1/*
2 * Copyright é 2006-2011 Intel Corporation
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc.,
15 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16 *
17 * Authors:
18 *	Eric Anholt <eric@anholt.net>
19 */
20
21#include <linux/i2c.h>
22#include <linux/pm_runtime.h>
23
24#include <drm/drmP.h>
25#include "framebuffer.h"
26#include "psb_drv.h"
27#include "psb_intel_drv.h"
28#include "psb_intel_reg.h"
29#include "psb_intel_display.h"
30#include "power.h"
31
32struct psb_intel_clock_t {
33	/* given values */
34	int n;
35	int m1, m2;
36	int p1, p2;
37	/* derived values */
38	int dot;
39	int vco;
40	int m;
41	int p;
42};
43
44struct psb_intel_range_t {
45	int min, max;
46};
47
48struct psb_intel_p2_t {
49	int dot_limit;
50	int p2_slow, p2_fast;
51};
52
53#define INTEL_P2_NUM		      2
54
55struct psb_intel_limit_t {
56	struct psb_intel_range_t dot, vco, n, m, m1, m2, p, p1;
57	struct psb_intel_p2_t p2;
58};
59
60#define I8XX_DOT_MIN		  25000
61#define I8XX_DOT_MAX		 350000
62#define I8XX_VCO_MIN		 930000
63#define I8XX_VCO_MAX		1400000
64#define I8XX_N_MIN		      3
65#define I8XX_N_MAX		     16
66#define I8XX_M_MIN		     96
67#define I8XX_M_MAX		    140
68#define I8XX_M1_MIN		     18
69#define I8XX_M1_MAX		     26
70#define I8XX_M2_MIN		      6
71#define I8XX_M2_MAX		     16
72#define I8XX_P_MIN		      4
73#define I8XX_P_MAX		    128
74#define I8XX_P1_MIN		      2
75#define I8XX_P1_MAX		     33
76#define I8XX_P1_LVDS_MIN	      1
77#define I8XX_P1_LVDS_MAX	      6
78#define I8XX_P2_SLOW		      4
79#define I8XX_P2_FAST		      2
80#define I8XX_P2_LVDS_SLOW	      14
81#define I8XX_P2_LVDS_FAST	      14	/* No fast option */
82#define I8XX_P2_SLOW_LIMIT	 165000
83
84#define I9XX_DOT_MIN		  20000
85#define I9XX_DOT_MAX		 400000
86#define I9XX_VCO_MIN		1400000
87#define I9XX_VCO_MAX		2800000
88#define I9XX_N_MIN		      3
89#define I9XX_N_MAX		      8
90#define I9XX_M_MIN		     70
91#define I9XX_M_MAX		    120
92#define I9XX_M1_MIN		     10
93#define I9XX_M1_MAX		     20
94#define I9XX_M2_MIN		      5
95#define I9XX_M2_MAX		      9
96#define I9XX_P_SDVO_DAC_MIN	      5
97#define I9XX_P_SDVO_DAC_MAX	     80
98#define I9XX_P_LVDS_MIN		      7
99#define I9XX_P_LVDS_MAX		     98
100#define I9XX_P1_MIN		      1
101#define I9XX_P1_MAX		      8
102#define I9XX_P2_SDVO_DAC_SLOW		     10
103#define I9XX_P2_SDVO_DAC_FAST		      5
104#define I9XX_P2_SDVO_DAC_SLOW_LIMIT	 200000
105#define I9XX_P2_LVDS_SLOW		     14
106#define I9XX_P2_LVDS_FAST		      7
107#define I9XX_P2_LVDS_SLOW_LIMIT		 112000
108
109#define INTEL_LIMIT_I8XX_DVO_DAC    0
110#define INTEL_LIMIT_I8XX_LVDS	    1
111#define INTEL_LIMIT_I9XX_SDVO_DAC   2
112#define INTEL_LIMIT_I9XX_LVDS	    3
113
114static const struct psb_intel_limit_t psb_intel_limits[] = {
115	{			/* INTEL_LIMIT_I8XX_DVO_DAC */
116	 .dot = {.min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX},
117	 .vco = {.min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX},
118	 .n = {.min = I8XX_N_MIN, .max = I8XX_N_MAX},
119	 .m = {.min = I8XX_M_MIN, .max = I8XX_M_MAX},
120	 .m1 = {.min = I8XX_M1_MIN, .max = I8XX_M1_MAX},
121	 .m2 = {.min = I8XX_M2_MIN, .max = I8XX_M2_MAX},
122	 .p = {.min = I8XX_P_MIN, .max = I8XX_P_MAX},
123	 .p1 = {.min = I8XX_P1_MIN, .max = I8XX_P1_MAX},
124	 .p2 = {.dot_limit = I8XX_P2_SLOW_LIMIT,
125		.p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST},
126	 },
127	{			/* INTEL_LIMIT_I8XX_LVDS */
128	 .dot = {.min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX},
129	 .vco = {.min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX},
130	 .n = {.min = I8XX_N_MIN, .max = I8XX_N_MAX},
131	 .m = {.min = I8XX_M_MIN, .max = I8XX_M_MAX},
132	 .m1 = {.min = I8XX_M1_MIN, .max = I8XX_M1_MAX},
133	 .m2 = {.min = I8XX_M2_MIN, .max = I8XX_M2_MAX},
134	 .p = {.min = I8XX_P_MIN, .max = I8XX_P_MAX},
135	 .p1 = {.min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX},
136	 .p2 = {.dot_limit = I8XX_P2_SLOW_LIMIT,
137		.p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST},
138	 },
139	{			/* INTEL_LIMIT_I9XX_SDVO_DAC */
140	 .dot = {.min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
141	 .vco = {.min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX},
142	 .n = {.min = I9XX_N_MIN, .max = I9XX_N_MAX},
143	 .m = {.min = I9XX_M_MIN, .max = I9XX_M_MAX},
144	 .m1 = {.min = I9XX_M1_MIN, .max = I9XX_M1_MAX},
145	 .m2 = {.min = I9XX_M2_MIN, .max = I9XX_M2_MAX},
146	 .p = {.min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX},
147	 .p1 = {.min = I9XX_P1_MIN, .max = I9XX_P1_MAX},
148	 .p2 = {.dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
149		.p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast =
150		I9XX_P2_SDVO_DAC_FAST},
151	 },
152	{			/* INTEL_LIMIT_I9XX_LVDS */
153	 .dot = {.min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
154	 .vco = {.min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX},
155	 .n = {.min = I9XX_N_MIN, .max = I9XX_N_MAX},
156	 .m = {.min = I9XX_M_MIN, .max = I9XX_M_MAX},
157	 .m1 = {.min = I9XX_M1_MIN, .max = I9XX_M1_MAX},
158	 .m2 = {.min = I9XX_M2_MIN, .max = I9XX_M2_MAX},
159	 .p = {.min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX},
160	 .p1 = {.min = I9XX_P1_MIN, .max = I9XX_P1_MAX},
161	 /* The single-channel range is 25-112Mhz, and dual-channel
162	  * is 80-224Mhz.  Prefer single channel as much as possible.
163	  */
164	 .p2 = {.dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
165		.p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST},
166	 },
167};
168
169static const struct psb_intel_limit_t *psb_intel_limit(struct drm_crtc *crtc)
170{
171	const struct psb_intel_limit_t *limit;
172
173	if (psb_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
174		limit = &psb_intel_limits[INTEL_LIMIT_I9XX_LVDS];
175	else
176		limit = &psb_intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
177	return limit;
178}
179
180/** Derive the pixel clock for the given refclk and divisors for 8xx chips. */
181
182static void i8xx_clock(int refclk, struct psb_intel_clock_t *clock)
183{
184	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
185	clock->p = clock->p1 * clock->p2;
186	clock->vco = refclk * clock->m / (clock->n + 2);
187	clock->dot = clock->vco / clock->p;
188}
189
190/** Derive the pixel clock for the given refclk and divisors for 9xx chips. */
191
192static void i9xx_clock(int refclk, struct psb_intel_clock_t *clock)
193{
194	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
195	clock->p = clock->p1 * clock->p2;
196	clock->vco = refclk * clock->m / (clock->n + 2);
197	clock->dot = clock->vco / clock->p;
198}
199
200static void psb_intel_clock(struct drm_device *dev, int refclk,
201			struct psb_intel_clock_t *clock)
202{
203	return i9xx_clock(refclk, clock);
204}
205
206/**
207 * Returns whether any output on the specified pipe is of the specified type
208 */
209bool psb_intel_pipe_has_type(struct drm_crtc *crtc, int type)
210{
211	struct drm_device *dev = crtc->dev;
212	struct drm_mode_config *mode_config = &dev->mode_config;
213	struct drm_connector *l_entry;
214
215	list_for_each_entry(l_entry, &mode_config->connector_list, head) {
216		if (l_entry->encoder && l_entry->encoder->crtc == crtc) {
217			struct psb_intel_encoder *psb_intel_encoder =
218					psb_intel_attached_encoder(l_entry);
219			if (psb_intel_encoder->type == type)
220				return true;
221		}
222	}
223	return false;
224}
225
226#define INTELPllInvalid(s)   { /* ErrorF (s) */; return false; }
227/**
228 * Returns whether the given set of divisors are valid for a given refclk with
229 * the given connectors.
230 */
231
232static bool psb_intel_PLL_is_valid(struct drm_crtc *crtc,
233			       struct psb_intel_clock_t *clock)
234{
235	const struct psb_intel_limit_t *limit = psb_intel_limit(crtc);
236
237	if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
238		INTELPllInvalid("p1 out of range\n");
239	if (clock->p < limit->p.min || limit->p.max < clock->p)
240		INTELPllInvalid("p out of range\n");
241	if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
242		INTELPllInvalid("m2 out of range\n");
243	if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
244		INTELPllInvalid("m1 out of range\n");
245	if (clock->m1 <= clock->m2)
246		INTELPllInvalid("m1 <= m2\n");
247	if (clock->m < limit->m.min || limit->m.max < clock->m)
248		INTELPllInvalid("m out of range\n");
249	if (clock->n < limit->n.min || limit->n.max < clock->n)
250		INTELPllInvalid("n out of range\n");
251	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
252		INTELPllInvalid("vco out of range\n");
253	/* XXX: We may need to be checking "Dot clock"
254	 * depending on the multiplier, connector, etc.,
255	 * rather than just a single range.
256	 */
257	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
258		INTELPllInvalid("dot out of range\n");
259
260	return true;
261}
262
263/**
264 * Returns a set of divisors for the desired target clock with the given
265 * refclk, or FALSE.  The returned values represent the clock equation:
266 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
267 */
268static bool psb_intel_find_best_PLL(struct drm_crtc *crtc, int target,
269				int refclk,
270				struct psb_intel_clock_t *best_clock)
271{
272	struct drm_device *dev = crtc->dev;
273	struct psb_intel_clock_t clock;
274	const struct psb_intel_limit_t *limit = psb_intel_limit(crtc);
275	int err = target;
276
277	if (psb_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
278	    (REG_READ(LVDS) & LVDS_PORT_EN) != 0) {
279		/*
280		 * For LVDS, if the panel is on, just rely on its current
281		 * settings for dual-channel.  We haven't figured out how to
282		 * reliably set up different single/dual channel state, if we
283		 * even can.
284		 */
285		if ((REG_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
286		    LVDS_CLKB_POWER_UP)
287			clock.p2 = limit->p2.p2_fast;
288		else
289			clock.p2 = limit->p2.p2_slow;
290	} else {
291		if (target < limit->p2.dot_limit)
292			clock.p2 = limit->p2.p2_slow;
293		else
294			clock.p2 = limit->p2.p2_fast;
295	}
296
297	memset(best_clock, 0, sizeof(*best_clock));
298
299	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
300	     clock.m1++) {
301		for (clock.m2 = limit->m2.min;
302		     clock.m2 < clock.m1 && clock.m2 <= limit->m2.max;
303		     clock.m2++) {
304			for (clock.n = limit->n.min;
305			     clock.n <= limit->n.max; clock.n++) {
306				for (clock.p1 = limit->p1.min;
307				     clock.p1 <= limit->p1.max;
308				     clock.p1++) {
309					int this_err;
310
311					psb_intel_clock(dev, refclk, &clock);
312
313					if (!psb_intel_PLL_is_valid
314					    (crtc, &clock))
315						continue;
316
317					this_err = abs(clock.dot - target);
318					if (this_err < err) {
319						*best_clock = clock;
320						err = this_err;
321					}
322				}
323			}
324		}
325	}
326
327	return err != target;
328}
329
330void psb_intel_wait_for_vblank(struct drm_device *dev)
331{
332	/* Wait for 20ms, i.e. one cycle at 50hz. */
333	mdelay(20);
334}
335
336int psb_intel_pipe_set_base(struct drm_crtc *crtc,
337			    int x, int y, struct drm_framebuffer *old_fb)
338{
339	struct drm_device *dev = crtc->dev;
340	/* struct drm_i915_master_private *master_priv; */
341	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
342	struct psb_framebuffer *psbfb = to_psb_fb(crtc->fb);
343	int pipe = psb_intel_crtc->pipe;
344	unsigned long start, offset;
345	int dspbase = (pipe == 0 ? DSPABASE : DSPBBASE);
346	int dspsurf = (pipe == 0 ? DSPASURF : DSPBSURF);
347	int dspstride = (pipe == 0) ? DSPASTRIDE : DSPBSTRIDE;
348	int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
349	u32 dspcntr;
350	int ret = 0;
351
352	if (!gma_power_begin(dev, true))
353		return 0;
354
355	/* no fb bound */
356	if (!crtc->fb) {
357		dev_dbg(dev->dev, "No FB bound\n");
358		goto psb_intel_pipe_cleaner;
359	}
360
361	/* We are displaying this buffer, make sure it is actually loaded
362	   into the GTT */
363	ret = psb_gtt_pin(psbfb->gtt);
364	if (ret < 0)
365		goto psb_intel_pipe_set_base_exit;
366	start = psbfb->gtt->offset;
367
368	offset = y * crtc->fb->pitches[0] + x * (crtc->fb->bits_per_pixel / 8);
369
370	REG_WRITE(dspstride, crtc->fb->pitches[0]);
371
372	dspcntr = REG_READ(dspcntr_reg);
373	dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
374
375	switch (crtc->fb->bits_per_pixel) {
376	case 8:
377		dspcntr |= DISPPLANE_8BPP;
378		break;
379	case 16:
380		if (crtc->fb->depth == 15)
381			dspcntr |= DISPPLANE_15_16BPP;
382		else
383			dspcntr |= DISPPLANE_16BPP;
384		break;
385	case 24:
386	case 32:
387		dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
388		break;
389	default:
390		dev_err(dev->dev, "Unknown color depth\n");
391		ret = -EINVAL;
392		psb_gtt_unpin(psbfb->gtt);
393		goto psb_intel_pipe_set_base_exit;
394	}
395	REG_WRITE(dspcntr_reg, dspcntr);
396
397
398	if (0 /* FIXMEAC - check what PSB needs */) {
399		REG_WRITE(dspbase, offset);
400		REG_READ(dspbase);
401		REG_WRITE(dspsurf, start);
402		REG_READ(dspsurf);
403	} else {
404		REG_WRITE(dspbase, start + offset);
405		REG_READ(dspbase);
406	}
407
408psb_intel_pipe_cleaner:
409	/* If there was a previous display we can now unpin it */
410	if (old_fb)
411		psb_gtt_unpin(to_psb_fb(old_fb)->gtt);
412
413psb_intel_pipe_set_base_exit:
414	gma_power_end(dev);
415	return ret;
416}
417
418/**
419 * Sets the power management mode of the pipe and plane.
420 *
421 * This code should probably grow support for turning the cursor off and back
422 * on appropriately at the same time as we're turning the pipe off/on.
423 */
424static void psb_intel_crtc_dpms(struct drm_crtc *crtc, int mode)
425{
426	struct drm_device *dev = crtc->dev;
427	/* struct drm_i915_master_private *master_priv; */
428	/* struct drm_i915_private *dev_priv = dev->dev_private; */
429	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
430	int pipe = psb_intel_crtc->pipe;
431	int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
432	int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
433	int dspbase_reg = (pipe == 0) ? DSPABASE : DSPBBASE;
434	int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
435	u32 temp;
436	bool enabled;
437
438	/* XXX: When our outputs are all unaware of DPMS modes other than off
439	 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
440	 */
441	switch (mode) {
442	case DRM_MODE_DPMS_ON:
443	case DRM_MODE_DPMS_STANDBY:
444	case DRM_MODE_DPMS_SUSPEND:
445		/* Enable the DPLL */
446		temp = REG_READ(dpll_reg);
447		if ((temp & DPLL_VCO_ENABLE) == 0) {
448			REG_WRITE(dpll_reg, temp);
449			REG_READ(dpll_reg);
450			/* Wait for the clocks to stabilize. */
451			udelay(150);
452			REG_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
453			REG_READ(dpll_reg);
454			/* Wait for the clocks to stabilize. */
455			udelay(150);
456			REG_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
457			REG_READ(dpll_reg);
458			/* Wait for the clocks to stabilize. */
459			udelay(150);
460		}
461
462		/* Enable the pipe */
463		temp = REG_READ(pipeconf_reg);
464		if ((temp & PIPEACONF_ENABLE) == 0)
465			REG_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
466
467		/* Enable the plane */
468		temp = REG_READ(dspcntr_reg);
469		if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
470			REG_WRITE(dspcntr_reg,
471				  temp | DISPLAY_PLANE_ENABLE);
472			/* Flush the plane changes */
473			REG_WRITE(dspbase_reg, REG_READ(dspbase_reg));
474		}
475
476		psb_intel_crtc_load_lut(crtc);
477
478		/* Give the overlay scaler a chance to enable
479		 * if it's on this pipe */
480		/* psb_intel_crtc_dpms_video(crtc, true); TODO */
481		break;
482	case DRM_MODE_DPMS_OFF:
483		/* Give the overlay scaler a chance to disable
484		 * if it's on this pipe */
485		/* psb_intel_crtc_dpms_video(crtc, FALSE); TODO */
486
487		/* Disable the VGA plane that we never use */
488		REG_WRITE(VGACNTRL, VGA_DISP_DISABLE);
489
490		/* Disable display plane */
491		temp = REG_READ(dspcntr_reg);
492		if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
493			REG_WRITE(dspcntr_reg,
494				  temp & ~DISPLAY_PLANE_ENABLE);
495			/* Flush the plane changes */
496			REG_WRITE(dspbase_reg, REG_READ(dspbase_reg));
497			REG_READ(dspbase_reg);
498		}
499
500		/* Next, disable display pipes */
501		temp = REG_READ(pipeconf_reg);
502		if ((temp & PIPEACONF_ENABLE) != 0) {
503			REG_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
504			REG_READ(pipeconf_reg);
505		}
506
507		/* Wait for vblank for the disable to take effect. */
508		psb_intel_wait_for_vblank(dev);
509
510		temp = REG_READ(dpll_reg);
511		if ((temp & DPLL_VCO_ENABLE) != 0) {
512			REG_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
513			REG_READ(dpll_reg);
514		}
515
516		/* Wait for the clocks to turn off. */
517		udelay(150);
518		break;
519	}
520
521	enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
522
523	/*Set FIFO Watermarks*/
524	REG_WRITE(DSPARB, 0x3F3E);
525}
526
527static void psb_intel_crtc_prepare(struct drm_crtc *crtc)
528{
529	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
530	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
531}
532
533static void psb_intel_crtc_commit(struct drm_crtc *crtc)
534{
535	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
536	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
537}
538
539void psb_intel_encoder_prepare(struct drm_encoder *encoder)
540{
541	struct drm_encoder_helper_funcs *encoder_funcs =
542	    encoder->helper_private;
543	/* lvds has its own version of prepare see psb_intel_lvds_prepare */
544	encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
545}
546
547void psb_intel_encoder_commit(struct drm_encoder *encoder)
548{
549	struct drm_encoder_helper_funcs *encoder_funcs =
550	    encoder->helper_private;
551	/* lvds has its own version of commit see psb_intel_lvds_commit */
552	encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
553}
554
555void psb_intel_encoder_destroy(struct drm_encoder *encoder)
556{
557	struct psb_intel_encoder *intel_encoder = to_psb_intel_encoder(encoder);
558
559	drm_encoder_cleanup(encoder);
560	kfree(intel_encoder);
561}
562
563static bool psb_intel_crtc_mode_fixup(struct drm_crtc *crtc,
564				  struct drm_display_mode *mode,
565				  struct drm_display_mode *adjusted_mode)
566{
567	return true;
568}
569
570
571/**
572 * Return the pipe currently connected to the panel fitter,
573 * or -1 if the panel fitter is not present or not in use
574 */
575static int psb_intel_panel_fitter_pipe(struct drm_device *dev)
576{
577	u32 pfit_control;
578
579	pfit_control = REG_READ(PFIT_CONTROL);
580
581	/* See if the panel fitter is in use */
582	if ((pfit_control & PFIT_ENABLE) == 0)
583		return -1;
584	/* Must be on PIPE 1 for PSB */
585	return 1;
586}
587
588static int psb_intel_crtc_mode_set(struct drm_crtc *crtc,
589			       struct drm_display_mode *mode,
590			       struct drm_display_mode *adjusted_mode,
591			       int x, int y,
592			       struct drm_framebuffer *old_fb)
593{
594	struct drm_device *dev = crtc->dev;
595	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
596	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
597	int pipe = psb_intel_crtc->pipe;
598	int fp_reg = (pipe == 0) ? FPA0 : FPB0;
599	int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
600	int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
601	int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
602	int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
603	int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
604	int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
605	int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
606	int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
607	int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
608	int dspsize_reg = (pipe == 0) ? DSPASIZE : DSPBSIZE;
609	int dsppos_reg = (pipe == 0) ? DSPAPOS : DSPBPOS;
610	int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
611	int refclk;
612	struct psb_intel_clock_t clock;
613	u32 dpll = 0, fp = 0, dspcntr, pipeconf;
614	bool ok, is_sdvo = false, is_dvo = false;
615	bool is_crt = false, is_lvds = false, is_tv = false;
616	struct drm_mode_config *mode_config = &dev->mode_config;
617	struct drm_connector *connector;
618
619	/* No scan out no play */
620	if (crtc->fb == NULL) {
621		crtc_funcs->mode_set_base(crtc, x, y, old_fb);
622		return 0;
623	}
624
625	list_for_each_entry(connector, &mode_config->connector_list, head) {
626		struct psb_intel_encoder *psb_intel_encoder =
627					psb_intel_attached_encoder(connector);
628
629		if (!connector->encoder
630		    || connector->encoder->crtc != crtc)
631			continue;
632
633		switch (psb_intel_encoder->type) {
634		case INTEL_OUTPUT_LVDS:
635			is_lvds = true;
636			break;
637		case INTEL_OUTPUT_SDVO:
638			is_sdvo = true;
639			break;
640		case INTEL_OUTPUT_DVO:
641			is_dvo = true;
642			break;
643		case INTEL_OUTPUT_TVOUT:
644			is_tv = true;
645			break;
646		case INTEL_OUTPUT_ANALOG:
647			is_crt = true;
648			break;
649		}
650	}
651
652	refclk = 96000;
653
654	ok = psb_intel_find_best_PLL(crtc, adjusted_mode->clock, refclk,
655				 &clock);
656	if (!ok) {
657		dev_err(dev->dev, "Couldn't find PLL settings for mode!\n");
658		return 0;
659	}
660
661	fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
662
663	dpll = DPLL_VGA_MODE_DIS;
664	if (is_lvds) {
665		dpll |= DPLLB_MODE_LVDS;
666		dpll |= DPLL_DVO_HIGH_SPEED;
667	} else
668		dpll |= DPLLB_MODE_DAC_SERIAL;
669	if (is_sdvo) {
670		int sdvo_pixel_multiply =
671			    adjusted_mode->clock / mode->clock;
672		dpll |= DPLL_DVO_HIGH_SPEED;
673		dpll |=
674		    (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
675	}
676
677	/* compute bitmask from p1 value */
678	dpll |= (1 << (clock.p1 - 1)) << 16;
679	switch (clock.p2) {
680	case 5:
681		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
682		break;
683	case 7:
684		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
685		break;
686	case 10:
687		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
688		break;
689	case 14:
690		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
691		break;
692	}
693
694	if (is_tv) {
695		/* XXX: just matching BIOS for now */
696/*	dpll |= PLL_REF_INPUT_TVCLKINBC; */
697		dpll |= 3;
698	}
699	dpll |= PLL_REF_INPUT_DREFCLK;
700
701	/* setup pipeconf */
702	pipeconf = REG_READ(pipeconf_reg);
703
704	/* Set up the display plane register */
705	dspcntr = DISPPLANE_GAMMA_ENABLE;
706
707	if (pipe == 0)
708		dspcntr |= DISPPLANE_SEL_PIPE_A;
709	else
710		dspcntr |= DISPPLANE_SEL_PIPE_B;
711
712	dspcntr |= DISPLAY_PLANE_ENABLE;
713	pipeconf |= PIPEACONF_ENABLE;
714	dpll |= DPLL_VCO_ENABLE;
715
716
717	/* Disable the panel fitter if it was on our pipe */
718	if (psb_intel_panel_fitter_pipe(dev) == pipe)
719		REG_WRITE(PFIT_CONTROL, 0);
720
721	drm_mode_debug_printmodeline(mode);
722
723	if (dpll & DPLL_VCO_ENABLE) {
724		REG_WRITE(fp_reg, fp);
725		REG_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
726		REG_READ(dpll_reg);
727		udelay(150);
728	}
729
730	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
731	 * This is an exception to the general rule that mode_set doesn't turn
732	 * things on.
733	 */
734	if (is_lvds) {
735		u32 lvds = REG_READ(LVDS);
736
737		lvds &= ~LVDS_PIPEB_SELECT;
738		if (pipe == 1)
739			lvds |= LVDS_PIPEB_SELECT;
740
741		lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
742		/* Set the B0-B3 data pairs corresponding to
743		 * whether we're going to
744		 * set the DPLLs for dual-channel mode or not.
745		 */
746		lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
747		if (clock.p2 == 7)
748			lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
749
750		/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
751		 * appropriately here, but we need to look more
752		 * thoroughly into how panels behave in the two modes.
753		 */
754
755		REG_WRITE(LVDS, lvds);
756		REG_READ(LVDS);
757	}
758
759	REG_WRITE(fp_reg, fp);
760	REG_WRITE(dpll_reg, dpll);
761	REG_READ(dpll_reg);
762	/* Wait for the clocks to stabilize. */
763	udelay(150);
764
765	/* write it again -- the BIOS does, after all */
766	REG_WRITE(dpll_reg, dpll);
767
768	REG_READ(dpll_reg);
769	/* Wait for the clocks to stabilize. */
770	udelay(150);
771
772	REG_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
773		  ((adjusted_mode->crtc_htotal - 1) << 16));
774	REG_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
775		  ((adjusted_mode->crtc_hblank_end - 1) << 16));
776	REG_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
777		  ((adjusted_mode->crtc_hsync_end - 1) << 16));
778	REG_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
779		  ((adjusted_mode->crtc_vtotal - 1) << 16));
780	REG_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
781		  ((adjusted_mode->crtc_vblank_end - 1) << 16));
782	REG_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
783		  ((adjusted_mode->crtc_vsync_end - 1) << 16));
784	/* pipesrc and dspsize control the size that is scaled from,
785	 * which should always be the user's requested size.
786	 */
787	REG_WRITE(dspsize_reg,
788		  ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
789	REG_WRITE(dsppos_reg, 0);
790	REG_WRITE(pipesrc_reg,
791		  ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
792	REG_WRITE(pipeconf_reg, pipeconf);
793	REG_READ(pipeconf_reg);
794
795	psb_intel_wait_for_vblank(dev);
796
797	REG_WRITE(dspcntr_reg, dspcntr);
798
799	/* Flush the plane changes */
800	crtc_funcs->mode_set_base(crtc, x, y, old_fb);
801
802	psb_intel_wait_for_vblank(dev);
803
804	return 0;
805}
806
807/** Loads the palette/gamma unit for the CRTC with the prepared values */
808void psb_intel_crtc_load_lut(struct drm_crtc *crtc)
809{
810	struct drm_device *dev = crtc->dev;
811	struct drm_psb_private *dev_priv =
812				(struct drm_psb_private *)dev->dev_private;
813	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
814	int palreg = PALETTE_A;
815	int i;
816
817	/* The clocks have to be on to load the palette. */
818	if (!crtc->enabled)
819		return;
820
821	switch (psb_intel_crtc->pipe) {
822	case 0:
823		break;
824	case 1:
825		palreg = PALETTE_B;
826		break;
827	case 2:
828		palreg = PALETTE_C;
829		break;
830	default:
831		dev_err(dev->dev, "Illegal Pipe Number.\n");
832		return;
833	}
834
835	if (gma_power_begin(dev, false)) {
836		for (i = 0; i < 256; i++) {
837			REG_WRITE(palreg + 4 * i,
838				  ((psb_intel_crtc->lut_r[i] +
839				  psb_intel_crtc->lut_adj[i]) << 16) |
840				  ((psb_intel_crtc->lut_g[i] +
841				  psb_intel_crtc->lut_adj[i]) << 8) |
842				  (psb_intel_crtc->lut_b[i] +
843				  psb_intel_crtc->lut_adj[i]));
844		}
845		gma_power_end(dev);
846	} else {
847		for (i = 0; i < 256; i++) {
848			dev_priv->save_palette_a[i] =
849				  ((psb_intel_crtc->lut_r[i] +
850				  psb_intel_crtc->lut_adj[i]) << 16) |
851				  ((psb_intel_crtc->lut_g[i] +
852				  psb_intel_crtc->lut_adj[i]) << 8) |
853				  (psb_intel_crtc->lut_b[i] +
854				  psb_intel_crtc->lut_adj[i]);
855		}
856
857	}
858}
859
860/**
861 * Save HW states of giving crtc
862 */
863static void psb_intel_crtc_save(struct drm_crtc *crtc)
864{
865	struct drm_device *dev = crtc->dev;
866	/* struct drm_psb_private *dev_priv =
867			(struct drm_psb_private *)dev->dev_private; */
868	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
869	struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state;
870	int pipeA = (psb_intel_crtc->pipe == 0);
871	uint32_t paletteReg;
872	int i;
873
874	if (!crtc_state) {
875		dev_err(dev->dev, "No CRTC state found\n");
876		return;
877	}
878
879	crtc_state->saveDSPCNTR = REG_READ(pipeA ? DSPACNTR : DSPBCNTR);
880	crtc_state->savePIPECONF = REG_READ(pipeA ? PIPEACONF : PIPEBCONF);
881	crtc_state->savePIPESRC = REG_READ(pipeA ? PIPEASRC : PIPEBSRC);
882	crtc_state->saveFP0 = REG_READ(pipeA ? FPA0 : FPB0);
883	crtc_state->saveFP1 = REG_READ(pipeA ? FPA1 : FPB1);
884	crtc_state->saveDPLL = REG_READ(pipeA ? DPLL_A : DPLL_B);
885	crtc_state->saveHTOTAL = REG_READ(pipeA ? HTOTAL_A : HTOTAL_B);
886	crtc_state->saveHBLANK = REG_READ(pipeA ? HBLANK_A : HBLANK_B);
887	crtc_state->saveHSYNC = REG_READ(pipeA ? HSYNC_A : HSYNC_B);
888	crtc_state->saveVTOTAL = REG_READ(pipeA ? VTOTAL_A : VTOTAL_B);
889	crtc_state->saveVBLANK = REG_READ(pipeA ? VBLANK_A : VBLANK_B);
890	crtc_state->saveVSYNC = REG_READ(pipeA ? VSYNC_A : VSYNC_B);
891	crtc_state->saveDSPSTRIDE = REG_READ(pipeA ? DSPASTRIDE : DSPBSTRIDE);
892
893	/*NOTE: DSPSIZE DSPPOS only for psb*/
894	crtc_state->saveDSPSIZE = REG_READ(pipeA ? DSPASIZE : DSPBSIZE);
895	crtc_state->saveDSPPOS = REG_READ(pipeA ? DSPAPOS : DSPBPOS);
896
897	crtc_state->saveDSPBASE = REG_READ(pipeA ? DSPABASE : DSPBBASE);
898
899	paletteReg = pipeA ? PALETTE_A : PALETTE_B;
900	for (i = 0; i < 256; ++i)
901		crtc_state->savePalette[i] = REG_READ(paletteReg + (i << 2));
902}
903
904/**
905 * Restore HW states of giving crtc
906 */
907static void psb_intel_crtc_restore(struct drm_crtc *crtc)
908{
909	struct drm_device *dev = crtc->dev;
910	/* struct drm_psb_private * dev_priv =
911				(struct drm_psb_private *)dev->dev_private; */
912	struct psb_intel_crtc *psb_intel_crtc =  to_psb_intel_crtc(crtc);
913	struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state;
914	/* struct drm_crtc_helper_funcs * crtc_funcs = crtc->helper_private; */
915	int pipeA = (psb_intel_crtc->pipe == 0);
916	uint32_t paletteReg;
917	int i;
918
919	if (!crtc_state) {
920		dev_err(dev->dev, "No crtc state\n");
921		return;
922	}
923
924	if (crtc_state->saveDPLL & DPLL_VCO_ENABLE) {
925		REG_WRITE(pipeA ? DPLL_A : DPLL_B,
926			crtc_state->saveDPLL & ~DPLL_VCO_ENABLE);
927		REG_READ(pipeA ? DPLL_A : DPLL_B);
928		udelay(150);
929	}
930
931	REG_WRITE(pipeA ? FPA0 : FPB0, crtc_state->saveFP0);
932	REG_READ(pipeA ? FPA0 : FPB0);
933
934	REG_WRITE(pipeA ? FPA1 : FPB1, crtc_state->saveFP1);
935	REG_READ(pipeA ? FPA1 : FPB1);
936
937	REG_WRITE(pipeA ? DPLL_A : DPLL_B, crtc_state->saveDPLL);
938	REG_READ(pipeA ? DPLL_A : DPLL_B);
939	udelay(150);
940
941	REG_WRITE(pipeA ? HTOTAL_A : HTOTAL_B, crtc_state->saveHTOTAL);
942	REG_WRITE(pipeA ? HBLANK_A : HBLANK_B, crtc_state->saveHBLANK);
943	REG_WRITE(pipeA ? HSYNC_A : HSYNC_B, crtc_state->saveHSYNC);
944	REG_WRITE(pipeA ? VTOTAL_A : VTOTAL_B, crtc_state->saveVTOTAL);
945	REG_WRITE(pipeA ? VBLANK_A : VBLANK_B, crtc_state->saveVBLANK);
946	REG_WRITE(pipeA ? VSYNC_A : VSYNC_B, crtc_state->saveVSYNC);
947	REG_WRITE(pipeA ? DSPASTRIDE : DSPBSTRIDE, crtc_state->saveDSPSTRIDE);
948
949	REG_WRITE(pipeA ? DSPASIZE : DSPBSIZE, crtc_state->saveDSPSIZE);
950	REG_WRITE(pipeA ? DSPAPOS : DSPBPOS, crtc_state->saveDSPPOS);
951
952	REG_WRITE(pipeA ? PIPEASRC : PIPEBSRC, crtc_state->savePIPESRC);
953	REG_WRITE(pipeA ? DSPABASE : DSPBBASE, crtc_state->saveDSPBASE);
954	REG_WRITE(pipeA ? PIPEACONF : PIPEBCONF, crtc_state->savePIPECONF);
955
956	psb_intel_wait_for_vblank(dev);
957
958	REG_WRITE(pipeA ? DSPACNTR : DSPBCNTR, crtc_state->saveDSPCNTR);
959	REG_WRITE(pipeA ? DSPABASE : DSPBBASE, crtc_state->saveDSPBASE);
960
961	psb_intel_wait_for_vblank(dev);
962
963	paletteReg = pipeA ? PALETTE_A : PALETTE_B;
964	for (i = 0; i < 256; ++i)
965		REG_WRITE(paletteReg + (i << 2), crtc_state->savePalette[i]);
966}
967
968static int psb_intel_crtc_cursor_set(struct drm_crtc *crtc,
969				 struct drm_file *file_priv,
970				 uint32_t handle,
971				 uint32_t width, uint32_t height)
972{
973	struct drm_device *dev = crtc->dev;
974	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
975	int pipe = psb_intel_crtc->pipe;
976	uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
977	uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
978	uint32_t temp;
979	size_t addr = 0;
980	struct gtt_range *gt;
981	struct drm_gem_object *obj;
982	int ret;
983
984	/* if we want to turn of the cursor ignore width and height */
985	if (!handle) {
986		/* turn off the cursor */
987		temp = CURSOR_MODE_DISABLE;
988
989		if (gma_power_begin(dev, false)) {
990			REG_WRITE(control, temp);
991			REG_WRITE(base, 0);
992			gma_power_end(dev);
993		}
994
995		/* Unpin the old GEM object */
996		if (psb_intel_crtc->cursor_obj) {
997			gt = container_of(psb_intel_crtc->cursor_obj,
998							struct gtt_range, gem);
999			psb_gtt_unpin(gt);
1000			drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
1001			psb_intel_crtc->cursor_obj = NULL;
1002		}
1003
1004		return 0;
1005	}
1006
1007	/* Currently we only support 64x64 cursors */
1008	if (width != 64 || height != 64) {
1009		dev_dbg(dev->dev, "we currently only support 64x64 cursors\n");
1010		return -EINVAL;
1011	}
1012
1013	obj = drm_gem_object_lookup(dev, file_priv, handle);
1014	if (!obj)
1015		return -ENOENT;
1016
1017	if (obj->size < width * height * 4) {
1018		dev_dbg(dev->dev, "buffer is to small\n");
1019		return -ENOMEM;
1020	}
1021
1022	gt = container_of(obj, struct gtt_range, gem);
1023
1024	/* Pin the memory into the GTT */
1025	ret = psb_gtt_pin(gt);
1026	if (ret) {
1027		dev_err(dev->dev, "Can not pin down handle 0x%x\n", handle);
1028		return ret;
1029	}
1030
1031
1032	addr = gt->offset;	/* Or resource.start ??? */
1033
1034	psb_intel_crtc->cursor_addr = addr;
1035
1036	temp = 0;
1037	/* set the pipe for the cursor */
1038	temp |= (pipe << 28);
1039	temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
1040
1041	if (gma_power_begin(dev, false)) {
1042		REG_WRITE(control, temp);
1043		REG_WRITE(base, addr);
1044		gma_power_end(dev);
1045	}
1046
1047	/* unpin the old bo */
1048	if (psb_intel_crtc->cursor_obj) {
1049		gt = container_of(psb_intel_crtc->cursor_obj,
1050							struct gtt_range, gem);
1051		psb_gtt_unpin(gt);
1052		drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
1053		psb_intel_crtc->cursor_obj = obj;
1054	}
1055	return 0;
1056}
1057
1058static int psb_intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
1059{
1060	struct drm_device *dev = crtc->dev;
1061	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1062	int pipe = psb_intel_crtc->pipe;
1063	uint32_t temp = 0;
1064	uint32_t addr;
1065
1066
1067	if (x < 0) {
1068		temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT);
1069		x = -x;
1070	}
1071	if (y < 0) {
1072		temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT);
1073		y = -y;
1074	}
1075
1076	temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT);
1077	temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1078
1079	addr = psb_intel_crtc->cursor_addr;
1080
1081	if (gma_power_begin(dev, false)) {
1082		REG_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
1083		REG_WRITE((pipe == 0) ? CURABASE : CURBBASE, addr);
1084		gma_power_end(dev);
1085	}
1086	return 0;
1087}
1088
1089void psb_intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red,
1090			 u16 *green, u16 *blue, uint32_t type, uint32_t size)
1091{
1092	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1093	int i;
1094
1095	if (size != 256)
1096		return;
1097
1098	for (i = 0; i < 256; i++) {
1099		psb_intel_crtc->lut_r[i] = red[i] >> 8;
1100		psb_intel_crtc->lut_g[i] = green[i] >> 8;
1101		psb_intel_crtc->lut_b[i] = blue[i] >> 8;
1102	}
1103
1104	psb_intel_crtc_load_lut(crtc);
1105}
1106
1107static int psb_crtc_set_config(struct drm_mode_set *set)
1108{
1109	int ret;
1110	struct drm_device *dev = set->crtc->dev;
1111	struct drm_psb_private *dev_priv = dev->dev_private;
1112
1113	if (!dev_priv->rpm_enabled)
1114		return drm_crtc_helper_set_config(set);
1115
1116	pm_runtime_forbid(&dev->pdev->dev);
1117	ret = drm_crtc_helper_set_config(set);
1118	pm_runtime_allow(&dev->pdev->dev);
1119	return ret;
1120}
1121
1122/* Returns the clock of the currently programmed mode of the given pipe. */
1123static int psb_intel_crtc_clock_get(struct drm_device *dev,
1124				struct drm_crtc *crtc)
1125{
1126	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1127	int pipe = psb_intel_crtc->pipe;
1128	u32 dpll;
1129	u32 fp;
1130	struct psb_intel_clock_t clock;
1131	bool is_lvds;
1132	struct drm_psb_private *dev_priv = dev->dev_private;
1133
1134	if (gma_power_begin(dev, false)) {
1135		dpll = REG_READ((pipe == 0) ? DPLL_A : DPLL_B);
1136		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1137			fp = REG_READ((pipe == 0) ? FPA0 : FPB0);
1138		else
1139			fp = REG_READ((pipe == 0) ? FPA1 : FPB1);
1140		is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
1141		gma_power_end(dev);
1142	} else {
1143		dpll = (pipe == 0) ?
1144			dev_priv->saveDPLL_A : dev_priv->saveDPLL_B;
1145
1146		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1147			fp = (pipe == 0) ?
1148				dev_priv->saveFPA0 :
1149				dev_priv->saveFPB0;
1150		else
1151			fp = (pipe == 0) ?
1152				dev_priv->saveFPA1 :
1153				dev_priv->saveFPB1;
1154
1155		is_lvds = (pipe == 1) && (dev_priv->saveLVDS & LVDS_PORT_EN);
1156	}
1157
1158	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
1159	clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
1160	clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
1161
1162	if (is_lvds) {
1163		clock.p1 =
1164		    ffs((dpll &
1165			 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
1166			DPLL_FPA01_P1_POST_DIV_SHIFT);
1167		clock.p2 = 14;
1168
1169		if ((dpll & PLL_REF_INPUT_MASK) ==
1170		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
1171			/* XXX: might not be 66MHz */
1172			i8xx_clock(66000, &clock);
1173		} else
1174			i8xx_clock(48000, &clock);
1175	} else {
1176		if (dpll & PLL_P1_DIVIDE_BY_TWO)
1177			clock.p1 = 2;
1178		else {
1179			clock.p1 =
1180			    ((dpll &
1181			      DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
1182			     DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
1183		}
1184		if (dpll & PLL_P2_DIVIDE_BY_4)
1185			clock.p2 = 4;
1186		else
1187			clock.p2 = 2;
1188
1189		i8xx_clock(48000, &clock);
1190	}
1191
1192	/* XXX: It would be nice to validate the clocks, but we can't reuse
1193	 * i830PllIsValid() because it relies on the xf86_config connector
1194	 * configuration being accurate, which it isn't necessarily.
1195	 */
1196
1197	return clock.dot;
1198}
1199
1200/** Returns the currently programmed mode of the given pipe. */
1201struct drm_display_mode *psb_intel_crtc_mode_get(struct drm_device *dev,
1202					     struct drm_crtc *crtc)
1203{
1204	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1205	int pipe = psb_intel_crtc->pipe;
1206	struct drm_display_mode *mode;
1207	int htot;
1208	int hsync;
1209	int vtot;
1210	int vsync;
1211	struct drm_psb_private *dev_priv = dev->dev_private;
1212
1213	if (gma_power_begin(dev, false)) {
1214		htot = REG_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
1215		hsync = REG_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
1216		vtot = REG_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
1217		vsync = REG_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
1218		gma_power_end(dev);
1219	} else {
1220		htot = (pipe == 0) ?
1221			dev_priv->saveHTOTAL_A : dev_priv->saveHTOTAL_B;
1222		hsync = (pipe == 0) ?
1223			dev_priv->saveHSYNC_A : dev_priv->saveHSYNC_B;
1224		vtot = (pipe == 0) ?
1225			dev_priv->saveVTOTAL_A : dev_priv->saveVTOTAL_B;
1226		vsync = (pipe == 0) ?
1227			dev_priv->saveVSYNC_A : dev_priv->saveVSYNC_B;
1228	}
1229
1230	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
1231	if (!mode)
1232		return NULL;
1233
1234	mode->clock = psb_intel_crtc_clock_get(dev, crtc);
1235	mode->hdisplay = (htot & 0xffff) + 1;
1236	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
1237	mode->hsync_start = (hsync & 0xffff) + 1;
1238	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
1239	mode->vdisplay = (vtot & 0xffff) + 1;
1240	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
1241	mode->vsync_start = (vsync & 0xffff) + 1;
1242	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
1243
1244	drm_mode_set_name(mode);
1245	drm_mode_set_crtcinfo(mode, 0);
1246
1247	return mode;
1248}
1249
1250void psb_intel_crtc_destroy(struct drm_crtc *crtc)
1251{
1252	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1253	struct gtt_range *gt;
1254
1255	/* Unpin the old GEM object */
1256	if (psb_intel_crtc->cursor_obj) {
1257		gt = container_of(psb_intel_crtc->cursor_obj,
1258						struct gtt_range, gem);
1259		psb_gtt_unpin(gt);
1260		drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
1261		psb_intel_crtc->cursor_obj = NULL;
1262	}
1263	kfree(psb_intel_crtc->crtc_state);
1264	drm_crtc_cleanup(crtc);
1265	kfree(psb_intel_crtc);
1266}
1267
1268const struct drm_crtc_helper_funcs psb_intel_helper_funcs = {
1269	.dpms = psb_intel_crtc_dpms,
1270	.mode_fixup = psb_intel_crtc_mode_fixup,
1271	.mode_set = psb_intel_crtc_mode_set,
1272	.mode_set_base = psb_intel_pipe_set_base,
1273	.prepare = psb_intel_crtc_prepare,
1274	.commit = psb_intel_crtc_commit,
1275};
1276
1277const struct drm_crtc_funcs psb_intel_crtc_funcs = {
1278	.save = psb_intel_crtc_save,
1279	.restore = psb_intel_crtc_restore,
1280	.cursor_set = psb_intel_crtc_cursor_set,
1281	.cursor_move = psb_intel_crtc_cursor_move,
1282	.gamma_set = psb_intel_crtc_gamma_set,
1283	.set_config = psb_crtc_set_config,
1284	.destroy = psb_intel_crtc_destroy,
1285};
1286
1287/*
1288 * Set the default value of cursor control and base register
1289 * to zero. This is a workaround for h/w defect on Oaktrail
1290 */
1291static void psb_intel_cursor_init(struct drm_device *dev, int pipe)
1292{
1293	u32 control[3] = { CURACNTR, CURBCNTR, CURCCNTR };
1294	u32 base[3] = { CURABASE, CURBBASE, CURCBASE };
1295
1296	REG_WRITE(control[pipe], 0);
1297	REG_WRITE(base[pipe], 0);
1298}
1299
1300void psb_intel_crtc_init(struct drm_device *dev, int pipe,
1301		     struct psb_intel_mode_device *mode_dev)
1302{
1303	struct drm_psb_private *dev_priv = dev->dev_private;
1304	struct psb_intel_crtc *psb_intel_crtc;
1305	int i;
1306	uint16_t *r_base, *g_base, *b_base;
1307
1308	/* We allocate a extra array of drm_connector pointers
1309	 * for fbdev after the crtc */
1310	psb_intel_crtc =
1311	    kzalloc(sizeof(struct psb_intel_crtc) +
1312		    (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)),
1313		    GFP_KERNEL);
1314	if (psb_intel_crtc == NULL)
1315		return;
1316
1317	psb_intel_crtc->crtc_state =
1318		kzalloc(sizeof(struct psb_intel_crtc_state), GFP_KERNEL);
1319	if (!psb_intel_crtc->crtc_state) {
1320		dev_err(dev->dev, "Crtc state error: No memory\n");
1321		kfree(psb_intel_crtc);
1322		return;
1323	}
1324
1325	/* Set the CRTC operations from the chip specific data */
1326	drm_crtc_init(dev, &psb_intel_crtc->base, dev_priv->ops->crtc_funcs);
1327
1328	drm_mode_crtc_set_gamma_size(&psb_intel_crtc->base, 256);
1329	psb_intel_crtc->pipe = pipe;
1330	psb_intel_crtc->plane = pipe;
1331
1332	r_base = psb_intel_crtc->base.gamma_store;
1333	g_base = r_base + 256;
1334	b_base = g_base + 256;
1335	for (i = 0; i < 256; i++) {
1336		psb_intel_crtc->lut_r[i] = i;
1337		psb_intel_crtc->lut_g[i] = i;
1338		psb_intel_crtc->lut_b[i] = i;
1339		r_base[i] = i << 8;
1340		g_base[i] = i << 8;
1341		b_base[i] = i << 8;
1342
1343		psb_intel_crtc->lut_adj[i] = 0;
1344	}
1345
1346	psb_intel_crtc->mode_dev = mode_dev;
1347	psb_intel_crtc->cursor_addr = 0;
1348
1349	drm_crtc_helper_add(&psb_intel_crtc->base,
1350						dev_priv->ops->crtc_helper);
1351
1352	/* Setup the array of drm_connector pointer array */
1353	psb_intel_crtc->mode_set.crtc = &psb_intel_crtc->base;
1354	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
1355	       dev_priv->plane_to_crtc_mapping[psb_intel_crtc->plane] != NULL);
1356	dev_priv->plane_to_crtc_mapping[psb_intel_crtc->plane] =
1357							&psb_intel_crtc->base;
1358	dev_priv->pipe_to_crtc_mapping[psb_intel_crtc->pipe] =
1359							&psb_intel_crtc->base;
1360	psb_intel_crtc->mode_set.connectors =
1361	    (struct drm_connector **) (psb_intel_crtc + 1);
1362	psb_intel_crtc->mode_set.num_connectors = 0;
1363	psb_intel_cursor_init(dev, pipe);
1364}
1365
1366int psb_intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
1367				struct drm_file *file_priv)
1368{
1369	struct drm_psb_private *dev_priv = dev->dev_private;
1370	struct drm_psb_get_pipe_from_crtc_id_arg *pipe_from_crtc_id = data;
1371	struct drm_mode_object *drmmode_obj;
1372	struct psb_intel_crtc *crtc;
1373
1374	if (!dev_priv) {
1375		dev_err(dev->dev, "called with no initialization\n");
1376		return -EINVAL;
1377	}
1378
1379	drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
1380			DRM_MODE_OBJECT_CRTC);
1381
1382	if (!drmmode_obj) {
1383		dev_err(dev->dev, "no such CRTC id\n");
1384		return -EINVAL;
1385	}
1386
1387	crtc = to_psb_intel_crtc(obj_to_crtc(drmmode_obj));
1388	pipe_from_crtc_id->pipe = crtc->pipe;
1389
1390	return 0;
1391}
1392
1393struct drm_crtc *psb_intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
1394{
1395	struct drm_crtc *crtc = NULL;
1396
1397	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1398		struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1399		if (psb_intel_crtc->pipe == pipe)
1400			break;
1401	}
1402	return crtc;
1403}
1404
1405int psb_intel_connector_clones(struct drm_device *dev, int type_mask)
1406{
1407	int index_mask = 0;
1408	struct drm_connector *connector;
1409	int entry = 0;
1410
1411	list_for_each_entry(connector, &dev->mode_config.connector_list,
1412			    head) {
1413		struct psb_intel_encoder *psb_intel_encoder =
1414					psb_intel_attached_encoder(connector);
1415		if (type_mask & (1 << psb_intel_encoder->type))
1416			index_mask |= (1 << entry);
1417		entry++;
1418	}
1419	return index_mask;
1420}
1421
1422
1423void psb_intel_modeset_cleanup(struct drm_device *dev)
1424{
1425	drm_mode_config_cleanup(dev);
1426}
1427
1428
1429/* current intel driver doesn't take advantage of encoders
1430   always give back the encoder for the connector
1431*/
1432struct drm_encoder *psb_intel_best_encoder(struct drm_connector *connector)
1433{
1434	struct psb_intel_encoder *psb_intel_encoder =
1435					psb_intel_attached_encoder(connector);
1436
1437	return &psb_intel_encoder->base;
1438}
1439
1440void psb_intel_connector_attach_encoder(struct psb_intel_connector *connector,
1441					struct psb_intel_encoder *encoder)
1442{
1443	connector->encoder = encoder;
1444	drm_mode_connector_attach_encoder(&connector->base,
1445					  &encoder->base);
1446}
1447