DBG_VCC, "bad spare buffer pointer, using IDLE"); 766 buf_ptr = RX_CHANNEL_IDLE; 767 } 768 } else { 769 PRINTD (DBG_VCC, "using IDLE buffer pointer"); 770 } 771 772 // Channel is currently disabled so change its status to idle 773 774 // do we really need to save the flags again? 775 spin_lock_irqsave (&dev->mem_lock, flags); 776 777 wr_mem (dev, &rx_desc->wr_buf_type, 778 buf_ptr | CHANNEL_TYPE_AAL5 | FIRST_CELL_OF_AAL5_FRAME); 779 if (buf_ptr != RX_CHANNEL_IDLE) 780 wr_mem (dev, &rx_desc->rd_buf_type, buf_ptr); 781 782 spin_unlock_irqrestore (&dev->mem_lock, flags); 783 784 // rxer->rate = make_rate (qos->peak_cells); 785 786 PRINTD (DBG_FLOW, "hrz_open_rx ok"); 787 788 return 0; 789} 790 791#if 0 792/********** change vc rate for a given vc **********/ 793 794static void hrz_change_vc_qos (ATM_RXER * rxer, MAAL_QOS * qos) { 795 rxer->rate = make_rate (qos->peak_cells); 796} 797#endif 798 799/********** free an skb (as per ATM device driver documentation) **********/ 800 801static void hrz_kfree_skb (struct sk_buff * skb) { 802 if (ATM_SKB(skb)->vcc->pop) { 803 ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb); 804 } else { 805 dev_kfree_skb_any (skb); 806 } 807} 808 809/********** cancel listen on a VC **********/ 810 811static void hrz_close_rx (hrz_dev * dev, u16 vc) { 812 unsigned long flags; 813 814 u32 value; 815 816 u32 r1, r2; 817 818 rx_ch_desc * rx_desc = &memmap->rx_descs[vc]; 819 820 int was_idle = 0; 821 822 spin_lock_irqsave (&dev->mem_lock, flags); 823 value = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK; 824 spin_unlock_irqrestore (&dev->mem_lock, flags); 825 826 if (value == RX_CHANNEL_DISABLED) { 827 // I suppose this could happen once we deal with _NONE traffic properly 828 PRINTD (DBG_VCC, "closing VC: RX channel %u already disabled", vc); 829 return; 830 } 831 if (value == RX_CHANNEL_IDLE) 832 was_idle = 1; 833 834 spin_lock_irqsave (&dev->mem_lock, flags); 835 836 for (;;) { 837 wr_mem (dev, &rx_desc->wr_buf_type, RX_CHANNEL_DISABLED); 838 839 if ((rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK) == RX_CHANNEL_DISABLED) 840 break; 841 842 was_idle = 0; 843 } 844 845 if (was_idle) { 846 spin_unlock_irqrestore (&dev->mem_lock, flags); 847 return; 848 } 849 850 WAIT_FLUSH_RX_COMPLETE(dev); 851 852 // XXX Is this all really necessary? We can rely on the rx_data_av 853 // handler to discard frames that remain queued for delivery. If the 854 // worry is that immediately reopening the channel (perhaps by a 855 // different process) may cause some data to be mis-delivered then 856 // there may still be a simpler solution (such as busy-waiting on 857 // rx_busy once the channel is disabled or before a new one is 858 // opened - does this leave any holes?). Arguably setting up and 859 // tearing down the TX and RX halves of each virtual circuit could 860 // most safely be done within ?x_busy protected regions. 861 862 // OK, current changes are that Simon's marker is disabled and we DO 863 // look for NULL rxer elsewhere. The code here seems flush frames 864 // and then remember the last dead cell belonging to the channel 865 // just disabled - the cell gets relinked at the next vc_open. 866 // However, when all VCs are closed or only a few opened there are a 867 // handful of buffers that are unusable. 868 869 // Does anyone feel like documenting spare_buffers properly? 870 // Does anyone feel like fixing this in a nicer way? 871 872 // Flush any data which is left in the channel 873 for (;;) { 874 // Change the rx channel port to something different to the RX 875 // channel we are trying to close to force Horizon to flush the rx 876 // channel read and write pointers. 877 878 u16 other = vc^(RX_CHANS/2); 879 880 SELECT_RX_CHANNEL (dev, other); 881 WAIT_UPDATE_COMPLETE (dev); 882 883 r1 = rd_mem (dev, &rx_desc->rd_buf_type); 884 885 // Select this RX channel. Flush doesn't seem to work unless we 886 // select an RX channel before hand 887 888 SELECT_RX_CHANNEL (dev, vc); 889 WAIT_UPDATE_COMPLETE (dev); 890 891 // Attempt to flush a frame on this RX channel 892 893 FLUSH_RX_CHANNEL (dev, vc); 894 WAIT_FLUSH_RX_COMPLETE (dev); 895 896 // Force Horizon to flush rx channel read and write pointers as before 897 898 SELECT_RX_CHANNEL (dev, other); 899 WAIT_UPDATE_COMPLETE (dev); 900 901 r2 = rd_mem (dev, &rx_desc->rd_buf_type); 902 903 PRINTD (DBG_VCC|DBG_RX, "r1 = %u, r2 = %u", r1, r2); 904 905 if (r1 == r2) { 906 dev->spare_buffers[dev->noof_spare_buffers++] = (u16)r1; 907 break; 908 } 909 } 910 911#if 0 912 { 913 rx_q_entry * wr_ptr = &memmap->rx_q_entries[rd_regw (dev, RX_QUEUE_WR_PTR_OFF)]; 914 rx_q_entry * rd_ptr = dev->rx_q_entry; 915 916 PRINTD (DBG_VCC|DBG_RX, "rd_ptr = %u, wr_ptr = %u", rd_ptr, wr_ptr); 917 918 while (rd_ptr != wr_ptr) { 919 u32 x = rd_mem (dev, (HDW *) rd_ptr); 920 921 if (vc == rx_q_entry_to_rx_channel (x)) { 922 x |= SIMONS_DODGEY_MARKER; 923 924 PRINTD (DBG_RX|DBG_VCC|DBG_WARN, "marking a frame as dodgey"); 925 926 wr_mem (dev, (HDW *) rd_ptr, x); 927 } 928 929 if (rd_ptr == dev->rx_q_wrap) 930 rd_ptr = dev->rx_q_reset; 931 else 932 rd_ptr++; 933 } 934 } 935#endif 936 937 spin_unlock_irqrestore (&dev->mem_lock, flags); 938 939 return; 940} 941 942/********** schedule RX transfers **********/ 943 944// Note on tail recursion: a GCC developer said that it is not likely 945// to be fixed soon, so do not define TAILRECUSRIONWORKS unless you 946// are sure it does as you may otherwise overflow the kernel stack. 947 948// giving this fn a return value would help GCC, allegedly 949 950static void rx_schedule (hrz_dev * dev, int irq) { 951 unsigned int rx_bytes; 952 953 int pio_instead = 0; 954#ifndef TAILRECURSIONWORKS 955 pio_instead = 1; 956 while (pio_instead) { 957#endif 958 // bytes waiting for RX transfer 959 rx_bytes = dev->rx_bytes; 960 961#if 0 962 spin_count = 0; 963 while (rd_regl (dev, MASTER_RX_COUNT_REG_OFF)) { 964 PRINTD (DBG_RX|DBG_WARN, "RX error: other PCI Bus Master RX still in progress!"); 965 if (++spin_count > 10) { 966 PRINTD (DBG_RX|DBG_ERR, "spun out waiting PCI Bus Master RX completion"); 967 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0); 968 clear_bit (rx_busy, &dev->flags); 969 hrz_kfree_skb (dev->rx_skb); 970 return; 971 } 972 } 973#endif 974 975 // this code follows the TX code but (at the moment) there is only 976 // one region - the skb itself. I don't know if this will change, 977 // but it doesn't hurt to have the code here, disabled. 978 979 if (rx_bytes) { 980 // start next transfer within same region 981 if (rx_bytes <= MAX_PIO_COUNT) { 982 PRINTD (DBG_RX|DBG_BUS, "(pio)"); 983 pio_instead = 1; 984 } 985 if (rx_bytes <= MAX_TRANSFER_COUNT) { 986 PRINTD (DBG_RX|DBG_BUS, "(simple or last multi)"); 987 dev->rx_bytes = 0; 988 } else { 989 PRINTD (DBG_RX|DBG_BUS, "(continuing multi)"); 990 dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT; 991 rx_bytes = MAX_TRANSFER_COUNT; 992 } 993 } else { 994 // rx_bytes == 0 -- we're between regions 995 // regions remaining to transfer 996#if 0 997 unsigned int rx_regions = dev->rx_regions; 998#else 999 unsigned int rx_regions = 0; 1000#endif 1001 1002 if (rx_regions) { 1003#if 0 1004 // start a new region 1005 dev->rx_addr = dev->rx_iovec->iov_base; 1006 rx_bytes = dev->rx_iovec->iov_len; 1007 ++dev->rx_iovec; 1008 dev->rx_regions = rx_regions - 1; 1009 1010 if (rx_bytes <= MAX_PIO_COUNT) { 1011 PRINTD (DBG_RX|DBG_BUS, "(pio)"); 1012 pio_instead = 1; 1013 } 1014 if (rx_bytes <= MAX_TRANSFER_COUNT) { 1015 PRINTD (DBG_RX|DBG_BUS, "(full region)"); 1016 dev->rx_bytes = 0; 1017 } else { 1018 PRINTD (DBG_RX|DBG_BUS, "(start multi region)"); 1019 dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT; 1020 rx_bytes = MAX_TRANSFER_COUNT; 1021 } 1022#endif 1023 } else { 1024 // rx_regions == 0 1025 // that's all folks - end of frame 1026 struct sk_buff * skb = dev->rx_skb; 1027 // dev->rx_iovec = 0; 1028 1029 FLUSH_RX_CHANNEL (dev, dev->rx_channel); 1030 1031 dump_skb ("<<<", dev->rx_channel, skb); 1032 1033 PRINTD (DBG_RX|DBG_SKB, "push %p %u", skb->data, skb->len); 1034 1035 { 1036 struct atm_vcc * vcc = ATM_SKB(skb)->vcc; 1037 // VC layer stats 1038 atomic_inc(&vcc->stats->rx); 1039 __net_timestamp(skb); 1040 // end of our responsibility 1041 vcc->push (vcc, skb); 1042 } 1043 } 1044 } 1045 1046 // note: writing RX_COUNT clears any interrupt condition 1047 if (rx_bytes) { 1048 if (pio_instead) { 1049 if (irq) 1050 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0); 1051 rds_regb (dev, DATA_PORT_OFF, dev->rx_addr, rx_bytes); 1052 } else { 1053 wr_regl (dev, MASTER_RX_ADDR_REG_OFF, virt_to_bus (dev->rx_addr)); 1054 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, rx_bytes); 1055 } 1056 dev->rx_addr += rx_bytes; 1057 } else { 1058 if (irq) 1059 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0); 1060 // allow another RX thread to start 1061 YELLOW_LED_ON(dev); 1062 clear_bit (rx_busy, &dev->flags); 1063 PRINTD (DBG_RX, "cleared rx_busy for dev %p", dev); 1064 } 1065 1066#ifdef TAILRECURSIONWORKS 1067 // and we all bless optimised tail calls 1068 if (pio_instead) 1069 return rx_schedule (dev, 0); 1070 return; 1071#else 1072 // grrrrrrr! 1073 irq = 0; 1074 } 1075 return; 1076#endif 1077} 1078 1079/********** handle RX bus master complete events **********/ 1080 1081static void rx_bus_master_complete_handler (hrz_dev * dev) { 1082 if (test_bit (rx_busy, &dev->flags)) { 1083 rx_schedule (dev, 1); 1084 } else { 1085 PRINTD (DBG_RX|DBG_ERR, "unexpected RX bus master completion"); 1086 // clear interrupt condition on adapter 1087 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0); 1088 } 1089 return; 1090} 1091 1092/********** (queue to) become the next TX thread **********/ 1093 1094static int tx_hold (hrz_dev * dev) { 1095 PRINTD (DBG_TX, "sleeping at tx lock %p %lu", dev, dev->flags); 1096 wait_event_interruptible(dev->tx_queue, (!test_and_set_bit(tx_busy, &dev->flags))); 1097 PRINTD (DBG_TX, "woken at tx lock %p %lu", dev, dev->flags); 1098 if (signal_pending (current)) 1099 return -1; 1100 PRINTD (DBG_TX, "set tx_busy for dev %p", dev); 1101 return 0; 1102} 1103 1104/********** allow another TX thread to start **********/ 1105 1106static inline void tx_release (hrz_dev * dev) { 1107 clear_bit (tx_busy, &dev->flags); 1108 PRINTD (DBG_TX, "cleared tx_busy for dev %p", dev); 1109 wake_up_interruptible (&dev->tx_queue); 1110} 1111 1112/********** schedule TX transfers **********/ 1113 1114static void tx_schedule (hrz_dev * const dev, int irq) { 1115 unsigned int tx_bytes; 1116 1117 int append_desc = 0; 1118 1119 int pio_instead = 0; 1120#ifndef TAILRECURSIONWORKS 1121 pio_instead = 1; 1122 while (pio_instead) { 1123#endif 1124 // bytes in current region waiting for TX transfer 1125 tx_bytes = dev->tx_bytes; 1126 1127#if 0 1128 spin_count = 0; 1129 while (rd_regl (dev, MASTER_TX_COUNT_REG_OFF)) { 1130 PRINTD (DBG_TX|DBG_WARN, "TX error: other PCI Bus Master TX still in progress!"); 1131 if (++spin_count > 10) { 1132 PRINTD (DBG_TX|DBG_ERR, "spun out waiting PCI Bus Master TX completion"); 1133 wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0); 1134 tx_release (dev); 1135 hrz_kfree_skb (dev->tx_skb); 1136 return; 1137 } 1138 } 1139#endif 1140 1141 if (tx_bytes) { 1142 // start next transfer within same region 1143 if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) { 1144 PRINTD (DBG_TX|DBG_BUS, "(pio)"); 1145 pio_instead = 1; 1146 } 1147 if (tx_bytes <= MAX_TRANSFER_COUNT) { 1148 PRINTD (DBG_TX|DBG_BUS, "(simple or last multi)"); 1149 if (!dev->tx_iovec) { 1150 // end of last region 1151 append_desc = 1; 1152 } 1153 dev->tx_bytes = 0; 1154 } else { 1155 PRINTD (DBG_TX|DBG_BUS, "(continuing multi)"); 1156 dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT; 1157 tx_bytes = MAX_TRANSFER_COUNT; 1158 } 1159 } else { 1160 // tx_bytes == 0 -- we're between regions 1161 // regions remaining to transfer 1162 unsigned int tx_regions = dev->tx_regions; 1163 1164 if (tx_regions) { 1165 // start a new region 1166 dev->tx_addr = dev->tx_iovec->iov_base; 1167 tx_bytes = dev->tx_iovec->iov_len; 1168 ++dev->tx_iovec; 1169 dev->tx_regions = tx_regions - 1; 1170 1171 if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) { 1172 PRINTD (DBG_TX|DBG_BUS, "(pio)"); 1173 pio_instead = 1; 1174 } 1175 if (tx_bytes <= MAX_TRANSFER_COUNT) { 1176 PRINTD (DBG_TX|DBG_BUS, "(full region)"); 1177 dev->tx_bytes = 0; 1178 } else { 1179 PRINTD (DBG_TX|DBG_BUS, "(start multi region)"); 1180 dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT; 1181 tx_bytes = MAX_TRANSFER_COUNT; 1182 } 1183 } else { 1184 // tx_regions == 0 1185 // that's all folks - end of frame 1186 struct sk_buff * skb = dev->tx_skb; 1187 dev->tx_iovec = NULL; 1188 1189 // VC layer stats 1190 atomic_inc(&ATM_SKB(skb)->vcc->stats->tx); 1191 1192 // free the skb 1193 hrz_kfree_skb (skb); 1194 } 1195 } 1196 1197 // note: writing TX_COUNT clears any interrupt condition 1198 if (tx_bytes) { 1199 if (pio_instead) { 1200 if (irq) 1201 wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0); 1202 wrs_regb (dev, DATA_PORT_OFF, dev->tx_addr, tx_bytes); 1203 if (append_desc) 1204 wr_regl (dev, TX_DESCRIPTOR_PORT_OFF, cpu_to_be32 (dev->tx_skb->len)); 1205 } else { 1206 wr_regl (dev, MASTER_TX_ADDR_REG_OFF, virt_to_bus (dev->tx_addr)); 1207 if (append_desc) 1208 wr_regl (dev, TX_DESCRIPTOR_REG_OFF, cpu_to_be32 (dev->tx_skb->len)); 1209 wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 1210 append_desc 1211 ? tx_bytes | MASTER_TX_AUTO_APPEND_DESC 1212 : tx_bytes); 1213 } 1214 dev->tx_addr += tx_bytes; 1215 } else { 1216 if (irq) 1217 wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0); 1218 YELLOW_LED_ON(dev); 1219 tx_release (dev); 1220 } 1221 1222#ifdef TAILRECURSIONWORKS 1223 // and we all bless optimised tail calls 1224 if (pio_instead) 1225 return tx_schedule (dev, 0); 1226 return; 1227#else 1228 // grrrrrrr! 1229 irq = 0; 1230 } 1231 return; 1232#endif 1233} 1234 1235/********** handle TX bus master complete events **********/ 1236 1237static void tx_bus_master_complete_handler (hrz_dev * dev) { 1238 if (test_bit (tx_busy, &dev->flags)) { 1239 tx_schedule (dev, 1); 1240 } else { 1241 PRINTD (DBG_TX|DBG_ERR, "unexpected TX bus master completion"); 1242 // clear interrupt condition on adapter 1243 wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0); 1244 } 1245 return; 1246} 1247 1248/********** move RX Q pointer to next item in circular buffer **********/ 1249 1250// called only from IRQ sub-handler 1251static u32 rx_queue_entry_next (hrz_dev * dev) { 1252 u32 rx_queue_entry; 1253 spin_lock (&dev->mem_lock); 1254 rx_queue_entry = rd_mem (dev, &dev->rx_q_entry->entry); 1255 if (dev->rx_q_entry == dev->rx_q_wrap) 1256 dev->rx_q_entry = dev->rx_q_reset; 1257 else 1258 dev->rx_q_entry++; 1259 wr_regw (dev, RX_QUEUE_RD_PTR_OFF, dev->rx_q_entry - dev->rx_q_reset); 1260 spin_unlock (&dev->mem_lock); 1261 return rx_queue_entry; 1262} 1263 1264/********** handle RX disabled by device **********/ 1265 1266static inline void rx_disabled_handler (hrz_dev * dev) { 1267 wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE); 1268 // count me please 1269 PRINTK (KERN_WARNING, "RX was disabled!"); 1270} 1271 1272/********** handle RX data received by device **********/ 1273 1274// called from IRQ handler 1275static void rx_data_av_handler (hrz_dev * dev) { 1276 u32 rx_queue_entry; 1277 u32 rx_queue_entry_flags; 1278 u16 rx_len; 1279 u16 rx_channel; 1280 1281 PRINTD (DBG_FLOW, "hrz_data_av_handler"); 1282 1283 // try to grab rx lock (not possible during RX bus mastering) 1284 if (test_and_set_bit (rx_busy, &dev->flags)) { 1285 PRINTD (DBG_RX, "locked out of rx lock"); 1286 return; 1287 } 1288 PRINTD (DBG_RX, "set rx_busy for dev %p", dev); 1289 // lock is cleared if we fail now, o/w after bus master completion 1290 1291 YELLOW_LED_OFF(dev); 1292 1293 rx_queue_entry = rx_queue_entry_next (dev); 1294 1295 rx_len = rx_q_entry_to_length (rx_queue_entry); 1296 rx_channel = rx_q_entry_to_rx_channel (rx_queue_entry); 1297 1298 WAIT_FLUSH_RX_COMPLETE (dev); 1299 1300 SELECT_RX_CHANNEL (dev, rx_channel); 1301 1302 PRINTD (DBG_RX, "rx_queue_entry is: %#x", rx_queue_entry); 1303 rx_queue_entry_flags = rx_queue_entry & (RX_CRC_32_OK|RX_COMPLETE_FRAME|SIMONS_DODGEY_MARKER); 1304 1305 if (!rx_len) { 1306 // (at least) bus-mastering breaks if we try to handle a 1307 // zero-length frame, besides AAL5 does not support them 1308 PRINTK (KERN_ERR, "zero-length frame!"); 1309 rx_queue_entry_flags &= ~RX_COMPLETE_FRAME; 1310 } 1311 1312 if (rx_queue_entry_flags & SIMONS_DODGEY_MARKER) { 1313 PRINTD (DBG_RX|DBG_ERR, "Simon's marker detected!"); 1314 } 1315 if (rx_queue_entry_flags == (RX_CRC_32_OK | RX_COMPLETE_FRAME)) { 1316 struct atm_vcc * atm_vcc; 1317 1318 PRINTD (DBG_RX, "got a frame on rx_channel %x len %u", rx_channel, rx_len); 1319 1320 atm_vcc = dev->rxer[rx_channel]; 1321 // if no vcc is assigned to this channel, we should drop the frame 1322 // (is this what SIMONS etc. was trying to achieve?) 1323 1324 if (atm_vcc) { 1325 1326 if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) { 1327 1328 if (rx_len <= atm_vcc->qos.rxtp.max_sdu) { 1329 1330 struct sk_buff * skb = atm_alloc_charge (atm_vcc, rx_len, GFP_ATOMIC); 1331 if (skb) { 1332 // remember this so we can push it later 1333 dev->rx_skb = skb; 1334 // remember this so we can flush it later 1335 dev->rx_channel = rx_channel; 1336 1337 // prepare socket buffer 1338 skb_put (skb, rx_len); 1339 ATM_SKB(skb)->vcc = atm_vcc; 1340 1341 // simple transfer 1342 // dev->rx_regions = 0; 1343 // dev->rx_iovec = 0; 1344 dev->rx_bytes = rx_len; 1345 dev->rx_addr = skb->data; 1346 PRINTD (DBG_RX, "RX start simple transfer (addr %p, len %d)", 1347 skb->data, rx_len); 1348 1349 // do the business 1350 rx_schedule (dev, 0); 1351 return; 1352 1353 } else { 1354 PRINTD (DBG_SKB|DBG_WARN, "failed to get skb"); 1355 } 1356 1357 } else { 1358 PRINTK (KERN_INFO, "frame received on TX-only VC %x", rx_channel); 1359 // do we count this? 1360 } 1361 1362 } else { 1363 PRINTK (KERN_WARNING, "dropped over-size frame"); 1364 // do we count this? 1365 } 1366 1367 } else { 1368 PRINTD (DBG_WARN|DBG_VCC|DBG_RX, "no VCC for this frame (VC closed)"); 1369 // do we count this? 1370 } 1371 1372 } else { 1373 // Wait update complete ? SPONG 1374 } 1375 1376 // RX was aborted 1377 YELLOW_LED_ON(dev); 1378 1379 FLUSH_RX_CHANNEL (dev,rx_channel); 1380 clear_bit (rx_busy, &dev->flags); 1381 1382 return; 1383} 1384 1385/********** interrupt handler **********/ 1386 1387static irqreturn_t interrupt_handler(int irq, void *dev_id) 1388{ 1389 hrz_dev *dev = dev_id; 1390 u32 int_source; 1391 unsigned int irq_ok; 1392 1393 PRINTD (DBG_FLOW, "interrupt_handler: %p", dev_id); 1394 1395 // definitely for us 1396 irq_ok = 0; 1397 while ((int_source = rd_regl (dev, INT_SOURCE_REG_OFF) 1398 & INTERESTING_INTERRUPTS)) { 1399 // In the interests of fairness, the handlers below are 1400 // called in sequence and without immediate return to the head of 1401 // the while loop. This is only of issue for slow hosts (or when 1402 // debugging messages are on). Really slow hosts may find a fast 1403 // sender keeps them permanently in the IRQ handler. :( 1404 1405 // (only an issue for slow hosts) RX completion goes before 1406 // rx_data_av as the former implies rx_busy and so the latter 1407 // would just abort. If it reschedules another transfer 1408 // (continuing the same frame) then it will not clear rx_busy. 1409 1410 // (only an issue for slow hosts) TX completion goes before RX 1411 // data available as it is a much shorter routine - there is the 1412 // chance that any further transfers it schedules will be complete 1413 // by the time of the return to the head of the while loop 1414 1415 if (int_source & RX_BUS_MASTER_COMPLETE) { 1416 ++irq_ok; 1417 PRINTD (DBG_IRQ|DBG_BUS|DBG_RX, "rx_bus_master_complete asserted"); 1418 rx_bus_master_complete_handler (dev); 1419 } 1420 if (int_source & TX_BUS_MASTER_COMPLETE) { 1421 ++irq_ok; 1422 PRINTD (DBG_IRQ|DBG_BUS|DBG_TX, "tx_bus_master_complete asserted"); 1423 tx_bus_master_complete_handler (dev); 1424 } 1425 if (int_source & RX_DATA_AV) { 1426 ++irq_ok; 1427 PRINTD (DBG_IRQ|DBG_RX, "rx_data_av asserted"); 1428 rx_data_av_handler (dev); 1429 } 1430 } 1431 if (irq_ok) { 1432 PRINTD (DBG_IRQ, "work done: %u", irq_ok); 1433 } else { 1434 PRINTD (DBG_IRQ|DBG_WARN, "spurious interrupt source: %#x", int_source); 1435 } 1436 1437 PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id); 1438 if (irq_ok) 1439 return IRQ_HANDLED; 1440 return IRQ_NONE; 1441} 1442 1443/********** housekeeping **********/ 1444 1445static void do_housekeeping (unsigned long arg) { 1446 // just stats at the moment 1447 hrz_dev * dev = (hrz_dev *) arg; 1448 1449 // collect device-specific (not driver/atm-linux) stats here 1450 dev->tx_cell_count += rd_regw (dev, TX_CELL_COUNT_OFF); 1451 dev->rx_cell_count += rd_regw (dev, RX_CELL_COUNT_OFF); 1452 dev->hec_error_count += rd_regw (dev, HEC_ERROR_COUNT_OFF); 1453 dev->unassigned_cell_count += rd_regw (dev, UNASSIGNED_CELL_COUNT_OFF); 1454 1455 mod_timer (&dev->housekeeping, jiffies + HZ/10); 1456 1457 return; 1458} 1459 1460/********** find an idle channel for TX and set it up **********/ 1461 1462// called with tx_busy set 1463static short setup_idle_tx_channel (hrz_dev * dev, hrz_vcc * vcc) { 1464 unsigned short idle_channels; 1465 short tx_channel = -1; 1466 unsigned int spin_count; 1467 PRINTD (DBG_FLOW|DBG_TX, "setup_idle_tx_channel %p", dev); 1468 1469 // better would be to fail immediately, the caller can then decide whether 1470 // to wait or drop (depending on whether this is UBR etc.) 1471 spin_count = 0; 1472 while (!(idle_channels = rd_regw (dev, TX_STATUS_OFF) & IDLE_CHANNELS_MASK)) { 1473 PRINTD (DBG_TX|DBG_WARN, "waiting for idle TX channel"); 1474 // delay a bit here 1475 if (++spin_count > 100) { 1476 PRINTD (DBG_TX|DBG_ERR, "spun out waiting for idle TX channel"); 1477 return -EBUSY; 1478 } 1479 } 1480 1481 // got an idle channel 1482 { 1483 // tx_idle ensures we look for idle channels in RR order 1484 int chan = dev->tx_idle; 1485 1486 int keep_going = 1; 1487 while (keep_going) { 1488 if (idle_channels & (1<<chan)) { 1489 tx_channel = chan; 1490 keep_going = 0; 1491 } 1492 ++chan; 1493 if (chan == TX_CHANS) 1494 chan = 0; 1495 } 1496 1497 dev->tx_idle = chan; 1498 } 1499 1500 // set up the channel we found 1501 { 1502 // Initialise the cell header in the transmit channel descriptor 1503 // a.k.a. prepare the channel and remember that we have done so. 1504 1505 tx_ch_desc * tx_desc = &memmap->tx_descs[tx_channel]; 1506 u32 rd_ptr; 1507 u32 wr_ptr; 1508 u16 channel = vcc->channel; 1509 1510 unsigned long flags; 1511 spin_lock_irqsave (&dev->mem_lock, flags); 1512 1513 // Update the transmit channel record. 1514 dev->tx_channel_record[tx_channel] = channel; 1515 1516 // xBR channel 1517 update_tx_channel_config (dev, tx_channel, RATE_TYPE_ACCESS, 1518 vcc->tx_xbr_bits); 1519 1520 // Update the PCR counter preload value etc. 1521 update_tx_channel_config (dev, tx_channel, PCR_TIMER_ACCESS, 1522 vcc->tx_pcr_bits); 1523 1524#if 0 1525 if (vcc->tx_xbr_bits == VBR_RATE_TYPE) { 1526 // SCR timer 1527 update_tx_channel_config (dev, tx_channel, SCR_TIMER_ACCESS, 1528 vcc->tx_scr_bits); 1529 1530 // Bucket size... 1531 update_tx_channel_config (dev, tx_channel, BUCKET_CAPACITY_ACCESS, 1532 vcc->tx_bucket_bits); 1533 1534 // ... and fullness 1535 update_tx_channel_config (dev, tx_channel, BUCKET_FULLNESS_ACCESS, 1536 vcc->tx_bucket_bits); 1537 } 1538#endif 1539 1540 // Initialise the read and write buffer pointers 1541 rd_ptr = rd_mem (dev, &tx_desc->rd_buf_type) & BUFFER_PTR_MASK; 1542 wr_ptr = rd_mem (dev, &tx_desc->wr_buf_type) & BUFFER_PTR_MASK; 1543 1544 // idle TX channels should have identical pointers 1545 if (rd_ptr != wr_ptr) { 1546 PRINTD (DBG_TX|DBG_ERR, "TX buffer pointers are broken!"); 1547 // spin_unlock... return -E... 1548 // I wonder if gcc would get rid of one of the pointer aliases 1549 } 1550 PRINTD (DBG_TX, "TX buffer pointers are: rd %x, wr %x.", 1551 rd_ptr, wr_ptr); 1552 1553 switch (vcc->aal) { 1554 case aal0: 1555 PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal0"); 1556 rd_ptr |= CHANNEL_TYPE_RAW_CELLS; 1557 wr_ptr |= CHANNEL_TYPE_RAW_CELLS; 1558 break; 1559 case aal34: 1560 PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal34"); 1561 rd_ptr |= CHANNEL_TYPE_AAL3_4; 1562 wr_ptr |= CHANNEL_TYPE_AAL3_4; 1563 break; 1564 case aal5: 1565 rd_ptr |= CHANNEL_TYPE_AAL5; 1566 wr_ptr |= CHANNEL_TYPE_AAL5; 1567 // Initialise the CRC 1568 wr_mem (dev, &tx_desc->partial_crc, INITIAL_CRC); 1569 break; 1570 } 1571 1572 wr_mem (dev, &tx_desc->rd_buf_type, rd_ptr); 1573 wr_mem (dev, &tx_desc->wr_buf_type, wr_ptr); 1574 1575 // Write the Cell Header 1576 // Payload Type, CLP and GFC would go here if non-zero 1577 wr_mem (dev, &tx_desc->cell_header, channel); 1578 1579 spin_unlock_irqrestore (&dev->mem_lock, flags); 1580 } 1581 1582 return tx_channel; 1583} 1584 1585/********** send a frame **********/ 1586 1587static int hrz_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) { 1588 unsigned int spin_count; 1589 int free_buffers; 1590 hrz_dev * dev = HRZ_DEV(atm_vcc->dev); 1591 hrz_vcc * vcc = HRZ_VCC(atm_vcc); 1592 u16 channel = vcc->channel; 1593 1594 u32 buffers_required; 1595 1596 /* signed for error return */ 1597 short tx_channel; 1598 1599 PRINTD (DBG_FLOW|DBG_TX, "hrz_send vc %x data %p len %u", 1600 channel, skb->data, skb->len); 1601 1602 dump_skb (">>>", channel, skb); 1603 1604 if (atm_vcc->qos.txtp.traffic_class == ATM_NONE) { 1605 PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", channel); 1606 hrz_kfree_skb (skb); 1607 return -EIO; 1608 } 1609 1610 // don't understand this 1611 ATM_SKB(skb)->vcc = atm_vcc; 1612 1613 if (skb->len > atm_vcc->qos.txtp.max_sdu) { 1614 PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping..."); 1615 hrz_kfree_skb (skb); 1616 return -EIO; 1617 } 1618 1619 if (!channel) { 1620 PRINTD (DBG_ERR|DBG_TX, "attempt to transmit on zero (rx_)channel"); 1621 hrz_kfree_skb (skb); 1622 return -EIO; 1623 } 1624 1625#if 0 1626 { 1627 // where would be a better place for this? housekeeping? 1628 u16 status; 1629 pci_read_config_word (dev->pci_dev, PCI_STATUS, &status); 1630 if (status & PCI_STATUS_REC_MASTER_ABORT) { 1631 PRINTD (DBG_BUS|DBG_ERR, "Clearing PCI Master Abort (and cleaning up)"); 1632 status &= ~PCI_STATUS_REC_MASTER_ABORT; 1633 pci_write_config_word (dev->pci_dev, PCI_STATUS, status); 1634 if (test_bit (tx_busy, &dev->flags)) { 1635 hrz_kfree_skb (dev->tx_skb); 1636 tx_release (dev); 1637 } 1638 } 1639 } 1640#endif 1641 1642#ifdef DEBUG_HORIZON 1643 /* wey-hey! */ 1644 if (channel == 1023) { 1645 unsigned int i; 1646 unsigned short d = 0; 1647 char * s = skb->data; 1648 if (*s++ == 'D') { 1649 for (i = 0; i < 4; ++i) 1650 d = (d << 4) | hex_to_bin(*s++); 1651 PRINTK (KERN_INFO, "debug bitmap is now %hx", debug = d); 1652 } 1653 } 1654#endif 1655 1656 // wait until TX is free and grab lock 1657 if (tx_hold (dev)) { 1658 hrz_kfree_skb (skb); 1659 return -ERESTARTSYS; 1660 } 1661 1662 // Wait for enough space to be available in transmit buffer memory. 1663 1664 // should be number of cells needed + 2 (according to hardware docs) 1665 // = ((framelen+8)+47) / 48 + 2 1666 // = (framelen+7) / 48 + 3, hmm... faster to put addition inside XXX 1667 buffers_required = (skb->len+(ATM_AAL5_TRAILER-1)) / ATM_CELL_PAYLOAD + 3; 1668 1669 // replace with timer and sleep, add dev->tx_buffers_queue (max 1 entry) 1670 spin_count = 0; 1671 while ((free_buffers = rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF)) < buffers_required) { 1672 PRINTD (DBG_TX, "waiting for free TX buffers, got %d of %d", 1673 free_buffers, buffers_required); 1674 // what is the appropriate delay? implement a timeout? (depending on line speed?) 1675 // mdelay (1); 1676 // what happens if we kill (current_pid, SIGKILL) ? 1677 schedule(); 1678 if (++spin_count > 1000) { 1679 PRINTD (DBG_TX|DBG_ERR, "spun out waiting for tx buffers, got %d of %d", 1680 free_buffers, buffers_required); 1681 tx_release (dev); 1682 hrz_kfree_skb (skb); 1683 return -ERESTARTSYS; 1684 } 1685 } 1686 1687 // Select a channel to transmit the frame on. 1688 if (channel == dev->last_vc) { 1689 PRINTD (DBG_TX, "last vc hack: hit"); 1690 tx_channel = dev->tx_last; 1691 } else { 1692 PRINTD (DBG_TX, "last vc hack: miss"); 1693 // Are we currently transmitting this VC on one of the channels? 1694 for (tx_channel = 0; tx_channel < TX_CHANS; ++tx_channel) 1695 if (dev->tx_channel_record[tx_channel] == channel) { 1696 PRINTD (DBG_TX, "vc already on channel: hit"); 1697 break; 1698 } 1699 if (tx_channel == TX_CHANS) { 1700 PRINTD (DBG_TX, "vc already on channel: miss"); 1701 // Find and set up an idle channel. 1702 tx_channel = setup_idle_tx_channel (dev, vcc); 1703 if (tx_channel < 0) { 1704 PRINTD (DBG_TX|DBG_ERR, "failed to get channel"); 1705 tx_release (dev); 1706 return tx_channel; 1707 } 1708 } 1709 1710 PRINTD (DBG_TX, "got channel"); 1711 SELECT_TX_CHANNEL(dev, tx_channel); 1712 1713 dev->last_vc = channel; 1714 dev->tx_last = tx_channel; 1715 } 1716 1717 PRINTD (DBG_TX, "using channel %u", tx_channel); 1718 1719 YELLOW_LED_OFF(dev); 1720 1721 // TX start transfer 1722 1723 { 1724 unsigned int tx_len = skb->len; 1725 unsigned int tx_iovcnt = skb_shinfo(skb)->nr_frags; 1726 // remember this so we can free it later 1727 dev->tx_skb = skb; 1728 1729 if (tx_iovcnt) { 1730 // scatter gather transfer 1731 dev->tx_regions = tx_iovcnt; 1732 dev->tx_iovec = NULL; /* @@@ needs rewritten */ 1733 dev->tx_bytes = 0; 1734 PRINTD (DBG_TX|DBG_BUS, "TX start scatter-gather transfer (iovec %p, len %d)", 1735 skb->data, tx_len); 1736 tx_release (dev); 1737 hrz_kfree_skb (skb); 1738 return -EIO; 1739 } else { 1740 // simple transfer 1741 dev->tx_regions = 0; 1742 dev->tx_iovec = NULL; 1743 dev->tx_bytes = tx_len; 1744 dev->tx_addr = skb->data; 1745 PRINTD (DBG_TX|DBG_BUS, "TX start simple transfer (addr %p, len %d)", 1746 skb->data, tx_len); 1747 } 1748 1749 // and do the business 1750 tx_schedule (dev, 0); 1751 1752 } 1753 1754 return 0; 1755} 1756 1757/********** reset a card **********/ 1758 1759static void hrz_reset (const hrz_dev * dev) { 1760 u32 control_0_reg = rd_regl (dev, CONTROL_0_REG); 1761 1762 // why not set RESET_HORIZON to one and wait for the card to 1763 // reassert that bit as zero? Like so: 1764 control_0_reg = control_0_reg & RESET_HORIZON; 1765 wr_regl (dev, CONTROL_0_REG, control_0_reg); 1766 while (control_0_reg & RESET_HORIZON) 1767 control_0_reg = rd_regl (dev, CONTROL_0_REG); 1768 1769 // old reset code retained: 1770 wr_regl (dev, CONTROL_0_REG, control_0_reg | 1771 RESET_ATM | RESET_RX | RESET_TX | RESET_HOST); 1772 // just guessing here 1773 udelay (1000); 1774 1775 wr_regl (dev, CONTROL_0_REG, control_0_reg); 1776} 1777 1778/********** read the burnt in address **********/ 1779 1780static void WRITE_IT_WAIT (const hrz_dev *dev, u32 ctrl) 1781{ 1782 wr_regl (dev, CONTROL_0_REG, ctrl); 1783 udelay (5); 1784} 1785 1786static void CLOCK_IT (const hrz_dev *dev, u32 ctrl) 1787{ 1788 // DI must be valid around rising SK edge 1789 WRITE_IT_WAIT(dev, ctrl & ~SEEPROM_SK); 1790 WRITE_IT_WAIT(dev, ctrl | SEEPROM_SK); 1791} 1792 1793static u16 __devinit read_bia (const hrz_dev * dev, u16 addr) 1794{ 1795 u32 ctrl = rd_regl (dev, CONTROL_0_REG); 1796 1797 const unsigned int addr_bits = 6; 1798 const unsigned int data_bits = 16; 1799 1800 unsigned int i; 1801 1802 u16 res; 1803 1804 ctrl &= ~(SEEPROM_CS | SEEPROM_SK | SEEPROM_DI); 1805 WRITE_IT_WAIT(dev, ctrl); 1806 1807 // wake Serial EEPROM and send 110 (READ) command 1808 ctrl |= (SEEPROM_CS | SEEPROM_DI); 1809 CLOCK_IT(dev, ctrl); 1810 1811 ctrl |= SEEPROM_DI; 1812 CLOCK_IT(dev, ctrl); 1813 1814 ctrl &= ~SEEPROM_DI; 1815 CLOCK_IT(dev, ctrl); 1816 1817 for (i=0; i<addr_bits; i++) { 1818 if (addr & (1 << (addr_bits-1))) 1819 ctrl |= SEEPROM_DI; 1820 else 1821 ctrl &= ~SEEPROM_DI; 1822 1823 CLOCK_IT(dev, ctrl); 1824 1825 addr = addr << 1; 1826 } 1827 1828 // we could check that we have DO = 0 here 1829 ctrl &= ~SEEPROM_DI; 1830 1831 res = 0; 1832 for (i=0;i<data_bits;i++) { 1833 res = res >> 1; 1834 1835 CLOCK_IT(dev, ctrl); 1836 1837 if (rd_regl (dev, CONTROL_0_REG) & SEEPROM_DO) 1838 res |= (1 << (data_bits-1)); 1839 } 1840 1841 ctrl &= ~(SEEPROM_SK | SEEPROM_CS); 1842 WRITE_IT_WAIT(dev, ctrl); 1843 1844 return res; 1845} 1846 1847/********** initialise a card **********/ 1848 1849static int __devinit hrz_init (hrz_dev * dev) { 1850 int onefivefive; 1851 1852 u16 chan; 1853 1854 int buff_count; 1855 1856 HDW * mem; 1857 1858 cell_buf * tx_desc; 1859 cell_buf * rx_desc; 1860 1861 u32 ctrl; 1862 1863 ctrl = rd_regl (dev, CONTROL_0_REG); 1864 PRINTD (DBG_INFO, "ctrl0reg is %#x", ctrl); 1865 onefivefive = ctrl & ATM_LAYER_STATUS; 1866 1867 if (onefivefive) 1868 printk (DEV_LABEL ": Horizon Ultra (at 155.52 MBps)"); 1869 else 1870 printk (DEV_LABEL ": Horizon (at 25 MBps)"); 1871 1872 printk (":"); 1873 // Reset the card to get everything in a known state 1874 1875 printk (" reset"); 1876 hrz_reset (dev); 1877 1878 // Clear all the buffer memory 1879 1880 printk (" clearing memory"); 1881 1882 for (mem = (HDW *) memmap; mem < (HDW *) (memmap + 1); ++mem) 1883 wr_mem (dev, mem, 0); 1884 1885 printk (" tx channels"); 1886 1887 // All transmit eight channels are set up as AAL5 ABR channels with 1888 // a 16us cell spacing. Why? 1889 1890 // Channel 0 gets the free buffer at 100h, channel 1 gets the free 1891 // buffer at 110h etc. 1892 1893 for (chan = 0; chan < TX_CHANS; ++chan) { 1894 tx_ch_desc * tx_desc = &memmap->tx_descs[chan]; 1895 cell_buf * buf = &memmap->inittxbufs[chan]; 1896 1897 // initialise the read and write buffer pointers 1898 wr_mem (dev, &tx_desc->rd_buf_type, BUF_PTR(buf)); 1899 wr_mem (dev, &tx_desc->wr_buf_type, BUF_PTR(buf)); 1900 1901 // set the status of the initial buffers to empty 1902 wr_mem (dev, &buf->next, BUFF_STATUS_EMPTY); 1903 } 1904 1905 // Use space bufn3 at the moment for tx buffers 1906 1907 printk (" tx buffers"); 1908 1909 tx_desc = memmap->bufn3; 1910 1911 wr_mem (dev, &memmap->txfreebufstart.next, BUF_PTR(tx_desc) | BUFF_STATUS_EMPTY); 1912 1913 for (buff_count = 0; buff_count < BUFN3_SIZE-1; buff_count++) { 1914 wr_mem (dev, &tx_desc->next, BUF_PTR(tx_desc+1) | BUFF_STATUS_EMPTY); 1915 tx_desc++; 1916 } 1917 1918 wr_mem (dev, &tx_desc->next, BUF_PTR(&memmap->txfreebufend) | BUFF_STATUS_EMPTY); 1919 1920 // Initialise the transmit free buffer count 1921 wr_regw (dev, TX_FREE_BUFFER_COUNT_OFF, BUFN3_SIZE); 1922 1923 printk (" rx channels"); 1924 1925 // Initialise all of the receive channels to be AAL5 disabled with 1926 // an interrupt threshold of 0 1927 1928 for (chan = 0; chan < RX_CHANS; ++chan) { 1929 rx_ch_desc * rx_desc = &memmap->rx_descs[chan]; 1930 1931 wr_mem (dev, &rx_desc->wr_buf_type, CHANNEL_TYPE_AAL5 | RX_CHANNEL_DISABLED); 1932 } 1933 1934 printk (" rx buffers"); 1935 1936 // Use space bufn4 at the moment for rx buffers 1937 1938 rx_desc = memmap->bufn4; 1939 1940 wr_mem (dev, &memmap->rxfreebufstart.next, BUF_PTR(rx_desc) | BUFF_STATUS_EMPTY); 1941 1942 for (buff_count = 0; buff_count < BUFN4_SIZE-1; buff_count++) { 1943 wr_mem (dev, &rx_desc->next, BUF_PTR(rx_desc+1) | BUFF_STATUS_EMPTY); 1944 1945 rx_desc++; 1946 } 1947 1948 wr_mem (dev, &rx_desc->next, BUF_PTR(&memmap->rxfreebufend) | BUFF_STATUS_EMPTY); 1949 1950 // Initialise the receive free buffer count 1951 wr_regw (dev, RX_FREE_BUFFER_COUNT_OFF, BUFN4_SIZE); 1952 1953 // Initialize Horizons registers 1954 1955 // TX config 1956 wr_regw (dev, TX_CONFIG_OFF, 1957 ABR_ROUND_ROBIN | TX_NORMAL_OPERATION | DRVR_DRVRBAR_ENABLE); 1958 1959 // RX config. Use 10-x VC bits, x VP bits, non user cells in channel 0. 1960 wr_regw (dev, RX_CONFIG_OFF, 1961 DISCARD_UNUSED_VPI_VCI_BITS_SET | NON_USER_CELLS_IN_ONE_CHANNEL | vpi_bits); 1962 1963 // RX line config 1964 wr_regw (dev, RX_LINE_CONFIG_OFF, 1965 LOCK_DETECT_ENABLE | FREQUENCY_DETECT_ENABLE | GXTALOUT_SELECT_DIV4); 1966 1967 // Set the max AAL5 cell count to be just enough to contain the 1968 // largest AAL5 frame that the user wants to receive 1969 wr_regw (dev, MAX_AAL5_CELL_COUNT_OFF, 1970 DIV_ROUND_UP(max_rx_size + ATM_AAL5_TRAILER, ATM_CELL_PAYLOAD)); 1971 1972 // Enable receive 1973 wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE); 1974 1975 printk (" control"); 1976 1977 // Drive the OE of the LEDs then turn the green LED on 1978 ctrl |= GREEN_LED_OE | YELLOW_LED_OE | GREEN_LED | YELLOW_LED; 1979 wr_regl (dev, CONTROL_0_REG, ctrl); 1980 1981 // Test for a 155-capable card 1982 1983 if (onefivefive) { 1984 // Select 155 mode... make this a choice (or: how do we detect 1985 // external line speed and switch?) 1986 ctrl |= ATM_LAYER_SELECT; 1987 wr_regl (dev, CONTROL_0_REG, ctrl); 1988 1989 // test SUNI-lite vs SAMBA 1990 1991 // Register 0x00 in the SUNI will have some of bits 3-7 set, and 1992 // they will always be zero for the SAMBA. Ha! Bloody hardware 1993 // engineers. It'll never work. 1994 1995 if (rd_framer (dev, 0) & 0x00f0) { 1996 // SUNI 1997 printk (" SUNI"); 1998 1999 // Reset, just in case 2000 wr_framer (dev, 0x00, 0x0080); 2001 wr_framer (dev, 0x00, 0x0000); 2002 2003 // Configure transmit FIFO 2004 wr_framer (dev, 0x63, rd_framer (dev, 0x63) | 0x0002); 2005 2006 // Set line timed mode 2007 wr_framer (dev, 0x05, rd_framer (dev, 0x05) | 0x0001); 2008 } else { 2009 // SAMBA 2010 printk (" SAMBA"); 2011 2012 // Reset, just in case 2013 wr_framer (dev, 0, rd_framer (dev, 0) | 0x0001); 2014 wr_framer (dev, 0, rd_framer (dev, 0) &~ 0x0001); 2015 2016 // Turn off diagnostic loopback and enable line-timed mode 2017 wr_framer (dev, 0, 0x0002); 2018 2019 // Turn on transmit outputs 2020 wr_framer (dev, 2, 0x0B80); 2021 } 2022 } else { 2023 // Select 25 mode 2024 ctrl &= ~ATM_LAYER_SELECT; 2025 2026 // Madge B154 setup 2027 // none required? 2028 } 2029 2030 printk (" LEDs"); 2031 2032 GREEN_LED_ON(dev); 2033 YELLOW_LED_ON(dev); 2034 2035 printk (" ESI="); 2036 2037 { 2038 u16 b = 0; 2039 int i; 2040 u8 * esi = dev->atm_dev->esi; 2041 2042 // in the card I have, EEPROM 2043 // addresses 0, 1, 2 contain 0 2044 // addresess 5, 6 etc. contain ffff 2045 // NB: Madge prefix is 00 00 f6 (which is 00 00 6f in Ethernet bit order) 2046 // the read_bia routine gets the BIA in Ethernet bit order 2047 2048 for (i=0; i < ESI_LEN; ++i) { 2049 if (i % 2 == 0) 2050 b = read_bia (dev, i/2 + 2); 2051 else 2052 b = b >> 8; 2053 esi[i] = b & 0xFF; 2054 printk ("%02x", esi[i]); 2055 } 2056 } 2057 2058 // Enable RX_Q and ?X_COMPLETE interrupts only 2059 wr_regl (dev, INT_ENABLE_REG_OFF, INTERESTING_INTERRUPTS); 2060 printk (" IRQ on"); 2061 2062 printk (".\n"); 2063 2064 return onefivefive; 2065} 2066 2067/********** check max_sdu **********/ 2068 2069static int check_max_sdu (hrz_aal aal, struct atm_trafprm * tp, unsigned int max_frame_size) { 2070 PRINTD (DBG_FLOW|DBG_QOS, "check_max_sdu"); 2071 2072 switch (aal) { 2073 case aal0: 2074 if (!(tp->max_sdu)) { 2075 PRINTD (DBG_QOS, "defaulting max_sdu"); 2076 tp->max_sdu = ATM_AAL0_SDU; 2077 } else if (tp->max_sdu != ATM_AAL0_SDU) { 2078 PRINTD (DBG_QOS|DBG_ERR, "rejecting max_sdu"); 2079 return -EINVAL; 2080 } 2081 break; 2082 case aal34: 2083 if (tp->max_sdu == 0 || tp->max_sdu > ATM_MAX_AAL34_PDU) { 2084 PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default"); 2085 tp->max_sdu = ATM_MAX_AAL34_PDU; 2086 } 2087 break; 2088 case aal5: 2089 if (tp->max_sdu == 0 || tp->max_sdu > max_frame_size) { 2090 PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default"); 2091 tp->max_sdu = max_frame_size; 2092 } 2093 break; 2094 } 2095 return 0; 2096} 2097 2098/********** check pcr **********/ 2099 2100// something like this should be part of ATM Linux 2101static int atm_pcr_check (struct atm_trafprm * tp, unsigned int pcr) { 2102 // we are assuming non-UBR, and non-special values of pcr 2103 if (tp->min_pcr == ATM_MAX_PCR) 2104 PRINTD (DBG_QOS, "luser gave min_pcr = ATM_MAX_PCR"); 2105 else if (tp->min_pcr < 0) 2106 PRINTD (DBG_QOS, "luser gave negative min_pcr"); 2107 else if (tp->min_pcr && tp->min_pcr > pcr) 2108 PRINTD (DBG_QOS, "pcr less than min_pcr"); 2109 else 2110 // !! max_pcr = UNSPEC (0) is equivalent to max_pcr = MAX (-1) 2111 // easier to #define ATM_MAX_PCR 0 and have all rates unsigned? 2112 // [this would get rid of next two conditionals] 2113 if ((0) && tp->max_pcr == ATM_MAX_PCR) 2114 PRINTD (DBG_QOS, "luser gave max_pcr = ATM_MAX_PCR"); 2115 else if ((tp->max_pcr != ATM_MAX_PCR) && tp->max_pcr < 0) 2116 PRINTD (DBG_QOS, "luser gave negative max_pcr"); 2117 else if (tp->max_pcr && tp->max_pcr != ATM_MAX_PCR && tp->max_pcr < pcr) 2118 PRINTD (DBG_QOS, "pcr greater than max_pcr"); 2119 else { 2120 // each limit unspecified or not violated 2121 PRINTD (DBG_QOS, "xBR(pcr) OK"); 2122 return 0; 2123 } 2124 PRINTD (DBG_QOS, "pcr=%u, tp: min_pcr=%d, pcr=%d, max_pcr=%d", 2125 pcr, tp->min_pcr, tp->pcr, tp->max_pcr); 2126 return -EINVAL; 2127} 2128 2129/********** open VC **********/ 2130 2131static int hrz_open (struct atm_vcc *atm_vcc) 2132{ 2133 int error; 2134 u16 channel; 2135 2136 struct atm_qos * qos; 2137 struct atm_trafprm * txtp; 2138 struct atm_trafprm * rxtp; 2139 2140 hrz_dev * dev = HRZ_DEV(atm_vcc->dev); 2141 hrz_vcc vcc; 2142 hrz_vcc * vccp; // allocated late 2143 short vpi = atm_vcc->vpi; 2144 int vci = atm_vcc->vci; 2145 PRINTD (DBG_FLOW|DBG_VCC, "hrz_open %x %x", vpi, vci); 2146 2147#ifdef ATM_VPI_UNSPEC 2148 // UNSPEC is deprecated, remove this code eventually 2149 if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) { 2150 PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)"); 2151 return -EINVAL; 2152 } 2153#endif 2154 2155 error = vpivci_to_channel (&channel, vpi, vci); 2156 if (error) { 2157 PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci); 2158 return error; 2159 } 2160 2161 vcc.channel = channel; 2162 // max speed for the moment 2163 vcc.tx_rate = 0x0; 2164 2165 qos = &atm_vcc->qos; 2166 2167 // check AAL and remember it 2168 switch (qos->aal) { 2169 case ATM_AAL0: 2170 // we would if it were 48 bytes and not 52! 2171 PRINTD (DBG_QOS|DBG_VCC, "AAL0"); 2172 vcc.aal = aal0; 2173 break; 2174 case ATM_AAL34: 2175 // we would if I knew how do the SAR! 2176 PRINTD (DBG_QOS|DBG_VCC, "AAL3/4"); 2177 vcc.aal = aal34; 2178 break; 2179 case ATM_AAL5: 2180 PRINTD (DBG_QOS|DBG_VCC, "AAL5"); 2181 vcc.aal = aal5; 2182 break; 2183 default: 2184 PRINTD (DBG_QOS|DBG_VCC, "Bad AAL!"); 2185 return -EINVAL; 2186 break; 2187 } 2188 2189 // TX traffic parameters 2190 2191 // there are two, interrelated problems here: 1. the reservation of 2192 // PCR is not a binary choice, we are given bounds and/or a 2193 // desirable value; 2. the device is only capable of certain values, 2194 // most of which are not integers. It is almost certainly acceptable 2195 // to be off by a maximum of 1 to 10 cps. 2196 2197 // Pragmatic choice: always store an integral PCR as that which has 2198 // been allocated, even if we allocate a little (or a lot) less, 2199 // after rounding. The actual allocation depends on what we can 2200 // manage with our rate selection algorithm. The rate selection 2201 // algorithm is given an integral PCR and a tolerance and told 2202 // whether it should round the value up or down if the tolerance is 2203 // exceeded; it returns: a) the actual rate selected (rounded up to 2204 // the nearest integer), b) a bit pattern to feed to the timer 2205 // register, and c) a failure value if no applicable rate exists. 2206 2207 // Part of the job is done by atm_pcr_goal which gives us a PCR 2208 // specification which says: EITHER grab the maximum available PCR 2209 // (and perhaps a lower bound which we musn't pass), OR grab this 2210 // amount, rounding down if you have to (and perhaps a lower bound 2211 // which we musn't pass) OR grab this amount, rounding up if you 2212 // have to (and perhaps an upper bound which we musn't pass). If any 2213 // bounds ARE passed we fail. Note that rounding is only rounding to 2214 // match device limitations, we do not round down to satisfy 2215 // bandwidth availability even if this would not violate any given 2216 // lower bound. 2217 2218 // Note: telephony = 64kb/s = 48 byte cell payload @ 500/3 cells/s 2219 // (say) so this is not even a binary fixpoint cell rate (but this 2220 // device can do it). To avoid this sort of hassle we use a 2221 // tolerance parameter (currently fixed at 10 cps). 2222 2223 PRINTD (DBG_QOS, "TX:"); 2224 2225 txtp = &qos->txtp; 2226 2227 // set up defaults for no traffic 2228 vcc.tx_rate = 0; 2229 // who knows what would actually happen if you try and send on this? 2230 vcc.tx_xbr_bits = IDLE_RATE_TYPE; 2231 vcc.tx_pcr_bits = CLOCK_DISABLE; 2232#if 0 2233 vcc.tx_scr_bits = CLOCK_DISABLE; 2234 vcc.tx_bucket_bits = 0; 2235#endif 2236 2237 if (txtp->traffic_class != ATM_NONE) { 2238 error = check_max_sdu (vcc.aal, txtp, max_tx_size); 2239 if (error) { 2240 PRINTD (DBG_QOS, "TX max_sdu check failed"); 2241 return error; 2242 } 2243 2244 switch (txtp->traffic_class) { 2245 case ATM_UBR: { 2246 // we take "the PCR" as a rate-cap 2247 // not reserved 2248 vcc.tx_rate = 0; 2249 make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, NULL); 2250 vcc.tx_xbr_bits = ABR_RATE_TYPE; 2251 break; 2252 } 2253#if 0 2254 case ATM_ABR: { 2255 // reserve min, allow up to max 2256 vcc.tx_rate = 0; // ? 2257 make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0); 2258 vcc.tx_xbr_bits = ABR_RATE_TYPE; 2259 break; 2260 } 2261#endif 2262 case ATM_CBR: { 2263 int pcr = atm_pcr_goal (txtp); 2264 rounding r; 2265 if (!pcr) { 2266 // down vs. up, remaining bandwidth vs. unlimited bandwidth!! 2267 // should really have: once someone gets unlimited bandwidth 2268 // that no more non-UBR channels can be opened until the 2269 // unlimited one closes?? For the moment, round_down means 2270 // greedy people actually get something and not nothing 2271 r = round_down; 2272 // slight race (no locking) here so we may get -EAGAIN 2273 // later; the greedy bastards would deserve it :) 2274 PRINTD (DBG_QOS, "snatching all remaining TX bandwidth"); 2275 pcr = dev->tx_avail; 2276 } else if (pcr < 0) { 2277 r = round_down; 2278 pcr = -pcr; 2279 } else { 2280 r = round_up; 2281 } 2282 error = make_rate_with_tolerance (dev, pcr, r, 10, 2283 &vcc.tx_pcr_bits, &vcc.tx_rate); 2284 if (error) { 2285 PRINTD (DBG_QOS, "could not make rate from TX PCR"); 2286 return error; 2287 } 2288 // not really clear what further checking is needed 2289 error = atm_pcr_check (txtp, vcc.tx_rate); 2290 if (error) { 2291 PRINTD (DBG_QOS, "TX PCR failed consistency check"); 2292 return error; 2293 } 2294 vcc.tx_xbr_bits = CBR_RATE_TYPE; 2295 break; 2296 } 2297#if 0 2298 case ATM_VBR: { 2299 int pcr = atm_pcr_goal (txtp); 2300 // int scr = atm_scr_goal (txtp); 2301 int scr = pcr/2; // just for fun 2302 unsigned int mbs = 60; // just for fun 2303 rounding pr; 2304 rounding sr; 2305 unsigned int bucket; 2306 if (!pcr) { 2307 pr = round_nearest; 2308 pcr = 1<<30; 2309 } else if (pcr < 0) { 2310 pr = round_down; 2311 pcr = -pcr; 2312 } else { 2313 pr = round_up; 2314 } 2315 error = make_rate_with_tolerance (dev, pcr, pr, 10, 2316 &vcc.tx_pcr_bits, 0); 2317 if (!scr) { 2318 // see comments for PCR with CBR above 2319 sr = round_down; 2320 // slight race (no locking) here so we may get -EAGAIN 2321 // later; the greedy bastards would deserve it :) 2322 PRINTD (DBG_QOS, "snatching all remaining TX bandwidth"); 2323 scr = dev->tx_avail; 2324 } else if (scr < 0) { 2325 sr = round_down; 2326 scr = -scr; 2327 } else { 2328 sr = round_up; 2329 } 2330 error = make_rate_with_tolerance (dev, scr, sr, 10, 2331 &vcc.tx_scr_bits, &vcc.tx_rate); 2332 if (error) { 2333 PRINTD (DBG_QOS, "could not make rate from TX SCR"); 2334 return error; 2335 } 2336 // not really clear what further checking is needed 2337 // error = atm_scr_check (txtp, vcc.tx_rate); 2338 if (error) { 2339 PRINTD (DBG_QOS, "TX SCR failed consistency check"); 2340 return error; 2341 } 2342 // bucket calculations (from a piece of paper...) cell bucket 2343 // capacity must be largest integer smaller than m(p-s)/p + 1 2344 // where m = max burst size, p = pcr, s = scr 2345 bucket = mbs*(pcr-scr)/pcr; 2346 if (bucket*pcr != mbs*(pcr-scr)) 2347 bucket += 1; 2348 if (bucket > BUCKET_MAX_SIZE) { 2349 PRINTD (DBG_QOS, "shrinking bucket from %u to %u", 2350 bucket, BUCKET_MAX_SIZE); 2351 bucket = BUCKET_MAX_SIZE; 2352 } 2353 vcc.tx_xbr_bits = VBR_RATE_TYPE; 2354 vcc.tx_bucket_bits = bucket; 2355 break; 2356 } 2357#endif 2358 default: { 2359 PRINTD (DBG_QOS, "unsupported TX traffic class"); 2360 return -EINVAL; 2361 break; 2362 } 2363 } 2364 } 2365 2366 // RX traffic parameters 2367 2368 PRINTD (DBG_QOS, "RX:"); 2369 2370 rxtp = &qos->rxtp; 2371 2372 // set up defaults for no traffic 2373 vcc.rx_rate = 0; 2374 2375 if (rxtp->traffic_class != ATM_NONE) { 2376 error = check_max_sdu (vcc.aal, rxtp, max_rx_size); 2377 if (error) { 2378 PRINTD (DBG_QOS, "RX max_sdu check failed"); 2379 return error; 2380 } 2381 switch (rxtp->traffic_class) { 2382 case ATM_UBR: { 2383 // not reserved 2384 break; 2385 } 2386#if 0 2387 case ATM_ABR: { 2388 // reserve min 2389 vcc.rx_rate = 0; // ? 2390 break; 2391 } 2392#endif 2393 case ATM_CBR: { 2394 int pcr = atm_pcr_goal (rxtp); 2395 if (!pcr) { 2396 // slight race (no locking) here so we may get -EAGAIN 2397 // later; the greedy bastards would deserve it :) 2398 PRINTD (DBG_QOS, "snatching all remaining RX bandwidth"); 2399 pcr = dev->rx_avail; 2400 } else if (pcr < 0) { 2401 pcr = -pcr; 2402 } 2403 vcc.rx_rate = pcr; 2404 // not really clear what further checking is needed 2405 error = atm_pcr_check (rxtp, vcc.rx_rate); 2406 if (error) { 2407 PRINTD (DBG_QOS, "RX PCR failed consistency check"); 2408 return error; 2409 } 2410 break; 2411 } 2412#if 0 2413 case ATM_VBR: { 2414 // int scr = atm_scr_goal (rxtp); 2415 int scr = 1<<16; // just for fun 2416 if (!scr) { 2417 // slight race (no locking) here so we may get -EAGAIN 2418 // later; the greedy bastards would deserve it :) 2419 PRINTD (DBG_QOS, "snatching all remaining RX bandwidth"); 2420 scr = dev->rx_avail; 2421 } else if (scr < 0) { 2422 scr = -scr; 2423 } 2424 vcc.rx_rate = scr; 2425 // not really clear what further checking is needed 2426 // error = atm_scr_check (rxtp, vcc.rx_rate); 2427 if (error) { 2428 PRINTD (DBG_QOS, "RX SCR failed consistency check"); 2429 return error; 2430 } 2431 break; 2432 } 2433#endif 2434 default: { 2435 PRINTD (DBG_QOS, "unsupported RX traffic class"); 2436 return -EINVAL; 2437 break; 2438 } 2439 } 2440 } 2441 2442 2443 // late abort useful for diagnostics 2444 if (vcc.aal != aal5) { 2445 PRINTD (DBG_QOS, "AAL not supported"); 2446 return -EINVAL; 2447 } 2448 2449 // get space for our vcc stuff and copy parameters into it 2450 vccp = kmalloc (sizeof(hrz_vcc), GFP_KERNEL); 2451 if (!vccp) { 2452 PRINTK (KERN_ERR, "out of memory!"); 2453 return -ENOMEM; 2454 } 2455 *vccp = vcc; 2456 2457 // clear error and grab cell rate resource lock 2458 error = 0; 2459 spin_lock (&dev->rate_lock); 2460 2461 if (vcc.tx_rate > dev->tx_avail) { 2462 PRINTD (DBG_QOS, "not enough TX PCR left"); 2463 error = -EAGAIN; 2464 } 2465 2466 if (vcc.rx_rate > dev->rx_avail) { 2467 PRINTD (DBG_QOS, "not enough RX PCR left"); 2468 error = -EAGAIN; 2469 } 2470 2471 if (!error) { 2472 // really consume cell rates 2473 dev->tx_avail -= vcc.tx_rate; 2474 dev->rx_avail -= vcc.rx_rate; 2475 PRINTD (DBG_QOS|DBG_VCC, "reserving %u TX PCR and %u RX PCR", 2476 vcc.tx_rate, vcc.rx_rate); 2477 } 2478 2479 // release lock and exit on error 2480 spin_unlock (&dev->rate_lock); 2481 if (error) { 2482 PRINTD (DBG_QOS|DBG_VCC, "insufficient cell rate resources"); 2483 kfree (vccp); 2484 return error; 2485 } 2486 2487 // this is "immediately before allocating the connection identifier 2488 // in hardware" - so long as the next call does not fail :) 2489 set_bit(ATM_VF_ADDR,&atm_vcc->flags); 2490 2491 // any errors here are very serious and should never occur 2492 2493 if (rxtp->traffic_class != ATM_NONE) { 2494 if (dev->rxer[channel]) { 2495 PRINTD (DBG_ERR|DBG_VCC, "VC already open for RX"); 2496 error = -EBUSY; 2497 } 2498 if (!error) 2499 error = hrz_open_rx (dev, channel); 2500 if (error) { 2501 kfree (vccp); 2502 return error; 2503 } 2504 // this link allows RX frames through 2505 dev->rxer[channel] = atm_vcc; 2506 } 2507 2508 // success, set elements of atm_vcc 2509 atm_vcc->dev_data = (void *) vccp; 2510 2511 // indicate readiness 2512 set_bit(ATM_VF_READY,&atm_vcc->flags); 2513 2514 return 0; 2515} 2516 2517/********** close VC **********/ 2518 2519static void hrz_close (struct atm_vcc * atm_vcc) { 2520 hrz_dev * dev = HRZ_DEV(atm_vcc->dev); 2521 hrz_vcc * vcc = HRZ_VCC(atm_vcc); 2522 u16 channel = vcc->channel; 2523 PRINTD (DBG_VCC|DBG_FLOW, "hrz_close"); 2524 2525 // indicate unreadiness 2526 clear_bit(ATM_VF_READY,&atm_vcc->flags); 2527 2528 if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) { 2529 unsigned int i; 2530 2531 // let any TX on this channel that has started complete 2532 // no restart, just keep trying 2533 while (tx_hold (dev)) 2534 ; 2535 // remove record of any tx_channel having been setup for this channel 2536 for (i = 0; i < TX_CHANS; ++i) 2537 if (dev->tx_channel_record[i] == channel) { 2538 dev->tx_channel_record[i] = -1; 2539 break; 2540 } 2541 if (dev->last_vc == channel) 2542 dev->tx_last = -1; 2543 tx_release (dev); 2544 } 2545 2546 if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) { 2547 // disable RXing - it tries quite hard 2548 hrz_close_rx (dev, channel); 2549 // forget the vcc - no more skbs will be pushed 2550 if (atm_vcc != dev->rxer[channel]) 2551 PRINTK (KERN_ERR, "%s atm_vcc=%p rxer[channel]=%p", 2552 "arghhh! we're going to die!", 2553 atm_vcc, dev->rxer[channel]); 2554 dev->rxer[channel] = NULL; 2555 } 2556 2557 // atomically release our rate reservation 2558 spin_lock (&dev->rate_lock); 2559 PRINTD (DBG_QOS|DBG_VCC, "releasing %u TX PCR and %u RX PCR", 2560 vcc->tx_rate, vcc->rx_rate); 2561 dev->tx_avail += vcc->tx_rate; 2562 dev->rx_avail += vcc->rx_rate; 2563 spin_unlock (&dev->rate_lock); 2564 2565 // free our structure 2566 kfree (vcc); 2567 // say the VPI/VCI is free again 2568 clear_bit(ATM_VF_ADDR,&atm_vcc->flags); 2569} 2570 2571#if 0 2572static int hrz_getsockopt (struct atm_vcc * atm_vcc, int level, int optname, 2573 void *optval, int optlen) { 2574 hrz_dev * dev = HRZ_DEV(atm_vcc->dev); 2575 PRINTD (DBG_FLOW|DBG_VCC, "hrz_getsockopt"); 2576 switch (level) { 2577 case SOL_SOCKET: 2578 switch (optname) { 2579// case SO_BCTXOPT: 2580// break; 2581// case SO_BCRXOPT: 2582// break; 2583 default: 2584 return -ENOPROTOOPT; 2585 break; 2586 }; 2587 break; 2588 } 2589 return -EINVAL; 2590} 2591 2592static int hrz_setsockopt (struct atm_vcc * atm_vcc, int level, int optname, 2593 void *optval, unsigned int optlen) { 2594 hrz_dev * dev = HRZ_DEV(atm_vcc->dev); 2595 PRINTD (DBG_FLOW|DBG_VCC, "hrz_setsockopt"); 2596 switch (level) { 2597 case SOL_SOCKET: 2598 switch (optname) { 2599// case SO_BCTXOPT: 2600// break; 2601// case SO_BCRXOPT: 2602// break; 2603 default: 2604 return -ENOPROTOOPT; 2605 break; 2606 }; 2607 break; 2608 } 2609 return -EINVAL; 2610} 2611#endif 2612 2613#if 0 2614static int hrz_ioctl (struct atm_dev * atm_dev, unsigned int cmd, void *arg) { 2615 hrz_dev * dev = HRZ_DEV(atm_dev); 2616 PRINTD (DBG_FLOW, "hrz_ioctl"); 2617 return -1; 2618} 2619 2620unsigned char hrz_phy_get (struct atm_dev * atm_dev, unsigned long addr) { 2621 hrz_dev * dev = HRZ_DEV(atm_dev); 2622 PRINTD (DBG_FLOW, "hrz_phy_get"); 2623 return 0; 2624} 2625 2626static void hrz_phy_put (struct atm_dev * atm_dev, unsigned char value, 2627 unsigned long addr) { 2628 hrz_dev * dev = HRZ_DEV(atm_dev); 2629 PRINTD (DBG_FLOW, "hrz_phy_put"); 2630} 2631 2632static int hrz_change_qos (struct atm_vcc * atm_vcc, struct atm_qos *qos, int flgs) { 2633 hrz_dev * dev = HRZ_DEV(vcc->dev); 2634 PRINTD (DBG_FLOW, "hrz_change_qos"); 2635 return -1; 2636} 2637#endif 2638 2639/********** proc file contents **********/ 2640 2641static int hrz_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) { 2642 hrz_dev * dev = HRZ_DEV(atm_dev); 2643 int left = *pos; 2644 PRINTD (DBG_FLOW, "hrz_proc_read"); 2645 2646 /* more diagnostics here? */ 2647 2648#if 0 2649 if (!left--) { 2650 unsigned int count = sprintf (page, "vbr buckets:"); 2651 unsigned int i; 2652 for (i = 0; i < TX_CHANS; ++i) 2653 count += sprintf (page, " %u/%u", 2654 query_tx_channel_config (dev, i, BUCKET_FULLNESS_ACCESS), 2655 query_tx_channel_config (dev, i, BUCKET_CAPACITY_ACCESS)); 2656 count += sprintf (page+count, ".\n"); 2657 return count; 2658 } 2659#endif 2660 2661 if (!left--) 2662 return sprintf (page, 2663 "cells: TX %lu, RX %lu, HEC errors %lu, unassigned %lu.\n", 2664 dev->tx_cell_count, dev->rx_cell_count, 2665 dev->hec_error_count, dev->unassigned_cell_count); 2666 2667 if (!left--) 2668 return sprintf (page, 2669 "free cell buffers: TX %hu, RX %hu+%hu.\n", 2670 rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF), 2671 rd_regw (dev, RX_FREE_BUFFER_COUNT_OFF), 2672 dev->noof_spare_buffers); 2673 2674 if (!left--) 2675 return sprintf (page, 2676 "cps remaining: TX %u, RX %u\n", 2677 dev->tx_avail, dev->rx_avail); 2678 2679 return 0; 2680} 2681 2682static const struct atmdev_ops hrz_ops = { 2683 .open = hrz_open, 2684 .close = hrz_close, 2685 .send = hrz_send, 2686 .proc_read = hrz_proc_read, 2687 .owner = THIS_MODULE, 2688}; 2689 2690static int __devinit hrz_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent) 2691{ 2692 hrz_dev * dev; 2693 int err = 0; 2694 2695 // adapter slot free, read resources from PCI configuration space 2696 u32 iobase = pci_resource_start (pci_dev, 0); 2697 u32 * membase = bus_to_virt (pci_resource_start (pci_dev, 1)); 2698 unsigned int irq; 2699 unsigned char lat; 2700 2701 PRINTD (DBG_FLOW, "hrz_probe"); 2702 2703 if (pci_enable_device(pci_dev)) 2704 return -EINVAL; 2705 2706 /* XXX DEV_LABEL is a guess */ 2707 if (!request_region(iobase, HRZ_IO_EXTENT, DEV_LABEL)) { 2708 err = -EINVAL; 2709 goto out_disable; 2710 } 2711 2712 dev = kzalloc(sizeof(hrz_dev), GFP_KERNEL); 2713 if (!dev) { 2714 // perhaps we should be nice: deregister all adapters and abort? 2715 PRINTD(DBG_ERR, "out of memory"); 2716 err = -ENOMEM; 2717 goto out_release; 2718 } 2719 2720 pci_set_drvdata(pci_dev, dev); 2721 2722 // grab IRQ and install handler - move this someplace more sensible 2723 irq = pci_dev->irq; 2724 if (request_irq(irq, 2725 interrupt_handler, 2726 IRQF_SHARED, /* irqflags guess */ 2727 DEV_LABEL, /* name guess */ 2728 dev)) { 2729 PRINTD(DBG_WARN, "request IRQ failed!"); 2730 err = -EINVAL; 2731 goto out_free; 2732 } 2733 2734 PRINTD(DBG_INFO, "found Madge ATM adapter (hrz) at: IO %x, IRQ %u, MEM %p", 2735 iobase, irq, membase); 2736 2737 dev->atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &hrz_ops, -1, 2738 NULL); 2739 if (!(dev->atm_dev)) { 2740 PRINTD(DBG_ERR, "failed to register Madge ATM adapter"); 2741 err = -EINVAL; 2742 goto out_free_irq; 2743 } 2744 2745 PRINTD(DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p", 2746 dev->atm_dev->number, dev, dev->atm_dev); 2747 dev->atm_dev->dev_data = (void *) dev; 2748 dev->pci_dev = pci_dev; 2749 2750 // enable bus master accesses 2751 pci_set_master(pci_dev); 2752 2753 // frobnicate latency (upwards, usually) 2754 pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &lat); 2755 if (pci_lat) { 2756 PRINTD(DBG_INFO, "%s PCI latency timer from %hu to %hu", 2757 "changing", lat, pci_lat); 2758 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat); 2759 } else if (lat < MIN_PCI_LATENCY) { 2760 PRINTK(KERN_INFO, "%s PCI latency timer from %hu to %hu", 2761 "increasing", lat, MIN_PCI_LATENCY); 2762 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, MIN_PCI_LATENCY); 2763 } 2764 2765 dev->iobase = iobase; 2766 dev->irq = irq; 2767 dev->membase = membase; 2768 2769 dev->rx_q_entry = dev->rx_q_reset = &memmap->rx_q_entries[0]; 2770 dev->rx_q_wrap = &memmap->rx_q_entries[RX_CHANS-1]; 2771 2772 // these next three are performance hacks 2773 dev->last_vc = -1; 2774 dev->tx_last = -1; 2775 dev->tx_idle = 0; 2776 2777 dev->tx_regions = 0; 2778 dev->tx_bytes = 0; 2779 dev->tx_skb = NULL; 2780 dev->tx_iovec = NULL; 2781 2782 dev->tx_cell_count = 0; 2783 dev->rx_cell_count = 0; 2784 dev->hec_error_count = 0; 2785 dev->unassigned_cell_count = 0; 2786 2787 dev->noof_spare_buffers = 0; 2788 2789 { 2790 unsigned int i; 2791 for (i = 0; i < TX_CHANS; ++i) 2792 dev->tx_channel_record[i] = -1; 2793 } 2794 2795 dev->flags = 0; 2796 2797 // Allocate cell rates and remember ASIC version 2798 // Fibre: ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53 2799 // Copper: (WRONG) we want 6 into the above, close to 25Mb/s 2800 // Copper: (plagarise!) 25600000/8/270*260/53 - n/53 2801 2802 if (hrz_init(dev)) { 2803 // to be really pedantic, this should be ATM_OC3c_PCR 2804 dev->tx_avail = ATM_OC3_PCR; 2805 dev->rx_avail = ATM_OC3_PCR; 2806 set_bit(ultra, &dev->flags); // NOT "|= ultra" ! 2807 } else { 2808 dev->tx_avail = ((25600000/8)*26)/(27*53); 2809 dev->rx_avail = ((25600000/8)*26)/(27*53); 2810 PRINTD(DBG_WARN, "Buggy ASIC: no TX bus-mastering."); 2811 } 2812 2813 // rate changes spinlock 2814 spin_lock_init(&dev->rate_lock); 2815 2816 // on-board memory access spinlock; we want atomic reads and 2817 // writes to adapter memory (handles IRQ and SMP) 2818 spin_lock_init(&dev->mem_lock); 2819 2820 init_waitqueue_head(&dev->tx_queue); 2821 2822 // vpi in 0..4, vci in 6..10 2823 dev->atm_dev->ci_range.vpi_bits = vpi_bits; 2824 dev->atm_dev->ci_range.vci_bits = 10-vpi_bits; 2825 2826 init_timer(&dev->housekeeping); 2827 dev->housekeeping.function = do_housekeeping; 2828 dev->housekeeping.data = (unsigned long) dev; 2829 mod_timer(&dev->housekeeping, jiffies); 2830 2831out: 2832 return err; 2833 2834out_free_irq: 2835 free_irq(dev->irq, dev); 2836out_free: 2837 kfree(dev); 2838out_release: 2839 release_region(iobase, HRZ_IO_EXTENT); 2840out_disable: 2841 pci_disable_device(pci_dev); 2842 goto out; 2843} 2844 2845static void __devexit hrz_remove_one(struct pci_dev *pci_dev) 2846{ 2847 hrz_dev *dev; 2848 2849 dev = pci_get_drvdata(pci_dev); 2850 2851 PRINTD(DBG_INFO, "closing %p (atm_dev = %p)", dev, dev->atm_dev); 2852 del_timer_sync(&dev->housekeeping); 2853 hrz_reset(dev); 2854 atm_dev_deregister(dev->atm_dev); 2855 free_irq(dev->irq, dev); 2856 release_region(dev->iobase, HRZ_IO_EXTENT); 2857 kfree(dev); 2858 2859 pci_disable_device(pci_dev); 2860} 2861 2862static void __init hrz_check_args (void) { 2863#ifdef DEBUG_HORIZON 2864 PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK); 2865#else 2866 if (debug) 2867 PRINTK (KERN_NOTICE, "no debug support in this image"); 2868#endif 2869 2870 if (vpi_bits > HRZ_MAX_VPI) 2871 PRINTK (KERN_ERR, "vpi_bits has been limited to %hu", 2872 vpi_bits = HRZ_MAX_VPI); 2873 2874 if (max_tx_size < 0 || max_tx_size > TX_AAL5_LIMIT) 2875 PRINTK (KERN_NOTICE, "max_tx_size has been limited to %hu", 2876 max_tx_size = TX_AAL5_LIMIT); 2877 2878 if (max_rx_size < 0 || max_rx_size > RX_AAL5_LIMIT) 2879 PRINTK (KERN_NOTICE, "max_rx_size has been limited to %hu", 2880 max_rx_size = RX_AAL5_LIMIT); 2881 2882 return; 2883} 2884 2885MODULE_AUTHOR(maintainer_string); 2886MODULE_DESCRIPTION(description_string); 2887MODULE_LICENSE("GPL"); 2888module_param(debug, ushort, 0644); 2889module_param(vpi_bits, ushort, 0); 2890module_param(max_tx_size, int, 0); 2891module_param(max_rx_size, int, 0); 2892module_param(pci_lat, byte, 0); 2893MODULE_PARM_DESC(debug, "debug bitmap, see .h file"); 2894MODULE_PARM_DESC(vpi_bits, "number of bits (0..4) to allocate to VPIs"); 2895MODULE_PARM_DESC(max_tx_size, "maximum size of TX AAL5 frames"); 2896MODULE_PARM_DESC(max_rx_size, "maximum size of RX AAL5 frames"); 2897MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles"); 2898 2899static struct pci_device_id hrz_pci_tbl[] = { 2900 { PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_HORIZON, PCI_ANY_ID, PCI_ANY_ID, 2901 0, 0, 0 }, 2902 { 0, } 2903}; 2904 2905MODULE_DEVICE_TABLE(pci, hrz_pci_tbl); 2906 2907static struct pci_driver hrz_driver = { 2908 .name = "horizon", 2909 .probe = hrz_probe, 2910 .remove = __devexit_p(hrz_remove_one), 2911 .id_table = hrz_pci_tbl, 2912}; 2913 2914/********** module entry **********/ 2915 2916static int __init hrz_module_init (void) { 2917 // sanity check - cast is needed since printk does not support %Zu 2918 if (sizeof(struct MEMMAP) != 128*1024/4) { 2919 PRINTK (KERN_ERR, "Fix struct MEMMAP (is %lu fakewords).", 2920 (unsigned long) sizeof(struct MEMMAP)); 2921 return -ENOMEM; 2922 } 2923 2924 show_version(); 2925 2926 // check arguments 2927 hrz_check_args(); 2928 2929 // get the juice 2930 return pci_register_driver(&hrz_driver); 2931} 2932 2933/********** module exit **********/ 2934 2935static void __exit hrz_module_exit (void) { 2936 PRINTD (DBG_FLOW, "cleanup_module"); 2937 2938 pci_unregister_driver(&hrz_driver); 2939} 2940 2941module_init(hrz_module_init); 2942module_exit(hrz_module_exit); 2943