1/*
2  Madge Horizon ATM Adapter driver.
3  Copyright (C) 1995-1999  Madge Networks Ltd.
4
5  This program is free software; you can redistribute it and/or modify
6  it under the terms of the GNU General Public License as published by
7  the Free Software Foundation; either version 2 of the License, or
8  (at your option) any later version.
9
10  This program is distributed in the hope that it will be useful,
11  but WITHOUT ANY WARRANTY; without even the implied warranty of
12  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  GNU General Public License for more details.
14
15  You should have received a copy of the GNU General Public License
16  along with this program; if not, write to the Free Software
17  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18
19  The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
20  system and in the file COPYING in the Linux kernel source.
21*/
22
23/*
24  IMPORTANT NOTE: Madge Networks no longer makes the adapters
25  supported by this driver and makes no commitment to maintain it.
26*/
27
28#include <linux/module.h>
29#include <linux/kernel.h>
30#include <linux/mm.h>
31#include <linux/pci.h>
32#include <linux/errno.h>
33#include <linux/atm.h>
34#include <linux/atmdev.h>
35#include <linux/sonet.h>
36#include <linux/skbuff.h>
37#include <linux/time.h>
38#include <linux/delay.h>
39#include <linux/uio.h>
40#include <linux/init.h>
41#include <linux/interrupt.h>
42#include <linux/ioport.h>
43#include <linux/wait.h>
44#include <linux/slab.h>
45
46#include <asm/system.h>
47#include <asm/io.h>
48#include <linux/atomic.h>
49#include <asm/uaccess.h>
50#include <asm/string.h>
51#include <asm/byteorder.h>
52
53#include "horizon.h"
54
55#define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
56#define description_string "Madge ATM Horizon [Ultra] driver"
57#define version_string "1.2.1"
58
59static inline void __init show_version (void) {
60  printk ("%s version %s\n", description_string, version_string);
61}
62
63/*
64
65  CREDITS
66
67  Driver and documentation by:
68
69  Chris Aston        Madge Networks
70  Giuliano Procida   Madge Networks
71  Simon Benham       Madge Networks
72  Simon Johnson      Madge Networks
73  Various Others     Madge Networks
74
75  Some inspiration taken from other drivers by:
76
77  Alexandru Cucos    UTBv
78  Kari Mettinen      University of Helsinki
79  Werner Almesberger EPFL LRC
80
81  Theory of Operation
82
83  I Hardware, detection, initialisation and shutdown.
84
85  1. Supported Hardware
86
87  This driver should handle all variants of the PCI Madge ATM adapters
88  with the Horizon chipset. These are all PCI cards supporting PIO, BM
89  DMA and a form of MMIO (registers only, not internal RAM).
90
91  The driver is only known to work with SONET and UTP Horizon Ultra
92  cards at 155Mb/s. However, code is in place to deal with both the
93  original Horizon and 25Mb/s operation.
94
95  There are two revisions of the Horizon ASIC: the original and the
96  Ultra. Details of hardware bugs are in section III.
97
98  The ASIC version can be distinguished by chip markings but is NOT
99  indicated by the PCI revision (all adapters seem to have PCI rev 1).
100
101  I believe that:
102
103  Horizon       => Collage  25 PCI Adapter (UTP and STP)
104  Horizon Ultra => Collage 155 PCI Client (UTP or SONET)
105  Ambassador x  => Collage 155 PCI Server (completely different)
106
107  Horizon (25Mb/s) is fitted with UTP and STP connectors. It seems to
108  have a Madge B154 plus glue logic serializer. I have also found a
109  really ancient version of this with slightly different glue. It
110  comes with the revision 0 (140-025-01) ASIC.
111
112  Horizon Ultra (155Mb/s) is fitted with either a Pulse Medialink
113  output (UTP) or an HP HFBR 5205 output (SONET). It has either
114  Madge's SAMBA framer or a SUNI-lite device (early versions). It
115  comes with the revision 1 (140-027-01) ASIC.
116
117  2. Detection
118
119  All Horizon-based cards present with the same PCI Vendor and Device
120  IDs. The standard Linux 2.2 PCI API is used to locate any cards and
121  to enable bus-mastering (with appropriate latency).
122
123  ATM_LAYER_STATUS in the control register distinguishes between the
124  two possible physical layers (25 and 155). It is not clear whether
125  the 155 cards can also operate at 25Mbps. We rely on the fact that a
126  card operates at 155 if and only if it has the newer Horizon Ultra
127  ASIC.
128
129  For 155 cards the two possible framers are probed for and then set
130  up for loop-timing.
131
132  3. Initialisation
133
134  The card is reset and then put into a known state. The physical
135  layer is configured for normal operation at the appropriate speed;
136  in the case of the 155 cards, the framer is initialised with
137  line-based timing; the internal RAM is zeroed and the allocation of
138  buffers for RX and TX is made; the Burnt In Address is read and
139  copied to the ATM ESI; various policy settings for RX (VPI bits,
140  unknown VCs, oam cells) are made. Ideally all policy items should be
141  configurable at module load (if not actually on-demand), however,
142  only the vpi vs vci bit allocation can be specified at insmod.
143
144  4. Shutdown
145
146  This is in response to module_cleaup. No VCs are in use and the card
147  should be idle; it is reset.
148
149  II Driver software (as it should be)
150
151  0. Traffic Parameters
152
153  The traffic classes (not an enumeration) are currently: ATM_NONE (no
154  traffic), ATM_UBR, ATM_CBR, ATM_VBR and ATM_ABR, ATM_ANYCLASS
155  (compatible with everything). Together with (perhaps only some of)
156  the following items they make up the traffic specification.
157
158  struct atm_trafprm {
159    unsigned char traffic_class; traffic class (ATM_UBR, ...)
160    int           max_pcr;       maximum PCR in cells per second
161    int           pcr;           desired PCR in cells per second
162    int           min_pcr;       minimum PCR in cells per second
163    int           max_cdv;       maximum CDV in microseconds
164    int           max_sdu;       maximum SDU in bytes
165  };
166
167  Note that these denote bandwidth available not bandwidth used; the
168  possibilities according to ATMF are:
169
170  Real Time (cdv and max CDT given)
171
172  CBR(pcr)             pcr bandwidth always available
173  rtVBR(pcr,scr,mbs)   scr bandwidth always available, up to pcr at mbs too
174
175  Non Real Time
176
177  nrtVBR(pcr,scr,mbs)  scr bandwidth always available, up to pcr at mbs too
178  UBR()
179  ABR(mcr,pcr)         mcr bandwidth always available, up to pcr (depending) too
180
181  mbs is max burst size (bucket)
182  pcr and scr have associated cdvt values
183  mcr is like scr but has no cdtv
184  cdtv may differ at each hop
185
186  Some of the above items are qos items (as opposed to traffic
187  parameters). We have nothing to do with qos. All except ABR can have
188  their traffic parameters converted to GCRA parameters. The GCRA may
189  be implemented as a (real-number) leaky bucket. The GCRA can be used
190  in complicated ways by switches and in simpler ways by end-stations.
191  It can be used both to filter incoming cells and shape out-going
192  cells.
193
194  ATM Linux actually supports:
195
196  ATM_NONE() (no traffic in this direction)
197  ATM_UBR(max_frame_size)
198  ATM_CBR(max/min_pcr, max_cdv, max_frame_size)
199
200  0 or ATM_MAX_PCR are used to indicate maximum available PCR
201
202  A traffic specification consists of the AAL type and separate
203  traffic specifications for either direction. In ATM Linux it is:
204
205  struct atm_qos {
206  struct atm_trafprm txtp;
207  struct atm_trafprm rxtp;
208  unsigned char aal;
209  };
210
211  AAL types are:
212
213  ATM_NO_AAL    AAL not specified
214  ATM_AAL0      "raw" ATM cells
215  ATM_AAL1      AAL1 (CBR)
216  ATM_AAL2      AAL2 (VBR)
217  ATM_AAL34     AAL3/4 (data)
218  ATM_AAL5      AAL5 (data)
219  ATM_SAAL      signaling AAL
220
221  The Horizon has support for AAL frame types: 0, 3/4 and 5. However,
222  it does not implement AAL 3/4 SAR and it has a different notion of
223  "raw cell" to ATM Linux's (48 bytes vs. 52 bytes) so neither are
224  supported by this driver.
225
226  The Horizon has limited support for ABR (including UBR), VBR and
227  CBR. Each TX channel has a bucket (containing up to 31 cell units)
228  and two timers (PCR and SCR) associated with it that can be used to
229  govern cell emissions and host notification (in the case of ABR this
230  is presumably so that RM cells may be emitted at appropriate times).
231  The timers may either be disabled or may be set to any of 240 values
232  (determined by the clock crystal, a fixed (?) per-device divider, a
233  configurable divider and a configurable timer preload value).
234
235  At the moment only UBR and CBR are supported by the driver. VBR will
236  be supported as soon as ATM for Linux supports it. ABR support is
237  very unlikely as RM cell handling is completely up to the driver.
238
239  1. TX (TX channel setup and TX transfer)
240
241  The TX half of the driver owns the TX Horizon registers. The TX
242  component in the IRQ handler is the BM completion handler. This can
243  only be entered when tx_busy is true (enforced by hardware). The
244  other TX component can only be entered when tx_busy is false
245  (enforced by driver). So TX is single-threaded.
246
247  Apart from a minor optimisation to not re-select the last channel,
248  the TX send component works as follows:
249
250  Atomic test and set tx_busy until we succeed; we should implement
251  some sort of timeout so that tx_busy will never be stuck at true.
252
253  If no TX channel is set up for this VC we wait for an idle one (if
254  necessary) and set it up.
255
256  At this point we have a TX channel ready for use. We wait for enough
257  buffers to become available then start a TX transmit (set the TX
258  descriptor, schedule transfer, exit).
259
260  The IRQ component handles TX completion (stats, free buffer, tx_busy
261  unset, exit). We also re-schedule further transfers for the same
262  frame if needed.
263
264  TX setup in more detail:
265
266  TX open is a nop, the relevant information is held in the hrz_vcc
267  (vcc->dev_data) structure and is "cached" on the card.
268
269  TX close gets the TX lock and clears the channel from the "cache".
270
271  2. RX (Data Available and RX transfer)
272
273  The RX half of the driver owns the RX registers. There are two RX
274  components in the IRQ handler: the data available handler deals with
275  fresh data that has arrived on the card, the BM completion handler
276  is very similar to the TX completion handler. The data available
277  handler grabs the rx_lock and it is only released once the data has
278  been discarded or completely transferred to the host. The BM
279  completion handler only runs when the lock is held; the data
280  available handler is locked out over the same period.
281
282  Data available on the card triggers an interrupt. If the data is not
283  suitable for our existing RX channels or we cannot allocate a buffer
284  it is flushed. Otherwise an RX receive is scheduled. Multiple RX
285  transfers may be scheduled for the same frame.
286
287  RX setup in more detail:
288
289  RX open...
290  RX close...
291
292  III Hardware Bugs
293
294  0. Byte vs Word addressing of adapter RAM.
295
296  A design feature; see the .h file (especially the memory map).
297
298  1. Bus Master Data Transfers (original Horizon only, fixed in Ultra)
299
300  The host must not start a transmit direction transfer at a
301  non-four-byte boundary in host memory. Instead the host should
302  perform a byte, or a two byte, or one byte followed by two byte
303  transfer in order to start the rest of the transfer on a four byte
304  boundary. RX is OK.
305
306  Simultaneous transmit and receive direction bus master transfers are
307  not allowed.
308
309  The simplest solution to these two is to always do PIO (never DMA)
310  in the TX direction on the original Horizon. More complicated
311  solutions are likely to hurt my brain.
312
313  2. Loss of buffer on close VC
314
315  When a VC is being closed, the buffer associated with it is not
316  returned to the pool. The host must store the reference to this
317  buffer and when opening a new VC then give it to that new VC.
318
319  The host intervention currently consists of stacking such a buffer
320  pointer at VC close and checking the stack at VC open.
321
322  3. Failure to close a VC
323
324  If a VC is currently receiving a frame then closing the VC may fail
325  and the frame continues to be received.
326
327  The solution is to make sure any received frames are flushed when
328  ready. This is currently done just before the solution to 2.
329
330  4. PCI bus (original Horizon only, fixed in Ultra)
331
332  Reading from the data port prior to initialisation will hang the PCI
333  bus. Just don't do that then! We don't.
334
335  IV To Do List
336
337  . Timer code may be broken.
338
339  . Allow users to specify buffer allocation split for TX and RX.
340
341  . Deal once and for all with buggy VC close.
342
343  . Handle interrupted and/or non-blocking operations.
344
345  . Change some macros to functions and move from .h to .c.
346
347  . Try to limit the number of TX frames each VC may have queued, in
348    order to reduce the chances of TX buffer exhaustion.
349
350  . Implement VBR (bucket and timers not understood) and ABR (need to
351    do RM cells manually); also no Linux support for either.
352
353  . Implement QoS changes on open VCs (involves extracting parts of VC open
354    and close into separate functions and using them to make changes).
355
356*/
357
358/********** globals **********/
359
360static void do_housekeeping (unsigned long arg);
361
362static unsigned short debug = 0;
363static unsigned short vpi_bits = 0;
364static int max_tx_size = 9000;
365static int max_rx_size = 9000;
366static unsigned char pci_lat = 0;
367
368/********** access functions **********/
369
370/* Read / Write Horizon registers */
371static inline void wr_regl (const hrz_dev * dev, unsigned char reg, u32 data) {
372  outl (cpu_to_le32 (data), dev->iobase + reg);
373}
374
375static inline u32 rd_regl (const hrz_dev * dev, unsigned char reg) {
376  return le32_to_cpu (inl (dev->iobase + reg));
377}
378
379static inline void wr_regw (const hrz_dev * dev, unsigned char reg, u16 data) {
380  outw (cpu_to_le16 (data), dev->iobase + reg);
381}
382
383static inline u16 rd_regw (const hrz_dev * dev, unsigned char reg) {
384  return le16_to_cpu (inw (dev->iobase + reg));
385}
386
387static inline void wrs_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
388  outsb (dev->iobase + reg, addr, len);
389}
390
391static inline void rds_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
392  insb (dev->iobase + reg, addr, len);
393}
394
395/* Read / Write to a given address in Horizon buffer memory.
396   Interrupts must be disabled between the address register and data
397   port accesses as these must form an atomic operation. */
398static inline void wr_mem (const hrz_dev * dev, HDW * addr, u32 data) {
399  // wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr);
400  wr_regl (dev, MEM_WR_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
401  wr_regl (dev, MEMORY_PORT_OFF, data);
402}
403
404static inline u32 rd_mem (const hrz_dev * dev, HDW * addr) {
405  // wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr);
406  wr_regl (dev, MEM_RD_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
407  return rd_regl (dev, MEMORY_PORT_OFF);
408}
409
410static inline void wr_framer (const hrz_dev * dev, u32 addr, u32 data) {
411  wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr | 0x80000000);
412  wr_regl (dev, MEMORY_PORT_OFF, data);
413}
414
415static inline u32 rd_framer (const hrz_dev * dev, u32 addr) {
416  wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr | 0x80000000);
417  return rd_regl (dev, MEMORY_PORT_OFF);
418}
419
420/********** specialised access functions **********/
421
422/* RX */
423
424static inline void FLUSH_RX_CHANNEL (hrz_dev * dev, u16 channel) {
425  wr_regw (dev, RX_CHANNEL_PORT_OFF, FLUSH_CHANNEL | channel);
426  return;
427}
428
429static void WAIT_FLUSH_RX_COMPLETE (hrz_dev * dev) {
430  while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & FLUSH_CHANNEL)
431    ;
432  return;
433}
434
435static inline void SELECT_RX_CHANNEL (hrz_dev * dev, u16 channel) {
436  wr_regw (dev, RX_CHANNEL_PORT_OFF, channel);
437  return;
438}
439
440static void WAIT_UPDATE_COMPLETE (hrz_dev * dev) {
441  while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & RX_CHANNEL_UPDATE_IN_PROGRESS)
442    ;
443  return;
444}
445
446/* TX */
447
448static inline void SELECT_TX_CHANNEL (hrz_dev * dev, u16 tx_channel) {
449  wr_regl (dev, TX_CHANNEL_PORT_OFF, tx_channel);
450  return;
451}
452
453/* Update or query one configuration parameter of a particular channel. */
454
455static inline void update_tx_channel_config (hrz_dev * dev, short chan, u8 mode, u16 value) {
456  wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
457	   chan * TX_CHANNEL_CONFIG_MULT | mode);
458    wr_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF, value);
459    return;
460}
461
462static inline u16 query_tx_channel_config (hrz_dev * dev, short chan, u8 mode) {
463  wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
464	   chan * TX_CHANNEL_CONFIG_MULT | mode);
465    return rd_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF);
466}
467
468/********** dump functions **********/
469
470static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
471#ifdef DEBUG_HORIZON
472  unsigned int i;
473  unsigned char * data = skb->data;
474  PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
475  for (i=0; i<skb->len && i < 256;i++)
476    PRINTDM (DBG_DATA, "%02x ", data[i]);
477  PRINTDE (DBG_DATA,"");
478#else
479  (void) prefix;
480  (void) vc;
481  (void) skb;
482#endif
483  return;
484}
485
486static inline void dump_regs (hrz_dev * dev) {
487#ifdef DEBUG_HORIZON
488  PRINTD (DBG_REGS, "CONTROL 0: %#x", rd_regl (dev, CONTROL_0_REG));
489  PRINTD (DBG_REGS, "RX CONFIG: %#x", rd_regw (dev, RX_CONFIG_OFF));
490  PRINTD (DBG_REGS, "TX CONFIG: %#x", rd_regw (dev, TX_CONFIG_OFF));
491  PRINTD (DBG_REGS, "TX STATUS: %#x", rd_regw (dev, TX_STATUS_OFF));
492  PRINTD (DBG_REGS, "IRQ ENBLE: %#x", rd_regl (dev, INT_ENABLE_REG_OFF));
493  PRINTD (DBG_REGS, "IRQ SORCE: %#x", rd_regl (dev, INT_SOURCE_REG_OFF));
494#else
495  (void) dev;
496#endif
497  return;
498}
499
500static inline void dump_framer (hrz_dev * dev) {
501#ifdef DEBUG_HORIZON
502  unsigned int i;
503  PRINTDB (DBG_REGS, "framer registers:");
504  for (i = 0; i < 0x10; ++i)
505    PRINTDM (DBG_REGS, " %02x", rd_framer (dev, i));
506  PRINTDE (DBG_REGS,"");
507#else
508  (void) dev;
509#endif
510  return;
511}
512
513/********** VPI/VCI <-> (RX) channel conversions **********/
514
515/* RX channels are 10 bit integers, these fns are quite paranoid */
516
517static inline int channel_to_vpivci (const u16 channel, short * vpi, int * vci) {
518  unsigned short vci_bits = 10 - vpi_bits;
519  if ((channel & RX_CHANNEL_MASK) == channel) {
520    *vci = channel & ((~0)<<vci_bits);
521    *vpi = channel >> vci_bits;
522    return channel ? 0 : -EINVAL;
523  }
524  return -EINVAL;
525}
526
527static inline int vpivci_to_channel (u16 * channel, const short vpi, const int vci) {
528  unsigned short vci_bits = 10 - vpi_bits;
529  if (0 <= vpi && vpi < 1<<vpi_bits && 0 <= vci && vci < 1<<vci_bits) {
530    *channel = vpi<<vci_bits | vci;
531    return *channel ? 0 : -EINVAL;
532  }
533  return -EINVAL;
534}
535
536/********** decode RX queue entries **********/
537
538static inline u16 rx_q_entry_to_length (u32 x) {
539  return x & RX_Q_ENTRY_LENGTH_MASK;
540}
541
542static inline u16 rx_q_entry_to_rx_channel (u32 x) {
543  return (x>>RX_Q_ENTRY_CHANNEL_SHIFT) & RX_CHANNEL_MASK;
544}
545
546/* Cell Transmit Rate Values
547 *
548 * the cell transmit rate (cells per sec) can be set to a variety of
549 * different values by specifying two parameters: a timer preload from
550 * 1 to 16 (stored as 0 to 15) and a clock divider (2 to the power of
551 * an exponent from 0 to 14; the special value 15 disables the timer).
552 *
553 * cellrate = baserate / (preload * 2^divider)
554 *
555 * The maximum cell rate that can be specified is therefore just the
556 * base rate. Halving the preload is equivalent to adding 1 to the
557 * divider and so values 1 to 8 of the preload are redundant except
558 * in the case of a maximal divider (14).
559 *
560 * Given a desired cell rate, an algorithm to determine the preload
561 * and divider is:
562 *
563 * a) x = baserate / cellrate, want p * 2^d = x (as far as possible)
564 * b) if x > 16 * 2^14 then set p = 16, d = 14 (min rate), done
565 *    if x <= 16 then set p = x, d = 0 (high rates), done
566 * c) now have 16 < x <= 2^18, or 1 < x/16 <= 2^14 and we want to
567 *    know n such that 2^(n-1) < x/16 <= 2^n, so slide a bit until
568 *    we find the range (n will be between 1 and 14), set d = n
569 * d) Also have 8 < x/2^n <= 16, so set p nearest x/2^n
570 *
571 * The algorithm used below is a minor variant of the above.
572 *
573 * The base rate is derived from the oscillator frequency (Hz) using a
574 * fixed divider:
575 *
576 * baserate = freq / 32 in the case of some Unknown Card
577 * baserate = freq / 8  in the case of the Horizon        25
578 * baserate = freq / 8  in the case of the Horizon Ultra 155
579 *
580 * The Horizon cards have oscillators and base rates as follows:
581 *
582 * Card               Oscillator  Base Rate
583 * Unknown Card       33 MHz      1.03125 MHz (33 MHz = PCI freq)
584 * Horizon        25  32 MHz      4       MHz
585 * Horizon Ultra 155  40 MHz      5       MHz
586 *
587 * The following defines give the base rates in Hz. These were
588 * previously a factor of 100 larger, no doubt someone was using
589 * cps*100.
590 */
591
592#define BR_UKN 1031250l
593#define BR_HRZ 4000000l
594#define BR_ULT 5000000l
595
596// d is an exponent
597#define CR_MIND 0
598#define CR_MAXD 14
599
600// p ranges from 1 to a power of 2
601#define CR_MAXPEXP 4
602
603static int make_rate (const hrz_dev * dev, u32 c, rounding r,
604		      u16 * bits, unsigned int * actual)
605{
606	// note: rounding the rate down means rounding 'p' up
607	const unsigned long br = test_bit(ultra, &dev->flags) ? BR_ULT : BR_HRZ;
608
609	u32 div = CR_MIND;
610	u32 pre;
611
612	// br_exp and br_man are used to avoid overflowing (c*maxp*2^d) in
613	// the tests below. We could think harder about exact possibilities
614	// of failure...
615
616	unsigned long br_man = br;
617	unsigned int br_exp = 0;
618
619	PRINTD (DBG_QOS|DBG_FLOW, "make_rate b=%lu, c=%u, %s", br, c,
620		r == round_up ? "up" : r == round_down ? "down" : "nearest");
621
622	// avoid div by zero
623	if (!c) {
624		PRINTD (DBG_QOS|DBG_ERR, "zero rate is not allowed!");
625		return -EINVAL;
626	}
627
628	while (br_exp < CR_MAXPEXP + CR_MIND && (br_man % 2 == 0)) {
629		br_man = br_man >> 1;
630		++br_exp;
631	}
632	// (br >>br_exp) <<br_exp == br and
633	// br_exp <= CR_MAXPEXP+CR_MIND
634
635	if (br_man <= (c << (CR_MAXPEXP+CR_MIND-br_exp))) {
636		// Equivalent to: B <= (c << (MAXPEXP+MIND))
637		// take care of rounding
638		switch (r) {
639			case round_down:
640				pre = DIV_ROUND_UP(br, c<<div);
641				// but p must be non-zero
642				if (!pre)
643					pre = 1;
644				break;
645			case round_nearest:
646				pre = DIV_ROUND_CLOSEST(br, c<<div);
647				// but p must be non-zero
648				if (!pre)
649					pre = 1;
650				break;
651			default:	/* round_up */
652				pre = br/(c<<div);
653				// but p must be non-zero
654				if (!pre)
655					return -EINVAL;
656		}
657		PRINTD (DBG_QOS, "A: p=%u, d=%u", pre, div);
658		goto got_it;
659	}
660
661	// at this point we have
662	// d == MIND and (c << (MAXPEXP+MIND)) < B
663	while (div < CR_MAXD) {
664		div++;
665		if (br_man <= (c << (CR_MAXPEXP+div-br_exp))) {
666			// Equivalent to: B <= (c << (MAXPEXP+d))
667			// c << (MAXPEXP+d-1) < B <= c << (MAXPEXP+d)
668			// 1 << (MAXPEXP-1) < B/2^d/c <= 1 << MAXPEXP
669			// MAXP/2 < B/c2^d <= MAXP
670			// take care of rounding
671			switch (r) {
672				case round_down:
673					pre = DIV_ROUND_UP(br, c<<div);
674					break;
675				case round_nearest:
676					pre = DIV_ROUND_CLOSEST(br, c<<div);
677					break;
678				default: /* round_up */
679					pre = br/(c<<div);
680			}
681			PRINTD (DBG_QOS, "B: p=%u, d=%u", pre, div);
682			goto got_it;
683		}
684	}
685	// at this point we have
686	// d == MAXD and (c << (MAXPEXP+MAXD)) < B
687	// but we cannot go any higher
688	// take care of rounding
689	if (r == round_down)
690		return -EINVAL;
691	pre = 1 << CR_MAXPEXP;
692	PRINTD (DBG_QOS, "C: p=%u, d=%u", pre, div);
693got_it:
694	// paranoia
695	if (div > CR_MAXD || (!pre) || pre > 1<<CR_MAXPEXP) {
696		PRINTD (DBG_QOS, "set_cr internal failure: d=%u p=%u",
697			div, pre);
698		return -EINVAL;
699	} else {
700		if (bits)
701			*bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1);
702		if (actual) {
703			*actual = DIV_ROUND_UP(br, pre<<div);
704			PRINTD (DBG_QOS, "actual rate: %u", *actual);
705		}
706		return 0;
707	}
708}
709
710static int make_rate_with_tolerance (const hrz_dev * dev, u32 c, rounding r, unsigned int tol,
711				     u16 * bit_pattern, unsigned int * actual) {
712  unsigned int my_actual;
713
714  PRINTD (DBG_QOS|DBG_FLOW, "make_rate_with_tolerance c=%u, %s, tol=%u",
715	  c, (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest", tol);
716
717  if (!actual)
718    // actual rate is not returned
719    actual = &my_actual;
720
721  if (make_rate (dev, c, round_nearest, bit_pattern, actual))
722    // should never happen as round_nearest always succeeds
723    return -1;
724
725  if (c - tol <= *actual && *actual <= c + tol)
726    // within tolerance
727    return 0;
728  else
729    // intolerant, try rounding instead
730    return make_rate (dev, c, r, bit_pattern, actual);
731}
732
733/********** Listen on a VC **********/
734
735static int hrz_open_rx (hrz_dev * dev, u16 channel) {
736  // is there any guarantee that we don't get two simulataneous
737  // identical calls of this function from different processes? yes
738  // rate_lock
739  unsigned long flags;
740  u32 channel_type; // u16?
741
742  u16 buf_ptr = RX_CHANNEL_IDLE;
743
744  rx_ch_desc * rx_desc = &memmap->rx_descs[channel];
745
746  PRINTD (DBG_FLOW, "hrz_open_rx %x", channel);
747
748  spin_lock_irqsave (&dev->mem_lock, flags);
749  channel_type = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
750  spin_unlock_irqrestore (&dev->mem_lock, flags);
751
752  // very serious error, should never occur
753  if (channel_type != RX_CHANNEL_DISABLED) {
754    PRINTD (DBG_ERR|DBG_VCC, "RX channel for VC already open");
755    return -EBUSY; // clean up?
756  }
757
758  // Give back spare buffer
759  if (dev->noof_spare_buffers) {
760    buf_ptr = dev->spare_buffers[--dev->noof_spare_buffers];
761    PRINTD (DBG_VCC, "using a spare buffer: %u", buf_ptr);
762    // should never occur
763    if (buf_ptr == RX_CHANNEL_DISABLED || buf_ptr == RX_CHANNEL_IDLE) {
764      // but easy to recover from
765      PRINTD (DBG_ERR|DBG_VCC, "bad spare buffer pointer, using IDLE");
766      buf_ptr = RX_CHANNEL_IDLE;
767    }
768  } else {
769    PRINTD (DBG_VCC, "using IDLE buffer pointer");
770  }
771
772  // Channel is currently disabled so change its status to idle
773
774  // do we really need to save the flags again?
775  spin_lock_irqsave (&dev->mem_lock, flags);
776
777  wr_mem (dev, &rx_desc->wr_buf_type,
778	  buf_ptr | CHANNEL_TYPE_AAL5 | FIRST_CELL_OF_AAL5_FRAME);
779  if (buf_ptr != RX_CHANNEL_IDLE)
780    wr_mem (dev, &rx_desc->rd_buf_type, buf_ptr);
781
782  spin_unlock_irqrestore (&dev->mem_lock, flags);
783
784  // rxer->rate = make_rate (qos->peak_cells);
785
786  PRINTD (DBG_FLOW, "hrz_open_rx ok");
787
788  return 0;
789}
790
791#if 0
792/********** change vc rate for a given vc **********/
793
794static void hrz_change_vc_qos (ATM_RXER * rxer, MAAL_QOS * qos) {
795  rxer->rate = make_rate (qos->peak_cells);
796}
797#endif
798
799/********** free an skb (as per ATM device driver documentation) **********/
800
801static void hrz_kfree_skb (struct sk_buff * skb) {
802  if (ATM_SKB(skb)->vcc->pop) {
803    ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
804  } else {
805    dev_kfree_skb_any (skb);
806  }
807}
808
809/********** cancel listen on a VC **********/
810
811static void hrz_close_rx (hrz_dev * dev, u16 vc) {
812  unsigned long flags;
813
814  u32 value;
815
816  u32 r1, r2;
817
818  rx_ch_desc * rx_desc = &memmap->rx_descs[vc];
819
820  int was_idle = 0;
821
822  spin_lock_irqsave (&dev->mem_lock, flags);
823  value = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
824  spin_unlock_irqrestore (&dev->mem_lock, flags);
825
826  if (value == RX_CHANNEL_DISABLED) {
827    // I suppose this could happen once we deal with _NONE traffic properly
828    PRINTD (DBG_VCC, "closing VC: RX channel %u already disabled", vc);
829    return;
830  }
831  if (value == RX_CHANNEL_IDLE)
832    was_idle = 1;
833
834  spin_lock_irqsave (&dev->mem_lock, flags);
835
836  for (;;) {
837    wr_mem (dev, &rx_desc->wr_buf_type, RX_CHANNEL_DISABLED);
838
839    if ((rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK) == RX_CHANNEL_DISABLED)
840      break;
841
842    was_idle = 0;
843  }
844
845  if (was_idle) {
846    spin_unlock_irqrestore (&dev->mem_lock, flags);
847    return;
848  }
849
850  WAIT_FLUSH_RX_COMPLETE(dev);
851
852  // XXX Is this all really necessary? We can rely on the rx_data_av
853  // handler to discard frames that remain queued for delivery. If the
854  // worry is that immediately reopening the channel (perhaps by a
855  // different process) may cause some data to be mis-delivered then
856  // there may still be a simpler solution (such as busy-waiting on
857  // rx_busy once the channel is disabled or before a new one is
858  // opened - does this leave any holes?). Arguably setting up and
859  // tearing down the TX and RX halves of each virtual circuit could
860  // most safely be done within ?x_busy protected regions.
861
862  // OK, current changes are that Simon's marker is disabled and we DO
863  // look for NULL rxer elsewhere. The code here seems flush frames
864  // and then remember the last dead cell belonging to the channel
865  // just disabled - the cell gets relinked at the next vc_open.
866  // However, when all VCs are closed or only a few opened there are a
867  // handful of buffers that are unusable.
868
869  // Does anyone feel like documenting spare_buffers properly?
870  // Does anyone feel like fixing this in a nicer way?
871
872  // Flush any data which is left in the channel
873  for (;;) {
874    // Change the rx channel port to something different to the RX
875    // channel we are trying to close to force Horizon to flush the rx
876    // channel read and write pointers.
877
878    u16 other = vc^(RX_CHANS/2);
879
880    SELECT_RX_CHANNEL (dev, other);
881    WAIT_UPDATE_COMPLETE (dev);
882
883    r1 = rd_mem (dev, &rx_desc->rd_buf_type);
884
885    // Select this RX channel. Flush doesn't seem to work unless we
886    // select an RX channel before hand
887
888    SELECT_RX_CHANNEL (dev, vc);
889    WAIT_UPDATE_COMPLETE (dev);
890
891    // Attempt to flush a frame on this RX channel
892
893    FLUSH_RX_CHANNEL (dev, vc);
894    WAIT_FLUSH_RX_COMPLETE (dev);
895
896    // Force Horizon to flush rx channel read and write pointers as before
897
898    SELECT_RX_CHANNEL (dev, other);
899    WAIT_UPDATE_COMPLETE (dev);
900
901    r2 = rd_mem (dev, &rx_desc->rd_buf_type);
902
903    PRINTD (DBG_VCC|DBG_RX, "r1 = %u, r2 = %u", r1, r2);
904
905    if (r1 == r2) {
906      dev->spare_buffers[dev->noof_spare_buffers++] = (u16)r1;
907      break;
908    }
909  }
910
911#if 0
912  {
913    rx_q_entry * wr_ptr = &memmap->rx_q_entries[rd_regw (dev, RX_QUEUE_WR_PTR_OFF)];
914    rx_q_entry * rd_ptr = dev->rx_q_entry;
915
916    PRINTD (DBG_VCC|DBG_RX, "rd_ptr = %u, wr_ptr = %u", rd_ptr, wr_ptr);
917
918    while (rd_ptr != wr_ptr) {
919      u32 x = rd_mem (dev, (HDW *) rd_ptr);
920
921      if (vc == rx_q_entry_to_rx_channel (x)) {
922	x |= SIMONS_DODGEY_MARKER;
923
924	PRINTD (DBG_RX|DBG_VCC|DBG_WARN, "marking a frame as dodgey");
925
926	wr_mem (dev, (HDW *) rd_ptr, x);
927      }
928
929      if (rd_ptr == dev->rx_q_wrap)
930	rd_ptr = dev->rx_q_reset;
931      else
932	rd_ptr++;
933    }
934  }
935#endif
936
937  spin_unlock_irqrestore (&dev->mem_lock, flags);
938
939  return;
940}
941
942/********** schedule RX transfers **********/
943
944// Note on tail recursion: a GCC developer said that it is not likely
945// to be fixed soon, so do not define TAILRECUSRIONWORKS unless you
946// are sure it does as you may otherwise overflow the kernel stack.
947
948// giving this fn a return value would help GCC, allegedly
949
950static void rx_schedule (hrz_dev * dev, int irq) {
951  unsigned int rx_bytes;
952
953  int pio_instead = 0;
954#ifndef TAILRECURSIONWORKS
955  pio_instead = 1;
956  while (pio_instead) {
957#endif
958    // bytes waiting for RX transfer
959    rx_bytes = dev->rx_bytes;
960
961#if 0
962    spin_count = 0;
963    while (rd_regl (dev, MASTER_RX_COUNT_REG_OFF)) {
964      PRINTD (DBG_RX|DBG_WARN, "RX error: other PCI Bus Master RX still in progress!");
965      if (++spin_count > 10) {
966	PRINTD (DBG_RX|DBG_ERR, "spun out waiting PCI Bus Master RX completion");
967	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
968	clear_bit (rx_busy, &dev->flags);
969	hrz_kfree_skb (dev->rx_skb);
970	return;
971      }
972    }
973#endif
974
975    // this code follows the TX code but (at the moment) there is only
976    // one region - the skb itself. I don't know if this will change,
977    // but it doesn't hurt to have the code here, disabled.
978
979    if (rx_bytes) {
980      // start next transfer within same region
981      if (rx_bytes <= MAX_PIO_COUNT) {
982	PRINTD (DBG_RX|DBG_BUS, "(pio)");
983	pio_instead = 1;
984      }
985      if (rx_bytes <= MAX_TRANSFER_COUNT) {
986	PRINTD (DBG_RX|DBG_BUS, "(simple or last multi)");
987	dev->rx_bytes = 0;
988      } else {
989	PRINTD (DBG_RX|DBG_BUS, "(continuing multi)");
990	dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
991	rx_bytes = MAX_TRANSFER_COUNT;
992      }
993    } else {
994      // rx_bytes == 0 -- we're between regions
995      // regions remaining to transfer
996#if 0
997      unsigned int rx_regions = dev->rx_regions;
998#else
999      unsigned int rx_regions = 0;
1000#endif
1001
1002      if (rx_regions) {
1003#if 0
1004	// start a new region
1005	dev->rx_addr = dev->rx_iovec->iov_base;
1006	rx_bytes = dev->rx_iovec->iov_len;
1007	++dev->rx_iovec;
1008	dev->rx_regions = rx_regions - 1;
1009
1010	if (rx_bytes <= MAX_PIO_COUNT) {
1011	  PRINTD (DBG_RX|DBG_BUS, "(pio)");
1012	  pio_instead = 1;
1013	}
1014	if (rx_bytes <= MAX_TRANSFER_COUNT) {
1015	  PRINTD (DBG_RX|DBG_BUS, "(full region)");
1016	  dev->rx_bytes = 0;
1017	} else {
1018	  PRINTD (DBG_RX|DBG_BUS, "(start multi region)");
1019	  dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
1020	  rx_bytes = MAX_TRANSFER_COUNT;
1021	}
1022#endif
1023      } else {
1024	// rx_regions == 0
1025	// that's all folks - end of frame
1026	struct sk_buff * skb = dev->rx_skb;
1027	// dev->rx_iovec = 0;
1028
1029	FLUSH_RX_CHANNEL (dev, dev->rx_channel);
1030
1031	dump_skb ("<<<", dev->rx_channel, skb);
1032
1033	PRINTD (DBG_RX|DBG_SKB, "push %p %u", skb->data, skb->len);
1034
1035	{
1036	  struct atm_vcc * vcc = ATM_SKB(skb)->vcc;
1037	  // VC layer stats
1038	  atomic_inc(&vcc->stats->rx);
1039	  __net_timestamp(skb);
1040	  // end of our responsibility
1041	  vcc->push (vcc, skb);
1042	}
1043      }
1044    }
1045
1046    // note: writing RX_COUNT clears any interrupt condition
1047    if (rx_bytes) {
1048      if (pio_instead) {
1049	if (irq)
1050	  wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1051	rds_regb (dev, DATA_PORT_OFF, dev->rx_addr, rx_bytes);
1052      } else {
1053	wr_regl (dev, MASTER_RX_ADDR_REG_OFF, virt_to_bus (dev->rx_addr));
1054	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, rx_bytes);
1055      }
1056      dev->rx_addr += rx_bytes;
1057    } else {
1058      if (irq)
1059	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1060      // allow another RX thread to start
1061      YELLOW_LED_ON(dev);
1062      clear_bit (rx_busy, &dev->flags);
1063      PRINTD (DBG_RX, "cleared rx_busy for dev %p", dev);
1064    }
1065
1066#ifdef TAILRECURSIONWORKS
1067    // and we all bless optimised tail calls
1068    if (pio_instead)
1069      return rx_schedule (dev, 0);
1070    return;
1071#else
1072    // grrrrrrr!
1073    irq = 0;
1074  }
1075  return;
1076#endif
1077}
1078
1079/********** handle RX bus master complete events **********/
1080
1081static void rx_bus_master_complete_handler (hrz_dev * dev) {
1082  if (test_bit (rx_busy, &dev->flags)) {
1083    rx_schedule (dev, 1);
1084  } else {
1085    PRINTD (DBG_RX|DBG_ERR, "unexpected RX bus master completion");
1086    // clear interrupt condition on adapter
1087    wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1088  }
1089  return;
1090}
1091
1092/********** (queue to) become the next TX thread **********/
1093
1094static int tx_hold (hrz_dev * dev) {
1095  PRINTD (DBG_TX, "sleeping at tx lock %p %lu", dev, dev->flags);
1096  wait_event_interruptible(dev->tx_queue, (!test_and_set_bit(tx_busy, &dev->flags)));
1097  PRINTD (DBG_TX, "woken at tx lock %p %lu", dev, dev->flags);
1098  if (signal_pending (current))
1099    return -1;
1100  PRINTD (DBG_TX, "set tx_busy for dev %p", dev);
1101  return 0;
1102}
1103
1104/********** allow another TX thread to start **********/
1105
1106static inline void tx_release (hrz_dev * dev) {
1107  clear_bit (tx_busy, &dev->flags);
1108  PRINTD (DBG_TX, "cleared tx_busy for dev %p", dev);
1109  wake_up_interruptible (&dev->tx_queue);
1110}
1111
1112/********** schedule TX transfers **********/
1113
1114static void tx_schedule (hrz_dev * const dev, int irq) {
1115  unsigned int tx_bytes;
1116
1117  int append_desc = 0;
1118
1119  int pio_instead = 0;
1120#ifndef TAILRECURSIONWORKS
1121  pio_instead = 1;
1122  while (pio_instead) {
1123#endif
1124    // bytes in current region waiting for TX transfer
1125    tx_bytes = dev->tx_bytes;
1126
1127#if 0
1128    spin_count = 0;
1129    while (rd_regl (dev, MASTER_TX_COUNT_REG_OFF)) {
1130      PRINTD (DBG_TX|DBG_WARN, "TX error: other PCI Bus Master TX still in progress!");
1131      if (++spin_count > 10) {
1132	PRINTD (DBG_TX|DBG_ERR, "spun out waiting PCI Bus Master TX completion");
1133	wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1134	tx_release (dev);
1135	hrz_kfree_skb (dev->tx_skb);
1136	return;
1137      }
1138    }
1139#endif
1140
1141    if (tx_bytes) {
1142      // start next transfer within same region
1143      if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1144	PRINTD (DBG_TX|DBG_BUS, "(pio)");
1145	pio_instead = 1;
1146      }
1147      if (tx_bytes <= MAX_TRANSFER_COUNT) {
1148	PRINTD (DBG_TX|DBG_BUS, "(simple or last multi)");
1149	if (!dev->tx_iovec) {
1150	  // end of last region
1151	  append_desc = 1;
1152	}
1153	dev->tx_bytes = 0;
1154      } else {
1155	PRINTD (DBG_TX|DBG_BUS, "(continuing multi)");
1156	dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1157	tx_bytes = MAX_TRANSFER_COUNT;
1158      }
1159    } else {
1160      // tx_bytes == 0 -- we're between regions
1161      // regions remaining to transfer
1162      unsigned int tx_regions = dev->tx_regions;
1163
1164      if (tx_regions) {
1165	// start a new region
1166	dev->tx_addr = dev->tx_iovec->iov_base;
1167	tx_bytes = dev->tx_iovec->iov_len;
1168	++dev->tx_iovec;
1169	dev->tx_regions = tx_regions - 1;
1170
1171	if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1172	  PRINTD (DBG_TX|DBG_BUS, "(pio)");
1173	  pio_instead = 1;
1174	}
1175	if (tx_bytes <= MAX_TRANSFER_COUNT) {
1176	  PRINTD (DBG_TX|DBG_BUS, "(full region)");
1177	  dev->tx_bytes = 0;
1178	} else {
1179	  PRINTD (DBG_TX|DBG_BUS, "(start multi region)");
1180	  dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1181	  tx_bytes = MAX_TRANSFER_COUNT;
1182	}
1183      } else {
1184	// tx_regions == 0
1185	// that's all folks - end of frame
1186	struct sk_buff * skb = dev->tx_skb;
1187	dev->tx_iovec = NULL;
1188
1189	// VC layer stats
1190	atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
1191
1192	// free the skb
1193	hrz_kfree_skb (skb);
1194      }
1195    }
1196
1197    // note: writing TX_COUNT clears any interrupt condition
1198    if (tx_bytes) {
1199      if (pio_instead) {
1200	if (irq)
1201	  wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1202	wrs_regb (dev, DATA_PORT_OFF, dev->tx_addr, tx_bytes);
1203	if (append_desc)
1204	  wr_regl (dev, TX_DESCRIPTOR_PORT_OFF, cpu_to_be32 (dev->tx_skb->len));
1205      } else {
1206	wr_regl (dev, MASTER_TX_ADDR_REG_OFF, virt_to_bus (dev->tx_addr));
1207	if (append_desc)
1208	  wr_regl (dev, TX_DESCRIPTOR_REG_OFF, cpu_to_be32 (dev->tx_skb->len));
1209	wr_regl (dev, MASTER_TX_COUNT_REG_OFF,
1210		 append_desc
1211		 ? tx_bytes | MASTER_TX_AUTO_APPEND_DESC
1212		 : tx_bytes);
1213      }
1214      dev->tx_addr += tx_bytes;
1215    } else {
1216      if (irq)
1217	wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1218      YELLOW_LED_ON(dev);
1219      tx_release (dev);
1220    }
1221
1222#ifdef TAILRECURSIONWORKS
1223    // and we all bless optimised tail calls
1224    if (pio_instead)
1225      return tx_schedule (dev, 0);
1226    return;
1227#else
1228    // grrrrrrr!
1229    irq = 0;
1230  }
1231  return;
1232#endif
1233}
1234
1235/********** handle TX bus master complete events **********/
1236
1237static void tx_bus_master_complete_handler (hrz_dev * dev) {
1238  if (test_bit (tx_busy, &dev->flags)) {
1239    tx_schedule (dev, 1);
1240  } else {
1241    PRINTD (DBG_TX|DBG_ERR, "unexpected TX bus master completion");
1242    // clear interrupt condition on adapter
1243    wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1244  }
1245  return;
1246}
1247
1248/********** move RX Q pointer to next item in circular buffer **********/
1249
1250// called only from IRQ sub-handler
1251static u32 rx_queue_entry_next (hrz_dev * dev) {
1252  u32 rx_queue_entry;
1253  spin_lock (&dev->mem_lock);
1254  rx_queue_entry = rd_mem (dev, &dev->rx_q_entry->entry);
1255  if (dev->rx_q_entry == dev->rx_q_wrap)
1256    dev->rx_q_entry = dev->rx_q_reset;
1257  else
1258    dev->rx_q_entry++;
1259  wr_regw (dev, RX_QUEUE_RD_PTR_OFF, dev->rx_q_entry - dev->rx_q_reset);
1260  spin_unlock (&dev->mem_lock);
1261  return rx_queue_entry;
1262}
1263
1264/********** handle RX disabled by device **********/
1265
1266static inline void rx_disabled_handler (hrz_dev * dev) {
1267  wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
1268  // count me please
1269  PRINTK (KERN_WARNING, "RX was disabled!");
1270}
1271
1272/********** handle RX data received by device **********/
1273
1274// called from IRQ handler
1275static void rx_data_av_handler (hrz_dev * dev) {
1276  u32 rx_queue_entry;
1277  u32 rx_queue_entry_flags;
1278  u16 rx_len;
1279  u16 rx_channel;
1280
1281  PRINTD (DBG_FLOW, "hrz_data_av_handler");
1282
1283  // try to grab rx lock (not possible during RX bus mastering)
1284  if (test_and_set_bit (rx_busy, &dev->flags)) {
1285    PRINTD (DBG_RX, "locked out of rx lock");
1286    return;
1287  }
1288  PRINTD (DBG_RX, "set rx_busy for dev %p", dev);
1289  // lock is cleared if we fail now, o/w after bus master completion
1290
1291  YELLOW_LED_OFF(dev);
1292
1293  rx_queue_entry = rx_queue_entry_next (dev);
1294
1295  rx_len = rx_q_entry_to_length (rx_queue_entry);
1296  rx_channel = rx_q_entry_to_rx_channel (rx_queue_entry);
1297
1298  WAIT_FLUSH_RX_COMPLETE (dev);
1299
1300  SELECT_RX_CHANNEL (dev, rx_channel);
1301
1302  PRINTD (DBG_RX, "rx_queue_entry is: %#x", rx_queue_entry);
1303  rx_queue_entry_flags = rx_queue_entry & (RX_CRC_32_OK|RX_COMPLETE_FRAME|SIMONS_DODGEY_MARKER);
1304
1305  if (!rx_len) {
1306    // (at least) bus-mastering breaks if we try to handle a
1307    // zero-length frame, besides AAL5 does not support them
1308    PRINTK (KERN_ERR, "zero-length frame!");
1309    rx_queue_entry_flags &= ~RX_COMPLETE_FRAME;
1310  }
1311
1312  if (rx_queue_entry_flags & SIMONS_DODGEY_MARKER) {
1313    PRINTD (DBG_RX|DBG_ERR, "Simon's marker detected!");
1314  }
1315  if (rx_queue_entry_flags == (RX_CRC_32_OK | RX_COMPLETE_FRAME)) {
1316    struct atm_vcc * atm_vcc;
1317
1318    PRINTD (DBG_RX, "got a frame on rx_channel %x len %u", rx_channel, rx_len);
1319
1320    atm_vcc = dev->rxer[rx_channel];
1321    // if no vcc is assigned to this channel, we should drop the frame
1322    // (is this what SIMONS etc. was trying to achieve?)
1323
1324    if (atm_vcc) {
1325
1326      if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1327
1328	if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
1329
1330	  struct sk_buff * skb = atm_alloc_charge (atm_vcc, rx_len, GFP_ATOMIC);
1331	  if (skb) {
1332	    // remember this so we can push it later
1333	    dev->rx_skb = skb;
1334	    // remember this so we can flush it later
1335	    dev->rx_channel = rx_channel;
1336
1337	    // prepare socket buffer
1338	    skb_put (skb, rx_len);
1339	    ATM_SKB(skb)->vcc = atm_vcc;
1340
1341	    // simple transfer
1342	    // dev->rx_regions = 0;
1343	    // dev->rx_iovec = 0;
1344	    dev->rx_bytes = rx_len;
1345	    dev->rx_addr = skb->data;
1346	    PRINTD (DBG_RX, "RX start simple transfer (addr %p, len %d)",
1347		    skb->data, rx_len);
1348
1349	    // do the business
1350	    rx_schedule (dev, 0);
1351	    return;
1352
1353	  } else {
1354	    PRINTD (DBG_SKB|DBG_WARN, "failed to get skb");
1355	  }
1356
1357	} else {
1358	  PRINTK (KERN_INFO, "frame received on TX-only VC %x", rx_channel);
1359	  // do we count this?
1360	}
1361
1362      } else {
1363	PRINTK (KERN_WARNING, "dropped over-size frame");
1364	// do we count this?
1365      }
1366
1367    } else {
1368      PRINTD (DBG_WARN|DBG_VCC|DBG_RX, "no VCC for this frame (VC closed)");
1369      // do we count this?
1370    }
1371
1372  } else {
1373    // Wait update complete ? SPONG
1374  }
1375
1376  // RX was aborted
1377  YELLOW_LED_ON(dev);
1378
1379  FLUSH_RX_CHANNEL (dev,rx_channel);
1380  clear_bit (rx_busy, &dev->flags);
1381
1382  return;
1383}
1384
1385/********** interrupt handler **********/
1386
1387static irqreturn_t interrupt_handler(int irq, void *dev_id)
1388{
1389  hrz_dev *dev = dev_id;
1390  u32 int_source;
1391  unsigned int irq_ok;
1392
1393  PRINTD (DBG_FLOW, "interrupt_handler: %p", dev_id);
1394
1395  // definitely for us
1396  irq_ok = 0;
1397  while ((int_source = rd_regl (dev, INT_SOURCE_REG_OFF)
1398	  & INTERESTING_INTERRUPTS)) {
1399    // In the interests of fairness, the handlers below are
1400    // called in sequence and without immediate return to the head of
1401    // the while loop. This is only of issue for slow hosts (or when
1402    // debugging messages are on). Really slow hosts may find a fast
1403    // sender keeps them permanently in the IRQ handler. :(
1404
1405    // (only an issue for slow hosts) RX completion goes before
1406    // rx_data_av as the former implies rx_busy and so the latter
1407    // would just abort. If it reschedules another transfer
1408    // (continuing the same frame) then it will not clear rx_busy.
1409
1410    // (only an issue for slow hosts) TX completion goes before RX
1411    // data available as it is a much shorter routine - there is the
1412    // chance that any further transfers it schedules will be complete
1413    // by the time of the return to the head of the while loop
1414
1415    if (int_source & RX_BUS_MASTER_COMPLETE) {
1416      ++irq_ok;
1417      PRINTD (DBG_IRQ|DBG_BUS|DBG_RX, "rx_bus_master_complete asserted");
1418      rx_bus_master_complete_handler (dev);
1419    }
1420    if (int_source & TX_BUS_MASTER_COMPLETE) {
1421      ++irq_ok;
1422      PRINTD (DBG_IRQ|DBG_BUS|DBG_TX, "tx_bus_master_complete asserted");
1423      tx_bus_master_complete_handler (dev);
1424    }
1425    if (int_source & RX_DATA_AV) {
1426      ++irq_ok;
1427      PRINTD (DBG_IRQ|DBG_RX, "rx_data_av asserted");
1428      rx_data_av_handler (dev);
1429    }
1430  }
1431  if (irq_ok) {
1432    PRINTD (DBG_IRQ, "work done: %u", irq_ok);
1433  } else {
1434    PRINTD (DBG_IRQ|DBG_WARN, "spurious interrupt source: %#x", int_source);
1435  }
1436
1437  PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
1438  if (irq_ok)
1439	return IRQ_HANDLED;
1440  return IRQ_NONE;
1441}
1442
1443/********** housekeeping **********/
1444
1445static void do_housekeeping (unsigned long arg) {
1446  // just stats at the moment
1447  hrz_dev * dev = (hrz_dev *) arg;
1448
1449  // collect device-specific (not driver/atm-linux) stats here
1450  dev->tx_cell_count += rd_regw (dev, TX_CELL_COUNT_OFF);
1451  dev->rx_cell_count += rd_regw (dev, RX_CELL_COUNT_OFF);
1452  dev->hec_error_count += rd_regw (dev, HEC_ERROR_COUNT_OFF);
1453  dev->unassigned_cell_count += rd_regw (dev, UNASSIGNED_CELL_COUNT_OFF);
1454
1455  mod_timer (&dev->housekeeping, jiffies + HZ/10);
1456
1457  return;
1458}
1459
1460/********** find an idle channel for TX and set it up **********/
1461
1462// called with tx_busy set
1463static short setup_idle_tx_channel (hrz_dev * dev, hrz_vcc * vcc) {
1464  unsigned short idle_channels;
1465  short tx_channel = -1;
1466  unsigned int spin_count;
1467  PRINTD (DBG_FLOW|DBG_TX, "setup_idle_tx_channel %p", dev);
1468
1469  // better would be to fail immediately, the caller can then decide whether
1470  // to wait or drop (depending on whether this is UBR etc.)
1471  spin_count = 0;
1472  while (!(idle_channels = rd_regw (dev, TX_STATUS_OFF) & IDLE_CHANNELS_MASK)) {
1473    PRINTD (DBG_TX|DBG_WARN, "waiting for idle TX channel");
1474    // delay a bit here
1475    if (++spin_count > 100) {
1476      PRINTD (DBG_TX|DBG_ERR, "spun out waiting for idle TX channel");
1477      return -EBUSY;
1478    }
1479  }
1480
1481  // got an idle channel
1482  {
1483    // tx_idle ensures we look for idle channels in RR order
1484    int chan = dev->tx_idle;
1485
1486    int keep_going = 1;
1487    while (keep_going) {
1488      if (idle_channels & (1<<chan)) {
1489	tx_channel = chan;
1490	keep_going = 0;
1491      }
1492      ++chan;
1493      if (chan == TX_CHANS)
1494	chan = 0;
1495    }
1496
1497    dev->tx_idle = chan;
1498  }
1499
1500  // set up the channel we found
1501  {
1502    // Initialise the cell header in the transmit channel descriptor
1503    // a.k.a. prepare the channel and remember that we have done so.
1504
1505    tx_ch_desc * tx_desc = &memmap->tx_descs[tx_channel];
1506    u32 rd_ptr;
1507    u32 wr_ptr;
1508    u16 channel = vcc->channel;
1509
1510    unsigned long flags;
1511    spin_lock_irqsave (&dev->mem_lock, flags);
1512
1513    // Update the transmit channel record.
1514    dev->tx_channel_record[tx_channel] = channel;
1515
1516    // xBR channel
1517    update_tx_channel_config (dev, tx_channel, RATE_TYPE_ACCESS,
1518			      vcc->tx_xbr_bits);
1519
1520    // Update the PCR counter preload value etc.
1521    update_tx_channel_config (dev, tx_channel, PCR_TIMER_ACCESS,
1522			      vcc->tx_pcr_bits);
1523
1524#if 0
1525    if (vcc->tx_xbr_bits == VBR_RATE_TYPE) {
1526      // SCR timer
1527      update_tx_channel_config (dev, tx_channel, SCR_TIMER_ACCESS,
1528				vcc->tx_scr_bits);
1529
1530      // Bucket size...
1531      update_tx_channel_config (dev, tx_channel, BUCKET_CAPACITY_ACCESS,
1532				vcc->tx_bucket_bits);
1533
1534      // ... and fullness
1535      update_tx_channel_config (dev, tx_channel, BUCKET_FULLNESS_ACCESS,
1536				vcc->tx_bucket_bits);
1537    }
1538#endif
1539
1540    // Initialise the read and write buffer pointers
1541    rd_ptr = rd_mem (dev, &tx_desc->rd_buf_type) & BUFFER_PTR_MASK;
1542    wr_ptr = rd_mem (dev, &tx_desc->wr_buf_type) & BUFFER_PTR_MASK;
1543
1544    // idle TX channels should have identical pointers
1545    if (rd_ptr != wr_ptr) {
1546      PRINTD (DBG_TX|DBG_ERR, "TX buffer pointers are broken!");
1547      // spin_unlock... return -E...
1548      // I wonder if gcc would get rid of one of the pointer aliases
1549    }
1550    PRINTD (DBG_TX, "TX buffer pointers are: rd %x, wr %x.",
1551	    rd_ptr, wr_ptr);
1552
1553    switch (vcc->aal) {
1554      case aal0:
1555	PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal0");
1556	rd_ptr |= CHANNEL_TYPE_RAW_CELLS;
1557	wr_ptr |= CHANNEL_TYPE_RAW_CELLS;
1558	break;
1559      case aal34:
1560	PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal34");
1561	rd_ptr |= CHANNEL_TYPE_AAL3_4;
1562	wr_ptr |= CHANNEL_TYPE_AAL3_4;
1563	break;
1564      case aal5:
1565	rd_ptr |= CHANNEL_TYPE_AAL5;
1566	wr_ptr |= CHANNEL_TYPE_AAL5;
1567	// Initialise the CRC
1568	wr_mem (dev, &tx_desc->partial_crc, INITIAL_CRC);
1569	break;
1570    }
1571
1572    wr_mem (dev, &tx_desc->rd_buf_type, rd_ptr);
1573    wr_mem (dev, &tx_desc->wr_buf_type, wr_ptr);
1574
1575    // Write the Cell Header
1576    // Payload Type, CLP and GFC would go here if non-zero
1577    wr_mem (dev, &tx_desc->cell_header, channel);
1578
1579    spin_unlock_irqrestore (&dev->mem_lock, flags);
1580  }
1581
1582  return tx_channel;
1583}
1584
1585/********** send a frame **********/
1586
1587static int hrz_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1588  unsigned int spin_count;
1589  int free_buffers;
1590  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
1591  hrz_vcc * vcc = HRZ_VCC(atm_vcc);
1592  u16 channel = vcc->channel;
1593
1594  u32 buffers_required;
1595
1596  /* signed for error return */
1597  short tx_channel;
1598
1599  PRINTD (DBG_FLOW|DBG_TX, "hrz_send vc %x data %p len %u",
1600	  channel, skb->data, skb->len);
1601
1602  dump_skb (">>>", channel, skb);
1603
1604  if (atm_vcc->qos.txtp.traffic_class == ATM_NONE) {
1605    PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", channel);
1606    hrz_kfree_skb (skb);
1607    return -EIO;
1608  }
1609
1610  // don't understand this
1611  ATM_SKB(skb)->vcc = atm_vcc;
1612
1613  if (skb->len > atm_vcc->qos.txtp.max_sdu) {
1614    PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1615    hrz_kfree_skb (skb);
1616    return -EIO;
1617  }
1618
1619  if (!channel) {
1620    PRINTD (DBG_ERR|DBG_TX, "attempt to transmit on zero (rx_)channel");
1621    hrz_kfree_skb (skb);
1622    return -EIO;
1623  }
1624
1625#if 0
1626  {
1627    // where would be a better place for this? housekeeping?
1628    u16 status;
1629    pci_read_config_word (dev->pci_dev, PCI_STATUS, &status);
1630    if (status & PCI_STATUS_REC_MASTER_ABORT) {
1631      PRINTD (DBG_BUS|DBG_ERR, "Clearing PCI Master Abort (and cleaning up)");
1632      status &= ~PCI_STATUS_REC_MASTER_ABORT;
1633      pci_write_config_word (dev->pci_dev, PCI_STATUS, status);
1634      if (test_bit (tx_busy, &dev->flags)) {
1635	hrz_kfree_skb (dev->tx_skb);
1636	tx_release (dev);
1637      }
1638    }
1639  }
1640#endif
1641
1642#ifdef DEBUG_HORIZON
1643  /* wey-hey! */
1644  if (channel == 1023) {
1645    unsigned int i;
1646    unsigned short d = 0;
1647    char * s = skb->data;
1648    if (*s++ == 'D') {
1649	for (i = 0; i < 4; ++i)
1650		d = (d << 4) | hex_to_bin(*s++);
1651      PRINTK (KERN_INFO, "debug bitmap is now %hx", debug = d);
1652    }
1653  }
1654#endif
1655
1656  // wait until TX is free and grab lock
1657  if (tx_hold (dev)) {
1658    hrz_kfree_skb (skb);
1659    return -ERESTARTSYS;
1660  }
1661
1662  // Wait for enough space to be available in transmit buffer memory.
1663
1664  // should be number of cells needed + 2 (according to hardware docs)
1665  // = ((framelen+8)+47) / 48 + 2
1666  // = (framelen+7) / 48 + 3, hmm... faster to put addition inside XXX
1667  buffers_required = (skb->len+(ATM_AAL5_TRAILER-1)) / ATM_CELL_PAYLOAD + 3;
1668
1669  // replace with timer and sleep, add dev->tx_buffers_queue (max 1 entry)
1670  spin_count = 0;
1671  while ((free_buffers = rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF)) < buffers_required) {
1672    PRINTD (DBG_TX, "waiting for free TX buffers, got %d of %d",
1673	    free_buffers, buffers_required);
1674    // what is the appropriate delay? implement a timeout? (depending on line speed?)
1675    // mdelay (1);
1676    // what happens if we kill (current_pid, SIGKILL) ?
1677    schedule();
1678    if (++spin_count > 1000) {
1679      PRINTD (DBG_TX|DBG_ERR, "spun out waiting for tx buffers, got %d of %d",
1680	      free_buffers, buffers_required);
1681      tx_release (dev);
1682      hrz_kfree_skb (skb);
1683      return -ERESTARTSYS;
1684    }
1685  }
1686
1687  // Select a channel to transmit the frame on.
1688  if (channel == dev->last_vc) {
1689    PRINTD (DBG_TX, "last vc hack: hit");
1690    tx_channel = dev->tx_last;
1691  } else {
1692    PRINTD (DBG_TX, "last vc hack: miss");
1693    // Are we currently transmitting this VC on one of the channels?
1694    for (tx_channel = 0; tx_channel < TX_CHANS; ++tx_channel)
1695      if (dev->tx_channel_record[tx_channel] == channel) {
1696	PRINTD (DBG_TX, "vc already on channel: hit");
1697	break;
1698      }
1699    if (tx_channel == TX_CHANS) {
1700      PRINTD (DBG_TX, "vc already on channel: miss");
1701      // Find and set up an idle channel.
1702      tx_channel = setup_idle_tx_channel (dev, vcc);
1703      if (tx_channel < 0) {
1704	PRINTD (DBG_TX|DBG_ERR, "failed to get channel");
1705	tx_release (dev);
1706	return tx_channel;
1707      }
1708    }
1709
1710    PRINTD (DBG_TX, "got channel");
1711    SELECT_TX_CHANNEL(dev, tx_channel);
1712
1713    dev->last_vc = channel;
1714    dev->tx_last = tx_channel;
1715  }
1716
1717  PRINTD (DBG_TX, "using channel %u", tx_channel);
1718
1719  YELLOW_LED_OFF(dev);
1720
1721  // TX start transfer
1722
1723  {
1724    unsigned int tx_len = skb->len;
1725    unsigned int tx_iovcnt = skb_shinfo(skb)->nr_frags;
1726    // remember this so we can free it later
1727    dev->tx_skb = skb;
1728
1729    if (tx_iovcnt) {
1730      // scatter gather transfer
1731      dev->tx_regions = tx_iovcnt;
1732      dev->tx_iovec = NULL;		/* @@@ needs rewritten */
1733      dev->tx_bytes = 0;
1734      PRINTD (DBG_TX|DBG_BUS, "TX start scatter-gather transfer (iovec %p, len %d)",
1735	      skb->data, tx_len);
1736      tx_release (dev);
1737      hrz_kfree_skb (skb);
1738      return -EIO;
1739    } else {
1740      // simple transfer
1741      dev->tx_regions = 0;
1742      dev->tx_iovec = NULL;
1743      dev->tx_bytes = tx_len;
1744      dev->tx_addr = skb->data;
1745      PRINTD (DBG_TX|DBG_BUS, "TX start simple transfer (addr %p, len %d)",
1746	      skb->data, tx_len);
1747    }
1748
1749    // and do the business
1750    tx_schedule (dev, 0);
1751
1752  }
1753
1754  return 0;
1755}
1756
1757/********** reset a card **********/
1758
1759static void hrz_reset (const hrz_dev * dev) {
1760  u32 control_0_reg = rd_regl (dev, CONTROL_0_REG);
1761
1762  // why not set RESET_HORIZON to one and wait for the card to
1763  // reassert that bit as zero? Like so:
1764  control_0_reg = control_0_reg & RESET_HORIZON;
1765  wr_regl (dev, CONTROL_0_REG, control_0_reg);
1766  while (control_0_reg & RESET_HORIZON)
1767    control_0_reg = rd_regl (dev, CONTROL_0_REG);
1768
1769  // old reset code retained:
1770  wr_regl (dev, CONTROL_0_REG, control_0_reg |
1771	   RESET_ATM | RESET_RX | RESET_TX | RESET_HOST);
1772  // just guessing here
1773  udelay (1000);
1774
1775  wr_regl (dev, CONTROL_0_REG, control_0_reg);
1776}
1777
1778/********** read the burnt in address **********/
1779
1780static void WRITE_IT_WAIT (const hrz_dev *dev, u32 ctrl)
1781{
1782	wr_regl (dev, CONTROL_0_REG, ctrl);
1783	udelay (5);
1784}
1785
1786static void CLOCK_IT (const hrz_dev *dev, u32 ctrl)
1787{
1788	// DI must be valid around rising SK edge
1789	WRITE_IT_WAIT(dev, ctrl & ~SEEPROM_SK);
1790	WRITE_IT_WAIT(dev, ctrl | SEEPROM_SK);
1791}
1792
1793static u16 __devinit read_bia (const hrz_dev * dev, u16 addr)
1794{
1795  u32 ctrl = rd_regl (dev, CONTROL_0_REG);
1796
1797  const unsigned int addr_bits = 6;
1798  const unsigned int data_bits = 16;
1799
1800  unsigned int i;
1801
1802  u16 res;
1803
1804  ctrl &= ~(SEEPROM_CS | SEEPROM_SK | SEEPROM_DI);
1805  WRITE_IT_WAIT(dev, ctrl);
1806
1807  // wake Serial EEPROM and send 110 (READ) command
1808  ctrl |=  (SEEPROM_CS | SEEPROM_DI);
1809  CLOCK_IT(dev, ctrl);
1810
1811  ctrl |= SEEPROM_DI;
1812  CLOCK_IT(dev, ctrl);
1813
1814  ctrl &= ~SEEPROM_DI;
1815  CLOCK_IT(dev, ctrl);
1816
1817  for (i=0; i<addr_bits; i++) {
1818    if (addr & (1 << (addr_bits-1)))
1819      ctrl |= SEEPROM_DI;
1820    else
1821      ctrl &= ~SEEPROM_DI;
1822
1823    CLOCK_IT(dev, ctrl);
1824
1825    addr = addr << 1;
1826  }
1827
1828  // we could check that we have DO = 0 here
1829  ctrl &= ~SEEPROM_DI;
1830
1831  res = 0;
1832  for (i=0;i<data_bits;i++) {
1833    res = res >> 1;
1834
1835    CLOCK_IT(dev, ctrl);
1836
1837    if (rd_regl (dev, CONTROL_0_REG) & SEEPROM_DO)
1838      res |= (1 << (data_bits-1));
1839  }
1840
1841  ctrl &= ~(SEEPROM_SK | SEEPROM_CS);
1842  WRITE_IT_WAIT(dev, ctrl);
1843
1844  return res;
1845}
1846
1847/********** initialise a card **********/
1848
1849static int __devinit hrz_init (hrz_dev * dev) {
1850  int onefivefive;
1851
1852  u16 chan;
1853
1854  int buff_count;
1855
1856  HDW * mem;
1857
1858  cell_buf * tx_desc;
1859  cell_buf * rx_desc;
1860
1861  u32 ctrl;
1862
1863  ctrl = rd_regl (dev, CONTROL_0_REG);
1864  PRINTD (DBG_INFO, "ctrl0reg is %#x", ctrl);
1865  onefivefive = ctrl & ATM_LAYER_STATUS;
1866
1867  if (onefivefive)
1868    printk (DEV_LABEL ": Horizon Ultra (at 155.52 MBps)");
1869  else
1870    printk (DEV_LABEL ": Horizon (at 25 MBps)");
1871
1872  printk (":");
1873  // Reset the card to get everything in a known state
1874
1875  printk (" reset");
1876  hrz_reset (dev);
1877
1878  // Clear all the buffer memory
1879
1880  printk (" clearing memory");
1881
1882  for (mem = (HDW *) memmap; mem < (HDW *) (memmap + 1); ++mem)
1883    wr_mem (dev, mem, 0);
1884
1885  printk (" tx channels");
1886
1887  // All transmit eight channels are set up as AAL5 ABR channels with
1888  // a 16us cell spacing. Why?
1889
1890  // Channel 0 gets the free buffer at 100h, channel 1 gets the free
1891  // buffer at 110h etc.
1892
1893  for (chan = 0; chan < TX_CHANS; ++chan) {
1894    tx_ch_desc * tx_desc = &memmap->tx_descs[chan];
1895    cell_buf * buf = &memmap->inittxbufs[chan];
1896
1897    // initialise the read and write buffer pointers
1898    wr_mem (dev, &tx_desc->rd_buf_type, BUF_PTR(buf));
1899    wr_mem (dev, &tx_desc->wr_buf_type, BUF_PTR(buf));
1900
1901    // set the status of the initial buffers to empty
1902    wr_mem (dev, &buf->next, BUFF_STATUS_EMPTY);
1903  }
1904
1905  // Use space bufn3 at the moment for tx buffers
1906
1907  printk (" tx buffers");
1908
1909  tx_desc = memmap->bufn3;
1910
1911  wr_mem (dev, &memmap->txfreebufstart.next, BUF_PTR(tx_desc) | BUFF_STATUS_EMPTY);
1912
1913  for (buff_count = 0; buff_count < BUFN3_SIZE-1; buff_count++) {
1914    wr_mem (dev, &tx_desc->next, BUF_PTR(tx_desc+1) | BUFF_STATUS_EMPTY);
1915    tx_desc++;
1916  }
1917
1918  wr_mem (dev, &tx_desc->next, BUF_PTR(&memmap->txfreebufend) | BUFF_STATUS_EMPTY);
1919
1920  // Initialise the transmit free buffer count
1921  wr_regw (dev, TX_FREE_BUFFER_COUNT_OFF, BUFN3_SIZE);
1922
1923  printk (" rx channels");
1924
1925  // Initialise all of the receive channels to be AAL5 disabled with
1926  // an interrupt threshold of 0
1927
1928  for (chan = 0; chan < RX_CHANS; ++chan) {
1929    rx_ch_desc * rx_desc = &memmap->rx_descs[chan];
1930
1931    wr_mem (dev, &rx_desc->wr_buf_type, CHANNEL_TYPE_AAL5 | RX_CHANNEL_DISABLED);
1932  }
1933
1934  printk (" rx buffers");
1935
1936  // Use space bufn4 at the moment for rx buffers
1937
1938  rx_desc = memmap->bufn4;
1939
1940  wr_mem (dev, &memmap->rxfreebufstart.next, BUF_PTR(rx_desc) | BUFF_STATUS_EMPTY);
1941
1942  for (buff_count = 0; buff_count < BUFN4_SIZE-1; buff_count++) {
1943    wr_mem (dev, &rx_desc->next, BUF_PTR(rx_desc+1) | BUFF_STATUS_EMPTY);
1944
1945    rx_desc++;
1946  }
1947
1948  wr_mem (dev, &rx_desc->next, BUF_PTR(&memmap->rxfreebufend) | BUFF_STATUS_EMPTY);
1949
1950  // Initialise the receive free buffer count
1951  wr_regw (dev, RX_FREE_BUFFER_COUNT_OFF, BUFN4_SIZE);
1952
1953  // Initialize Horizons registers
1954
1955  // TX config
1956  wr_regw (dev, TX_CONFIG_OFF,
1957	   ABR_ROUND_ROBIN | TX_NORMAL_OPERATION | DRVR_DRVRBAR_ENABLE);
1958
1959  // RX config. Use 10-x VC bits, x VP bits, non user cells in channel 0.
1960  wr_regw (dev, RX_CONFIG_OFF,
1961	   DISCARD_UNUSED_VPI_VCI_BITS_SET | NON_USER_CELLS_IN_ONE_CHANNEL | vpi_bits);
1962
1963  // RX line config
1964  wr_regw (dev, RX_LINE_CONFIG_OFF,
1965	   LOCK_DETECT_ENABLE | FREQUENCY_DETECT_ENABLE | GXTALOUT_SELECT_DIV4);
1966
1967  // Set the max AAL5 cell count to be just enough to contain the
1968  // largest AAL5 frame that the user wants to receive
1969  wr_regw (dev, MAX_AAL5_CELL_COUNT_OFF,
1970	   DIV_ROUND_UP(max_rx_size + ATM_AAL5_TRAILER, ATM_CELL_PAYLOAD));
1971
1972  // Enable receive
1973  wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
1974
1975  printk (" control");
1976
1977  // Drive the OE of the LEDs then turn the green LED on
1978  ctrl |= GREEN_LED_OE | YELLOW_LED_OE | GREEN_LED | YELLOW_LED;
1979  wr_regl (dev, CONTROL_0_REG, ctrl);
1980
1981  // Test for a 155-capable card
1982
1983  if (onefivefive) {
1984    // Select 155 mode... make this a choice (or: how do we detect
1985    // external line speed and switch?)
1986    ctrl |= ATM_LAYER_SELECT;
1987    wr_regl (dev, CONTROL_0_REG, ctrl);
1988
1989    // test SUNI-lite vs SAMBA
1990
1991    // Register 0x00 in the SUNI will have some of bits 3-7 set, and
1992    // they will always be zero for the SAMBA.  Ha!  Bloody hardware
1993    // engineers.  It'll never work.
1994
1995    if (rd_framer (dev, 0) & 0x00f0) {
1996      // SUNI
1997      printk (" SUNI");
1998
1999      // Reset, just in case
2000      wr_framer (dev, 0x00, 0x0080);
2001      wr_framer (dev, 0x00, 0x0000);
2002
2003      // Configure transmit FIFO
2004      wr_framer (dev, 0x63, rd_framer (dev, 0x63) | 0x0002);
2005
2006      // Set line timed mode
2007      wr_framer (dev, 0x05, rd_framer (dev, 0x05) | 0x0001);
2008    } else {
2009      // SAMBA
2010      printk (" SAMBA");
2011
2012      // Reset, just in case
2013      wr_framer (dev, 0, rd_framer (dev, 0) | 0x0001);
2014      wr_framer (dev, 0, rd_framer (dev, 0) &~ 0x0001);
2015
2016      // Turn off diagnostic loopback and enable line-timed mode
2017      wr_framer (dev, 0, 0x0002);
2018
2019      // Turn on transmit outputs
2020      wr_framer (dev, 2, 0x0B80);
2021    }
2022  } else {
2023    // Select 25 mode
2024    ctrl &= ~ATM_LAYER_SELECT;
2025
2026    // Madge B154 setup
2027    // none required?
2028  }
2029
2030  printk (" LEDs");
2031
2032  GREEN_LED_ON(dev);
2033  YELLOW_LED_ON(dev);
2034
2035  printk (" ESI=");
2036
2037  {
2038    u16 b = 0;
2039    int i;
2040    u8 * esi = dev->atm_dev->esi;
2041
2042    // in the card I have, EEPROM
2043    // addresses 0, 1, 2 contain 0
2044    // addresess 5, 6 etc. contain ffff
2045    // NB: Madge prefix is 00 00 f6 (which is 00 00 6f in Ethernet bit order)
2046    // the read_bia routine gets the BIA in Ethernet bit order
2047
2048    for (i=0; i < ESI_LEN; ++i) {
2049      if (i % 2 == 0)
2050	b = read_bia (dev, i/2 + 2);
2051      else
2052	b = b >> 8;
2053      esi[i] = b & 0xFF;
2054      printk ("%02x", esi[i]);
2055    }
2056  }
2057
2058  // Enable RX_Q and ?X_COMPLETE interrupts only
2059  wr_regl (dev, INT_ENABLE_REG_OFF, INTERESTING_INTERRUPTS);
2060  printk (" IRQ on");
2061
2062  printk (".\n");
2063
2064  return onefivefive;
2065}
2066
2067/********** check max_sdu **********/
2068
2069static int check_max_sdu (hrz_aal aal, struct atm_trafprm * tp, unsigned int max_frame_size) {
2070  PRINTD (DBG_FLOW|DBG_QOS, "check_max_sdu");
2071
2072  switch (aal) {
2073    case aal0:
2074      if (!(tp->max_sdu)) {
2075	PRINTD (DBG_QOS, "defaulting max_sdu");
2076	tp->max_sdu = ATM_AAL0_SDU;
2077      } else if (tp->max_sdu != ATM_AAL0_SDU) {
2078	PRINTD (DBG_QOS|DBG_ERR, "rejecting max_sdu");
2079	return -EINVAL;
2080      }
2081      break;
2082    case aal34:
2083      if (tp->max_sdu == 0 || tp->max_sdu > ATM_MAX_AAL34_PDU) {
2084	PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2085	tp->max_sdu = ATM_MAX_AAL34_PDU;
2086      }
2087      break;
2088    case aal5:
2089      if (tp->max_sdu == 0 || tp->max_sdu > max_frame_size) {
2090	PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2091	tp->max_sdu = max_frame_size;
2092      }
2093      break;
2094  }
2095  return 0;
2096}
2097
2098/********** check pcr **********/
2099
2100// something like this should be part of ATM Linux
2101static int atm_pcr_check (struct atm_trafprm * tp, unsigned int pcr) {
2102  // we are assuming non-UBR, and non-special values of pcr
2103  if (tp->min_pcr == ATM_MAX_PCR)
2104    PRINTD (DBG_QOS, "luser gave min_pcr = ATM_MAX_PCR");
2105  else if (tp->min_pcr < 0)
2106    PRINTD (DBG_QOS, "luser gave negative min_pcr");
2107  else if (tp->min_pcr && tp->min_pcr > pcr)
2108    PRINTD (DBG_QOS, "pcr less than min_pcr");
2109  else
2110    // !! max_pcr = UNSPEC (0) is equivalent to max_pcr = MAX (-1)
2111    // easier to #define ATM_MAX_PCR 0 and have all rates unsigned?
2112    // [this would get rid of next two conditionals]
2113    if ((0) && tp->max_pcr == ATM_MAX_PCR)
2114      PRINTD (DBG_QOS, "luser gave max_pcr = ATM_MAX_PCR");
2115    else if ((tp->max_pcr != ATM_MAX_PCR) && tp->max_pcr < 0)
2116      PRINTD (DBG_QOS, "luser gave negative max_pcr");
2117    else if (tp->max_pcr && tp->max_pcr != ATM_MAX_PCR && tp->max_pcr < pcr)
2118      PRINTD (DBG_QOS, "pcr greater than max_pcr");
2119    else {
2120      // each limit unspecified or not violated
2121      PRINTD (DBG_QOS, "xBR(pcr) OK");
2122      return 0;
2123    }
2124  PRINTD (DBG_QOS, "pcr=%u, tp: min_pcr=%d, pcr=%d, max_pcr=%d",
2125	  pcr, tp->min_pcr, tp->pcr, tp->max_pcr);
2126  return -EINVAL;
2127}
2128
2129/********** open VC **********/
2130
2131static int hrz_open (struct atm_vcc *atm_vcc)
2132{
2133  int error;
2134  u16 channel;
2135
2136  struct atm_qos * qos;
2137  struct atm_trafprm * txtp;
2138  struct atm_trafprm * rxtp;
2139
2140  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2141  hrz_vcc vcc;
2142  hrz_vcc * vccp; // allocated late
2143  short vpi = atm_vcc->vpi;
2144  int vci = atm_vcc->vci;
2145  PRINTD (DBG_FLOW|DBG_VCC, "hrz_open %x %x", vpi, vci);
2146
2147#ifdef ATM_VPI_UNSPEC
2148  // UNSPEC is deprecated, remove this code eventually
2149  if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
2150    PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
2151    return -EINVAL;
2152  }
2153#endif
2154
2155  error = vpivci_to_channel (&channel, vpi, vci);
2156  if (error) {
2157    PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
2158    return error;
2159  }
2160
2161  vcc.channel = channel;
2162  // max speed for the moment
2163  vcc.tx_rate = 0x0;
2164
2165  qos = &atm_vcc->qos;
2166
2167  // check AAL and remember it
2168  switch (qos->aal) {
2169    case ATM_AAL0:
2170      // we would if it were 48 bytes and not 52!
2171      PRINTD (DBG_QOS|DBG_VCC, "AAL0");
2172      vcc.aal = aal0;
2173      break;
2174    case ATM_AAL34:
2175      // we would if I knew how do the SAR!
2176      PRINTD (DBG_QOS|DBG_VCC, "AAL3/4");
2177      vcc.aal = aal34;
2178      break;
2179    case ATM_AAL5:
2180      PRINTD (DBG_QOS|DBG_VCC, "AAL5");
2181      vcc.aal = aal5;
2182      break;
2183    default:
2184      PRINTD (DBG_QOS|DBG_VCC, "Bad AAL!");
2185      return -EINVAL;
2186      break;
2187  }
2188
2189  // TX traffic parameters
2190
2191  // there are two, interrelated problems here: 1. the reservation of
2192  // PCR is not a binary choice, we are given bounds and/or a
2193  // desirable value; 2. the device is only capable of certain values,
2194  // most of which are not integers. It is almost certainly acceptable
2195  // to be off by a maximum of 1 to 10 cps.
2196
2197  // Pragmatic choice: always store an integral PCR as that which has
2198  // been allocated, even if we allocate a little (or a lot) less,
2199  // after rounding. The actual allocation depends on what we can
2200  // manage with our rate selection algorithm. The rate selection
2201  // algorithm is given an integral PCR and a tolerance and told
2202  // whether it should round the value up or down if the tolerance is
2203  // exceeded; it returns: a) the actual rate selected (rounded up to
2204  // the nearest integer), b) a bit pattern to feed to the timer
2205  // register, and c) a failure value if no applicable rate exists.
2206
2207  // Part of the job is done by atm_pcr_goal which gives us a PCR
2208  // specification which says: EITHER grab the maximum available PCR
2209  // (and perhaps a lower bound which we musn't pass), OR grab this
2210  // amount, rounding down if you have to (and perhaps a lower bound
2211  // which we musn't pass) OR grab this amount, rounding up if you
2212  // have to (and perhaps an upper bound which we musn't pass). If any
2213  // bounds ARE passed we fail. Note that rounding is only rounding to
2214  // match device limitations, we do not round down to satisfy
2215  // bandwidth availability even if this would not violate any given
2216  // lower bound.
2217
2218  // Note: telephony = 64kb/s = 48 byte cell payload @ 500/3 cells/s
2219  // (say) so this is not even a binary fixpoint cell rate (but this
2220  // device can do it). To avoid this sort of hassle we use a
2221  // tolerance parameter (currently fixed at 10 cps).
2222
2223  PRINTD (DBG_QOS, "TX:");
2224
2225  txtp = &qos->txtp;
2226
2227  // set up defaults for no traffic
2228  vcc.tx_rate = 0;
2229  // who knows what would actually happen if you try and send on this?
2230  vcc.tx_xbr_bits = IDLE_RATE_TYPE;
2231  vcc.tx_pcr_bits = CLOCK_DISABLE;
2232#if 0
2233  vcc.tx_scr_bits = CLOCK_DISABLE;
2234  vcc.tx_bucket_bits = 0;
2235#endif
2236
2237  if (txtp->traffic_class != ATM_NONE) {
2238    error = check_max_sdu (vcc.aal, txtp, max_tx_size);
2239    if (error) {
2240      PRINTD (DBG_QOS, "TX max_sdu check failed");
2241      return error;
2242    }
2243
2244    switch (txtp->traffic_class) {
2245      case ATM_UBR: {
2246	// we take "the PCR" as a rate-cap
2247	// not reserved
2248	vcc.tx_rate = 0;
2249	make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, NULL);
2250	vcc.tx_xbr_bits = ABR_RATE_TYPE;
2251	break;
2252      }
2253#if 0
2254      case ATM_ABR: {
2255	// reserve min, allow up to max
2256	vcc.tx_rate = 0; // ?
2257	make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0);
2258	vcc.tx_xbr_bits = ABR_RATE_TYPE;
2259	break;
2260      }
2261#endif
2262      case ATM_CBR: {
2263	int pcr = atm_pcr_goal (txtp);
2264	rounding r;
2265	if (!pcr) {
2266	  // down vs. up, remaining bandwidth vs. unlimited bandwidth!!
2267	  // should really have: once someone gets unlimited bandwidth
2268	  // that no more non-UBR channels can be opened until the
2269	  // unlimited one closes?? For the moment, round_down means
2270	  // greedy people actually get something and not nothing
2271	  r = round_down;
2272	  // slight race (no locking) here so we may get -EAGAIN
2273	  // later; the greedy bastards would deserve it :)
2274	  PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2275	  pcr = dev->tx_avail;
2276	} else if (pcr < 0) {
2277	  r = round_down;
2278	  pcr = -pcr;
2279	} else {
2280	  r = round_up;
2281	}
2282	error = make_rate_with_tolerance (dev, pcr, r, 10,
2283					  &vcc.tx_pcr_bits, &vcc.tx_rate);
2284	if (error) {
2285	  PRINTD (DBG_QOS, "could not make rate from TX PCR");
2286	  return error;
2287	}
2288	// not really clear what further checking is needed
2289	error = atm_pcr_check (txtp, vcc.tx_rate);
2290	if (error) {
2291	  PRINTD (DBG_QOS, "TX PCR failed consistency check");
2292	  return error;
2293	}
2294	vcc.tx_xbr_bits = CBR_RATE_TYPE;
2295	break;
2296      }
2297#if 0
2298      case ATM_VBR: {
2299	int pcr = atm_pcr_goal (txtp);
2300	// int scr = atm_scr_goal (txtp);
2301	int scr = pcr/2; // just for fun
2302	unsigned int mbs = 60; // just for fun
2303	rounding pr;
2304	rounding sr;
2305	unsigned int bucket;
2306	if (!pcr) {
2307	  pr = round_nearest;
2308	  pcr = 1<<30;
2309	} else if (pcr < 0) {
2310	  pr = round_down;
2311	  pcr = -pcr;
2312	} else {
2313	  pr = round_up;
2314	}
2315	error = make_rate_with_tolerance (dev, pcr, pr, 10,
2316					  &vcc.tx_pcr_bits, 0);
2317	if (!scr) {
2318	  // see comments for PCR with CBR above
2319	  sr = round_down;
2320	  // slight race (no locking) here so we may get -EAGAIN
2321	  // later; the greedy bastards would deserve it :)
2322	  PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2323	  scr = dev->tx_avail;
2324	} else if (scr < 0) {
2325	  sr = round_down;
2326	  scr = -scr;
2327	} else {
2328	  sr = round_up;
2329	}
2330	error = make_rate_with_tolerance (dev, scr, sr, 10,
2331					  &vcc.tx_scr_bits, &vcc.tx_rate);
2332	if (error) {
2333	  PRINTD (DBG_QOS, "could not make rate from TX SCR");
2334	  return error;
2335	}
2336	// not really clear what further checking is needed
2337	// error = atm_scr_check (txtp, vcc.tx_rate);
2338	if (error) {
2339	  PRINTD (DBG_QOS, "TX SCR failed consistency check");
2340	  return error;
2341	}
2342	// bucket calculations (from a piece of paper...) cell bucket
2343	// capacity must be largest integer smaller than m(p-s)/p + 1
2344	// where m = max burst size, p = pcr, s = scr
2345	bucket = mbs*(pcr-scr)/pcr;
2346	if (bucket*pcr != mbs*(pcr-scr))
2347	  bucket += 1;
2348	if (bucket > BUCKET_MAX_SIZE) {
2349	  PRINTD (DBG_QOS, "shrinking bucket from %u to %u",
2350		  bucket, BUCKET_MAX_SIZE);
2351	  bucket = BUCKET_MAX_SIZE;
2352	}
2353	vcc.tx_xbr_bits = VBR_RATE_TYPE;
2354	vcc.tx_bucket_bits = bucket;
2355	break;
2356      }
2357#endif
2358      default: {
2359	PRINTD (DBG_QOS, "unsupported TX traffic class");
2360	return -EINVAL;
2361	break;
2362      }
2363    }
2364  }
2365
2366  // RX traffic parameters
2367
2368  PRINTD (DBG_QOS, "RX:");
2369
2370  rxtp = &qos->rxtp;
2371
2372  // set up defaults for no traffic
2373  vcc.rx_rate = 0;
2374
2375  if (rxtp->traffic_class != ATM_NONE) {
2376    error = check_max_sdu (vcc.aal, rxtp, max_rx_size);
2377    if (error) {
2378      PRINTD (DBG_QOS, "RX max_sdu check failed");
2379      return error;
2380    }
2381    switch (rxtp->traffic_class) {
2382      case ATM_UBR: {
2383	// not reserved
2384	break;
2385      }
2386#if 0
2387      case ATM_ABR: {
2388	// reserve min
2389	vcc.rx_rate = 0; // ?
2390	break;
2391      }
2392#endif
2393      case ATM_CBR: {
2394	int pcr = atm_pcr_goal (rxtp);
2395	if (!pcr) {
2396	  // slight race (no locking) here so we may get -EAGAIN
2397	  // later; the greedy bastards would deserve it :)
2398	  PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2399	  pcr = dev->rx_avail;
2400	} else if (pcr < 0) {
2401	  pcr = -pcr;
2402	}
2403	vcc.rx_rate = pcr;
2404	// not really clear what further checking is needed
2405	error = atm_pcr_check (rxtp, vcc.rx_rate);
2406	if (error) {
2407	  PRINTD (DBG_QOS, "RX PCR failed consistency check");
2408	  return error;
2409	}
2410	break;
2411      }
2412#if 0
2413      case ATM_VBR: {
2414	// int scr = atm_scr_goal (rxtp);
2415	int scr = 1<<16; // just for fun
2416	if (!scr) {
2417	  // slight race (no locking) here so we may get -EAGAIN
2418	  // later; the greedy bastards would deserve it :)
2419	  PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2420	  scr = dev->rx_avail;
2421	} else if (scr < 0) {
2422	  scr = -scr;
2423	}
2424	vcc.rx_rate = scr;
2425	// not really clear what further checking is needed
2426	// error = atm_scr_check (rxtp, vcc.rx_rate);
2427	if (error) {
2428	  PRINTD (DBG_QOS, "RX SCR failed consistency check");
2429	  return error;
2430	}
2431	break;
2432      }
2433#endif
2434      default: {
2435	PRINTD (DBG_QOS, "unsupported RX traffic class");
2436	return -EINVAL;
2437	break;
2438      }
2439    }
2440  }
2441
2442
2443  // late abort useful for diagnostics
2444  if (vcc.aal != aal5) {
2445    PRINTD (DBG_QOS, "AAL not supported");
2446    return -EINVAL;
2447  }
2448
2449  // get space for our vcc stuff and copy parameters into it
2450  vccp = kmalloc (sizeof(hrz_vcc), GFP_KERNEL);
2451  if (!vccp) {
2452    PRINTK (KERN_ERR, "out of memory!");
2453    return -ENOMEM;
2454  }
2455  *vccp = vcc;
2456
2457  // clear error and grab cell rate resource lock
2458  error = 0;
2459  spin_lock (&dev->rate_lock);
2460
2461  if (vcc.tx_rate > dev->tx_avail) {
2462    PRINTD (DBG_QOS, "not enough TX PCR left");
2463    error = -EAGAIN;
2464  }
2465
2466  if (vcc.rx_rate > dev->rx_avail) {
2467    PRINTD (DBG_QOS, "not enough RX PCR left");
2468    error = -EAGAIN;
2469  }
2470
2471  if (!error) {
2472    // really consume cell rates
2473    dev->tx_avail -= vcc.tx_rate;
2474    dev->rx_avail -= vcc.rx_rate;
2475    PRINTD (DBG_QOS|DBG_VCC, "reserving %u TX PCR and %u RX PCR",
2476	    vcc.tx_rate, vcc.rx_rate);
2477  }
2478
2479  // release lock and exit on error
2480  spin_unlock (&dev->rate_lock);
2481  if (error) {
2482    PRINTD (DBG_QOS|DBG_VCC, "insufficient cell rate resources");
2483    kfree (vccp);
2484    return error;
2485  }
2486
2487  // this is "immediately before allocating the connection identifier
2488  // in hardware" - so long as the next call does not fail :)
2489  set_bit(ATM_VF_ADDR,&atm_vcc->flags);
2490
2491  // any errors here are very serious and should never occur
2492
2493  if (rxtp->traffic_class != ATM_NONE) {
2494    if (dev->rxer[channel]) {
2495      PRINTD (DBG_ERR|DBG_VCC, "VC already open for RX");
2496      error = -EBUSY;
2497    }
2498    if (!error)
2499      error = hrz_open_rx (dev, channel);
2500    if (error) {
2501      kfree (vccp);
2502      return error;
2503    }
2504    // this link allows RX frames through
2505    dev->rxer[channel] = atm_vcc;
2506  }
2507
2508  // success, set elements of atm_vcc
2509  atm_vcc->dev_data = (void *) vccp;
2510
2511  // indicate readiness
2512  set_bit(ATM_VF_READY,&atm_vcc->flags);
2513
2514  return 0;
2515}
2516
2517/********** close VC **********/
2518
2519static void hrz_close (struct atm_vcc * atm_vcc) {
2520  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2521  hrz_vcc * vcc = HRZ_VCC(atm_vcc);
2522  u16 channel = vcc->channel;
2523  PRINTD (DBG_VCC|DBG_FLOW, "hrz_close");
2524
2525  // indicate unreadiness
2526  clear_bit(ATM_VF_READY,&atm_vcc->flags);
2527
2528  if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
2529    unsigned int i;
2530
2531    // let any TX on this channel that has started complete
2532    // no restart, just keep trying
2533    while (tx_hold (dev))
2534      ;
2535    // remove record of any tx_channel having been setup for this channel
2536    for (i = 0; i < TX_CHANS; ++i)
2537      if (dev->tx_channel_record[i] == channel) {
2538	dev->tx_channel_record[i] = -1;
2539	break;
2540      }
2541    if (dev->last_vc == channel)
2542      dev->tx_last = -1;
2543    tx_release (dev);
2544  }
2545
2546  if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
2547    // disable RXing - it tries quite hard
2548    hrz_close_rx (dev, channel);
2549    // forget the vcc - no more skbs will be pushed
2550    if (atm_vcc != dev->rxer[channel])
2551      PRINTK (KERN_ERR, "%s atm_vcc=%p rxer[channel]=%p",
2552	      "arghhh! we're going to die!",
2553	      atm_vcc, dev->rxer[channel]);
2554    dev->rxer[channel] = NULL;
2555  }
2556
2557  // atomically release our rate reservation
2558  spin_lock (&dev->rate_lock);
2559  PRINTD (DBG_QOS|DBG_VCC, "releasing %u TX PCR and %u RX PCR",
2560	  vcc->tx_rate, vcc->rx_rate);
2561  dev->tx_avail += vcc->tx_rate;
2562  dev->rx_avail += vcc->rx_rate;
2563  spin_unlock (&dev->rate_lock);
2564
2565  // free our structure
2566  kfree (vcc);
2567  // say the VPI/VCI is free again
2568  clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
2569}
2570
2571#if 0
2572static int hrz_getsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2573			   void *optval, int optlen) {
2574  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2575  PRINTD (DBG_FLOW|DBG_VCC, "hrz_getsockopt");
2576  switch (level) {
2577    case SOL_SOCKET:
2578      switch (optname) {
2579//	case SO_BCTXOPT:
2580//	  break;
2581//	case SO_BCRXOPT:
2582//	  break;
2583	default:
2584	  return -ENOPROTOOPT;
2585	  break;
2586      };
2587      break;
2588  }
2589  return -EINVAL;
2590}
2591
2592static int hrz_setsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2593			   void *optval, unsigned int optlen) {
2594  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2595  PRINTD (DBG_FLOW|DBG_VCC, "hrz_setsockopt");
2596  switch (level) {
2597    case SOL_SOCKET:
2598      switch (optname) {
2599//	case SO_BCTXOPT:
2600//	  break;
2601//	case SO_BCRXOPT:
2602//	  break;
2603	default:
2604	  return -ENOPROTOOPT;
2605	  break;
2606      };
2607      break;
2608  }
2609  return -EINVAL;
2610}
2611#endif
2612
2613#if 0
2614static int hrz_ioctl (struct atm_dev * atm_dev, unsigned int cmd, void *arg) {
2615  hrz_dev * dev = HRZ_DEV(atm_dev);
2616  PRINTD (DBG_FLOW, "hrz_ioctl");
2617  return -1;
2618}
2619
2620unsigned char hrz_phy_get (struct atm_dev * atm_dev, unsigned long addr) {
2621  hrz_dev * dev = HRZ_DEV(atm_dev);
2622  PRINTD (DBG_FLOW, "hrz_phy_get");
2623  return 0;
2624}
2625
2626static void hrz_phy_put (struct atm_dev * atm_dev, unsigned char value,
2627			 unsigned long addr) {
2628  hrz_dev * dev = HRZ_DEV(atm_dev);
2629  PRINTD (DBG_FLOW, "hrz_phy_put");
2630}
2631
2632static int hrz_change_qos (struct atm_vcc * atm_vcc, struct atm_qos *qos, int flgs) {
2633  hrz_dev * dev = HRZ_DEV(vcc->dev);
2634  PRINTD (DBG_FLOW, "hrz_change_qos");
2635  return -1;
2636}
2637#endif
2638
2639/********** proc file contents **********/
2640
2641static int hrz_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
2642  hrz_dev * dev = HRZ_DEV(atm_dev);
2643  int left = *pos;
2644  PRINTD (DBG_FLOW, "hrz_proc_read");
2645
2646  /* more diagnostics here? */
2647
2648#if 0
2649  if (!left--) {
2650    unsigned int count = sprintf (page, "vbr buckets:");
2651    unsigned int i;
2652    for (i = 0; i < TX_CHANS; ++i)
2653      count += sprintf (page, " %u/%u",
2654			query_tx_channel_config (dev, i, BUCKET_FULLNESS_ACCESS),
2655			query_tx_channel_config (dev, i, BUCKET_CAPACITY_ACCESS));
2656    count += sprintf (page+count, ".\n");
2657    return count;
2658  }
2659#endif
2660
2661  if (!left--)
2662    return sprintf (page,
2663		    "cells: TX %lu, RX %lu, HEC errors %lu, unassigned %lu.\n",
2664		    dev->tx_cell_count, dev->rx_cell_count,
2665		    dev->hec_error_count, dev->unassigned_cell_count);
2666
2667  if (!left--)
2668    return sprintf (page,
2669		    "free cell buffers: TX %hu, RX %hu+%hu.\n",
2670		    rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF),
2671		    rd_regw (dev, RX_FREE_BUFFER_COUNT_OFF),
2672		    dev->noof_spare_buffers);
2673
2674  if (!left--)
2675    return sprintf (page,
2676		    "cps remaining: TX %u, RX %u\n",
2677		    dev->tx_avail, dev->rx_avail);
2678
2679  return 0;
2680}
2681
2682static const struct atmdev_ops hrz_ops = {
2683  .open	= hrz_open,
2684  .close	= hrz_close,
2685  .send	= hrz_send,
2686  .proc_read	= hrz_proc_read,
2687  .owner	= THIS_MODULE,
2688};
2689
2690static int __devinit hrz_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent)
2691{
2692	hrz_dev * dev;
2693	int err = 0;
2694
2695	// adapter slot free, read resources from PCI configuration space
2696	u32 iobase = pci_resource_start (pci_dev, 0);
2697	u32 * membase = bus_to_virt (pci_resource_start (pci_dev, 1));
2698	unsigned int irq;
2699	unsigned char lat;
2700
2701	PRINTD (DBG_FLOW, "hrz_probe");
2702
2703	if (pci_enable_device(pci_dev))
2704		return -EINVAL;
2705
2706	/* XXX DEV_LABEL is a guess */
2707	if (!request_region(iobase, HRZ_IO_EXTENT, DEV_LABEL)) {
2708		err = -EINVAL;
2709		goto out_disable;
2710	}
2711
2712	dev = kzalloc(sizeof(hrz_dev), GFP_KERNEL);
2713	if (!dev) {
2714		// perhaps we should be nice: deregister all adapters and abort?
2715		PRINTD(DBG_ERR, "out of memory");
2716		err = -ENOMEM;
2717		goto out_release;
2718	}
2719
2720	pci_set_drvdata(pci_dev, dev);
2721
2722	// grab IRQ and install handler - move this someplace more sensible
2723	irq = pci_dev->irq;
2724	if (request_irq(irq,
2725			interrupt_handler,
2726			IRQF_SHARED, /* irqflags guess */
2727			DEV_LABEL, /* name guess */
2728			dev)) {
2729		PRINTD(DBG_WARN, "request IRQ failed!");
2730		err = -EINVAL;
2731		goto out_free;
2732	}
2733
2734	PRINTD(DBG_INFO, "found Madge ATM adapter (hrz) at: IO %x, IRQ %u, MEM %p",
2735	       iobase, irq, membase);
2736
2737	dev->atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &hrz_ops, -1,
2738					NULL);
2739	if (!(dev->atm_dev)) {
2740		PRINTD(DBG_ERR, "failed to register Madge ATM adapter");
2741		err = -EINVAL;
2742		goto out_free_irq;
2743	}
2744
2745	PRINTD(DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2746	       dev->atm_dev->number, dev, dev->atm_dev);
2747	dev->atm_dev->dev_data = (void *) dev;
2748	dev->pci_dev = pci_dev;
2749
2750	// enable bus master accesses
2751	pci_set_master(pci_dev);
2752
2753	// frobnicate latency (upwards, usually)
2754	pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &lat);
2755	if (pci_lat) {
2756		PRINTD(DBG_INFO, "%s PCI latency timer from %hu to %hu",
2757		       "changing", lat, pci_lat);
2758		pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
2759	} else if (lat < MIN_PCI_LATENCY) {
2760		PRINTK(KERN_INFO, "%s PCI latency timer from %hu to %hu",
2761		       "increasing", lat, MIN_PCI_LATENCY);
2762		pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, MIN_PCI_LATENCY);
2763	}
2764
2765	dev->iobase = iobase;
2766	dev->irq = irq;
2767	dev->membase = membase;
2768
2769	dev->rx_q_entry = dev->rx_q_reset = &memmap->rx_q_entries[0];
2770	dev->rx_q_wrap  = &memmap->rx_q_entries[RX_CHANS-1];
2771
2772	// these next three are performance hacks
2773	dev->last_vc = -1;
2774	dev->tx_last = -1;
2775	dev->tx_idle = 0;
2776
2777	dev->tx_regions = 0;
2778	dev->tx_bytes = 0;
2779	dev->tx_skb = NULL;
2780	dev->tx_iovec = NULL;
2781
2782	dev->tx_cell_count = 0;
2783	dev->rx_cell_count = 0;
2784	dev->hec_error_count = 0;
2785	dev->unassigned_cell_count = 0;
2786
2787	dev->noof_spare_buffers = 0;
2788
2789	{
2790		unsigned int i;
2791		for (i = 0; i < TX_CHANS; ++i)
2792			dev->tx_channel_record[i] = -1;
2793	}
2794
2795	dev->flags = 0;
2796
2797	// Allocate cell rates and remember ASIC version
2798	// Fibre: ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2799	// Copper: (WRONG) we want 6 into the above, close to 25Mb/s
2800	// Copper: (plagarise!) 25600000/8/270*260/53 - n/53
2801
2802	if (hrz_init(dev)) {
2803		// to be really pedantic, this should be ATM_OC3c_PCR
2804		dev->tx_avail = ATM_OC3_PCR;
2805		dev->rx_avail = ATM_OC3_PCR;
2806		set_bit(ultra, &dev->flags); // NOT "|= ultra" !
2807	} else {
2808		dev->tx_avail = ((25600000/8)*26)/(27*53);
2809		dev->rx_avail = ((25600000/8)*26)/(27*53);
2810		PRINTD(DBG_WARN, "Buggy ASIC: no TX bus-mastering.");
2811	}
2812
2813	// rate changes spinlock
2814	spin_lock_init(&dev->rate_lock);
2815
2816	// on-board memory access spinlock; we want atomic reads and
2817	// writes to adapter memory (handles IRQ and SMP)
2818	spin_lock_init(&dev->mem_lock);
2819
2820	init_waitqueue_head(&dev->tx_queue);
2821
2822	// vpi in 0..4, vci in 6..10
2823	dev->atm_dev->ci_range.vpi_bits = vpi_bits;
2824	dev->atm_dev->ci_range.vci_bits = 10-vpi_bits;
2825
2826	init_timer(&dev->housekeeping);
2827	dev->housekeeping.function = do_housekeeping;
2828	dev->housekeeping.data = (unsigned long) dev;
2829	mod_timer(&dev->housekeeping, jiffies);
2830
2831out:
2832	return err;
2833
2834out_free_irq:
2835	free_irq(dev->irq, dev);
2836out_free:
2837	kfree(dev);
2838out_release:
2839	release_region(iobase, HRZ_IO_EXTENT);
2840out_disable:
2841	pci_disable_device(pci_dev);
2842	goto out;
2843}
2844
2845static void __devexit hrz_remove_one(struct pci_dev *pci_dev)
2846{
2847	hrz_dev *dev;
2848
2849	dev = pci_get_drvdata(pci_dev);
2850
2851	PRINTD(DBG_INFO, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
2852	del_timer_sync(&dev->housekeeping);
2853	hrz_reset(dev);
2854	atm_dev_deregister(dev->atm_dev);
2855	free_irq(dev->irq, dev);
2856	release_region(dev->iobase, HRZ_IO_EXTENT);
2857	kfree(dev);
2858
2859	pci_disable_device(pci_dev);
2860}
2861
2862static void __init hrz_check_args (void) {
2863#ifdef DEBUG_HORIZON
2864  PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2865#else
2866  if (debug)
2867    PRINTK (KERN_NOTICE, "no debug support in this image");
2868#endif
2869
2870  if (vpi_bits > HRZ_MAX_VPI)
2871    PRINTK (KERN_ERR, "vpi_bits has been limited to %hu",
2872	    vpi_bits = HRZ_MAX_VPI);
2873
2874  if (max_tx_size < 0 || max_tx_size > TX_AAL5_LIMIT)
2875    PRINTK (KERN_NOTICE, "max_tx_size has been limited to %hu",
2876	    max_tx_size = TX_AAL5_LIMIT);
2877
2878  if (max_rx_size < 0 || max_rx_size > RX_AAL5_LIMIT)
2879    PRINTK (KERN_NOTICE, "max_rx_size has been limited to %hu",
2880	    max_rx_size = RX_AAL5_LIMIT);
2881
2882  return;
2883}
2884
2885MODULE_AUTHOR(maintainer_string);
2886MODULE_DESCRIPTION(description_string);
2887MODULE_LICENSE("GPL");
2888module_param(debug, ushort, 0644);
2889module_param(vpi_bits, ushort, 0);
2890module_param(max_tx_size, int, 0);
2891module_param(max_rx_size, int, 0);
2892module_param(pci_lat, byte, 0);
2893MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
2894MODULE_PARM_DESC(vpi_bits, "number of bits (0..4) to allocate to VPIs");
2895MODULE_PARM_DESC(max_tx_size, "maximum size of TX AAL5 frames");
2896MODULE_PARM_DESC(max_rx_size, "maximum size of RX AAL5 frames");
2897MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2898
2899static struct pci_device_id hrz_pci_tbl[] = {
2900	{ PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_HORIZON, PCI_ANY_ID, PCI_ANY_ID,
2901	  0, 0, 0 },
2902	{ 0, }
2903};
2904
2905MODULE_DEVICE_TABLE(pci, hrz_pci_tbl);
2906
2907static struct pci_driver hrz_driver = {
2908	.name =		"horizon",
2909	.probe =	hrz_probe,
2910	.remove =	__devexit_p(hrz_remove_one),
2911	.id_table =	hrz_pci_tbl,
2912};
2913
2914/********** module entry **********/
2915
2916static int __init hrz_module_init (void) {
2917  // sanity check - cast is needed since printk does not support %Zu
2918  if (sizeof(struct MEMMAP) != 128*1024/4) {
2919    PRINTK (KERN_ERR, "Fix struct MEMMAP (is %lu fakewords).",
2920	    (unsigned long) sizeof(struct MEMMAP));
2921    return -ENOMEM;
2922  }
2923
2924  show_version();
2925
2926  // check arguments
2927  hrz_check_args();
2928
2929  // get the juice
2930  return pci_register_driver(&hrz_driver);
2931}
2932
2933/********** module exit **********/
2934
2935static void __exit hrz_module_exit (void) {
2936  PRINTD (DBG_FLOW, "cleanup_module");
2937
2938  pci_unregister_driver(&hrz_driver);
2939}
2940
2941module_init(hrz_module_init);
2942module_exit(hrz_module_exit);
2943