1/*
2 * SBP2 driver (SCSI over IEEE1394)
3 *
4 * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21/*
22 * The basic structure of this driver is based on the old storage driver,
23 * drivers/ieee1394/sbp2.c, originally written by
24 *     James Goodwin <jamesg@filanet.com>
25 * with later contributions and ongoing maintenance from
26 *     Ben Collins <bcollins@debian.org>,
27 *     Stefan Richter <stefanr@s5r6.in-berlin.de>
28 * and many others.
29 */
30
31#include <linux/blkdev.h>
32#include <linux/bug.h>
33#include <linux/completion.h>
34#include <linux/delay.h>
35#include <linux/device.h>
36#include <linux/dma-mapping.h>
37#include <linux/firewire.h>
38#include <linux/firewire-constants.h>
39#include <linux/init.h>
40#include <linux/jiffies.h>
41#include <linux/kernel.h>
42#include <linux/kref.h>
43#include <linux/list.h>
44#include <linux/mod_devicetable.h>
45#include <linux/module.h>
46#include <linux/moduleparam.h>
47#include <linux/scatterlist.h>
48#include <linux/slab.h>
49#include <linux/spinlock.h>
50#include <linux/string.h>
51#include <linux/stringify.h>
52#include <linux/workqueue.h>
53
54#include <asm/byteorder.h>
55#include <asm/system.h>
56
57#include <scsi/scsi.h>
58#include <scsi/scsi_cmnd.h>
59#include <scsi/scsi_device.h>
60#include <scsi/scsi_host.h>
61
62/*
63 * So far only bridges from Oxford Semiconductor are known to support
64 * concurrent logins. Depending on firmware, four or two concurrent logins
65 * are possible on OXFW911 and newer Oxsemi bridges.
66 *
67 * Concurrent logins are useful together with cluster filesystems.
68 */
69static bool sbp2_param_exclusive_login = 1;
70module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
71MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
72		 "(default = Y, use N for concurrent initiators)");
73
74/*
75 * Flags for firmware oddities
76 *
77 * - 128kB max transfer
78 *   Limit transfer size. Necessary for some old bridges.
79 *
80 * - 36 byte inquiry
81 *   When scsi_mod probes the device, let the inquiry command look like that
82 *   from MS Windows.
83 *
84 * - skip mode page 8
85 *   Suppress sending of mode_sense for mode page 8 if the device pretends to
86 *   support the SCSI Primary Block commands instead of Reduced Block Commands.
87 *
88 * - fix capacity
89 *   Tell sd_mod to correct the last sector number reported by read_capacity.
90 *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
91 *   Don't use this with devices which don't have this bug.
92 *
93 * - delay inquiry
94 *   Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
95 *
96 * - power condition
97 *   Set the power condition field in the START STOP UNIT commands sent by
98 *   sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
99 *   Some disks need this to spin down or to resume properly.
100 *
101 * - override internal blacklist
102 *   Instead of adding to the built-in blacklist, use only the workarounds
103 *   specified in the module load parameter.
104 *   Useful if a blacklist entry interfered with a non-broken device.
105 */
106#define SBP2_WORKAROUND_128K_MAX_TRANS	0x1
107#define SBP2_WORKAROUND_INQUIRY_36	0x2
108#define SBP2_WORKAROUND_MODE_SENSE_8	0x4
109#define SBP2_WORKAROUND_FIX_CAPACITY	0x8
110#define SBP2_WORKAROUND_DELAY_INQUIRY	0x10
111#define SBP2_INQUIRY_DELAY		12
112#define SBP2_WORKAROUND_POWER_CONDITION	0x20
113#define SBP2_WORKAROUND_OVERRIDE	0x100
114
115static int sbp2_param_workarounds;
116module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
117MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
118	", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
119	", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
120	", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
121	", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
122	", delay inquiry = "      __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
123	", set power condition in start stop unit = "
124				  __stringify(SBP2_WORKAROUND_POWER_CONDITION)
125	", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
126	", or a combination)");
127
128static const char sbp2_driver_name[] = "sbp2";
129
130/*
131 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
132 * and one struct scsi_device per sbp2_logical_unit.
133 */
134struct sbp2_logical_unit {
135	struct sbp2_target *tgt;
136	struct list_head link;
137	struct fw_address_handler address_handler;
138	struct list_head orb_list;
139
140	u64 command_block_agent_address;
141	u16 lun;
142	int login_id;
143
144	/*
145	 * The generation is updated once we've logged in or reconnected
146	 * to the logical unit.  Thus, I/O to the device will automatically
147	 * fail and get retried if it happens in a window where the device
148	 * is not ready, e.g. after a bus reset but before we reconnect.
149	 */
150	int generation;
151	int retries;
152	struct delayed_work work;
153	bool has_sdev;
154	bool blocked;
155};
156
157static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
158{
159	queue_delayed_work(fw_workqueue, &lu->work, delay);
160}
161
162/*
163 * We create one struct sbp2_target per IEEE 1212 Unit Directory
164 * and one struct Scsi_Host per sbp2_target.
165 */
166struct sbp2_target {
167	struct fw_unit *unit;
168	const char *bus_id;
169	struct list_head lu_list;
170
171	u64 management_agent_address;
172	u64 guid;
173	int directory_id;
174	int node_id;
175	int address_high;
176	unsigned int workarounds;
177	unsigned int mgt_orb_timeout;
178	unsigned int max_payload;
179
180	int dont_block;	/* counter for each logical unit */
181	int blocked;	/* ditto */
182};
183
184static struct fw_device *target_device(struct sbp2_target *tgt)
185{
186	return fw_parent_device(tgt->unit);
187}
188
189/* Impossible login_id, to detect logout attempt before successful login */
190#define INVALID_LOGIN_ID 0x10000
191
192#define SBP2_ORB_TIMEOUT		2000U		/* Timeout in ms */
193#define SBP2_ORB_NULL			0x80000000
194#define SBP2_RETRY_LIMIT		0xf		/* 15 retries */
195#define SBP2_CYCLE_LIMIT		(0xc8 << 12)	/* 200 125us cycles */
196
197/*
198 * There is no transport protocol limit to the CDB length,  but we implement
199 * a fixed length only.  16 bytes is enough for disks larger than 2 TB.
200 */
201#define SBP2_MAX_CDB_SIZE		16
202
203/*
204 * The default maximum s/g segment size of a FireWire controller is
205 * usually 0x10000, but SBP-2 only allows 0xffff. Since buffers have to
206 * be quadlet-aligned, we set the length limit to 0xffff & ~3.
207 */
208#define SBP2_MAX_SEG_SIZE		0xfffc
209
210/* Unit directory keys */
211#define SBP2_CSR_UNIT_CHARACTERISTICS	0x3a
212#define SBP2_CSR_FIRMWARE_REVISION	0x3c
213#define SBP2_CSR_LOGICAL_UNIT_NUMBER	0x14
214#define SBP2_CSR_LOGICAL_UNIT_DIRECTORY	0xd4
215
216/* Management orb opcodes */
217#define SBP2_LOGIN_REQUEST		0x0
218#define SBP2_QUERY_LOGINS_REQUEST	0x1
219#define SBP2_RECONNECT_REQUEST		0x3
220#define SBP2_SET_PASSWORD_REQUEST	0x4
221#define SBP2_LOGOUT_REQUEST		0x7
222#define SBP2_ABORT_TASK_REQUEST		0xb
223#define SBP2_ABORT_TASK_SET		0xc
224#define SBP2_LOGICAL_UNIT_RESET		0xe
225#define SBP2_TARGET_RESET_REQUEST	0xf
226
227/* Offsets for command block agent registers */
228#define SBP2_AGENT_STATE		0x00
229#define SBP2_AGENT_RESET		0x04
230#define SBP2_ORB_POINTER		0x08
231#define SBP2_DOORBELL			0x10
232#define SBP2_UNSOLICITED_STATUS_ENABLE	0x14
233
234/* Status write response codes */
235#define SBP2_STATUS_REQUEST_COMPLETE	0x0
236#define SBP2_STATUS_TRANSPORT_FAILURE	0x1
237#define SBP2_STATUS_ILLEGAL_REQUEST	0x2
238#define SBP2_STATUS_VENDOR_DEPENDENT	0x3
239
240#define STATUS_GET_ORB_HIGH(v)		((v).status & 0xffff)
241#define STATUS_GET_SBP_STATUS(v)	(((v).status >> 16) & 0xff)
242#define STATUS_GET_LEN(v)		(((v).status >> 24) & 0x07)
243#define STATUS_GET_DEAD(v)		(((v).status >> 27) & 0x01)
244#define STATUS_GET_RESPONSE(v)		(((v).status >> 28) & 0x03)
245#define STATUS_GET_SOURCE(v)		(((v).status >> 30) & 0x03)
246#define STATUS_GET_ORB_LOW(v)		((v).orb_low)
247#define STATUS_GET_DATA(v)		((v).data)
248
249struct sbp2_status {
250	u32 status;
251	u32 orb_low;
252	u8 data[24];
253};
254
255struct sbp2_pointer {
256	__be32 high;
257	__be32 low;
258};
259
260struct sbp2_orb {
261	struct fw_transaction t;
262	struct kref kref;
263	dma_addr_t request_bus;
264	int rcode;
265	void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
266	struct list_head link;
267};
268
269#define MANAGEMENT_ORB_LUN(v)			((v))
270#define MANAGEMENT_ORB_FUNCTION(v)		((v) << 16)
271#define MANAGEMENT_ORB_RECONNECT(v)		((v) << 20)
272#define MANAGEMENT_ORB_EXCLUSIVE(v)		((v) ? 1 << 28 : 0)
273#define MANAGEMENT_ORB_REQUEST_FORMAT(v)	((v) << 29)
274#define MANAGEMENT_ORB_NOTIFY			((1) << 31)
275
276#define MANAGEMENT_ORB_RESPONSE_LENGTH(v)	((v))
277#define MANAGEMENT_ORB_PASSWORD_LENGTH(v)	((v) << 16)
278
279struct sbp2_management_orb {
280	struct sbp2_orb base;
281	struct {
282		struct sbp2_pointer password;
283		struct sbp2_pointer response;
284		__be32 misc;
285		__be32 length;
286		struct sbp2_pointer status_fifo;
287	} request;
288	__be32 response[4];
289	dma_addr_t response_bus;
290	struct completion done;
291	struct sbp2_status status;
292};
293
294struct sbp2_login_response {
295	__be32 misc;
296	struct sbp2_pointer command_block_agent;
297	__be32 reconnect_hold;
298};
299#define COMMAND_ORB_DATA_SIZE(v)	((v))
300#define COMMAND_ORB_PAGE_SIZE(v)	((v) << 16)
301#define COMMAND_ORB_PAGE_TABLE_PRESENT	((1) << 19)
302#define COMMAND_ORB_MAX_PAYLOAD(v)	((v) << 20)
303#define COMMAND_ORB_SPEED(v)		((v) << 24)
304#define COMMAND_ORB_DIRECTION		((1) << 27)
305#define COMMAND_ORB_REQUEST_FORMAT(v)	((v) << 29)
306#define COMMAND_ORB_NOTIFY		((1) << 31)
307
308struct sbp2_command_orb {
309	struct sbp2_orb base;
310	struct {
311		struct sbp2_pointer next;
312		struct sbp2_pointer data_descriptor;
313		__be32 misc;
314		u8 command_block[SBP2_MAX_CDB_SIZE];
315	} request;
316	struct scsi_cmnd *cmd;
317	struct sbp2_logical_unit *lu;
318
319	struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
320	dma_addr_t page_table_bus;
321};
322
323#define SBP2_ROM_VALUE_WILDCARD ~0         /* match all */
324#define SBP2_ROM_VALUE_MISSING  0xff000000 /* not present in the unit dir. */
325
326/*
327 * List of devices with known bugs.
328 *
329 * The firmware_revision field, masked with 0xffff00, is the best
330 * indicator for the type of bridge chip of a device.  It yields a few
331 * false positives but this did not break correctly behaving devices
332 * so far.
333 */
334static const struct {
335	u32 firmware_revision;
336	u32 model;
337	unsigned int workarounds;
338} sbp2_workarounds_table[] = {
339	/* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
340		.firmware_revision	= 0x002800,
341		.model			= 0x001010,
342		.workarounds		= SBP2_WORKAROUND_INQUIRY_36 |
343					  SBP2_WORKAROUND_MODE_SENSE_8 |
344					  SBP2_WORKAROUND_POWER_CONDITION,
345	},
346	/* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
347		.firmware_revision	= 0x002800,
348		.model			= 0x000000,
349		.workarounds		= SBP2_WORKAROUND_POWER_CONDITION,
350	},
351	/* Initio bridges, actually only needed for some older ones */ {
352		.firmware_revision	= 0x000200,
353		.model			= SBP2_ROM_VALUE_WILDCARD,
354		.workarounds		= SBP2_WORKAROUND_INQUIRY_36,
355	},
356	/* PL-3507 bridge with Prolific firmware */ {
357		.firmware_revision	= 0x012800,
358		.model			= SBP2_ROM_VALUE_WILDCARD,
359		.workarounds		= SBP2_WORKAROUND_POWER_CONDITION,
360	},
361	/* Symbios bridge */ {
362		.firmware_revision	= 0xa0b800,
363		.model			= SBP2_ROM_VALUE_WILDCARD,
364		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
365	},
366	/* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
367		.firmware_revision	= 0x002600,
368		.model			= SBP2_ROM_VALUE_WILDCARD,
369		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
370	},
371	/*
372	 * iPod 2nd generation: needs 128k max transfer size workaround
373	 * iPod 3rd generation: needs fix capacity workaround
374	 */
375	{
376		.firmware_revision	= 0x0a2700,
377		.model			= 0x000000,
378		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS |
379					  SBP2_WORKAROUND_FIX_CAPACITY,
380	},
381	/* iPod 4th generation */ {
382		.firmware_revision	= 0x0a2700,
383		.model			= 0x000021,
384		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
385	},
386	/* iPod mini */ {
387		.firmware_revision	= 0x0a2700,
388		.model			= 0x000022,
389		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
390	},
391	/* iPod mini */ {
392		.firmware_revision	= 0x0a2700,
393		.model			= 0x000023,
394		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
395	},
396	/* iPod Photo */ {
397		.firmware_revision	= 0x0a2700,
398		.model			= 0x00007e,
399		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
400	}
401};
402
403static void free_orb(struct kref *kref)
404{
405	struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
406
407	kfree(orb);
408}
409
410static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
411			      int tcode, int destination, int source,
412			      int generation, unsigned long long offset,
413			      void *payload, size_t length, void *callback_data)
414{
415	struct sbp2_logical_unit *lu = callback_data;
416	struct sbp2_orb *orb;
417	struct sbp2_status status;
418	unsigned long flags;
419
420	if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
421	    length < 8 || length > sizeof(status)) {
422		fw_send_response(card, request, RCODE_TYPE_ERROR);
423		return;
424	}
425
426	status.status  = be32_to_cpup(payload);
427	status.orb_low = be32_to_cpup(payload + 4);
428	memset(status.data, 0, sizeof(status.data));
429	if (length > 8)
430		memcpy(status.data, payload + 8, length - 8);
431
432	if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
433		fw_notify("non-orb related status write, not handled\n");
434		fw_send_response(card, request, RCODE_COMPLETE);
435		return;
436	}
437
438	/* Lookup the orb corresponding to this status write. */
439	spin_lock_irqsave(&card->lock, flags);
440	list_for_each_entry(orb, &lu->orb_list, link) {
441		if (STATUS_GET_ORB_HIGH(status) == 0 &&
442		    STATUS_GET_ORB_LOW(status) == orb->request_bus) {
443			orb->rcode = RCODE_COMPLETE;
444			list_del(&orb->link);
445			break;
446		}
447	}
448	spin_unlock_irqrestore(&card->lock, flags);
449
450	if (&orb->link != &lu->orb_list) {
451		orb->callback(orb, &status);
452		kref_put(&orb->kref, free_orb); /* orb callback reference */
453	} else {
454		fw_error("status write for unknown orb\n");
455	}
456
457	fw_send_response(card, request, RCODE_COMPLETE);
458}
459
460static void complete_transaction(struct fw_card *card, int rcode,
461				 void *payload, size_t length, void *data)
462{
463	struct sbp2_orb *orb = data;
464	unsigned long flags;
465
466	/*
467	 * This is a little tricky.  We can get the status write for
468	 * the orb before we get this callback.  The status write
469	 * handler above will assume the orb pointer transaction was
470	 * successful and set the rcode to RCODE_COMPLETE for the orb.
471	 * So this callback only sets the rcode if it hasn't already
472	 * been set and only does the cleanup if the transaction
473	 * failed and we didn't already get a status write.
474	 */
475	spin_lock_irqsave(&card->lock, flags);
476
477	if (orb->rcode == -1)
478		orb->rcode = rcode;
479	if (orb->rcode != RCODE_COMPLETE) {
480		list_del(&orb->link);
481		spin_unlock_irqrestore(&card->lock, flags);
482
483		orb->callback(orb, NULL);
484		kref_put(&orb->kref, free_orb); /* orb callback reference */
485	} else {
486		spin_unlock_irqrestore(&card->lock, flags);
487	}
488
489	kref_put(&orb->kref, free_orb); /* transaction callback reference */
490}
491
492static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
493			  int node_id, int generation, u64 offset)
494{
495	struct fw_device *device = target_device(lu->tgt);
496	struct sbp2_pointer orb_pointer;
497	unsigned long flags;
498
499	orb_pointer.high = 0;
500	orb_pointer.low = cpu_to_be32(orb->request_bus);
501
502	spin_lock_irqsave(&device->card->lock, flags);
503	list_add_tail(&orb->link, &lu->orb_list);
504	spin_unlock_irqrestore(&device->card->lock, flags);
505
506	kref_get(&orb->kref); /* transaction callback reference */
507	kref_get(&orb->kref); /* orb callback reference */
508
509	fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
510			node_id, generation, device->max_speed, offset,
511			&orb_pointer, 8, complete_transaction, orb);
512}
513
514static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
515{
516	struct fw_device *device = target_device(lu->tgt);
517	struct sbp2_orb *orb, *next;
518	struct list_head list;
519	unsigned long flags;
520	int retval = -ENOENT;
521
522	INIT_LIST_HEAD(&list);
523	spin_lock_irqsave(&device->card->lock, flags);
524	list_splice_init(&lu->orb_list, &list);
525	spin_unlock_irqrestore(&device->card->lock, flags);
526
527	list_for_each_entry_safe(orb, next, &list, link) {
528		retval = 0;
529		if (fw_cancel_transaction(device->card, &orb->t) == 0)
530			continue;
531
532		orb->rcode = RCODE_CANCELLED;
533		orb->callback(orb, NULL);
534		kref_put(&orb->kref, free_orb); /* orb callback reference */
535	}
536
537	return retval;
538}
539
540static void complete_management_orb(struct sbp2_orb *base_orb,
541				    struct sbp2_status *status)
542{
543	struct sbp2_management_orb *orb =
544		container_of(base_orb, struct sbp2_management_orb, base);
545
546	if (status)
547		memcpy(&orb->status, status, sizeof(*status));
548	complete(&orb->done);
549}
550
551static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
552				    int generation, int function,
553				    int lun_or_login_id, void *response)
554{
555	struct fw_device *device = target_device(lu->tgt);
556	struct sbp2_management_orb *orb;
557	unsigned int timeout;
558	int retval = -ENOMEM;
559
560	if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
561		return 0;
562
563	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
564	if (orb == NULL)
565		return -ENOMEM;
566
567	kref_init(&orb->base.kref);
568	orb->response_bus =
569		dma_map_single(device->card->device, &orb->response,
570			       sizeof(orb->response), DMA_FROM_DEVICE);
571	if (dma_mapping_error(device->card->device, orb->response_bus))
572		goto fail_mapping_response;
573
574	orb->request.response.high = 0;
575	orb->request.response.low  = cpu_to_be32(orb->response_bus);
576
577	orb->request.misc = cpu_to_be32(
578		MANAGEMENT_ORB_NOTIFY |
579		MANAGEMENT_ORB_FUNCTION(function) |
580		MANAGEMENT_ORB_LUN(lun_or_login_id));
581	orb->request.length = cpu_to_be32(
582		MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
583
584	orb->request.status_fifo.high =
585		cpu_to_be32(lu->address_handler.offset >> 32);
586	orb->request.status_fifo.low  =
587		cpu_to_be32(lu->address_handler.offset);
588
589	if (function == SBP2_LOGIN_REQUEST) {
590		/* Ask for 2^2 == 4 seconds reconnect grace period */
591		orb->request.misc |= cpu_to_be32(
592			MANAGEMENT_ORB_RECONNECT(2) |
593			MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
594		timeout = lu->tgt->mgt_orb_timeout;
595	} else {
596		timeout = SBP2_ORB_TIMEOUT;
597	}
598
599	init_completion(&orb->done);
600	orb->base.callback = complete_management_orb;
601
602	orb->base.request_bus =
603		dma_map_single(device->card->device, &orb->request,
604			       sizeof(orb->request), DMA_TO_DEVICE);
605	if (dma_mapping_error(device->card->device, orb->base.request_bus))
606		goto fail_mapping_request;
607
608	sbp2_send_orb(&orb->base, lu, node_id, generation,
609		      lu->tgt->management_agent_address);
610
611	wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
612
613	retval = -EIO;
614	if (sbp2_cancel_orbs(lu) == 0) {
615		fw_error("%s: orb reply timed out, rcode=0x%02x\n",
616			 lu->tgt->bus_id, orb->base.rcode);
617		goto out;
618	}
619
620	if (orb->base.rcode != RCODE_COMPLETE) {
621		fw_error("%s: management write failed, rcode 0x%02x\n",
622			 lu->tgt->bus_id, orb->base.rcode);
623		goto out;
624	}
625
626	if (STATUS_GET_RESPONSE(orb->status) != 0 ||
627	    STATUS_GET_SBP_STATUS(orb->status) != 0) {
628		fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id,
629			 STATUS_GET_RESPONSE(orb->status),
630			 STATUS_GET_SBP_STATUS(orb->status));
631		goto out;
632	}
633
634	retval = 0;
635 out:
636	dma_unmap_single(device->card->device, orb->base.request_bus,
637			 sizeof(orb->request), DMA_TO_DEVICE);
638 fail_mapping_request:
639	dma_unmap_single(device->card->device, orb->response_bus,
640			 sizeof(orb->response), DMA_FROM_DEVICE);
641 fail_mapping_response:
642	if (response)
643		memcpy(response, orb->response, sizeof(orb->response));
644	kref_put(&orb->base.kref, free_orb);
645
646	return retval;
647}
648
649static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
650{
651	struct fw_device *device = target_device(lu->tgt);
652	__be32 d = 0;
653
654	fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
655			   lu->tgt->node_id, lu->generation, device->max_speed,
656			   lu->command_block_agent_address + SBP2_AGENT_RESET,
657			   &d, 4);
658}
659
660static void complete_agent_reset_write_no_wait(struct fw_card *card,
661		int rcode, void *payload, size_t length, void *data)
662{
663	kfree(data);
664}
665
666static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
667{
668	struct fw_device *device = target_device(lu->tgt);
669	struct fw_transaction *t;
670	static __be32 d;
671
672	t = kmalloc(sizeof(*t), GFP_ATOMIC);
673	if (t == NULL)
674		return;
675
676	fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
677			lu->tgt->node_id, lu->generation, device->max_speed,
678			lu->command_block_agent_address + SBP2_AGENT_RESET,
679			&d, 4, complete_agent_reset_write_no_wait, t);
680}
681
682static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
683{
684	/*
685	 * We may access dont_block without taking card->lock here:
686	 * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
687	 * are currently serialized against each other.
688	 * And a wrong result in sbp2_conditionally_block()'s access of
689	 * dont_block is rather harmless, it simply misses its first chance.
690	 */
691	--lu->tgt->dont_block;
692}
693
694/*
695 * Blocks lu->tgt if all of the following conditions are met:
696 *   - Login, INQUIRY, and high-level SCSI setup of all of the target's
697 *     logical units have been finished (indicated by dont_block == 0).
698 *   - lu->generation is stale.
699 *
700 * Note, scsi_block_requests() must be called while holding card->lock,
701 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
702 * unblock the target.
703 */
704static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
705{
706	struct sbp2_target *tgt = lu->tgt;
707	struct fw_card *card = target_device(tgt)->card;
708	struct Scsi_Host *shost =
709		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
710	unsigned long flags;
711
712	spin_lock_irqsave(&card->lock, flags);
713	if (!tgt->dont_block && !lu->blocked &&
714	    lu->generation != card->generation) {
715		lu->blocked = true;
716		if (++tgt->blocked == 1)
717			scsi_block_requests(shost);
718	}
719	spin_unlock_irqrestore(&card->lock, flags);
720}
721
722/*
723 * Unblocks lu->tgt as soon as all its logical units can be unblocked.
724 * Note, it is harmless to run scsi_unblock_requests() outside the
725 * card->lock protected section.  On the other hand, running it inside
726 * the section might clash with shost->host_lock.
727 */
728static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
729{
730	struct sbp2_target *tgt = lu->tgt;
731	struct fw_card *card = target_device(tgt)->card;
732	struct Scsi_Host *shost =
733		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
734	unsigned long flags;
735	bool unblock = false;
736
737	spin_lock_irqsave(&card->lock, flags);
738	if (lu->blocked && lu->generation == card->generation) {
739		lu->blocked = false;
740		unblock = --tgt->blocked == 0;
741	}
742	spin_unlock_irqrestore(&card->lock, flags);
743
744	if (unblock)
745		scsi_unblock_requests(shost);
746}
747
748/*
749 * Prevents future blocking of tgt and unblocks it.
750 * Note, it is harmless to run scsi_unblock_requests() outside the
751 * card->lock protected section.  On the other hand, running it inside
752 * the section might clash with shost->host_lock.
753 */
754static void sbp2_unblock(struct sbp2_target *tgt)
755{
756	struct fw_card *card = target_device(tgt)->card;
757	struct Scsi_Host *shost =
758		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
759	unsigned long flags;
760
761	spin_lock_irqsave(&card->lock, flags);
762	++tgt->dont_block;
763	spin_unlock_irqrestore(&card->lock, flags);
764
765	scsi_unblock_requests(shost);
766}
767
768static int sbp2_lun2int(u16 lun)
769{
770	struct scsi_lun eight_bytes_lun;
771
772	memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
773	eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
774	eight_bytes_lun.scsi_lun[1] = lun & 0xff;
775
776	return scsilun_to_int(&eight_bytes_lun);
777}
778
779/*
780 * Write retransmit retry values into the BUSY_TIMEOUT register.
781 * - The single-phase retry protocol is supported by all SBP-2 devices, but the
782 *   default retry_limit value is 0 (i.e. never retry transmission). We write a
783 *   saner value after logging into the device.
784 * - The dual-phase retry protocol is optional to implement, and if not
785 *   supported, writes to the dual-phase portion of the register will be
786 *   ignored. We try to write the original 1394-1995 default here.
787 * - In the case of devices that are also SBP-3-compliant, all writes are
788 *   ignored, as the register is read-only, but contains single-phase retry of
789 *   15, which is what we're trying to set for all SBP-2 device anyway, so this
790 *   write attempt is safe and yields more consistent behavior for all devices.
791 *
792 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
793 * and section 6.4 of the SBP-3 spec for further details.
794 */
795static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
796{
797	struct fw_device *device = target_device(lu->tgt);
798	__be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
799
800	fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
801			   lu->tgt->node_id, lu->generation, device->max_speed,
802			   CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4);
803}
804
805static void sbp2_reconnect(struct work_struct *work);
806
807static void sbp2_login(struct work_struct *work)
808{
809	struct sbp2_logical_unit *lu =
810		container_of(work, struct sbp2_logical_unit, work.work);
811	struct sbp2_target *tgt = lu->tgt;
812	struct fw_device *device = target_device(tgt);
813	struct Scsi_Host *shost;
814	struct scsi_device *sdev;
815	struct sbp2_login_response response;
816	int generation, node_id, local_node_id;
817
818	if (fw_device_is_shutdown(device))
819		return;
820
821	generation    = device->generation;
822	smp_rmb();    /* node IDs must not be older than generation */
823	node_id       = device->node_id;
824	local_node_id = device->card->node_id;
825
826	/* If this is a re-login attempt, log out, or we might be rejected. */
827	if (lu->has_sdev)
828		sbp2_send_management_orb(lu, device->node_id, generation,
829				SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
830
831	if (sbp2_send_management_orb(lu, node_id, generation,
832				SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
833		if (lu->retries++ < 5) {
834			sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
835		} else {
836			fw_error("%s: failed to login to LUN %04x\n",
837				 tgt->bus_id, lu->lun);
838			/* Let any waiting I/O fail from now on. */
839			sbp2_unblock(lu->tgt);
840		}
841		return;
842	}
843
844	tgt->node_id	  = node_id;
845	tgt->address_high = local_node_id << 16;
846	smp_wmb();	  /* node IDs must not be older than generation */
847	lu->generation	  = generation;
848
849	lu->command_block_agent_address =
850		((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
851		      << 32) | be32_to_cpu(response.command_block_agent.low);
852	lu->login_id = be32_to_cpu(response.misc) & 0xffff;
853
854	fw_notify("%s: logged in to LUN %04x (%d retries)\n",
855		  tgt->bus_id, lu->lun, lu->retries);
856
857	/* set appropriate retry limit(s) in BUSY_TIMEOUT register */
858	sbp2_set_busy_timeout(lu);
859
860	PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
861	sbp2_agent_reset(lu);
862
863	/* This was a re-login. */
864	if (lu->has_sdev) {
865		sbp2_cancel_orbs(lu);
866		sbp2_conditionally_unblock(lu);
867
868		return;
869	}
870
871	if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
872		ssleep(SBP2_INQUIRY_DELAY);
873
874	shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
875	sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
876	/*
877	 * FIXME:  We are unable to perform reconnects while in sbp2_login().
878	 * Therefore __scsi_add_device() will get into trouble if a bus reset
879	 * happens in parallel.  It will either fail or leave us with an
880	 * unusable sdev.  As a workaround we check for this and retry the
881	 * whole login and SCSI probing.
882	 */
883
884	/* Reported error during __scsi_add_device() */
885	if (IS_ERR(sdev))
886		goto out_logout_login;
887
888	/* Unreported error during __scsi_add_device() */
889	smp_rmb(); /* get current card generation */
890	if (generation != device->card->generation) {
891		scsi_remove_device(sdev);
892		scsi_device_put(sdev);
893		goto out_logout_login;
894	}
895
896	/* No error during __scsi_add_device() */
897	lu->has_sdev = true;
898	scsi_device_put(sdev);
899	sbp2_allow_block(lu);
900
901	return;
902
903 out_logout_login:
904	smp_rmb(); /* generation may have changed */
905	generation = device->generation;
906	smp_rmb(); /* node_id must not be older than generation */
907
908	sbp2_send_management_orb(lu, device->node_id, generation,
909				 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
910	/*
911	 * If a bus reset happened, sbp2_update will have requeued
912	 * lu->work already.  Reset the work from reconnect to login.
913	 */
914	PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
915}
916
917static void sbp2_reconnect(struct work_struct *work)
918{
919	struct sbp2_logical_unit *lu =
920		container_of(work, struct sbp2_logical_unit, work.work);
921	struct sbp2_target *tgt = lu->tgt;
922	struct fw_device *device = target_device(tgt);
923	int generation, node_id, local_node_id;
924
925	if (fw_device_is_shutdown(device))
926		return;
927
928	generation    = device->generation;
929	smp_rmb();    /* node IDs must not be older than generation */
930	node_id       = device->node_id;
931	local_node_id = device->card->node_id;
932
933	if (sbp2_send_management_orb(lu, node_id, generation,
934				     SBP2_RECONNECT_REQUEST,
935				     lu->login_id, NULL) < 0) {
936		/*
937		 * If reconnect was impossible even though we are in the
938		 * current generation, fall back and try to log in again.
939		 *
940		 * We could check for "Function rejected" status, but
941		 * looking at the bus generation as simpler and more general.
942		 */
943		smp_rmb(); /* get current card generation */
944		if (generation == device->card->generation ||
945		    lu->retries++ >= 5) {
946			fw_error("%s: failed to reconnect\n", tgt->bus_id);
947			lu->retries = 0;
948			PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
949		}
950		sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
951
952		return;
953	}
954
955	tgt->node_id      = node_id;
956	tgt->address_high = local_node_id << 16;
957	smp_wmb();	  /* node IDs must not be older than generation */
958	lu->generation	  = generation;
959
960	fw_notify("%s: reconnected to LUN %04x (%d retries)\n",
961		  tgt->bus_id, lu->lun, lu->retries);
962
963	sbp2_agent_reset(lu);
964	sbp2_cancel_orbs(lu);
965	sbp2_conditionally_unblock(lu);
966}
967
968static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
969{
970	struct sbp2_logical_unit *lu;
971
972	lu = kmalloc(sizeof(*lu), GFP_KERNEL);
973	if (!lu)
974		return -ENOMEM;
975
976	lu->address_handler.length           = 0x100;
977	lu->address_handler.address_callback = sbp2_status_write;
978	lu->address_handler.callback_data    = lu;
979
980	if (fw_core_add_address_handler(&lu->address_handler,
981					&fw_high_memory_region) < 0) {
982		kfree(lu);
983		return -ENOMEM;
984	}
985
986	lu->tgt      = tgt;
987	lu->lun      = lun_entry & 0xffff;
988	lu->login_id = INVALID_LOGIN_ID;
989	lu->retries  = 0;
990	lu->has_sdev = false;
991	lu->blocked  = false;
992	++tgt->dont_block;
993	INIT_LIST_HEAD(&lu->orb_list);
994	INIT_DELAYED_WORK(&lu->work, sbp2_login);
995
996	list_add_tail(&lu->link, &tgt->lu_list);
997	return 0;
998}
999
1000static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt,
1001				      const u32 *directory)
1002{
1003	struct fw_csr_iterator ci;
1004	int key, value;
1005
1006	fw_csr_iterator_init(&ci, directory);
1007	while (fw_csr_iterator_next(&ci, &key, &value))
1008		if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1009		    sbp2_add_logical_unit(tgt, value) < 0)
1010			return -ENOMEM;
1011	return 0;
1012}
1013
1014static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory,
1015			      u32 *model, u32 *firmware_revision)
1016{
1017	struct fw_csr_iterator ci;
1018	int key, value;
1019
1020	fw_csr_iterator_init(&ci, directory);
1021	while (fw_csr_iterator_next(&ci, &key, &value)) {
1022		switch (key) {
1023
1024		case CSR_DEPENDENT_INFO | CSR_OFFSET:
1025			tgt->management_agent_address =
1026					CSR_REGISTER_BASE + 4 * value;
1027			break;
1028
1029		case CSR_DIRECTORY_ID:
1030			tgt->directory_id = value;
1031			break;
1032
1033		case CSR_MODEL:
1034			*model = value;
1035			break;
1036
1037		case SBP2_CSR_FIRMWARE_REVISION:
1038			*firmware_revision = value;
1039			break;
1040
1041		case SBP2_CSR_UNIT_CHARACTERISTICS:
1042			/* the timeout value is stored in 500ms units */
1043			tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500;
1044			break;
1045
1046		case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1047			if (sbp2_add_logical_unit(tgt, value) < 0)
1048				return -ENOMEM;
1049			break;
1050
1051		case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1052			/* Adjust for the increment in the iterator */
1053			if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1054				return -ENOMEM;
1055			break;
1056		}
1057	}
1058	return 0;
1059}
1060
1061/*
1062 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
1063 * provided in the config rom. Most devices do provide a value, which
1064 * we'll use for login management orbs, but with some sane limits.
1065 */
1066static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt)
1067{
1068	unsigned int timeout = tgt->mgt_orb_timeout;
1069
1070	if (timeout > 40000)
1071		fw_notify("%s: %ds mgt_ORB_timeout limited to 40s\n",
1072			  tgt->bus_id, timeout / 1000);
1073
1074	tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000);
1075}
1076
1077static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1078				  u32 firmware_revision)
1079{
1080	int i;
1081	unsigned int w = sbp2_param_workarounds;
1082
1083	if (w)
1084		fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
1085			  "if you need the workarounds parameter for %s\n",
1086			  tgt->bus_id);
1087
1088	if (w & SBP2_WORKAROUND_OVERRIDE)
1089		goto out;
1090
1091	for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1092
1093		if (sbp2_workarounds_table[i].firmware_revision !=
1094		    (firmware_revision & 0xffffff00))
1095			continue;
1096
1097		if (sbp2_workarounds_table[i].model != model &&
1098		    sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1099			continue;
1100
1101		w |= sbp2_workarounds_table[i].workarounds;
1102		break;
1103	}
1104 out:
1105	if (w)
1106		fw_notify("Workarounds for %s: 0x%x "
1107			  "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1108			  tgt->bus_id, w, firmware_revision, model);
1109	tgt->workarounds = w;
1110}
1111
1112static struct scsi_host_template scsi_driver_template;
1113static int sbp2_remove(struct device *dev);
1114
1115static int sbp2_probe(struct device *dev)
1116{
1117	struct fw_unit *unit = fw_unit(dev);
1118	struct fw_device *device = fw_parent_device(unit);
1119	struct sbp2_target *tgt;
1120	struct sbp2_logical_unit *lu;
1121	struct Scsi_Host *shost;
1122	u32 model, firmware_revision;
1123
1124	if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE)
1125		BUG_ON(dma_set_max_seg_size(device->card->device,
1126					    SBP2_MAX_SEG_SIZE));
1127
1128	shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1129	if (shost == NULL)
1130		return -ENOMEM;
1131
1132	tgt = (struct sbp2_target *)shost->hostdata;
1133	dev_set_drvdata(&unit->device, tgt);
1134	tgt->unit = unit;
1135	INIT_LIST_HEAD(&tgt->lu_list);
1136	tgt->bus_id = dev_name(&unit->device);
1137	tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1138
1139	if (fw_device_enable_phys_dma(device) < 0)
1140		goto fail_shost_put;
1141
1142	shost->max_cmd_len = SBP2_MAX_CDB_SIZE;
1143
1144	if (scsi_add_host(shost, &unit->device) < 0)
1145		goto fail_shost_put;
1146
1147	/* implicit directory ID */
1148	tgt->directory_id = ((unit->directory - device->config_rom) * 4
1149			     + CSR_CONFIG_ROM) & 0xffffff;
1150
1151	firmware_revision = SBP2_ROM_VALUE_MISSING;
1152	model		  = SBP2_ROM_VALUE_MISSING;
1153
1154	if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1155			       &firmware_revision) < 0)
1156		goto fail_remove;
1157
1158	sbp2_clamp_management_orb_timeout(tgt);
1159	sbp2_init_workarounds(tgt, model, firmware_revision);
1160
1161	/*
1162	 * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
1163	 * and so on up to 4096 bytes.  The SBP-2 max_payload field
1164	 * specifies the max payload size as 2 ^ (max_payload + 2), so
1165	 * if we set this to max_speed + 7, we get the right value.
1166	 */
1167	tgt->max_payload = min3(device->max_speed + 7, 10U,
1168				device->card->max_receive - 1);
1169
1170	/* Do the login in a workqueue so we can easily reschedule retries. */
1171	list_for_each_entry(lu, &tgt->lu_list, link)
1172		sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1173
1174	return 0;
1175
1176 fail_remove:
1177	sbp2_remove(dev);
1178	return -ENOMEM;
1179
1180 fail_shost_put:
1181	scsi_host_put(shost);
1182	return -ENOMEM;
1183}
1184
1185static void sbp2_update(struct fw_unit *unit)
1186{
1187	struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1188	struct sbp2_logical_unit *lu;
1189
1190	fw_device_enable_phys_dma(fw_parent_device(unit));
1191
1192	/*
1193	 * Fw-core serializes sbp2_update() against sbp2_remove().
1194	 * Iteration over tgt->lu_list is therefore safe here.
1195	 */
1196	list_for_each_entry(lu, &tgt->lu_list, link) {
1197		sbp2_conditionally_block(lu);
1198		lu->retries = 0;
1199		sbp2_queue_work(lu, 0);
1200	}
1201}
1202
1203static int sbp2_remove(struct device *dev)
1204{
1205	struct fw_unit *unit = fw_unit(dev);
1206	struct fw_device *device = fw_parent_device(unit);
1207	struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1208	struct sbp2_logical_unit *lu, *next;
1209	struct Scsi_Host *shost =
1210		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
1211	struct scsi_device *sdev;
1212
1213	/* prevent deadlocks */
1214	sbp2_unblock(tgt);
1215
1216	list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
1217		cancel_delayed_work_sync(&lu->work);
1218		sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
1219		if (sdev) {
1220			scsi_remove_device(sdev);
1221			scsi_device_put(sdev);
1222		}
1223		if (lu->login_id != INVALID_LOGIN_ID) {
1224			int generation, node_id;
1225			/*
1226			 * tgt->node_id may be obsolete here if we failed
1227			 * during initial login or after a bus reset where
1228			 * the topology changed.
1229			 */
1230			generation = device->generation;
1231			smp_rmb(); /* node_id vs. generation */
1232			node_id    = device->node_id;
1233			sbp2_send_management_orb(lu, node_id, generation,
1234						 SBP2_LOGOUT_REQUEST,
1235						 lu->login_id, NULL);
1236		}
1237		fw_core_remove_address_handler(&lu->address_handler);
1238		list_del(&lu->link);
1239		kfree(lu);
1240	}
1241	scsi_remove_host(shost);
1242	fw_notify("released %s, target %d:0:0\n", tgt->bus_id, shost->host_no);
1243
1244	scsi_host_put(shost);
1245	return 0;
1246}
1247
1248#define SBP2_UNIT_SPEC_ID_ENTRY	0x0000609e
1249#define SBP2_SW_VERSION_ENTRY	0x00010483
1250
1251static const struct ieee1394_device_id sbp2_id_table[] = {
1252	{
1253		.match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1254				IEEE1394_MATCH_VERSION,
1255		.specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1256		.version      = SBP2_SW_VERSION_ENTRY,
1257	},
1258	{ }
1259};
1260
1261static struct fw_driver sbp2_driver = {
1262	.driver   = {
1263		.owner  = THIS_MODULE,
1264		.name   = sbp2_driver_name,
1265		.bus    = &fw_bus_type,
1266		.probe  = sbp2_probe,
1267		.remove = sbp2_remove,
1268	},
1269	.update   = sbp2_update,
1270	.id_table = sbp2_id_table,
1271};
1272
1273static void sbp2_unmap_scatterlist(struct device *card_device,
1274				   struct sbp2_command_orb *orb)
1275{
1276	if (scsi_sg_count(orb->cmd))
1277		dma_unmap_sg(card_device, scsi_sglist(orb->cmd),
1278			     scsi_sg_count(orb->cmd),
1279			     orb->cmd->sc_data_direction);
1280
1281	if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
1282		dma_unmap_single(card_device, orb->page_table_bus,
1283				 sizeof(orb->page_table), DMA_TO_DEVICE);
1284}
1285
1286static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1287{
1288	int sam_status;
1289
1290	sense_data[0] = 0x70;
1291	sense_data[1] = 0x0;
1292	sense_data[2] = sbp2_status[1];
1293	sense_data[3] = sbp2_status[4];
1294	sense_data[4] = sbp2_status[5];
1295	sense_data[5] = sbp2_status[6];
1296	sense_data[6] = sbp2_status[7];
1297	sense_data[7] = 10;
1298	sense_data[8] = sbp2_status[8];
1299	sense_data[9] = sbp2_status[9];
1300	sense_data[10] = sbp2_status[10];
1301	sense_data[11] = sbp2_status[11];
1302	sense_data[12] = sbp2_status[2];
1303	sense_data[13] = sbp2_status[3];
1304	sense_data[14] = sbp2_status[12];
1305	sense_data[15] = sbp2_status[13];
1306
1307	sam_status = sbp2_status[0] & 0x3f;
1308
1309	switch (sam_status) {
1310	case SAM_STAT_GOOD:
1311	case SAM_STAT_CHECK_CONDITION:
1312	case SAM_STAT_CONDITION_MET:
1313	case SAM_STAT_BUSY:
1314	case SAM_STAT_RESERVATION_CONFLICT:
1315	case SAM_STAT_COMMAND_TERMINATED:
1316		return DID_OK << 16 | sam_status;
1317
1318	default:
1319		return DID_ERROR << 16;
1320	}
1321}
1322
1323static void complete_command_orb(struct sbp2_orb *base_orb,
1324				 struct sbp2_status *status)
1325{
1326	struct sbp2_command_orb *orb =
1327		container_of(base_orb, struct sbp2_command_orb, base);
1328	struct fw_device *device = target_device(orb->lu->tgt);
1329	int result;
1330
1331	if (status != NULL) {
1332		if (STATUS_GET_DEAD(*status))
1333			sbp2_agent_reset_no_wait(orb->lu);
1334
1335		switch (STATUS_GET_RESPONSE(*status)) {
1336		case SBP2_STATUS_REQUEST_COMPLETE:
1337			result = DID_OK << 16;
1338			break;
1339		case SBP2_STATUS_TRANSPORT_FAILURE:
1340			result = DID_BUS_BUSY << 16;
1341			break;
1342		case SBP2_STATUS_ILLEGAL_REQUEST:
1343		case SBP2_STATUS_VENDOR_DEPENDENT:
1344		default:
1345			result = DID_ERROR << 16;
1346			break;
1347		}
1348
1349		if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1350			result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1351							   orb->cmd->sense_buffer);
1352	} else {
1353		/*
1354		 * If the orb completes with status == NULL, something
1355		 * went wrong, typically a bus reset happened mid-orb
1356		 * or when sending the write (less likely).
1357		 */
1358		result = DID_BUS_BUSY << 16;
1359		sbp2_conditionally_block(orb->lu);
1360	}
1361
1362	dma_unmap_single(device->card->device, orb->base.request_bus,
1363			 sizeof(orb->request), DMA_TO_DEVICE);
1364	sbp2_unmap_scatterlist(device->card->device, orb);
1365
1366	orb->cmd->result = result;
1367	orb->cmd->scsi_done(orb->cmd);
1368}
1369
1370static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
1371		struct fw_device *device, struct sbp2_logical_unit *lu)
1372{
1373	struct scatterlist *sg = scsi_sglist(orb->cmd);
1374	int i, n;
1375
1376	n = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1377		       orb->cmd->sc_data_direction);
1378	if (n == 0)
1379		goto fail;
1380
1381	/*
1382	 * Handle the special case where there is only one element in
1383	 * the scatter list by converting it to an immediate block
1384	 * request. This is also a workaround for broken devices such
1385	 * as the second generation iPod which doesn't support page
1386	 * tables.
1387	 */
1388	if (n == 1) {
1389		orb->request.data_descriptor.high =
1390			cpu_to_be32(lu->tgt->address_high);
1391		orb->request.data_descriptor.low  =
1392			cpu_to_be32(sg_dma_address(sg));
1393		orb->request.misc |=
1394			cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1395		return 0;
1396	}
1397
1398	for_each_sg(sg, sg, n, i) {
1399		orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1400		orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1401	}
1402
1403	orb->page_table_bus =
1404		dma_map_single(device->card->device, orb->page_table,
1405			       sizeof(orb->page_table), DMA_TO_DEVICE);
1406	if (dma_mapping_error(device->card->device, orb->page_table_bus))
1407		goto fail_page_table;
1408
1409	/*
1410	 * The data_descriptor pointer is the one case where we need
1411	 * to fill in the node ID part of the address.  All other
1412	 * pointers assume that the data referenced reside on the
1413	 * initiator (i.e. us), but data_descriptor can refer to data
1414	 * on other nodes so we need to put our ID in descriptor.high.
1415	 */
1416	orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1417	orb->request.data_descriptor.low  = cpu_to_be32(orb->page_table_bus);
1418	orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1419					 COMMAND_ORB_DATA_SIZE(n));
1420
1421	return 0;
1422
1423 fail_page_table:
1424	dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1425		     scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction);
1426 fail:
1427	return -ENOMEM;
1428}
1429
1430/* SCSI stack integration */
1431
1432static int sbp2_scsi_queuecommand(struct Scsi_Host *shost,
1433				  struct scsi_cmnd *cmd)
1434{
1435	struct sbp2_logical_unit *lu = cmd->device->hostdata;
1436	struct fw_device *device = target_device(lu->tgt);
1437	struct sbp2_command_orb *orb;
1438	int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1439
1440	/*
1441	 * Bidirectional commands are not yet implemented, and unknown
1442	 * transfer direction not handled.
1443	 */
1444	if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1445		fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1446		cmd->result = DID_ERROR << 16;
1447		cmd->scsi_done(cmd);
1448		return 0;
1449	}
1450
1451	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1452	if (orb == NULL) {
1453		fw_notify("failed to alloc orb\n");
1454		return SCSI_MLQUEUE_HOST_BUSY;
1455	}
1456
1457	/* Initialize rcode to something not RCODE_COMPLETE. */
1458	orb->base.rcode = -1;
1459	kref_init(&orb->base.kref);
1460	orb->lu = lu;
1461	orb->cmd = cmd;
1462	orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1463	orb->request.misc = cpu_to_be32(
1464		COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1465		COMMAND_ORB_SPEED(device->max_speed) |
1466		COMMAND_ORB_NOTIFY);
1467
1468	if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1469		orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1470
1471	generation = device->generation;
1472	smp_rmb();    /* sbp2_map_scatterlist looks at tgt->address_high */
1473
1474	if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1475		goto out;
1476
1477	memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1478
1479	orb->base.callback = complete_command_orb;
1480	orb->base.request_bus =
1481		dma_map_single(device->card->device, &orb->request,
1482			       sizeof(orb->request), DMA_TO_DEVICE);
1483	if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
1484		sbp2_unmap_scatterlist(device->card->device, orb);
1485		goto out;
1486	}
1487
1488	sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1489		      lu->command_block_agent_address + SBP2_ORB_POINTER);
1490	retval = 0;
1491 out:
1492	kref_put(&orb->base.kref, free_orb);
1493	return retval;
1494}
1495
1496static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1497{
1498	struct sbp2_logical_unit *lu = sdev->hostdata;
1499
1500	/* (Re-)Adding logical units via the SCSI stack is not supported. */
1501	if (!lu)
1502		return -ENOSYS;
1503
1504	sdev->allow_restart = 1;
1505
1506	/* SBP-2 requires quadlet alignment of the data buffers. */
1507	blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1508
1509	if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1510		sdev->inquiry_len = 36;
1511
1512	return 0;
1513}
1514
1515static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1516{
1517	struct sbp2_logical_unit *lu = sdev->hostdata;
1518
1519	sdev->use_10_for_rw = 1;
1520
1521	if (sbp2_param_exclusive_login)
1522		sdev->manage_start_stop = 1;
1523
1524	if (sdev->type == TYPE_ROM)
1525		sdev->use_10_for_ms = 1;
1526
1527	if (sdev->type == TYPE_DISK &&
1528	    lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1529		sdev->skip_ms_page_8 = 1;
1530
1531	if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1532		sdev->fix_capacity = 1;
1533
1534	if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1535		sdev->start_stop_pwr_cond = 1;
1536
1537	if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1538		blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512);
1539
1540	blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE);
1541
1542	return 0;
1543}
1544
1545/*
1546 * Called by scsi stack when something has really gone wrong.  Usually
1547 * called when a command has timed-out for some reason.
1548 */
1549static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1550{
1551	struct sbp2_logical_unit *lu = cmd->device->hostdata;
1552
1553	fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id);
1554	sbp2_agent_reset(lu);
1555	sbp2_cancel_orbs(lu);
1556
1557	return SUCCESS;
1558}
1559
1560/*
1561 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1562 * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
1563 *
1564 * This is the concatenation of target port identifier and logical unit
1565 * identifier as per SAM-2...SAM-4 annex A.
1566 */
1567static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
1568			struct device_attribute *attr, char *buf)
1569{
1570	struct scsi_device *sdev = to_scsi_device(dev);
1571	struct sbp2_logical_unit *lu;
1572
1573	if (!sdev)
1574		return 0;
1575
1576	lu = sdev->hostdata;
1577
1578	return sprintf(buf, "%016llx:%06x:%04x\n",
1579			(unsigned long long)lu->tgt->guid,
1580			lu->tgt->directory_id, lu->lun);
1581}
1582
1583static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1584
1585static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1586	&dev_attr_ieee1394_id,
1587	NULL
1588};
1589
1590static struct scsi_host_template scsi_driver_template = {
1591	.module			= THIS_MODULE,
1592	.name			= "SBP-2 IEEE-1394",
1593	.proc_name		= sbp2_driver_name,
1594	.queuecommand		= sbp2_scsi_queuecommand,
1595	.slave_alloc		= sbp2_scsi_slave_alloc,
1596	.slave_configure	= sbp2_scsi_slave_configure,
1597	.eh_abort_handler	= sbp2_scsi_abort,
1598	.this_id		= -1,
1599	.sg_tablesize		= SG_ALL,
1600	.use_clustering		= ENABLE_CLUSTERING,
1601	.cmd_per_lun		= 1,
1602	.can_queue		= 1,
1603	.sdev_attrs		= sbp2_scsi_sysfs_attrs,
1604};
1605
1606MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1607MODULE_DESCRIPTION("SCSI over IEEE1394");
1608MODULE_LICENSE("GPL");
1609MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1610
1611/* Provide a module alias so root-on-sbp2 initrds don't break. */
1612#ifndef CONFIG_IEEE1394_SBP2_MODULE
1613MODULE_ALIAS("sbp2");
1614#endif
1615
1616static int __init sbp2_init(void)
1617{
1618	return driver_register(&sbp2_driver.driver);
1619}
1620
1621static void __exit sbp2_cleanup(void)
1622{
1623	driver_unregister(&sbp2_driver.driver);
1624}
1625
1626module_init(sbp2_init);
1627module_exit(sbp2_cleanup);
1628