1/*
2 * Support for Marvell's crypto engine which can be found on some Orion5X
3 * boards.
4 *
5 * Author: Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
6 * License: GPLv2
7 *
8 */
9#include <crypto/aes.h>
10#include <crypto/algapi.h>
11#include <linux/crypto.h>
12#include <linux/interrupt.h>
13#include <linux/io.h>
14#include <linux/kthread.h>
15#include <linux/platform_device.h>
16#include <linux/scatterlist.h>
17#include <linux/slab.h>
18#include <linux/module.h>
19#include <crypto/internal/hash.h>
20#include <crypto/sha.h>
21
22#include "mv_cesa.h"
23
24#define MV_CESA	"MV-CESA:"
25#define MAX_HW_HASH_SIZE	0xFFFF
26
27/*
28 * STM:
29 *   /---------------------------------------\
30 *   |					     | request complete
31 *  \./					     |
32 * IDLE -> new request -> BUSY -> done -> DEQUEUE
33 *                         /°\               |
34 *			    |		     | more scatter entries
35 *			    \________________/
36 */
37enum engine_status {
38	ENGINE_IDLE,
39	ENGINE_BUSY,
40	ENGINE_W_DEQUEUE,
41};
42
43/**
44 * struct req_progress - used for every crypt request
45 * @src_sg_it:		sg iterator for src
46 * @dst_sg_it:		sg iterator for dst
47 * @sg_src_left:	bytes left in src to process (scatter list)
48 * @src_start:		offset to add to src start position (scatter list)
49 * @crypt_len:		length of current hw crypt/hash process
50 * @hw_nbytes:		total bytes to process in hw for this request
51 * @copy_back:		whether to copy data back (crypt) or not (hash)
52 * @sg_dst_left:	bytes left dst to process in this scatter list
53 * @dst_start:		offset to add to dst start position (scatter list)
54 * @hw_processed_bytes:	number of bytes processed by hw (request).
55 *
56 * sg helper are used to iterate over the scatterlist. Since the size of the
57 * SRAM may be less than the scatter size, this struct struct is used to keep
58 * track of progress within current scatterlist.
59 */
60struct req_progress {
61	struct sg_mapping_iter src_sg_it;
62	struct sg_mapping_iter dst_sg_it;
63	void (*complete) (void);
64	void (*process) (int is_first);
65
66	/* src mostly */
67	int sg_src_left;
68	int src_start;
69	int crypt_len;
70	int hw_nbytes;
71	/* dst mostly */
72	int copy_back;
73	int sg_dst_left;
74	int dst_start;
75	int hw_processed_bytes;
76};
77
78struct crypto_priv {
79	void __iomem *reg;
80	void __iomem *sram;
81	int irq;
82	struct task_struct *queue_th;
83
84	/* the lock protects queue and eng_st */
85	spinlock_t lock;
86	struct crypto_queue queue;
87	enum engine_status eng_st;
88	struct crypto_async_request *cur_req;
89	struct req_progress p;
90	int max_req_size;
91	int sram_size;
92	int has_sha1;
93	int has_hmac_sha1;
94};
95
96static struct crypto_priv *cpg;
97
98struct mv_ctx {
99	u8 aes_enc_key[AES_KEY_LEN];
100	u32 aes_dec_key[8];
101	int key_len;
102	u32 need_calc_aes_dkey;
103};
104
105enum crypto_op {
106	COP_AES_ECB,
107	COP_AES_CBC,
108};
109
110struct mv_req_ctx {
111	enum crypto_op op;
112	int decrypt;
113};
114
115enum hash_op {
116	COP_SHA1,
117	COP_HMAC_SHA1
118};
119
120struct mv_tfm_hash_ctx {
121	struct crypto_shash *fallback;
122	struct crypto_shash *base_hash;
123	u32 ivs[2 * SHA1_DIGEST_SIZE / 4];
124	int count_add;
125	enum hash_op op;
126};
127
128struct mv_req_hash_ctx {
129	u64 count;
130	u32 state[SHA1_DIGEST_SIZE / 4];
131	u8 buffer[SHA1_BLOCK_SIZE];
132	int first_hash;		/* marks that we don't have previous state */
133	int last_chunk;		/* marks that this is the 'final' request */
134	int extra_bytes;	/* unprocessed bytes in buffer */
135	enum hash_op op;
136	int count_add;
137};
138
139static void compute_aes_dec_key(struct mv_ctx *ctx)
140{
141	struct crypto_aes_ctx gen_aes_key;
142	int key_pos;
143
144	if (!ctx->need_calc_aes_dkey)
145		return;
146
147	crypto_aes_expand_key(&gen_aes_key, ctx->aes_enc_key, ctx->key_len);
148
149	key_pos = ctx->key_len + 24;
150	memcpy(ctx->aes_dec_key, &gen_aes_key.key_enc[key_pos], 4 * 4);
151	switch (ctx->key_len) {
152	case AES_KEYSIZE_256:
153		key_pos -= 2;
154		/* fall */
155	case AES_KEYSIZE_192:
156		key_pos -= 2;
157		memcpy(&ctx->aes_dec_key[4], &gen_aes_key.key_enc[key_pos],
158				4 * 4);
159		break;
160	}
161	ctx->need_calc_aes_dkey = 0;
162}
163
164static int mv_setkey_aes(struct crypto_ablkcipher *cipher, const u8 *key,
165		unsigned int len)
166{
167	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
168	struct mv_ctx *ctx = crypto_tfm_ctx(tfm);
169
170	switch (len) {
171	case AES_KEYSIZE_128:
172	case AES_KEYSIZE_192:
173	case AES_KEYSIZE_256:
174		break;
175	default:
176		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
177		return -EINVAL;
178	}
179	ctx->key_len = len;
180	ctx->need_calc_aes_dkey = 1;
181
182	memcpy(ctx->aes_enc_key, key, AES_KEY_LEN);
183	return 0;
184}
185
186static void copy_src_to_buf(struct req_progress *p, char *dbuf, int len)
187{
188	int ret;
189	void *sbuf;
190	int copy_len;
191
192	while (len) {
193		if (!p->sg_src_left) {
194			ret = sg_miter_next(&p->src_sg_it);
195			BUG_ON(!ret);
196			p->sg_src_left = p->src_sg_it.length;
197			p->src_start = 0;
198		}
199
200		sbuf = p->src_sg_it.addr + p->src_start;
201
202		copy_len = min(p->sg_src_left, len);
203		memcpy(dbuf, sbuf, copy_len);
204
205		p->src_start += copy_len;
206		p->sg_src_left -= copy_len;
207
208		len -= copy_len;
209		dbuf += copy_len;
210	}
211}
212
213static void setup_data_in(void)
214{
215	struct req_progress *p = &cpg->p;
216	int data_in_sram =
217	    min(p->hw_nbytes - p->hw_processed_bytes, cpg->max_req_size);
218	copy_src_to_buf(p, cpg->sram + SRAM_DATA_IN_START + p->crypt_len,
219			data_in_sram - p->crypt_len);
220	p->crypt_len = data_in_sram;
221}
222
223static void mv_process_current_q(int first_block)
224{
225	struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
226	struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
227	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
228	struct sec_accel_config op;
229
230	switch (req_ctx->op) {
231	case COP_AES_ECB:
232		op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_ECB;
233		break;
234	case COP_AES_CBC:
235	default:
236		op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_CBC;
237		op.enc_iv = ENC_IV_POINT(SRAM_DATA_IV) |
238			ENC_IV_BUF_POINT(SRAM_DATA_IV_BUF);
239		if (first_block)
240			memcpy(cpg->sram + SRAM_DATA_IV, req->info, 16);
241		break;
242	}
243	if (req_ctx->decrypt) {
244		op.config |= CFG_DIR_DEC;
245		memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_dec_key,
246				AES_KEY_LEN);
247	} else {
248		op.config |= CFG_DIR_ENC;
249		memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_enc_key,
250				AES_KEY_LEN);
251	}
252
253	switch (ctx->key_len) {
254	case AES_KEYSIZE_128:
255		op.config |= CFG_AES_LEN_128;
256		break;
257	case AES_KEYSIZE_192:
258		op.config |= CFG_AES_LEN_192;
259		break;
260	case AES_KEYSIZE_256:
261		op.config |= CFG_AES_LEN_256;
262		break;
263	}
264	op.enc_p = ENC_P_SRC(SRAM_DATA_IN_START) |
265		ENC_P_DST(SRAM_DATA_OUT_START);
266	op.enc_key_p = SRAM_DATA_KEY_P;
267
268	setup_data_in();
269	op.enc_len = cpg->p.crypt_len;
270	memcpy(cpg->sram + SRAM_CONFIG, &op,
271			sizeof(struct sec_accel_config));
272
273	/* GO */
274	writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
275
276	/*
277	 * XXX: add timer if the interrupt does not occur for some mystery
278	 * reason
279	 */
280}
281
282static void mv_crypto_algo_completion(void)
283{
284	struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
285	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
286
287	sg_miter_stop(&cpg->p.src_sg_it);
288	sg_miter_stop(&cpg->p.dst_sg_it);
289
290	if (req_ctx->op != COP_AES_CBC)
291		return ;
292
293	memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16);
294}
295
296static void mv_process_hash_current(int first_block)
297{
298	struct ahash_request *req = ahash_request_cast(cpg->cur_req);
299	const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
300	struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
301	struct req_progress *p = &cpg->p;
302	struct sec_accel_config op = { 0 };
303	int is_last;
304
305	switch (req_ctx->op) {
306	case COP_SHA1:
307	default:
308		op.config = CFG_OP_MAC_ONLY | CFG_MACM_SHA1;
309		break;
310	case COP_HMAC_SHA1:
311		op.config = CFG_OP_MAC_ONLY | CFG_MACM_HMAC_SHA1;
312		memcpy(cpg->sram + SRAM_HMAC_IV_IN,
313				tfm_ctx->ivs, sizeof(tfm_ctx->ivs));
314		break;
315	}
316
317	op.mac_src_p =
318		MAC_SRC_DATA_P(SRAM_DATA_IN_START) | MAC_SRC_TOTAL_LEN((u32)
319		req_ctx->
320		count);
321
322	setup_data_in();
323
324	op.mac_digest =
325		MAC_DIGEST_P(SRAM_DIGEST_BUF) | MAC_FRAG_LEN(p->crypt_len);
326	op.mac_iv =
327		MAC_INNER_IV_P(SRAM_HMAC_IV_IN) |
328		MAC_OUTER_IV_P(SRAM_HMAC_IV_OUT);
329
330	is_last = req_ctx->last_chunk
331		&& (p->hw_processed_bytes + p->crypt_len >= p->hw_nbytes)
332		&& (req_ctx->count <= MAX_HW_HASH_SIZE);
333	if (req_ctx->first_hash) {
334		if (is_last)
335			op.config |= CFG_NOT_FRAG;
336		else
337			op.config |= CFG_FIRST_FRAG;
338
339		req_ctx->first_hash = 0;
340	} else {
341		if (is_last)
342			op.config |= CFG_LAST_FRAG;
343		else
344			op.config |= CFG_MID_FRAG;
345
346		if (first_block) {
347			writel(req_ctx->state[0], cpg->reg + DIGEST_INITIAL_VAL_A);
348			writel(req_ctx->state[1], cpg->reg + DIGEST_INITIAL_VAL_B);
349			writel(req_ctx->state[2], cpg->reg + DIGEST_INITIAL_VAL_C);
350			writel(req_ctx->state[3], cpg->reg + DIGEST_INITIAL_VAL_D);
351			writel(req_ctx->state[4], cpg->reg + DIGEST_INITIAL_VAL_E);
352		}
353	}
354
355	memcpy(cpg->sram + SRAM_CONFIG, &op, sizeof(struct sec_accel_config));
356
357	/* GO */
358	writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
359
360	/*
361	* XXX: add timer if the interrupt does not occur for some mystery
362	* reason
363	*/
364}
365
366static inline int mv_hash_import_sha1_ctx(const struct mv_req_hash_ctx *ctx,
367					  struct shash_desc *desc)
368{
369	int i;
370	struct sha1_state shash_state;
371
372	shash_state.count = ctx->count + ctx->count_add;
373	for (i = 0; i < 5; i++)
374		shash_state.state[i] = ctx->state[i];
375	memcpy(shash_state.buffer, ctx->buffer, sizeof(shash_state.buffer));
376	return crypto_shash_import(desc, &shash_state);
377}
378
379static int mv_hash_final_fallback(struct ahash_request *req)
380{
381	const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
382	struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
383	struct {
384		struct shash_desc shash;
385		char ctx[crypto_shash_descsize(tfm_ctx->fallback)];
386	} desc;
387	int rc;
388
389	desc.shash.tfm = tfm_ctx->fallback;
390	desc.shash.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
391	if (unlikely(req_ctx->first_hash)) {
392		crypto_shash_init(&desc.shash);
393		crypto_shash_update(&desc.shash, req_ctx->buffer,
394				    req_ctx->extra_bytes);
395	} else {
396		/* only SHA1 for now....
397		 */
398		rc = mv_hash_import_sha1_ctx(req_ctx, &desc.shash);
399		if (rc)
400			goto out;
401	}
402	rc = crypto_shash_final(&desc.shash, req->result);
403out:
404	return rc;
405}
406
407static void mv_hash_algo_completion(void)
408{
409	struct ahash_request *req = ahash_request_cast(cpg->cur_req);
410	struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
411
412	if (ctx->extra_bytes)
413		copy_src_to_buf(&cpg->p, ctx->buffer, ctx->extra_bytes);
414	sg_miter_stop(&cpg->p.src_sg_it);
415
416	if (likely(ctx->last_chunk)) {
417		if (likely(ctx->count <= MAX_HW_HASH_SIZE)) {
418			memcpy(req->result, cpg->sram + SRAM_DIGEST_BUF,
419			       crypto_ahash_digestsize(crypto_ahash_reqtfm
420						       (req)));
421		} else
422			mv_hash_final_fallback(req);
423	} else {
424		ctx->state[0] = readl(cpg->reg + DIGEST_INITIAL_VAL_A);
425		ctx->state[1] = readl(cpg->reg + DIGEST_INITIAL_VAL_B);
426		ctx->state[2] = readl(cpg->reg + DIGEST_INITIAL_VAL_C);
427		ctx->state[3] = readl(cpg->reg + DIGEST_INITIAL_VAL_D);
428		ctx->state[4] = readl(cpg->reg + DIGEST_INITIAL_VAL_E);
429	}
430}
431
432static void dequeue_complete_req(void)
433{
434	struct crypto_async_request *req = cpg->cur_req;
435	void *buf;
436	int ret;
437	cpg->p.hw_processed_bytes += cpg->p.crypt_len;
438	if (cpg->p.copy_back) {
439		int need_copy_len = cpg->p.crypt_len;
440		int sram_offset = 0;
441		do {
442			int dst_copy;
443
444			if (!cpg->p.sg_dst_left) {
445				ret = sg_miter_next(&cpg->p.dst_sg_it);
446				BUG_ON(!ret);
447				cpg->p.sg_dst_left = cpg->p.dst_sg_it.length;
448				cpg->p.dst_start = 0;
449			}
450
451			buf = cpg->p.dst_sg_it.addr;
452			buf += cpg->p.dst_start;
453
454			dst_copy = min(need_copy_len, cpg->p.sg_dst_left);
455
456			memcpy(buf,
457			       cpg->sram + SRAM_DATA_OUT_START + sram_offset,
458			       dst_copy);
459			sram_offset += dst_copy;
460			cpg->p.sg_dst_left -= dst_copy;
461			need_copy_len -= dst_copy;
462			cpg->p.dst_start += dst_copy;
463		} while (need_copy_len > 0);
464	}
465
466	cpg->p.crypt_len = 0;
467
468	BUG_ON(cpg->eng_st != ENGINE_W_DEQUEUE);
469	if (cpg->p.hw_processed_bytes < cpg->p.hw_nbytes) {
470		/* process next scatter list entry */
471		cpg->eng_st = ENGINE_BUSY;
472		cpg->p.process(0);
473	} else {
474		cpg->p.complete();
475		cpg->eng_st = ENGINE_IDLE;
476		local_bh_disable();
477		req->complete(req, 0);
478		local_bh_enable();
479	}
480}
481
482static int count_sgs(struct scatterlist *sl, unsigned int total_bytes)
483{
484	int i = 0;
485	size_t cur_len;
486
487	while (sl) {
488		cur_len = sl[i].length;
489		++i;
490		if (total_bytes > cur_len)
491			total_bytes -= cur_len;
492		else
493			break;
494	}
495
496	return i;
497}
498
499static void mv_start_new_crypt_req(struct ablkcipher_request *req)
500{
501	struct req_progress *p = &cpg->p;
502	int num_sgs;
503
504	cpg->cur_req = &req->base;
505	memset(p, 0, sizeof(struct req_progress));
506	p->hw_nbytes = req->nbytes;
507	p->complete = mv_crypto_algo_completion;
508	p->process = mv_process_current_q;
509	p->copy_back = 1;
510
511	num_sgs = count_sgs(req->src, req->nbytes);
512	sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
513
514	num_sgs = count_sgs(req->dst, req->nbytes);
515	sg_miter_start(&p->dst_sg_it, req->dst, num_sgs, SG_MITER_TO_SG);
516
517	mv_process_current_q(1);
518}
519
520static void mv_start_new_hash_req(struct ahash_request *req)
521{
522	struct req_progress *p = &cpg->p;
523	struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
524	int num_sgs, hw_bytes, old_extra_bytes, rc;
525	cpg->cur_req = &req->base;
526	memset(p, 0, sizeof(struct req_progress));
527	hw_bytes = req->nbytes + ctx->extra_bytes;
528	old_extra_bytes = ctx->extra_bytes;
529
530	ctx->extra_bytes = hw_bytes % SHA1_BLOCK_SIZE;
531	if (ctx->extra_bytes != 0
532	    && (!ctx->last_chunk || ctx->count > MAX_HW_HASH_SIZE))
533		hw_bytes -= ctx->extra_bytes;
534	else
535		ctx->extra_bytes = 0;
536
537	num_sgs = count_sgs(req->src, req->nbytes);
538	sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
539
540	if (hw_bytes) {
541		p->hw_nbytes = hw_bytes;
542		p->complete = mv_hash_algo_completion;
543		p->process = mv_process_hash_current;
544
545		if (unlikely(old_extra_bytes)) {
546			memcpy(cpg->sram + SRAM_DATA_IN_START, ctx->buffer,
547			       old_extra_bytes);
548			p->crypt_len = old_extra_bytes;
549		}
550
551		mv_process_hash_current(1);
552	} else {
553		copy_src_to_buf(p, ctx->buffer + old_extra_bytes,
554				ctx->extra_bytes - old_extra_bytes);
555		sg_miter_stop(&p->src_sg_it);
556		if (ctx->last_chunk)
557			rc = mv_hash_final_fallback(req);
558		else
559			rc = 0;
560		cpg->eng_st = ENGINE_IDLE;
561		local_bh_disable();
562		req->base.complete(&req->base, rc);
563		local_bh_enable();
564	}
565}
566
567static int queue_manag(void *data)
568{
569	cpg->eng_st = ENGINE_IDLE;
570	do {
571		struct crypto_async_request *async_req = NULL;
572		struct crypto_async_request *backlog;
573
574		__set_current_state(TASK_INTERRUPTIBLE);
575
576		if (cpg->eng_st == ENGINE_W_DEQUEUE)
577			dequeue_complete_req();
578
579		spin_lock_irq(&cpg->lock);
580		if (cpg->eng_st == ENGINE_IDLE) {
581			backlog = crypto_get_backlog(&cpg->queue);
582			async_req = crypto_dequeue_request(&cpg->queue);
583			if (async_req) {
584				BUG_ON(cpg->eng_st != ENGINE_IDLE);
585				cpg->eng_st = ENGINE_BUSY;
586			}
587		}
588		spin_unlock_irq(&cpg->lock);
589
590		if (backlog) {
591			backlog->complete(backlog, -EINPROGRESS);
592			backlog = NULL;
593		}
594
595		if (async_req) {
596			if (async_req->tfm->__crt_alg->cra_type !=
597			    &crypto_ahash_type) {
598				struct ablkcipher_request *req =
599				    ablkcipher_request_cast(async_req);
600				mv_start_new_crypt_req(req);
601			} else {
602				struct ahash_request *req =
603				    ahash_request_cast(async_req);
604				mv_start_new_hash_req(req);
605			}
606			async_req = NULL;
607		}
608
609		schedule();
610
611	} while (!kthread_should_stop());
612	return 0;
613}
614
615static int mv_handle_req(struct crypto_async_request *req)
616{
617	unsigned long flags;
618	int ret;
619
620	spin_lock_irqsave(&cpg->lock, flags);
621	ret = crypto_enqueue_request(&cpg->queue, req);
622	spin_unlock_irqrestore(&cpg->lock, flags);
623	wake_up_process(cpg->queue_th);
624	return ret;
625}
626
627static int mv_enc_aes_ecb(struct ablkcipher_request *req)
628{
629	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
630
631	req_ctx->op = COP_AES_ECB;
632	req_ctx->decrypt = 0;
633
634	return mv_handle_req(&req->base);
635}
636
637static int mv_dec_aes_ecb(struct ablkcipher_request *req)
638{
639	struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
640	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
641
642	req_ctx->op = COP_AES_ECB;
643	req_ctx->decrypt = 1;
644
645	compute_aes_dec_key(ctx);
646	return mv_handle_req(&req->base);
647}
648
649static int mv_enc_aes_cbc(struct ablkcipher_request *req)
650{
651	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
652
653	req_ctx->op = COP_AES_CBC;
654	req_ctx->decrypt = 0;
655
656	return mv_handle_req(&req->base);
657}
658
659static int mv_dec_aes_cbc(struct ablkcipher_request *req)
660{
661	struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
662	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
663
664	req_ctx->op = COP_AES_CBC;
665	req_ctx->decrypt = 1;
666
667	compute_aes_dec_key(ctx);
668	return mv_handle_req(&req->base);
669}
670
671static int mv_cra_init(struct crypto_tfm *tfm)
672{
673	tfm->crt_ablkcipher.reqsize = sizeof(struct mv_req_ctx);
674	return 0;
675}
676
677static void mv_init_hash_req_ctx(struct mv_req_hash_ctx *ctx, int op,
678				 int is_last, unsigned int req_len,
679				 int count_add)
680{
681	memset(ctx, 0, sizeof(*ctx));
682	ctx->op = op;
683	ctx->count = req_len;
684	ctx->first_hash = 1;
685	ctx->last_chunk = is_last;
686	ctx->count_add = count_add;
687}
688
689static void mv_update_hash_req_ctx(struct mv_req_hash_ctx *ctx, int is_last,
690				   unsigned req_len)
691{
692	ctx->last_chunk = is_last;
693	ctx->count += req_len;
694}
695
696static int mv_hash_init(struct ahash_request *req)
697{
698	const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
699	mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 0, 0,
700			     tfm_ctx->count_add);
701	return 0;
702}
703
704static int mv_hash_update(struct ahash_request *req)
705{
706	if (!req->nbytes)
707		return 0;
708
709	mv_update_hash_req_ctx(ahash_request_ctx(req), 0, req->nbytes);
710	return mv_handle_req(&req->base);
711}
712
713static int mv_hash_final(struct ahash_request *req)
714{
715	struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
716
717	ahash_request_set_crypt(req, NULL, req->result, 0);
718	mv_update_hash_req_ctx(ctx, 1, 0);
719	return mv_handle_req(&req->base);
720}
721
722static int mv_hash_finup(struct ahash_request *req)
723{
724	mv_update_hash_req_ctx(ahash_request_ctx(req), 1, req->nbytes);
725	return mv_handle_req(&req->base);
726}
727
728static int mv_hash_digest(struct ahash_request *req)
729{
730	const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
731	mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 1,
732			     req->nbytes, tfm_ctx->count_add);
733	return mv_handle_req(&req->base);
734}
735
736static void mv_hash_init_ivs(struct mv_tfm_hash_ctx *ctx, const void *istate,
737			     const void *ostate)
738{
739	const struct sha1_state *isha1_state = istate, *osha1_state = ostate;
740	int i;
741	for (i = 0; i < 5; i++) {
742		ctx->ivs[i] = cpu_to_be32(isha1_state->state[i]);
743		ctx->ivs[i + 5] = cpu_to_be32(osha1_state->state[i]);
744	}
745}
746
747static int mv_hash_setkey(struct crypto_ahash *tfm, const u8 * key,
748			  unsigned int keylen)
749{
750	int rc;
751	struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(&tfm->base);
752	int bs, ds, ss;
753
754	if (!ctx->base_hash)
755		return 0;
756
757	rc = crypto_shash_setkey(ctx->fallback, key, keylen);
758	if (rc)
759		return rc;
760
761	/* Can't see a way to extract the ipad/opad from the fallback tfm
762	   so I'm basically copying code from the hmac module */
763	bs = crypto_shash_blocksize(ctx->base_hash);
764	ds = crypto_shash_digestsize(ctx->base_hash);
765	ss = crypto_shash_statesize(ctx->base_hash);
766
767	{
768		struct {
769			struct shash_desc shash;
770			char ctx[crypto_shash_descsize(ctx->base_hash)];
771		} desc;
772		unsigned int i;
773		char ipad[ss];
774		char opad[ss];
775
776		desc.shash.tfm = ctx->base_hash;
777		desc.shash.flags = crypto_shash_get_flags(ctx->base_hash) &
778		    CRYPTO_TFM_REQ_MAY_SLEEP;
779
780		if (keylen > bs) {
781			int err;
782
783			err =
784			    crypto_shash_digest(&desc.shash, key, keylen, ipad);
785			if (err)
786				return err;
787
788			keylen = ds;
789		} else
790			memcpy(ipad, key, keylen);
791
792		memset(ipad + keylen, 0, bs - keylen);
793		memcpy(opad, ipad, bs);
794
795		for (i = 0; i < bs; i++) {
796			ipad[i] ^= 0x36;
797			opad[i] ^= 0x5c;
798		}
799
800		rc = crypto_shash_init(&desc.shash) ? :
801		    crypto_shash_update(&desc.shash, ipad, bs) ? :
802		    crypto_shash_export(&desc.shash, ipad) ? :
803		    crypto_shash_init(&desc.shash) ? :
804		    crypto_shash_update(&desc.shash, opad, bs) ? :
805		    crypto_shash_export(&desc.shash, opad);
806
807		if (rc == 0)
808			mv_hash_init_ivs(ctx, ipad, opad);
809
810		return rc;
811	}
812}
813
814static int mv_cra_hash_init(struct crypto_tfm *tfm, const char *base_hash_name,
815			    enum hash_op op, int count_add)
816{
817	const char *fallback_driver_name = tfm->__crt_alg->cra_name;
818	struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
819	struct crypto_shash *fallback_tfm = NULL;
820	struct crypto_shash *base_hash = NULL;
821	int err = -ENOMEM;
822
823	ctx->op = op;
824	ctx->count_add = count_add;
825
826	/* Allocate a fallback and abort if it failed. */
827	fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
828					  CRYPTO_ALG_NEED_FALLBACK);
829	if (IS_ERR(fallback_tfm)) {
830		printk(KERN_WARNING MV_CESA
831		       "Fallback driver '%s' could not be loaded!\n",
832		       fallback_driver_name);
833		err = PTR_ERR(fallback_tfm);
834		goto out;
835	}
836	ctx->fallback = fallback_tfm;
837
838	if (base_hash_name) {
839		/* Allocate a hash to compute the ipad/opad of hmac. */
840		base_hash = crypto_alloc_shash(base_hash_name, 0,
841					       CRYPTO_ALG_NEED_FALLBACK);
842		if (IS_ERR(base_hash)) {
843			printk(KERN_WARNING MV_CESA
844			       "Base driver '%s' could not be loaded!\n",
845			       base_hash_name);
846			err = PTR_ERR(base_hash);
847			goto err_bad_base;
848		}
849	}
850	ctx->base_hash = base_hash;
851
852	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
853				 sizeof(struct mv_req_hash_ctx) +
854				 crypto_shash_descsize(ctx->fallback));
855	return 0;
856err_bad_base:
857	crypto_free_shash(fallback_tfm);
858out:
859	return err;
860}
861
862static void mv_cra_hash_exit(struct crypto_tfm *tfm)
863{
864	struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
865
866	crypto_free_shash(ctx->fallback);
867	if (ctx->base_hash)
868		crypto_free_shash(ctx->base_hash);
869}
870
871static int mv_cra_hash_sha1_init(struct crypto_tfm *tfm)
872{
873	return mv_cra_hash_init(tfm, NULL, COP_SHA1, 0);
874}
875
876static int mv_cra_hash_hmac_sha1_init(struct crypto_tfm *tfm)
877{
878	return mv_cra_hash_init(tfm, "sha1", COP_HMAC_SHA1, SHA1_BLOCK_SIZE);
879}
880
881irqreturn_t crypto_int(int irq, void *priv)
882{
883	u32 val;
884
885	val = readl(cpg->reg + SEC_ACCEL_INT_STATUS);
886	if (!(val & SEC_INT_ACCEL0_DONE))
887		return IRQ_NONE;
888
889	val &= ~SEC_INT_ACCEL0_DONE;
890	writel(val, cpg->reg + FPGA_INT_STATUS);
891	writel(val, cpg->reg + SEC_ACCEL_INT_STATUS);
892	BUG_ON(cpg->eng_st != ENGINE_BUSY);
893	cpg->eng_st = ENGINE_W_DEQUEUE;
894	wake_up_process(cpg->queue_th);
895	return IRQ_HANDLED;
896}
897
898struct crypto_alg mv_aes_alg_ecb = {
899	.cra_name		= "ecb(aes)",
900	.cra_driver_name	= "mv-ecb-aes",
901	.cra_priority	= 300,
902	.cra_flags	= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
903	.cra_blocksize	= 16,
904	.cra_ctxsize	= sizeof(struct mv_ctx),
905	.cra_alignmask	= 0,
906	.cra_type	= &crypto_ablkcipher_type,
907	.cra_module	= THIS_MODULE,
908	.cra_init	= mv_cra_init,
909	.cra_u		= {
910		.ablkcipher = {
911			.min_keysize	=	AES_MIN_KEY_SIZE,
912			.max_keysize	=	AES_MAX_KEY_SIZE,
913			.setkey		=	mv_setkey_aes,
914			.encrypt	=	mv_enc_aes_ecb,
915			.decrypt	=	mv_dec_aes_ecb,
916		},
917	},
918};
919
920struct crypto_alg mv_aes_alg_cbc = {
921	.cra_name		= "cbc(aes)",
922	.cra_driver_name	= "mv-cbc-aes",
923	.cra_priority	= 300,
924	.cra_flags	= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
925	.cra_blocksize	= AES_BLOCK_SIZE,
926	.cra_ctxsize	= sizeof(struct mv_ctx),
927	.cra_alignmask	= 0,
928	.cra_type	= &crypto_ablkcipher_type,
929	.cra_module	= THIS_MODULE,
930	.cra_init	= mv_cra_init,
931	.cra_u		= {
932		.ablkcipher = {
933			.ivsize		=	AES_BLOCK_SIZE,
934			.min_keysize	=	AES_MIN_KEY_SIZE,
935			.max_keysize	=	AES_MAX_KEY_SIZE,
936			.setkey		=	mv_setkey_aes,
937			.encrypt	=	mv_enc_aes_cbc,
938			.decrypt	=	mv_dec_aes_cbc,
939		},
940	},
941};
942
943struct ahash_alg mv_sha1_alg = {
944	.init = mv_hash_init,
945	.update = mv_hash_update,
946	.final = mv_hash_final,
947	.finup = mv_hash_finup,
948	.digest = mv_hash_digest,
949	.halg = {
950		 .digestsize = SHA1_DIGEST_SIZE,
951		 .base = {
952			  .cra_name = "sha1",
953			  .cra_driver_name = "mv-sha1",
954			  .cra_priority = 300,
955			  .cra_flags =
956			  CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
957			  .cra_blocksize = SHA1_BLOCK_SIZE,
958			  .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
959			  .cra_init = mv_cra_hash_sha1_init,
960			  .cra_exit = mv_cra_hash_exit,
961			  .cra_module = THIS_MODULE,
962			  }
963		 }
964};
965
966struct ahash_alg mv_hmac_sha1_alg = {
967	.init = mv_hash_init,
968	.update = mv_hash_update,
969	.final = mv_hash_final,
970	.finup = mv_hash_finup,
971	.digest = mv_hash_digest,
972	.setkey = mv_hash_setkey,
973	.halg = {
974		 .digestsize = SHA1_DIGEST_SIZE,
975		 .base = {
976			  .cra_name = "hmac(sha1)",
977			  .cra_driver_name = "mv-hmac-sha1",
978			  .cra_priority = 300,
979			  .cra_flags =
980			  CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
981			  .cra_blocksize = SHA1_BLOCK_SIZE,
982			  .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
983			  .cra_init = mv_cra_hash_hmac_sha1_init,
984			  .cra_exit = mv_cra_hash_exit,
985			  .cra_module = THIS_MODULE,
986			  }
987		 }
988};
989
990static int mv_probe(struct platform_device *pdev)
991{
992	struct crypto_priv *cp;
993	struct resource *res;
994	int irq;
995	int ret;
996
997	if (cpg) {
998		printk(KERN_ERR MV_CESA "Second crypto dev?\n");
999		return -EEXIST;
1000	}
1001
1002	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1003	if (!res)
1004		return -ENXIO;
1005
1006	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
1007	if (!cp)
1008		return -ENOMEM;
1009
1010	spin_lock_init(&cp->lock);
1011	crypto_init_queue(&cp->queue, 50);
1012	cp->reg = ioremap(res->start, resource_size(res));
1013	if (!cp->reg) {
1014		ret = -ENOMEM;
1015		goto err;
1016	}
1017
1018	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sram");
1019	if (!res) {
1020		ret = -ENXIO;
1021		goto err_unmap_reg;
1022	}
1023	cp->sram_size = resource_size(res);
1024	cp->max_req_size = cp->sram_size - SRAM_CFG_SPACE;
1025	cp->sram = ioremap(res->start, cp->sram_size);
1026	if (!cp->sram) {
1027		ret = -ENOMEM;
1028		goto err_unmap_reg;
1029	}
1030
1031	irq = platform_get_irq(pdev, 0);
1032	if (irq < 0 || irq == NO_IRQ) {
1033		ret = irq;
1034		goto err_unmap_sram;
1035	}
1036	cp->irq = irq;
1037
1038	platform_set_drvdata(pdev, cp);
1039	cpg = cp;
1040
1041	cp->queue_th = kthread_run(queue_manag, cp, "mv_crypto");
1042	if (IS_ERR(cp->queue_th)) {
1043		ret = PTR_ERR(cp->queue_th);
1044		goto err_unmap_sram;
1045	}
1046
1047	ret = request_irq(irq, crypto_int, IRQF_DISABLED, dev_name(&pdev->dev),
1048			cp);
1049	if (ret)
1050		goto err_thread;
1051
1052	writel(SEC_INT_ACCEL0_DONE, cpg->reg + SEC_ACCEL_INT_MASK);
1053	writel(SEC_CFG_STOP_DIG_ERR, cpg->reg + SEC_ACCEL_CFG);
1054	writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
1055
1056	ret = crypto_register_alg(&mv_aes_alg_ecb);
1057	if (ret) {
1058		printk(KERN_WARNING MV_CESA
1059		       "Could not register aes-ecb driver\n");
1060		goto err_irq;
1061	}
1062
1063	ret = crypto_register_alg(&mv_aes_alg_cbc);
1064	if (ret) {
1065		printk(KERN_WARNING MV_CESA
1066		       "Could not register aes-cbc driver\n");
1067		goto err_unreg_ecb;
1068	}
1069
1070	ret = crypto_register_ahash(&mv_sha1_alg);
1071	if (ret == 0)
1072		cpg->has_sha1 = 1;
1073	else
1074		printk(KERN_WARNING MV_CESA "Could not register sha1 driver\n");
1075
1076	ret = crypto_register_ahash(&mv_hmac_sha1_alg);
1077	if (ret == 0) {
1078		cpg->has_hmac_sha1 = 1;
1079	} else {
1080		printk(KERN_WARNING MV_CESA
1081		       "Could not register hmac-sha1 driver\n");
1082	}
1083
1084	return 0;
1085err_unreg_ecb:
1086	crypto_unregister_alg(&mv_aes_alg_ecb);
1087err_irq:
1088	free_irq(irq, cp);
1089err_thread:
1090	kthread_stop(cp->queue_th);
1091err_unmap_sram:
1092	iounmap(cp->sram);
1093err_unmap_reg:
1094	iounmap(cp->reg);
1095err:
1096	kfree(cp);
1097	cpg = NULL;
1098	platform_set_drvdata(pdev, NULL);
1099	return ret;
1100}
1101
1102static int mv_remove(struct platform_device *pdev)
1103{
1104	struct crypto_priv *cp = platform_get_drvdata(pdev);
1105
1106	crypto_unregister_alg(&mv_aes_alg_ecb);
1107	crypto_unregister_alg(&mv_aes_alg_cbc);
1108	if (cp->has_sha1)
1109		crypto_unregister_ahash(&mv_sha1_alg);
1110	if (cp->has_hmac_sha1)
1111		crypto_unregister_ahash(&mv_hmac_sha1_alg);
1112	kthread_stop(cp->queue_th);
1113	free_irq(cp->irq, cp);
1114	memset(cp->sram, 0, cp->sram_size);
1115	iounmap(cp->sram);
1116	iounmap(cp->reg);
1117	kfree(cp);
1118	cpg = NULL;
1119	return 0;
1120}
1121
1122static struct platform_driver marvell_crypto = {
1123	.probe		= mv_probe,
1124	.remove		= mv_remove,
1125	.driver		= {
1126		.owner	= THIS_MODULE,
1127		.name	= "mv_crypto",
1128	},
1129};
1130MODULE_ALIAS("platform:mv_crypto");
1131
1132module_platform_driver(marvell_crypto);
1133
1134MODULE_AUTHOR("Sebastian Andrzej Siewior <sebastian@breakpoint.cc>");
1135MODULE_DESCRIPTION("Support for Marvell's cryptographic engine");
1136MODULE_LICENSE("GPL");
1137