1/*
2  adm1031.c - Part of lm_sensors, Linux kernel modules for hardware
3  monitoring
4  Based on lm75.c and lm85.c
5  Supports adm1030 / adm1031
6  Copyright (C) 2004 Alexandre d'Alton <alex@alexdalton.org>
7  Reworked by Jean Delvare <khali@linux-fr.org>
8
9  This program is free software; you can redistribute it and/or modify
10  it under the terms of the GNU General Public License as published by
11  the Free Software Foundation; either version 2 of the License, or
12  (at your option) any later version.
13
14  This program is distributed in the hope that it will be useful,
15  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  GNU General Public License for more details.
18
19  You should have received a copy of the GNU General Public License
20  along with this program; if not, write to the Free Software
21  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22*/
23
24#include <linux/module.h>
25#include <linux/init.h>
26#include <linux/slab.h>
27#include <linux/jiffies.h>
28#include <linux/i2c.h>
29#include <linux/hwmon.h>
30#include <linux/hwmon-sysfs.h>
31#include <linux/err.h>
32#include <linux/mutex.h>
33
34/* Following macros takes channel parameter starting from 0 to 2 */
35#define ADM1031_REG_FAN_SPEED(nr)	(0x08 + (nr))
36#define ADM1031_REG_FAN_DIV(nr)		(0x20 + (nr))
37#define ADM1031_REG_PWM			(0x22)
38#define ADM1031_REG_FAN_MIN(nr)		(0x10 + (nr))
39#define ADM1031_REG_FAN_FILTER		(0x23)
40
41#define ADM1031_REG_TEMP_OFFSET(nr)	(0x0d + (nr))
42#define ADM1031_REG_TEMP_MAX(nr)	(0x14 + 4 * (nr))
43#define ADM1031_REG_TEMP_MIN(nr)	(0x15 + 4 * (nr))
44#define ADM1031_REG_TEMP_CRIT(nr)	(0x16 + 4 * (nr))
45
46#define ADM1031_REG_TEMP(nr)		(0x0a + (nr))
47#define ADM1031_REG_AUTO_TEMP(nr)	(0x24 + (nr))
48
49#define ADM1031_REG_STATUS(nr)		(0x2 + (nr))
50
51#define ADM1031_REG_CONF1		0x00
52#define ADM1031_REG_CONF2		0x01
53#define ADM1031_REG_EXT_TEMP		0x06
54
55#define ADM1031_CONF1_MONITOR_ENABLE	0x01	/* Monitoring enable */
56#define ADM1031_CONF1_PWM_INVERT	0x08	/* PWM Invert */
57#define ADM1031_CONF1_AUTO_MODE		0x80	/* Auto FAN */
58
59#define ADM1031_CONF2_PWM1_ENABLE	0x01
60#define ADM1031_CONF2_PWM2_ENABLE	0x02
61#define ADM1031_CONF2_TACH1_ENABLE	0x04
62#define ADM1031_CONF2_TACH2_ENABLE	0x08
63#define ADM1031_CONF2_TEMP_ENABLE(chan)	(0x10 << (chan))
64
65#define ADM1031_UPDATE_RATE_MASK	0x1c
66#define ADM1031_UPDATE_RATE_SHIFT	2
67
68/* Addresses to scan */
69static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
70
71enum chips { adm1030, adm1031 };
72
73typedef u8 auto_chan_table_t[8][2];
74
75/* Each client has this additional data */
76struct adm1031_data {
77	struct device *hwmon_dev;
78	struct mutex update_lock;
79	int chip_type;
80	char valid;		/* !=0 if following fields are valid */
81	unsigned long last_updated;	/* In jiffies */
82	unsigned int update_interval;	/* In milliseconds */
83	/* The chan_select_table contains the possible configurations for
84	 * auto fan control.
85	 */
86	const auto_chan_table_t *chan_select_table;
87	u16 alarm;
88	u8 conf1;
89	u8 conf2;
90	u8 fan[2];
91	u8 fan_div[2];
92	u8 fan_min[2];
93	u8 pwm[2];
94	u8 old_pwm[2];
95	s8 temp[3];
96	u8 ext_temp[3];
97	u8 auto_temp[3];
98	u8 auto_temp_min[3];
99	u8 auto_temp_off[3];
100	u8 auto_temp_max[3];
101	s8 temp_offset[3];
102	s8 temp_min[3];
103	s8 temp_max[3];
104	s8 temp_crit[3];
105};
106
107static int adm1031_probe(struct i2c_client *client,
108			 const struct i2c_device_id *id);
109static int adm1031_detect(struct i2c_client *client,
110			  struct i2c_board_info *info);
111static void adm1031_init_client(struct i2c_client *client);
112static int adm1031_remove(struct i2c_client *client);
113static struct adm1031_data *adm1031_update_device(struct device *dev);
114
115static const struct i2c_device_id adm1031_id[] = {
116	{ "adm1030", adm1030 },
117	{ "adm1031", adm1031 },
118	{ }
119};
120MODULE_DEVICE_TABLE(i2c, adm1031_id);
121
122/* This is the driver that will be inserted */
123static struct i2c_driver adm1031_driver = {
124	.class		= I2C_CLASS_HWMON,
125	.driver = {
126		.name = "adm1031",
127	},
128	.probe		= adm1031_probe,
129	.remove		= adm1031_remove,
130	.id_table	= adm1031_id,
131	.detect		= adm1031_detect,
132	.address_list	= normal_i2c,
133};
134
135static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg)
136{
137	return i2c_smbus_read_byte_data(client, reg);
138}
139
140static inline int
141adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value)
142{
143	return i2c_smbus_write_byte_data(client, reg, value);
144}
145
146
147#define TEMP_TO_REG(val)		(((val) < 0 ? ((val - 500) / 1000) : \
148					((val + 500) / 1000)))
149
150#define TEMP_FROM_REG(val)		((val) * 1000)
151
152#define TEMP_FROM_REG_EXT(val, ext)	(TEMP_FROM_REG(val) + (ext) * 125)
153
154#define TEMP_OFFSET_TO_REG(val)		(TEMP_TO_REG(val) & 0x8f)
155#define TEMP_OFFSET_FROM_REG(val)	TEMP_FROM_REG((val) < 0 ? \
156						      (val) | 0x70 : (val))
157
158#define FAN_FROM_REG(reg, div)		((reg) ? \
159					 (11250 * 60) / ((reg) * (div)) : 0)
160
161static int FAN_TO_REG(int reg, int div)
162{
163	int tmp;
164	tmp = FAN_FROM_REG(SENSORS_LIMIT(reg, 0, 65535), div);
165	return tmp > 255 ? 255 : tmp;
166}
167
168#define FAN_DIV_FROM_REG(reg)		(1<<(((reg)&0xc0)>>6))
169
170#define PWM_TO_REG(val)			(SENSORS_LIMIT((val), 0, 255) >> 4)
171#define PWM_FROM_REG(val)		((val) << 4)
172
173#define FAN_CHAN_FROM_REG(reg)		(((reg) >> 5) & 7)
174#define FAN_CHAN_TO_REG(val, reg)	\
175	(((reg) & 0x1F) | (((val) << 5) & 0xe0))
176
177#define AUTO_TEMP_MIN_TO_REG(val, reg)	\
178	((((val) / 500) & 0xf8) | ((reg) & 0x7))
179#define AUTO_TEMP_RANGE_FROM_REG(reg)	(5000 * (1 << ((reg) & 0x7)))
180#define AUTO_TEMP_MIN_FROM_REG(reg)	(1000 * ((((reg) >> 3) & 0x1f) << 2))
181
182#define AUTO_TEMP_MIN_FROM_REG_DEG(reg)	((((reg) >> 3) & 0x1f) << 2)
183
184#define AUTO_TEMP_OFF_FROM_REG(reg)		\
185	(AUTO_TEMP_MIN_FROM_REG(reg) - 5000)
186
187#define AUTO_TEMP_MAX_FROM_REG(reg)		\
188	(AUTO_TEMP_RANGE_FROM_REG(reg) +	\
189	AUTO_TEMP_MIN_FROM_REG(reg))
190
191static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm)
192{
193	int ret;
194	int range = val - AUTO_TEMP_MIN_FROM_REG(reg);
195
196	range = ((val - AUTO_TEMP_MIN_FROM_REG(reg))*10)/(16 - pwm);
197	ret = ((reg & 0xf8) |
198	       (range < 10000 ? 0 :
199		range < 20000 ? 1 :
200		range < 40000 ? 2 : range < 80000 ? 3 : 4));
201	return ret;
202}
203
204/* FAN auto control */
205#define GET_FAN_AUTO_BITFIELD(data, idx)	\
206	(*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx % 2]
207
208/* The tables below contains the possible values for the auto fan
209 * control bitfields. the index in the table is the register value.
210 * MSb is the auto fan control enable bit, so the four first entries
211 * in the table disables auto fan control when both bitfields are zero.
212 */
213static const auto_chan_table_t auto_channel_select_table_adm1031 = {
214	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
215	{ 2 /* 0b010 */ , 4 /* 0b100 */ },
216	{ 2 /* 0b010 */ , 2 /* 0b010 */ },
217	{ 4 /* 0b100 */ , 4 /* 0b100 */ },
218	{ 7 /* 0b111 */ , 7 /* 0b111 */ },
219};
220
221static const auto_chan_table_t auto_channel_select_table_adm1030 = {
222	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
223	{ 2 /* 0b10 */		, 0 },
224	{ 0xff /* invalid */	, 0 },
225	{ 0xff /* invalid */	, 0 },
226	{ 3 /* 0b11 */		, 0 },
227};
228
229/* That function checks if a bitfield is valid and returns the other bitfield
230 * nearest match if no exact match where found.
231 */
232static int
233get_fan_auto_nearest(struct adm1031_data *data,
234		     int chan, u8 val, u8 reg, u8 *new_reg)
235{
236	int i;
237	int first_match = -1, exact_match = -1;
238	u8 other_reg_val =
239	    (*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1];
240
241	if (val == 0) {
242		*new_reg = 0;
243		return 0;
244	}
245
246	for (i = 0; i < 8; i++) {
247		if ((val == (*data->chan_select_table)[i][chan]) &&
248		    ((*data->chan_select_table)[i][chan ? 0 : 1] ==
249		     other_reg_val)) {
250			/* We found an exact match */
251			exact_match = i;
252			break;
253		} else if (val == (*data->chan_select_table)[i][chan] &&
254			   first_match == -1) {
255			/* Save the first match in case of an exact match has
256			 * not been found
257			 */
258			first_match = i;
259		}
260	}
261
262	if (exact_match >= 0)
263		*new_reg = exact_match;
264	else if (first_match >= 0)
265		*new_reg = first_match;
266	else
267		return -EINVAL;
268
269	return 0;
270}
271
272static ssize_t show_fan_auto_channel(struct device *dev,
273				     struct device_attribute *attr, char *buf)
274{
275	int nr = to_sensor_dev_attr(attr)->index;
276	struct adm1031_data *data = adm1031_update_device(dev);
277	return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr));
278}
279
280static ssize_t
281set_fan_auto_channel(struct device *dev, struct device_attribute *attr,
282		     const char *buf, size_t count)
283{
284	struct i2c_client *client = to_i2c_client(dev);
285	struct adm1031_data *data = i2c_get_clientdata(client);
286	int nr = to_sensor_dev_attr(attr)->index;
287	long val;
288	u8 reg;
289	int ret;
290	u8 old_fan_mode;
291
292	ret = kstrtol(buf, 10, &val);
293	if (ret)
294		return ret;
295
296	old_fan_mode = data->conf1;
297
298	mutex_lock(&data->update_lock);
299
300	ret = get_fan_auto_nearest(data, nr, val, data->conf1, &reg);
301	if (ret) {
302		mutex_unlock(&data->update_lock);
303		return ret;
304	}
305	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
306	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) ^
307	    (old_fan_mode & ADM1031_CONF1_AUTO_MODE)) {
308		if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
309			/* Switch to Auto Fan Mode
310			 * Save PWM registers
311			 * Set PWM registers to 33% Both */
312			data->old_pwm[0] = data->pwm[0];
313			data->old_pwm[1] = data->pwm[1];
314			adm1031_write_value(client, ADM1031_REG_PWM, 0x55);
315		} else {
316			/* Switch to Manual Mode */
317			data->pwm[0] = data->old_pwm[0];
318			data->pwm[1] = data->old_pwm[1];
319			/* Restore PWM registers */
320			adm1031_write_value(client, ADM1031_REG_PWM,
321					    data->pwm[0] | (data->pwm[1] << 4));
322		}
323	}
324	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
325	adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1);
326	mutex_unlock(&data->update_lock);
327	return count;
328}
329
330static SENSOR_DEVICE_ATTR(auto_fan1_channel, S_IRUGO | S_IWUSR,
331		show_fan_auto_channel, set_fan_auto_channel, 0);
332static SENSOR_DEVICE_ATTR(auto_fan2_channel, S_IRUGO | S_IWUSR,
333		show_fan_auto_channel, set_fan_auto_channel, 1);
334
335/* Auto Temps */
336static ssize_t show_auto_temp_off(struct device *dev,
337				  struct device_attribute *attr, char *buf)
338{
339	int nr = to_sensor_dev_attr(attr)->index;
340	struct adm1031_data *data = adm1031_update_device(dev);
341	return sprintf(buf, "%d\n",
342		       AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr]));
343}
344static ssize_t show_auto_temp_min(struct device *dev,
345				  struct device_attribute *attr, char *buf)
346{
347	int nr = to_sensor_dev_attr(attr)->index;
348	struct adm1031_data *data = adm1031_update_device(dev);
349	return sprintf(buf, "%d\n",
350		       AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr]));
351}
352static ssize_t
353set_auto_temp_min(struct device *dev, struct device_attribute *attr,
354		  const char *buf, size_t count)
355{
356	struct i2c_client *client = to_i2c_client(dev);
357	struct adm1031_data *data = i2c_get_clientdata(client);
358	int nr = to_sensor_dev_attr(attr)->index;
359	long val;
360	int ret;
361
362	ret = kstrtol(buf, 10, &val);
363	if (ret)
364		return ret;
365
366	mutex_lock(&data->update_lock);
367	data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]);
368	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
369			    data->auto_temp[nr]);
370	mutex_unlock(&data->update_lock);
371	return count;
372}
373static ssize_t show_auto_temp_max(struct device *dev,
374				  struct device_attribute *attr, char *buf)
375{
376	int nr = to_sensor_dev_attr(attr)->index;
377	struct adm1031_data *data = adm1031_update_device(dev);
378	return sprintf(buf, "%d\n",
379		       AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr]));
380}
381static ssize_t
382set_auto_temp_max(struct device *dev, struct device_attribute *attr,
383		  const char *buf, size_t count)
384{
385	struct i2c_client *client = to_i2c_client(dev);
386	struct adm1031_data *data = i2c_get_clientdata(client);
387	int nr = to_sensor_dev_attr(attr)->index;
388	long val;
389	int ret;
390
391	ret = kstrtol(buf, 10, &val);
392	if (ret)
393		return ret;
394
395	mutex_lock(&data->update_lock);
396	data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr],
397						  data->pwm[nr]);
398	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
399			    data->temp_max[nr]);
400	mutex_unlock(&data->update_lock);
401	return count;
402}
403
404#define auto_temp_reg(offset)						\
405static SENSOR_DEVICE_ATTR(auto_temp##offset##_off, S_IRUGO,		\
406		show_auto_temp_off, NULL, offset - 1);			\
407static SENSOR_DEVICE_ATTR(auto_temp##offset##_min, S_IRUGO | S_IWUSR,	\
408		show_auto_temp_min, set_auto_temp_min, offset - 1);	\
409static SENSOR_DEVICE_ATTR(auto_temp##offset##_max, S_IRUGO | S_IWUSR,	\
410		show_auto_temp_max, set_auto_temp_max, offset - 1)
411
412auto_temp_reg(1);
413auto_temp_reg(2);
414auto_temp_reg(3);
415
416/* pwm */
417static ssize_t show_pwm(struct device *dev,
418			struct device_attribute *attr, char *buf)
419{
420	int nr = to_sensor_dev_attr(attr)->index;
421	struct adm1031_data *data = adm1031_update_device(dev);
422	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
423}
424static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
425		       const char *buf, size_t count)
426{
427	struct i2c_client *client = to_i2c_client(dev);
428	struct adm1031_data *data = i2c_get_clientdata(client);
429	int nr = to_sensor_dev_attr(attr)->index;
430	long val;
431	int ret, reg;
432
433	ret = kstrtol(buf, 10, &val);
434	if (ret)
435		return ret;
436
437	mutex_lock(&data->update_lock);
438	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) &&
439	    (((val>>4) & 0xf) != 5)) {
440		/* In automatic mode, the only PWM accepted is 33% */
441		mutex_unlock(&data->update_lock);
442		return -EINVAL;
443	}
444	data->pwm[nr] = PWM_TO_REG(val);
445	reg = adm1031_read_value(client, ADM1031_REG_PWM);
446	adm1031_write_value(client, ADM1031_REG_PWM,
447			    nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf)
448			    : (data->pwm[nr] & 0xf) | (reg & 0xf0));
449	mutex_unlock(&data->update_lock);
450	return count;
451}
452
453static SENSOR_DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 0);
454static SENSOR_DEVICE_ATTR(pwm2, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 1);
455static SENSOR_DEVICE_ATTR(auto_fan1_min_pwm, S_IRUGO | S_IWUSR,
456		show_pwm, set_pwm, 0);
457static SENSOR_DEVICE_ATTR(auto_fan2_min_pwm, S_IRUGO | S_IWUSR,
458		show_pwm, set_pwm, 1);
459
460/* Fans */
461
462/*
463 * That function checks the cases where the fan reading is not
464 * relevant.  It is used to provide 0 as fan reading when the fan is
465 * not supposed to run
466 */
467static int trust_fan_readings(struct adm1031_data *data, int chan)
468{
469	int res = 0;
470
471	if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
472		switch (data->conf1 & 0x60) {
473		case 0x00:
474			/*
475			 * remote temp1 controls fan1,
476			 * remote temp2 controls fan2
477			 */
478			res = data->temp[chan+1] >=
479			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]);
480			break;
481		case 0x20:	/* remote temp1 controls both fans */
482			res =
483			    data->temp[1] >=
484			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]);
485			break;
486		case 0x40:	/* remote temp2 controls both fans */
487			res =
488			    data->temp[2] >=
489			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]);
490			break;
491		case 0x60:	/* max controls both fans */
492			res =
493			    data->temp[0] >=
494			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0])
495			    || data->temp[1] >=
496			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1])
497			    || (data->chip_type == adm1031
498				&& data->temp[2] >=
499				AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]));
500			break;
501		}
502	} else {
503		res = data->pwm[chan] > 0;
504	}
505	return res;
506}
507
508
509static ssize_t show_fan(struct device *dev,
510			struct device_attribute *attr, char *buf)
511{
512	int nr = to_sensor_dev_attr(attr)->index;
513	struct adm1031_data *data = adm1031_update_device(dev);
514	int value;
515
516	value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr],
517				 FAN_DIV_FROM_REG(data->fan_div[nr])) : 0;
518	return sprintf(buf, "%d\n", value);
519}
520
521static ssize_t show_fan_div(struct device *dev,
522			    struct device_attribute *attr, char *buf)
523{
524	int nr = to_sensor_dev_attr(attr)->index;
525	struct adm1031_data *data = adm1031_update_device(dev);
526	return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr]));
527}
528static ssize_t show_fan_min(struct device *dev,
529			    struct device_attribute *attr, char *buf)
530{
531	int nr = to_sensor_dev_attr(attr)->index;
532	struct adm1031_data *data = adm1031_update_device(dev);
533	return sprintf(buf, "%d\n",
534		       FAN_FROM_REG(data->fan_min[nr],
535				    FAN_DIV_FROM_REG(data->fan_div[nr])));
536}
537static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
538			   const char *buf, size_t count)
539{
540	struct i2c_client *client = to_i2c_client(dev);
541	struct adm1031_data *data = i2c_get_clientdata(client);
542	int nr = to_sensor_dev_attr(attr)->index;
543	long val;
544	int ret;
545
546	ret = kstrtol(buf, 10, &val);
547	if (ret)
548		return ret;
549
550	mutex_lock(&data->update_lock);
551	if (val) {
552		data->fan_min[nr] =
553			FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr]));
554	} else {
555		data->fan_min[nr] = 0xff;
556	}
557	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]);
558	mutex_unlock(&data->update_lock);
559	return count;
560}
561static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
562			   const char *buf, size_t count)
563{
564	struct i2c_client *client = to_i2c_client(dev);
565	struct adm1031_data *data = i2c_get_clientdata(client);
566	int nr = to_sensor_dev_attr(attr)->index;
567	long val;
568	u8 tmp;
569	int old_div;
570	int new_min;
571	int ret;
572
573	ret = kstrtol(buf, 10, &val);
574	if (ret)
575		return ret;
576
577	tmp = val == 8 ? 0xc0 :
578	      val == 4 ? 0x80 :
579	      val == 2 ? 0x40 :
580	      val == 1 ? 0x00 :
581	      0xff;
582	if (tmp == 0xff)
583		return -EINVAL;
584
585	mutex_lock(&data->update_lock);
586	/* Get fresh readings */
587	data->fan_div[nr] = adm1031_read_value(client,
588					       ADM1031_REG_FAN_DIV(nr));
589	data->fan_min[nr] = adm1031_read_value(client,
590					       ADM1031_REG_FAN_MIN(nr));
591
592	/* Write the new clock divider and fan min */
593	old_div = FAN_DIV_FROM_REG(data->fan_div[nr]);
594	data->fan_div[nr] = tmp | (0x3f & data->fan_div[nr]);
595	new_min = data->fan_min[nr] * old_div / val;
596	data->fan_min[nr] = new_min > 0xff ? 0xff : new_min;
597
598	adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr),
599			    data->fan_div[nr]);
600	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr),
601			    data->fan_min[nr]);
602
603	/* Invalidate the cache: fan speed is no longer valid */
604	data->valid = 0;
605	mutex_unlock(&data->update_lock);
606	return count;
607}
608
609#define fan_offset(offset)						\
610static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO,			\
611		show_fan, NULL, offset - 1);				\
612static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR,		\
613		show_fan_min, set_fan_min, offset - 1);			\
614static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR,		\
615		show_fan_div, set_fan_div, offset - 1)
616
617fan_offset(1);
618fan_offset(2);
619
620
621/* Temps */
622static ssize_t show_temp(struct device *dev,
623			 struct device_attribute *attr, char *buf)
624{
625	int nr = to_sensor_dev_attr(attr)->index;
626	struct adm1031_data *data = adm1031_update_device(dev);
627	int ext;
628	ext = nr == 0 ?
629	    ((data->ext_temp[nr] >> 6) & 0x3) * 2 :
630	    (((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7));
631	return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext));
632}
633static ssize_t show_temp_offset(struct device *dev,
634				struct device_attribute *attr, char *buf)
635{
636	int nr = to_sensor_dev_attr(attr)->index;
637	struct adm1031_data *data = adm1031_update_device(dev);
638	return sprintf(buf, "%d\n",
639		       TEMP_OFFSET_FROM_REG(data->temp_offset[nr]));
640}
641static ssize_t show_temp_min(struct device *dev,
642			     struct device_attribute *attr, char *buf)
643{
644	int nr = to_sensor_dev_attr(attr)->index;
645	struct adm1031_data *data = adm1031_update_device(dev);
646	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
647}
648static ssize_t show_temp_max(struct device *dev,
649			     struct device_attribute *attr, char *buf)
650{
651	int nr = to_sensor_dev_attr(attr)->index;
652	struct adm1031_data *data = adm1031_update_device(dev);
653	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
654}
655static ssize_t show_temp_crit(struct device *dev,
656			      struct device_attribute *attr, char *buf)
657{
658	int nr = to_sensor_dev_attr(attr)->index;
659	struct adm1031_data *data = adm1031_update_device(dev);
660	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
661}
662static ssize_t set_temp_offset(struct device *dev,
663			       struct device_attribute *attr, const char *buf,
664			       size_t count)
665{
666	struct i2c_client *client = to_i2c_client(dev);
667	struct adm1031_data *data = i2c_get_clientdata(client);
668	int nr = to_sensor_dev_attr(attr)->index;
669	long val;
670	int ret;
671
672	ret = kstrtol(buf, 10, &val);
673	if (ret)
674		return ret;
675
676	val = SENSORS_LIMIT(val, -15000, 15000);
677	mutex_lock(&data->update_lock);
678	data->temp_offset[nr] = TEMP_OFFSET_TO_REG(val);
679	adm1031_write_value(client, ADM1031_REG_TEMP_OFFSET(nr),
680			    data->temp_offset[nr]);
681	mutex_unlock(&data->update_lock);
682	return count;
683}
684static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
685			    const char *buf, size_t count)
686{
687	struct i2c_client *client = to_i2c_client(dev);
688	struct adm1031_data *data = i2c_get_clientdata(client);
689	int nr = to_sensor_dev_attr(attr)->index;
690	long val;
691	int ret;
692
693	ret = kstrtol(buf, 10, &val);
694	if (ret)
695		return ret;
696
697	val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
698	mutex_lock(&data->update_lock);
699	data->temp_min[nr] = TEMP_TO_REG(val);
700	adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr),
701			    data->temp_min[nr]);
702	mutex_unlock(&data->update_lock);
703	return count;
704}
705static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
706			    const char *buf, size_t count)
707{
708	struct i2c_client *client = to_i2c_client(dev);
709	struct adm1031_data *data = i2c_get_clientdata(client);
710	int nr = to_sensor_dev_attr(attr)->index;
711	long val;
712	int ret;
713
714	ret = kstrtol(buf, 10, &val);
715	if (ret)
716		return ret;
717
718	val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
719	mutex_lock(&data->update_lock);
720	data->temp_max[nr] = TEMP_TO_REG(val);
721	adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr),
722			    data->temp_max[nr]);
723	mutex_unlock(&data->update_lock);
724	return count;
725}
726static ssize_t set_temp_crit(struct device *dev, struct device_attribute *attr,
727			     const char *buf, size_t count)
728{
729	struct i2c_client *client = to_i2c_client(dev);
730	struct adm1031_data *data = i2c_get_clientdata(client);
731	int nr = to_sensor_dev_attr(attr)->index;
732	long val;
733	int ret;
734
735	ret = kstrtol(buf, 10, &val);
736	if (ret)
737		return ret;
738
739	val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
740	mutex_lock(&data->update_lock);
741	data->temp_crit[nr] = TEMP_TO_REG(val);
742	adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr),
743			    data->temp_crit[nr]);
744	mutex_unlock(&data->update_lock);
745	return count;
746}
747
748#define temp_reg(offset)						\
749static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO,		\
750		show_temp, NULL, offset - 1);				\
751static SENSOR_DEVICE_ATTR(temp##offset##_offset, S_IRUGO | S_IWUSR,	\
752		show_temp_offset, set_temp_offset, offset - 1);		\
753static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR,	\
754		show_temp_min, set_temp_min, offset - 1);		\
755static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR,	\
756		show_temp_max, set_temp_max, offset - 1);		\
757static SENSOR_DEVICE_ATTR(temp##offset##_crit, S_IRUGO | S_IWUSR,	\
758		show_temp_crit, set_temp_crit, offset - 1)
759
760temp_reg(1);
761temp_reg(2);
762temp_reg(3);
763
764/* Alarms */
765static ssize_t show_alarms(struct device *dev, struct device_attribute *attr,
766			   char *buf)
767{
768	struct adm1031_data *data = adm1031_update_device(dev);
769	return sprintf(buf, "%d\n", data->alarm);
770}
771
772static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
773
774static ssize_t show_alarm(struct device *dev,
775			  struct device_attribute *attr, char *buf)
776{
777	int bitnr = to_sensor_dev_attr(attr)->index;
778	struct adm1031_data *data = adm1031_update_device(dev);
779	return sprintf(buf, "%d\n", (data->alarm >> bitnr) & 1);
780}
781
782static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 0);
783static SENSOR_DEVICE_ATTR(fan1_fault, S_IRUGO, show_alarm, NULL, 1);
784static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_alarm, NULL, 2);
785static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_alarm, NULL, 3);
786static SENSOR_DEVICE_ATTR(temp2_crit_alarm, S_IRUGO, show_alarm, NULL, 4);
787static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_alarm, NULL, 5);
788static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 6);
789static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_alarm, NULL, 7);
790static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 8);
791static SENSOR_DEVICE_ATTR(fan2_fault, S_IRUGO, show_alarm, NULL, 9);
792static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_alarm, NULL, 10);
793static SENSOR_DEVICE_ATTR(temp3_min_alarm, S_IRUGO, show_alarm, NULL, 11);
794static SENSOR_DEVICE_ATTR(temp3_crit_alarm, S_IRUGO, show_alarm, NULL, 12);
795static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 13);
796static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 14);
797
798/* Update Interval */
799static const unsigned int update_intervals[] = {
800	16000, 8000, 4000, 2000, 1000, 500, 250, 125,
801};
802
803static ssize_t show_update_interval(struct device *dev,
804				    struct device_attribute *attr, char *buf)
805{
806	struct i2c_client *client = to_i2c_client(dev);
807	struct adm1031_data *data = i2c_get_clientdata(client);
808
809	return sprintf(buf, "%u\n", data->update_interval);
810}
811
812static ssize_t set_update_interval(struct device *dev,
813				   struct device_attribute *attr,
814				   const char *buf, size_t count)
815{
816	struct i2c_client *client = to_i2c_client(dev);
817	struct adm1031_data *data = i2c_get_clientdata(client);
818	unsigned long val;
819	int i, err;
820	u8 reg;
821
822	err = kstrtoul(buf, 10, &val);
823	if (err)
824		return err;
825
826	/*
827	 * Find the nearest update interval from the table.
828	 * Use it to determine the matching update rate.
829	 */
830	for (i = 0; i < ARRAY_SIZE(update_intervals) - 1; i++) {
831		if (val >= update_intervals[i])
832			break;
833	}
834	/* if not found, we point to the last entry (lowest update interval) */
835
836	/* set the new update rate while preserving other settings */
837	reg = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
838	reg &= ~ADM1031_UPDATE_RATE_MASK;
839	reg |= i << ADM1031_UPDATE_RATE_SHIFT;
840	adm1031_write_value(client, ADM1031_REG_FAN_FILTER, reg);
841
842	mutex_lock(&data->update_lock);
843	data->update_interval = update_intervals[i];
844	mutex_unlock(&data->update_lock);
845
846	return count;
847}
848
849static DEVICE_ATTR(update_interval, S_IRUGO | S_IWUSR, show_update_interval,
850		   set_update_interval);
851
852static struct attribute *adm1031_attributes[] = {
853	&sensor_dev_attr_fan1_input.dev_attr.attr,
854	&sensor_dev_attr_fan1_div.dev_attr.attr,
855	&sensor_dev_attr_fan1_min.dev_attr.attr,
856	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
857	&sensor_dev_attr_fan1_fault.dev_attr.attr,
858	&sensor_dev_attr_pwm1.dev_attr.attr,
859	&sensor_dev_attr_auto_fan1_channel.dev_attr.attr,
860	&sensor_dev_attr_temp1_input.dev_attr.attr,
861	&sensor_dev_attr_temp1_offset.dev_attr.attr,
862	&sensor_dev_attr_temp1_min.dev_attr.attr,
863	&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
864	&sensor_dev_attr_temp1_max.dev_attr.attr,
865	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
866	&sensor_dev_attr_temp1_crit.dev_attr.attr,
867	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
868	&sensor_dev_attr_temp2_input.dev_attr.attr,
869	&sensor_dev_attr_temp2_offset.dev_attr.attr,
870	&sensor_dev_attr_temp2_min.dev_attr.attr,
871	&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
872	&sensor_dev_attr_temp2_max.dev_attr.attr,
873	&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
874	&sensor_dev_attr_temp2_crit.dev_attr.attr,
875	&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
876	&sensor_dev_attr_temp2_fault.dev_attr.attr,
877
878	&sensor_dev_attr_auto_temp1_off.dev_attr.attr,
879	&sensor_dev_attr_auto_temp1_min.dev_attr.attr,
880	&sensor_dev_attr_auto_temp1_max.dev_attr.attr,
881
882	&sensor_dev_attr_auto_temp2_off.dev_attr.attr,
883	&sensor_dev_attr_auto_temp2_min.dev_attr.attr,
884	&sensor_dev_attr_auto_temp2_max.dev_attr.attr,
885
886	&sensor_dev_attr_auto_fan1_min_pwm.dev_attr.attr,
887
888	&dev_attr_update_interval.attr,
889	&dev_attr_alarms.attr,
890
891	NULL
892};
893
894static const struct attribute_group adm1031_group = {
895	.attrs = adm1031_attributes,
896};
897
898static struct attribute *adm1031_attributes_opt[] = {
899	&sensor_dev_attr_fan2_input.dev_attr.attr,
900	&sensor_dev_attr_fan2_div.dev_attr.attr,
901	&sensor_dev_attr_fan2_min.dev_attr.attr,
902	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
903	&sensor_dev_attr_fan2_fault.dev_attr.attr,
904	&sensor_dev_attr_pwm2.dev_attr.attr,
905	&sensor_dev_attr_auto_fan2_channel.dev_attr.attr,
906	&sensor_dev_attr_temp3_input.dev_attr.attr,
907	&sensor_dev_attr_temp3_offset.dev_attr.attr,
908	&sensor_dev_attr_temp3_min.dev_attr.attr,
909	&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
910	&sensor_dev_attr_temp3_max.dev_attr.attr,
911	&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
912	&sensor_dev_attr_temp3_crit.dev_attr.attr,
913	&sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
914	&sensor_dev_attr_temp3_fault.dev_attr.attr,
915	&sensor_dev_attr_auto_temp3_off.dev_attr.attr,
916	&sensor_dev_attr_auto_temp3_min.dev_attr.attr,
917	&sensor_dev_attr_auto_temp3_max.dev_attr.attr,
918	&sensor_dev_attr_auto_fan2_min_pwm.dev_attr.attr,
919	NULL
920};
921
922static const struct attribute_group adm1031_group_opt = {
923	.attrs = adm1031_attributes_opt,
924};
925
926/* Return 0 if detection is successful, -ENODEV otherwise */
927static int adm1031_detect(struct i2c_client *client,
928			  struct i2c_board_info *info)
929{
930	struct i2c_adapter *adapter = client->adapter;
931	const char *name;
932	int id, co;
933
934	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
935		return -ENODEV;
936
937	id = i2c_smbus_read_byte_data(client, 0x3d);
938	co = i2c_smbus_read_byte_data(client, 0x3e);
939
940	if (!((id == 0x31 || id == 0x30) && co == 0x41))
941		return -ENODEV;
942	name = (id == 0x30) ? "adm1030" : "adm1031";
943
944	strlcpy(info->type, name, I2C_NAME_SIZE);
945
946	return 0;
947}
948
949static int adm1031_probe(struct i2c_client *client,
950			 const struct i2c_device_id *id)
951{
952	struct adm1031_data *data;
953	int err;
954
955	data = kzalloc(sizeof(struct adm1031_data), GFP_KERNEL);
956	if (!data) {
957		err = -ENOMEM;
958		goto exit;
959	}
960
961	i2c_set_clientdata(client, data);
962	data->chip_type = id->driver_data;
963	mutex_init(&data->update_lock);
964
965	if (data->chip_type == adm1030)
966		data->chan_select_table = &auto_channel_select_table_adm1030;
967	else
968		data->chan_select_table = &auto_channel_select_table_adm1031;
969
970	/* Initialize the ADM1031 chip */
971	adm1031_init_client(client);
972
973	/* Register sysfs hooks */
974	err = sysfs_create_group(&client->dev.kobj, &adm1031_group);
975	if (err)
976		goto exit_free;
977
978	if (data->chip_type == adm1031) {
979		err = sysfs_create_group(&client->dev.kobj, &adm1031_group_opt);
980		if (err)
981			goto exit_remove;
982	}
983
984	data->hwmon_dev = hwmon_device_register(&client->dev);
985	if (IS_ERR(data->hwmon_dev)) {
986		err = PTR_ERR(data->hwmon_dev);
987		goto exit_remove;
988	}
989
990	return 0;
991
992exit_remove:
993	sysfs_remove_group(&client->dev.kobj, &adm1031_group);
994	sysfs_remove_group(&client->dev.kobj, &adm1031_group_opt);
995exit_free:
996	kfree(data);
997exit:
998	return err;
999}
1000
1001static int adm1031_remove(struct i2c_client *client)
1002{
1003	struct adm1031_data *data = i2c_get_clientdata(client);
1004
1005	hwmon_device_unregister(data->hwmon_dev);
1006	sysfs_remove_group(&client->dev.kobj, &adm1031_group);
1007	sysfs_remove_group(&client->dev.kobj, &adm1031_group_opt);
1008	kfree(data);
1009	return 0;
1010}
1011
1012static void adm1031_init_client(struct i2c_client *client)
1013{
1014	unsigned int read_val;
1015	unsigned int mask;
1016	int i;
1017	struct adm1031_data *data = i2c_get_clientdata(client);
1018
1019	mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE);
1020	if (data->chip_type == adm1031) {
1021		mask |= (ADM1031_CONF2_PWM2_ENABLE |
1022			ADM1031_CONF2_TACH2_ENABLE);
1023	}
1024	/* Initialize the ADM1031 chip (enables fan speed reading ) */
1025	read_val = adm1031_read_value(client, ADM1031_REG_CONF2);
1026	if ((read_val | mask) != read_val)
1027		adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask);
1028
1029	read_val = adm1031_read_value(client, ADM1031_REG_CONF1);
1030	if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) {
1031		adm1031_write_value(client, ADM1031_REG_CONF1,
1032				    read_val | ADM1031_CONF1_MONITOR_ENABLE);
1033	}
1034
1035	/* Read the chip's update rate */
1036	mask = ADM1031_UPDATE_RATE_MASK;
1037	read_val = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
1038	i = (read_val & mask) >> ADM1031_UPDATE_RATE_SHIFT;
1039	/* Save it as update interval */
1040	data->update_interval = update_intervals[i];
1041}
1042
1043static struct adm1031_data *adm1031_update_device(struct device *dev)
1044{
1045	struct i2c_client *client = to_i2c_client(dev);
1046	struct adm1031_data *data = i2c_get_clientdata(client);
1047	unsigned long next_update;
1048	int chan;
1049
1050	mutex_lock(&data->update_lock);
1051
1052	next_update = data->last_updated
1053	  + msecs_to_jiffies(data->update_interval);
1054	if (time_after(jiffies, next_update) || !data->valid) {
1055
1056		dev_dbg(&client->dev, "Starting adm1031 update\n");
1057		for (chan = 0;
1058		     chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) {
1059			u8 oldh, newh;
1060
1061			oldh =
1062			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
1063			data->ext_temp[chan] =
1064			    adm1031_read_value(client, ADM1031_REG_EXT_TEMP);
1065			newh =
1066			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
1067			if (newh != oldh) {
1068				data->ext_temp[chan] =
1069				    adm1031_read_value(client,
1070						       ADM1031_REG_EXT_TEMP);
1071#ifdef DEBUG
1072				oldh =
1073				    adm1031_read_value(client,
1074						       ADM1031_REG_TEMP(chan));
1075
1076				/* oldh is actually newer */
1077				if (newh != oldh)
1078					dev_warn(&client->dev,
1079					  "Remote temperature may be wrong.\n");
1080#endif
1081			}
1082			data->temp[chan] = newh;
1083
1084			data->temp_offset[chan] =
1085			    adm1031_read_value(client,
1086					       ADM1031_REG_TEMP_OFFSET(chan));
1087			data->temp_min[chan] =
1088			    adm1031_read_value(client,
1089					       ADM1031_REG_TEMP_MIN(chan));
1090			data->temp_max[chan] =
1091			    adm1031_read_value(client,
1092					       ADM1031_REG_TEMP_MAX(chan));
1093			data->temp_crit[chan] =
1094			    adm1031_read_value(client,
1095					       ADM1031_REG_TEMP_CRIT(chan));
1096			data->auto_temp[chan] =
1097			    adm1031_read_value(client,
1098					       ADM1031_REG_AUTO_TEMP(chan));
1099
1100		}
1101
1102		data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1);
1103		data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2);
1104
1105		data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0))
1106		    | (adm1031_read_value(client, ADM1031_REG_STATUS(1)) << 8);
1107		if (data->chip_type == adm1030)
1108			data->alarm &= 0xc0ff;
1109
1110		for (chan = 0; chan < (data->chip_type == adm1030 ? 1 : 2);
1111		     chan++) {
1112			data->fan_div[chan] =
1113			    adm1031_read_value(client,
1114					       ADM1031_REG_FAN_DIV(chan));
1115			data->fan_min[chan] =
1116			    adm1031_read_value(client,
1117					       ADM1031_REG_FAN_MIN(chan));
1118			data->fan[chan] =
1119			    adm1031_read_value(client,
1120					       ADM1031_REG_FAN_SPEED(chan));
1121			data->pwm[chan] =
1122			  (adm1031_read_value(client,
1123					ADM1031_REG_PWM) >> (4 * chan)) & 0x0f;
1124		}
1125		data->last_updated = jiffies;
1126		data->valid = 1;
1127	}
1128
1129	mutex_unlock(&data->update_lock);
1130
1131	return data;
1132}
1133
1134static int __init sensors_adm1031_init(void)
1135{
1136	return i2c_add_driver(&adm1031_driver);
1137}
1138
1139static void __exit sensors_adm1031_exit(void)
1140{
1141	i2c_del_driver(&adm1031_driver);
1142}
1143
1144MODULE_AUTHOR("Alexandre d'Alton <alex@alexdalton.org>");
1145MODULE_DESCRIPTION("ADM1031/ADM1030 driver");
1146MODULE_LICENSE("GPL");
1147
1148module_init(sensors_adm1031_init);
1149module_exit(sensors_adm1031_exit);
1150