1/*
2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 *         Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18 */
19
20#include <linux/ratelimit.h>
21#include <linux/pci.h>
22#include <linux/pci-ats.h>
23#include <linux/bitmap.h>
24#include <linux/slab.h>
25#include <linux/debugfs.h>
26#include <linux/scatterlist.h>
27#include <linux/dma-mapping.h>
28#include <linux/iommu-helper.h>
29#include <linux/iommu.h>
30#include <linux/delay.h>
31#include <linux/amd-iommu.h>
32#include <linux/notifier.h>
33#include <linux/export.h>
34#include <asm/msidef.h>
35#include <asm/proto.h>
36#include <asm/iommu.h>
37#include <asm/gart.h>
38#include <asm/dma.h>
39
40#include "amd_iommu_proto.h"
41#include "amd_iommu_types.h"
42
43#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
44
45#define LOOP_TIMEOUT	100000
46
47/*
48 * This bitmap is used to advertise the page sizes our hardware support
49 * to the IOMMU core, which will then use this information to split
50 * physically contiguous memory regions it is mapping into page sizes
51 * that we support.
52 *
53 * Traditionally the IOMMU core just handed us the mappings directly,
54 * after making sure the size is an order of a 4KiB page and that the
55 * mapping has natural alignment.
56 *
57 * To retain this behavior, we currently advertise that we support
58 * all page sizes that are an order of 4KiB.
59 *
60 * If at some point we'd like to utilize the IOMMU core's new behavior,
61 * we could change this to advertise the real page sizes we support.
62 */
63#define AMD_IOMMU_PGSIZES	(~0xFFFUL)
64
65static DEFINE_RWLOCK(amd_iommu_devtable_lock);
66
67/* A list of preallocated protection domains */
68static LIST_HEAD(iommu_pd_list);
69static DEFINE_SPINLOCK(iommu_pd_list_lock);
70
71/* List of all available dev_data structures */
72static LIST_HEAD(dev_data_list);
73static DEFINE_SPINLOCK(dev_data_list_lock);
74
75/*
76 * Domain for untranslated devices - only allocated
77 * if iommu=pt passed on kernel cmd line.
78 */
79static struct protection_domain *pt_domain;
80
81static struct iommu_ops amd_iommu_ops;
82
83static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
84int amd_iommu_max_glx_val = -1;
85
86/*
87 * general struct to manage commands send to an IOMMU
88 */
89struct iommu_cmd {
90	u32 data[4];
91};
92
93static void update_domain(struct protection_domain *domain);
94static int __init alloc_passthrough_domain(void);
95
96/****************************************************************************
97 *
98 * Helper functions
99 *
100 ****************************************************************************/
101
102static struct iommu_dev_data *alloc_dev_data(u16 devid)
103{
104	struct iommu_dev_data *dev_data;
105	unsigned long flags;
106
107	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
108	if (!dev_data)
109		return NULL;
110
111	dev_data->devid = devid;
112	atomic_set(&dev_data->bind, 0);
113
114	spin_lock_irqsave(&dev_data_list_lock, flags);
115	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
116	spin_unlock_irqrestore(&dev_data_list_lock, flags);
117
118	return dev_data;
119}
120
121static void free_dev_data(struct iommu_dev_data *dev_data)
122{
123	unsigned long flags;
124
125	spin_lock_irqsave(&dev_data_list_lock, flags);
126	list_del(&dev_data->dev_data_list);
127	spin_unlock_irqrestore(&dev_data_list_lock, flags);
128
129	kfree(dev_data);
130}
131
132static struct iommu_dev_data *search_dev_data(u16 devid)
133{
134	struct iommu_dev_data *dev_data;
135	unsigned long flags;
136
137	spin_lock_irqsave(&dev_data_list_lock, flags);
138	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
139		if (dev_data->devid == devid)
140			goto out_unlock;
141	}
142
143	dev_data = NULL;
144
145out_unlock:
146	spin_unlock_irqrestore(&dev_data_list_lock, flags);
147
148	return dev_data;
149}
150
151static struct iommu_dev_data *find_dev_data(u16 devid)
152{
153	struct iommu_dev_data *dev_data;
154
155	dev_data = search_dev_data(devid);
156
157	if (dev_data == NULL)
158		dev_data = alloc_dev_data(devid);
159
160	return dev_data;
161}
162
163static inline u16 get_device_id(struct device *dev)
164{
165	struct pci_dev *pdev = to_pci_dev(dev);
166
167	return calc_devid(pdev->bus->number, pdev->devfn);
168}
169
170static struct iommu_dev_data *get_dev_data(struct device *dev)
171{
172	return dev->archdata.iommu;
173}
174
175static bool pci_iommuv2_capable(struct pci_dev *pdev)
176{
177	static const int caps[] = {
178		PCI_EXT_CAP_ID_ATS,
179		PCI_EXT_CAP_ID_PRI,
180		PCI_EXT_CAP_ID_PASID,
181	};
182	int i, pos;
183
184	for (i = 0; i < 3; ++i) {
185		pos = pci_find_ext_capability(pdev, caps[i]);
186		if (pos == 0)
187			return false;
188	}
189
190	return true;
191}
192
193static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
194{
195	struct iommu_dev_data *dev_data;
196
197	dev_data = get_dev_data(&pdev->dev);
198
199	return dev_data->errata & (1 << erratum) ? true : false;
200}
201
202/*
203 * In this function the list of preallocated protection domains is traversed to
204 * find the domain for a specific device
205 */
206static struct dma_ops_domain *find_protection_domain(u16 devid)
207{
208	struct dma_ops_domain *entry, *ret = NULL;
209	unsigned long flags;
210	u16 alias = amd_iommu_alias_table[devid];
211
212	if (list_empty(&iommu_pd_list))
213		return NULL;
214
215	spin_lock_irqsave(&iommu_pd_list_lock, flags);
216
217	list_for_each_entry(entry, &iommu_pd_list, list) {
218		if (entry->target_dev == devid ||
219		    entry->target_dev == alias) {
220			ret = entry;
221			break;
222		}
223	}
224
225	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
226
227	return ret;
228}
229
230/*
231 * This function checks if the driver got a valid device from the caller to
232 * avoid dereferencing invalid pointers.
233 */
234static bool check_device(struct device *dev)
235{
236	u16 devid;
237
238	if (!dev || !dev->dma_mask)
239		return false;
240
241	/* No device or no PCI device */
242	if (dev->bus != &pci_bus_type)
243		return false;
244
245	devid = get_device_id(dev);
246
247	/* Out of our scope? */
248	if (devid > amd_iommu_last_bdf)
249		return false;
250
251	if (amd_iommu_rlookup_table[devid] == NULL)
252		return false;
253
254	return true;
255}
256
257static int iommu_init_device(struct device *dev)
258{
259	struct pci_dev *pdev = to_pci_dev(dev);
260	struct iommu_dev_data *dev_data;
261	u16 alias;
262
263	if (dev->archdata.iommu)
264		return 0;
265
266	dev_data = find_dev_data(get_device_id(dev));
267	if (!dev_data)
268		return -ENOMEM;
269
270	alias = amd_iommu_alias_table[dev_data->devid];
271	if (alias != dev_data->devid) {
272		struct iommu_dev_data *alias_data;
273
274		alias_data = find_dev_data(alias);
275		if (alias_data == NULL) {
276			pr_err("AMD-Vi: Warning: Unhandled device %s\n",
277					dev_name(dev));
278			free_dev_data(dev_data);
279			return -ENOTSUPP;
280		}
281		dev_data->alias_data = alias_data;
282	}
283
284	if (pci_iommuv2_capable(pdev)) {
285		struct amd_iommu *iommu;
286
287		iommu              = amd_iommu_rlookup_table[dev_data->devid];
288		dev_data->iommu_v2 = iommu->is_iommu_v2;
289	}
290
291	dev->archdata.iommu = dev_data;
292
293	return 0;
294}
295
296static void iommu_ignore_device(struct device *dev)
297{
298	u16 devid, alias;
299
300	devid = get_device_id(dev);
301	alias = amd_iommu_alias_table[devid];
302
303	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
304	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
305
306	amd_iommu_rlookup_table[devid] = NULL;
307	amd_iommu_rlookup_table[alias] = NULL;
308}
309
310static void iommu_uninit_device(struct device *dev)
311{
312	/*
313	 * Nothing to do here - we keep dev_data around for unplugged devices
314	 * and reuse it when the device is re-plugged - not doing so would
315	 * introduce a ton of races.
316	 */
317}
318
319void __init amd_iommu_uninit_devices(void)
320{
321	struct iommu_dev_data *dev_data, *n;
322	struct pci_dev *pdev = NULL;
323
324	for_each_pci_dev(pdev) {
325
326		if (!check_device(&pdev->dev))
327			continue;
328
329		iommu_uninit_device(&pdev->dev);
330	}
331
332	/* Free all of our dev_data structures */
333	list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
334		free_dev_data(dev_data);
335}
336
337int __init amd_iommu_init_devices(void)
338{
339	struct pci_dev *pdev = NULL;
340	int ret = 0;
341
342	for_each_pci_dev(pdev) {
343
344		if (!check_device(&pdev->dev))
345			continue;
346
347		ret = iommu_init_device(&pdev->dev);
348		if (ret == -ENOTSUPP)
349			iommu_ignore_device(&pdev->dev);
350		else if (ret)
351			goto out_free;
352	}
353
354	return 0;
355
356out_free:
357
358	amd_iommu_uninit_devices();
359
360	return ret;
361}
362#ifdef CONFIG_AMD_IOMMU_STATS
363
364/*
365 * Initialization code for statistics collection
366 */
367
368DECLARE_STATS_COUNTER(compl_wait);
369DECLARE_STATS_COUNTER(cnt_map_single);
370DECLARE_STATS_COUNTER(cnt_unmap_single);
371DECLARE_STATS_COUNTER(cnt_map_sg);
372DECLARE_STATS_COUNTER(cnt_unmap_sg);
373DECLARE_STATS_COUNTER(cnt_alloc_coherent);
374DECLARE_STATS_COUNTER(cnt_free_coherent);
375DECLARE_STATS_COUNTER(cross_page);
376DECLARE_STATS_COUNTER(domain_flush_single);
377DECLARE_STATS_COUNTER(domain_flush_all);
378DECLARE_STATS_COUNTER(alloced_io_mem);
379DECLARE_STATS_COUNTER(total_map_requests);
380DECLARE_STATS_COUNTER(complete_ppr);
381DECLARE_STATS_COUNTER(invalidate_iotlb);
382DECLARE_STATS_COUNTER(invalidate_iotlb_all);
383DECLARE_STATS_COUNTER(pri_requests);
384
385
386static struct dentry *stats_dir;
387static struct dentry *de_fflush;
388
389static void amd_iommu_stats_add(struct __iommu_counter *cnt)
390{
391	if (stats_dir == NULL)
392		return;
393
394	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
395				       &cnt->value);
396}
397
398static void amd_iommu_stats_init(void)
399{
400	stats_dir = debugfs_create_dir("amd-iommu", NULL);
401	if (stats_dir == NULL)
402		return;
403
404	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
405					 (u32 *)&amd_iommu_unmap_flush);
406
407	amd_iommu_stats_add(&compl_wait);
408	amd_iommu_stats_add(&cnt_map_single);
409	amd_iommu_stats_add(&cnt_unmap_single);
410	amd_iommu_stats_add(&cnt_map_sg);
411	amd_iommu_stats_add(&cnt_unmap_sg);
412	amd_iommu_stats_add(&cnt_alloc_coherent);
413	amd_iommu_stats_add(&cnt_free_coherent);
414	amd_iommu_stats_add(&cross_page);
415	amd_iommu_stats_add(&domain_flush_single);
416	amd_iommu_stats_add(&domain_flush_all);
417	amd_iommu_stats_add(&alloced_io_mem);
418	amd_iommu_stats_add(&total_map_requests);
419	amd_iommu_stats_add(&complete_ppr);
420	amd_iommu_stats_add(&invalidate_iotlb);
421	amd_iommu_stats_add(&invalidate_iotlb_all);
422	amd_iommu_stats_add(&pri_requests);
423}
424
425#endif
426
427/****************************************************************************
428 *
429 * Interrupt handling functions
430 *
431 ****************************************************************************/
432
433static void dump_dte_entry(u16 devid)
434{
435	int i;
436
437	for (i = 0; i < 4; ++i)
438		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
439			amd_iommu_dev_table[devid].data[i]);
440}
441
442static void dump_command(unsigned long phys_addr)
443{
444	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
445	int i;
446
447	for (i = 0; i < 4; ++i)
448		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
449}
450
451static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
452{
453	u32 *event = __evt;
454	int type  = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
455	int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
456	int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
457	int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
458	u64 address = (u64)(((u64)event[3]) << 32) | event[2];
459
460	printk(KERN_ERR "AMD-Vi: Event logged [");
461
462	switch (type) {
463	case EVENT_TYPE_ILL_DEV:
464		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
465		       "address=0x%016llx flags=0x%04x]\n",
466		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
467		       address, flags);
468		dump_dte_entry(devid);
469		break;
470	case EVENT_TYPE_IO_FAULT:
471		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
472		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
473		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
474		       domid, address, flags);
475		break;
476	case EVENT_TYPE_DEV_TAB_ERR:
477		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
478		       "address=0x%016llx flags=0x%04x]\n",
479		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
480		       address, flags);
481		break;
482	case EVENT_TYPE_PAGE_TAB_ERR:
483		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
484		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
485		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
486		       domid, address, flags);
487		break;
488	case EVENT_TYPE_ILL_CMD:
489		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
490		dump_command(address);
491		break;
492	case EVENT_TYPE_CMD_HARD_ERR:
493		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
494		       "flags=0x%04x]\n", address, flags);
495		break;
496	case EVENT_TYPE_IOTLB_INV_TO:
497		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
498		       "address=0x%016llx]\n",
499		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
500		       address);
501		break;
502	case EVENT_TYPE_INV_DEV_REQ:
503		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
504		       "address=0x%016llx flags=0x%04x]\n",
505		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
506		       address, flags);
507		break;
508	default:
509		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
510	}
511}
512
513static void iommu_poll_events(struct amd_iommu *iommu)
514{
515	u32 head, tail;
516	unsigned long flags;
517
518	spin_lock_irqsave(&iommu->lock, flags);
519
520	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
521	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
522
523	while (head != tail) {
524		iommu_print_event(iommu, iommu->evt_buf + head);
525		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
526	}
527
528	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
529
530	spin_unlock_irqrestore(&iommu->lock, flags);
531}
532
533static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u32 head)
534{
535	struct amd_iommu_fault fault;
536	volatile u64 *raw;
537	int i;
538
539	INC_STATS_COUNTER(pri_requests);
540
541	raw = (u64 *)(iommu->ppr_log + head);
542
543	/*
544	 * Hardware bug: Interrupt may arrive before the entry is written to
545	 * memory. If this happens we need to wait for the entry to arrive.
546	 */
547	for (i = 0; i < LOOP_TIMEOUT; ++i) {
548		if (PPR_REQ_TYPE(raw[0]) != 0)
549			break;
550		udelay(1);
551	}
552
553	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
554		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
555		return;
556	}
557
558	fault.address   = raw[1];
559	fault.pasid     = PPR_PASID(raw[0]);
560	fault.device_id = PPR_DEVID(raw[0]);
561	fault.tag       = PPR_TAG(raw[0]);
562	fault.flags     = PPR_FLAGS(raw[0]);
563
564	/*
565	 * To detect the hardware bug we need to clear the entry
566	 * to back to zero.
567	 */
568	raw[0] = raw[1] = 0;
569
570	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
571}
572
573static void iommu_poll_ppr_log(struct amd_iommu *iommu)
574{
575	unsigned long flags;
576	u32 head, tail;
577
578	if (iommu->ppr_log == NULL)
579		return;
580
581	spin_lock_irqsave(&iommu->lock, flags);
582
583	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
584	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
585
586	while (head != tail) {
587
588		/* Handle PPR entry */
589		iommu_handle_ppr_entry(iommu, head);
590
591		/* Update and refresh ring-buffer state*/
592		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
593		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
594		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
595	}
596
597	/* enable ppr interrupts again */
598	writel(MMIO_STATUS_PPR_INT_MASK, iommu->mmio_base + MMIO_STATUS_OFFSET);
599
600	spin_unlock_irqrestore(&iommu->lock, flags);
601}
602
603irqreturn_t amd_iommu_int_thread(int irq, void *data)
604{
605	struct amd_iommu *iommu;
606
607	for_each_iommu(iommu) {
608		iommu_poll_events(iommu);
609		iommu_poll_ppr_log(iommu);
610	}
611
612	return IRQ_HANDLED;
613}
614
615irqreturn_t amd_iommu_int_handler(int irq, void *data)
616{
617	return IRQ_WAKE_THREAD;
618}
619
620/****************************************************************************
621 *
622 * IOMMU command queuing functions
623 *
624 ****************************************************************************/
625
626static int wait_on_sem(volatile u64 *sem)
627{
628	int i = 0;
629
630	while (*sem == 0 && i < LOOP_TIMEOUT) {
631		udelay(1);
632		i += 1;
633	}
634
635	if (i == LOOP_TIMEOUT) {
636		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
637		return -EIO;
638	}
639
640	return 0;
641}
642
643static void copy_cmd_to_buffer(struct amd_iommu *iommu,
644			       struct iommu_cmd *cmd,
645			       u32 tail)
646{
647	u8 *target;
648
649	target = iommu->cmd_buf + tail;
650	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
651
652	/* Copy command to buffer */
653	memcpy(target, cmd, sizeof(*cmd));
654
655	/* Tell the IOMMU about it */
656	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
657}
658
659static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
660{
661	WARN_ON(address & 0x7ULL);
662
663	memset(cmd, 0, sizeof(*cmd));
664	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
665	cmd->data[1] = upper_32_bits(__pa(address));
666	cmd->data[2] = 1;
667	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
668}
669
670static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
671{
672	memset(cmd, 0, sizeof(*cmd));
673	cmd->data[0] = devid;
674	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
675}
676
677static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
678				  size_t size, u16 domid, int pde)
679{
680	u64 pages;
681	int s;
682
683	pages = iommu_num_pages(address, size, PAGE_SIZE);
684	s     = 0;
685
686	if (pages > 1) {
687		/*
688		 * If we have to flush more than one page, flush all
689		 * TLB entries for this domain
690		 */
691		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
692		s = 1;
693	}
694
695	address &= PAGE_MASK;
696
697	memset(cmd, 0, sizeof(*cmd));
698	cmd->data[1] |= domid;
699	cmd->data[2]  = lower_32_bits(address);
700	cmd->data[3]  = upper_32_bits(address);
701	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
702	if (s) /* size bit - we flush more than one 4kb page */
703		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
704	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
705		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
706}
707
708static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
709				  u64 address, size_t size)
710{
711	u64 pages;
712	int s;
713
714	pages = iommu_num_pages(address, size, PAGE_SIZE);
715	s     = 0;
716
717	if (pages > 1) {
718		/*
719		 * If we have to flush more than one page, flush all
720		 * TLB entries for this domain
721		 */
722		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
723		s = 1;
724	}
725
726	address &= PAGE_MASK;
727
728	memset(cmd, 0, sizeof(*cmd));
729	cmd->data[0]  = devid;
730	cmd->data[0] |= (qdep & 0xff) << 24;
731	cmd->data[1]  = devid;
732	cmd->data[2]  = lower_32_bits(address);
733	cmd->data[3]  = upper_32_bits(address);
734	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
735	if (s)
736		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
737}
738
739static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
740				  u64 address, bool size)
741{
742	memset(cmd, 0, sizeof(*cmd));
743
744	address &= ~(0xfffULL);
745
746	cmd->data[0]  = pasid & PASID_MASK;
747	cmd->data[1]  = domid;
748	cmd->data[2]  = lower_32_bits(address);
749	cmd->data[3]  = upper_32_bits(address);
750	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
751	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
752	if (size)
753		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
754	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
755}
756
757static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
758				  int qdep, u64 address, bool size)
759{
760	memset(cmd, 0, sizeof(*cmd));
761
762	address &= ~(0xfffULL);
763
764	cmd->data[0]  = devid;
765	cmd->data[0] |= (pasid & 0xff) << 16;
766	cmd->data[0] |= (qdep  & 0xff) << 24;
767	cmd->data[1]  = devid;
768	cmd->data[1] |= ((pasid >> 8) & 0xfff) << 16;
769	cmd->data[2]  = lower_32_bits(address);
770	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
771	cmd->data[3]  = upper_32_bits(address);
772	if (size)
773		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
774	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
775}
776
777static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
778			       int status, int tag, bool gn)
779{
780	memset(cmd, 0, sizeof(*cmd));
781
782	cmd->data[0]  = devid;
783	if (gn) {
784		cmd->data[1]  = pasid & PASID_MASK;
785		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
786	}
787	cmd->data[3]  = tag & 0x1ff;
788	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
789
790	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
791}
792
793static void build_inv_all(struct iommu_cmd *cmd)
794{
795	memset(cmd, 0, sizeof(*cmd));
796	CMD_SET_TYPE(cmd, CMD_INV_ALL);
797}
798
799/*
800 * Writes the command to the IOMMUs command buffer and informs the
801 * hardware about the new command.
802 */
803static int iommu_queue_command_sync(struct amd_iommu *iommu,
804				    struct iommu_cmd *cmd,
805				    bool sync)
806{
807	u32 left, tail, head, next_tail;
808	unsigned long flags;
809
810	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
811
812again:
813	spin_lock_irqsave(&iommu->lock, flags);
814
815	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
816	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
817	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
818	left      = (head - next_tail) % iommu->cmd_buf_size;
819
820	if (left <= 2) {
821		struct iommu_cmd sync_cmd;
822		volatile u64 sem = 0;
823		int ret;
824
825		build_completion_wait(&sync_cmd, (u64)&sem);
826		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
827
828		spin_unlock_irqrestore(&iommu->lock, flags);
829
830		if ((ret = wait_on_sem(&sem)) != 0)
831			return ret;
832
833		goto again;
834	}
835
836	copy_cmd_to_buffer(iommu, cmd, tail);
837
838	/* We need to sync now to make sure all commands are processed */
839	iommu->need_sync = sync;
840
841	spin_unlock_irqrestore(&iommu->lock, flags);
842
843	return 0;
844}
845
846static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
847{
848	return iommu_queue_command_sync(iommu, cmd, true);
849}
850
851/*
852 * This function queues a completion wait command into the command
853 * buffer of an IOMMU
854 */
855static int iommu_completion_wait(struct amd_iommu *iommu)
856{
857	struct iommu_cmd cmd;
858	volatile u64 sem = 0;
859	int ret;
860
861	if (!iommu->need_sync)
862		return 0;
863
864	build_completion_wait(&cmd, (u64)&sem);
865
866	ret = iommu_queue_command_sync(iommu, &cmd, false);
867	if (ret)
868		return ret;
869
870	return wait_on_sem(&sem);
871}
872
873static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
874{
875	struct iommu_cmd cmd;
876
877	build_inv_dte(&cmd, devid);
878
879	return iommu_queue_command(iommu, &cmd);
880}
881
882static void iommu_flush_dte_all(struct amd_iommu *iommu)
883{
884	u32 devid;
885
886	for (devid = 0; devid <= 0xffff; ++devid)
887		iommu_flush_dte(iommu, devid);
888
889	iommu_completion_wait(iommu);
890}
891
892/*
893 * This function uses heavy locking and may disable irqs for some time. But
894 * this is no issue because it is only called during resume.
895 */
896static void iommu_flush_tlb_all(struct amd_iommu *iommu)
897{
898	u32 dom_id;
899
900	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
901		struct iommu_cmd cmd;
902		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
903				      dom_id, 1);
904		iommu_queue_command(iommu, &cmd);
905	}
906
907	iommu_completion_wait(iommu);
908}
909
910static void iommu_flush_all(struct amd_iommu *iommu)
911{
912	struct iommu_cmd cmd;
913
914	build_inv_all(&cmd);
915
916	iommu_queue_command(iommu, &cmd);
917	iommu_completion_wait(iommu);
918}
919
920void iommu_flush_all_caches(struct amd_iommu *iommu)
921{
922	if (iommu_feature(iommu, FEATURE_IA)) {
923		iommu_flush_all(iommu);
924	} else {
925		iommu_flush_dte_all(iommu);
926		iommu_flush_tlb_all(iommu);
927	}
928}
929
930/*
931 * Command send function for flushing on-device TLB
932 */
933static int device_flush_iotlb(struct iommu_dev_data *dev_data,
934			      u64 address, size_t size)
935{
936	struct amd_iommu *iommu;
937	struct iommu_cmd cmd;
938	int qdep;
939
940	qdep     = dev_data->ats.qdep;
941	iommu    = amd_iommu_rlookup_table[dev_data->devid];
942
943	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
944
945	return iommu_queue_command(iommu, &cmd);
946}
947
948/*
949 * Command send function for invalidating a device table entry
950 */
951static int device_flush_dte(struct iommu_dev_data *dev_data)
952{
953	struct amd_iommu *iommu;
954	int ret;
955
956	iommu = amd_iommu_rlookup_table[dev_data->devid];
957
958	ret = iommu_flush_dte(iommu, dev_data->devid);
959	if (ret)
960		return ret;
961
962	if (dev_data->ats.enabled)
963		ret = device_flush_iotlb(dev_data, 0, ~0UL);
964
965	return ret;
966}
967
968/*
969 * TLB invalidation function which is called from the mapping functions.
970 * It invalidates a single PTE if the range to flush is within a single
971 * page. Otherwise it flushes the whole TLB of the IOMMU.
972 */
973static void __domain_flush_pages(struct protection_domain *domain,
974				 u64 address, size_t size, int pde)
975{
976	struct iommu_dev_data *dev_data;
977	struct iommu_cmd cmd;
978	int ret = 0, i;
979
980	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
981
982	for (i = 0; i < amd_iommus_present; ++i) {
983		if (!domain->dev_iommu[i])
984			continue;
985
986		/*
987		 * Devices of this domain are behind this IOMMU
988		 * We need a TLB flush
989		 */
990		ret |= iommu_queue_command(amd_iommus[i], &cmd);
991	}
992
993	list_for_each_entry(dev_data, &domain->dev_list, list) {
994
995		if (!dev_data->ats.enabled)
996			continue;
997
998		ret |= device_flush_iotlb(dev_data, address, size);
999	}
1000
1001	WARN_ON(ret);
1002}
1003
1004static void domain_flush_pages(struct protection_domain *domain,
1005			       u64 address, size_t size)
1006{
1007	__domain_flush_pages(domain, address, size, 0);
1008}
1009
1010/* Flush the whole IO/TLB for a given protection domain */
1011static void domain_flush_tlb(struct protection_domain *domain)
1012{
1013	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1014}
1015
1016/* Flush the whole IO/TLB for a given protection domain - including PDE */
1017static void domain_flush_tlb_pde(struct protection_domain *domain)
1018{
1019	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1020}
1021
1022static void domain_flush_complete(struct protection_domain *domain)
1023{
1024	int i;
1025
1026	for (i = 0; i < amd_iommus_present; ++i) {
1027		if (!domain->dev_iommu[i])
1028			continue;
1029
1030		/*
1031		 * Devices of this domain are behind this IOMMU
1032		 * We need to wait for completion of all commands.
1033		 */
1034		iommu_completion_wait(amd_iommus[i]);
1035	}
1036}
1037
1038
1039/*
1040 * This function flushes the DTEs for all devices in domain
1041 */
1042static void domain_flush_devices(struct protection_domain *domain)
1043{
1044	struct iommu_dev_data *dev_data;
1045
1046	list_for_each_entry(dev_data, &domain->dev_list, list)
1047		device_flush_dte(dev_data);
1048}
1049
1050/****************************************************************************
1051 *
1052 * The functions below are used the create the page table mappings for
1053 * unity mapped regions.
1054 *
1055 ****************************************************************************/
1056
1057/*
1058 * This function is used to add another level to an IO page table. Adding
1059 * another level increases the size of the address space by 9 bits to a size up
1060 * to 64 bits.
1061 */
1062static bool increase_address_space(struct protection_domain *domain,
1063				   gfp_t gfp)
1064{
1065	u64 *pte;
1066
1067	if (domain->mode == PAGE_MODE_6_LEVEL)
1068		/* address space already 64 bit large */
1069		return false;
1070
1071	pte = (void *)get_zeroed_page(gfp);
1072	if (!pte)
1073		return false;
1074
1075	*pte             = PM_LEVEL_PDE(domain->mode,
1076					virt_to_phys(domain->pt_root));
1077	domain->pt_root  = pte;
1078	domain->mode    += 1;
1079	domain->updated  = true;
1080
1081	return true;
1082}
1083
1084static u64 *alloc_pte(struct protection_domain *domain,
1085		      unsigned long address,
1086		      unsigned long page_size,
1087		      u64 **pte_page,
1088		      gfp_t gfp)
1089{
1090	int level, end_lvl;
1091	u64 *pte, *page;
1092
1093	BUG_ON(!is_power_of_2(page_size));
1094
1095	while (address > PM_LEVEL_SIZE(domain->mode))
1096		increase_address_space(domain, gfp);
1097
1098	level   = domain->mode - 1;
1099	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1100	address = PAGE_SIZE_ALIGN(address, page_size);
1101	end_lvl = PAGE_SIZE_LEVEL(page_size);
1102
1103	while (level > end_lvl) {
1104		if (!IOMMU_PTE_PRESENT(*pte)) {
1105			page = (u64 *)get_zeroed_page(gfp);
1106			if (!page)
1107				return NULL;
1108			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1109		}
1110
1111		/* No level skipping support yet */
1112		if (PM_PTE_LEVEL(*pte) != level)
1113			return NULL;
1114
1115		level -= 1;
1116
1117		pte = IOMMU_PTE_PAGE(*pte);
1118
1119		if (pte_page && level == end_lvl)
1120			*pte_page = pte;
1121
1122		pte = &pte[PM_LEVEL_INDEX(level, address)];
1123	}
1124
1125	return pte;
1126}
1127
1128/*
1129 * This function checks if there is a PTE for a given dma address. If
1130 * there is one, it returns the pointer to it.
1131 */
1132static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
1133{
1134	int level;
1135	u64 *pte;
1136
1137	if (address > PM_LEVEL_SIZE(domain->mode))
1138		return NULL;
1139
1140	level   =  domain->mode - 1;
1141	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1142
1143	while (level > 0) {
1144
1145		/* Not Present */
1146		if (!IOMMU_PTE_PRESENT(*pte))
1147			return NULL;
1148
1149		/* Large PTE */
1150		if (PM_PTE_LEVEL(*pte) == 0x07) {
1151			unsigned long pte_mask, __pte;
1152
1153			/*
1154			 * If we have a series of large PTEs, make
1155			 * sure to return a pointer to the first one.
1156			 */
1157			pte_mask = PTE_PAGE_SIZE(*pte);
1158			pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1159			__pte    = ((unsigned long)pte) & pte_mask;
1160
1161			return (u64 *)__pte;
1162		}
1163
1164		/* No level skipping support yet */
1165		if (PM_PTE_LEVEL(*pte) != level)
1166			return NULL;
1167
1168		level -= 1;
1169
1170		/* Walk to the next level */
1171		pte = IOMMU_PTE_PAGE(*pte);
1172		pte = &pte[PM_LEVEL_INDEX(level, address)];
1173	}
1174
1175	return pte;
1176}
1177
1178/*
1179 * Generic mapping functions. It maps a physical address into a DMA
1180 * address space. It allocates the page table pages if necessary.
1181 * In the future it can be extended to a generic mapping function
1182 * supporting all features of AMD IOMMU page tables like level skipping
1183 * and full 64 bit address spaces.
1184 */
1185static int iommu_map_page(struct protection_domain *dom,
1186			  unsigned long bus_addr,
1187			  unsigned long phys_addr,
1188			  int prot,
1189			  unsigned long page_size)
1190{
1191	u64 __pte, *pte;
1192	int i, count;
1193
1194	if (!(prot & IOMMU_PROT_MASK))
1195		return -EINVAL;
1196
1197	bus_addr  = PAGE_ALIGN(bus_addr);
1198	phys_addr = PAGE_ALIGN(phys_addr);
1199	count     = PAGE_SIZE_PTE_COUNT(page_size);
1200	pte       = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1201
1202	for (i = 0; i < count; ++i)
1203		if (IOMMU_PTE_PRESENT(pte[i]))
1204			return -EBUSY;
1205
1206	if (page_size > PAGE_SIZE) {
1207		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
1208		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1209	} else
1210		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1211
1212	if (prot & IOMMU_PROT_IR)
1213		__pte |= IOMMU_PTE_IR;
1214	if (prot & IOMMU_PROT_IW)
1215		__pte |= IOMMU_PTE_IW;
1216
1217	for (i = 0; i < count; ++i)
1218		pte[i] = __pte;
1219
1220	update_domain(dom);
1221
1222	return 0;
1223}
1224
1225static unsigned long iommu_unmap_page(struct protection_domain *dom,
1226				      unsigned long bus_addr,
1227				      unsigned long page_size)
1228{
1229	unsigned long long unmap_size, unmapped;
1230	u64 *pte;
1231
1232	BUG_ON(!is_power_of_2(page_size));
1233
1234	unmapped = 0;
1235
1236	while (unmapped < page_size) {
1237
1238		pte = fetch_pte(dom, bus_addr);
1239
1240		if (!pte) {
1241			/*
1242			 * No PTE for this address
1243			 * move forward in 4kb steps
1244			 */
1245			unmap_size = PAGE_SIZE;
1246		} else if (PM_PTE_LEVEL(*pte) == 0) {
1247			/* 4kb PTE found for this address */
1248			unmap_size = PAGE_SIZE;
1249			*pte       = 0ULL;
1250		} else {
1251			int count, i;
1252
1253			/* Large PTE found which maps this address */
1254			unmap_size = PTE_PAGE_SIZE(*pte);
1255			count      = PAGE_SIZE_PTE_COUNT(unmap_size);
1256			for (i = 0; i < count; i++)
1257				pte[i] = 0ULL;
1258		}
1259
1260		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1261		unmapped += unmap_size;
1262	}
1263
1264	BUG_ON(!is_power_of_2(unmapped));
1265
1266	return unmapped;
1267}
1268
1269/*
1270 * This function checks if a specific unity mapping entry is needed for
1271 * this specific IOMMU.
1272 */
1273static int iommu_for_unity_map(struct amd_iommu *iommu,
1274			       struct unity_map_entry *entry)
1275{
1276	u16 bdf, i;
1277
1278	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1279		bdf = amd_iommu_alias_table[i];
1280		if (amd_iommu_rlookup_table[bdf] == iommu)
1281			return 1;
1282	}
1283
1284	return 0;
1285}
1286
1287/*
1288 * This function actually applies the mapping to the page table of the
1289 * dma_ops domain.
1290 */
1291static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1292			     struct unity_map_entry *e)
1293{
1294	u64 addr;
1295	int ret;
1296
1297	for (addr = e->address_start; addr < e->address_end;
1298	     addr += PAGE_SIZE) {
1299		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1300				     PAGE_SIZE);
1301		if (ret)
1302			return ret;
1303		/*
1304		 * if unity mapping is in aperture range mark the page
1305		 * as allocated in the aperture
1306		 */
1307		if (addr < dma_dom->aperture_size)
1308			__set_bit(addr >> PAGE_SHIFT,
1309				  dma_dom->aperture[0]->bitmap);
1310	}
1311
1312	return 0;
1313}
1314
1315/*
1316 * Init the unity mappings for a specific IOMMU in the system
1317 *
1318 * Basically iterates over all unity mapping entries and applies them to
1319 * the default domain DMA of that IOMMU if necessary.
1320 */
1321static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1322{
1323	struct unity_map_entry *entry;
1324	int ret;
1325
1326	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1327		if (!iommu_for_unity_map(iommu, entry))
1328			continue;
1329		ret = dma_ops_unity_map(iommu->default_dom, entry);
1330		if (ret)
1331			return ret;
1332	}
1333
1334	return 0;
1335}
1336
1337/*
1338 * Inits the unity mappings required for a specific device
1339 */
1340static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1341					  u16 devid)
1342{
1343	struct unity_map_entry *e;
1344	int ret;
1345
1346	list_for_each_entry(e, &amd_iommu_unity_map, list) {
1347		if (!(devid >= e->devid_start && devid <= e->devid_end))
1348			continue;
1349		ret = dma_ops_unity_map(dma_dom, e);
1350		if (ret)
1351			return ret;
1352	}
1353
1354	return 0;
1355}
1356
1357/****************************************************************************
1358 *
1359 * The next functions belong to the address allocator for the dma_ops
1360 * interface functions. They work like the allocators in the other IOMMU
1361 * drivers. Its basically a bitmap which marks the allocated pages in
1362 * the aperture. Maybe it could be enhanced in the future to a more
1363 * efficient allocator.
1364 *
1365 ****************************************************************************/
1366
1367/*
1368 * The address allocator core functions.
1369 *
1370 * called with domain->lock held
1371 */
1372
1373/*
1374 * Used to reserve address ranges in the aperture (e.g. for exclusion
1375 * ranges.
1376 */
1377static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1378				      unsigned long start_page,
1379				      unsigned int pages)
1380{
1381	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1382
1383	if (start_page + pages > last_page)
1384		pages = last_page - start_page;
1385
1386	for (i = start_page; i < start_page + pages; ++i) {
1387		int index = i / APERTURE_RANGE_PAGES;
1388		int page  = i % APERTURE_RANGE_PAGES;
1389		__set_bit(page, dom->aperture[index]->bitmap);
1390	}
1391}
1392
1393/*
1394 * This function is used to add a new aperture range to an existing
1395 * aperture in case of dma_ops domain allocation or address allocation
1396 * failure.
1397 */
1398static int alloc_new_range(struct dma_ops_domain *dma_dom,
1399			   bool populate, gfp_t gfp)
1400{
1401	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1402	struct amd_iommu *iommu;
1403	unsigned long i, old_size;
1404
1405#ifdef CONFIG_IOMMU_STRESS
1406	populate = false;
1407#endif
1408
1409	if (index >= APERTURE_MAX_RANGES)
1410		return -ENOMEM;
1411
1412	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1413	if (!dma_dom->aperture[index])
1414		return -ENOMEM;
1415
1416	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1417	if (!dma_dom->aperture[index]->bitmap)
1418		goto out_free;
1419
1420	dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1421
1422	if (populate) {
1423		unsigned long address = dma_dom->aperture_size;
1424		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1425		u64 *pte, *pte_page;
1426
1427		for (i = 0; i < num_ptes; ++i) {
1428			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1429					&pte_page, gfp);
1430			if (!pte)
1431				goto out_free;
1432
1433			dma_dom->aperture[index]->pte_pages[i] = pte_page;
1434
1435			address += APERTURE_RANGE_SIZE / 64;
1436		}
1437	}
1438
1439	old_size                = dma_dom->aperture_size;
1440	dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1441
1442	/* Reserve address range used for MSI messages */
1443	if (old_size < MSI_ADDR_BASE_LO &&
1444	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1445		unsigned long spage;
1446		int pages;
1447
1448		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1449		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1450
1451		dma_ops_reserve_addresses(dma_dom, spage, pages);
1452	}
1453
1454	/* Initialize the exclusion range if necessary */
1455	for_each_iommu(iommu) {
1456		if (iommu->exclusion_start &&
1457		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
1458		    && iommu->exclusion_start < dma_dom->aperture_size) {
1459			unsigned long startpage;
1460			int pages = iommu_num_pages(iommu->exclusion_start,
1461						    iommu->exclusion_length,
1462						    PAGE_SIZE);
1463			startpage = iommu->exclusion_start >> PAGE_SHIFT;
1464			dma_ops_reserve_addresses(dma_dom, startpage, pages);
1465		}
1466	}
1467
1468	/*
1469	 * Check for areas already mapped as present in the new aperture
1470	 * range and mark those pages as reserved in the allocator. Such
1471	 * mappings may already exist as a result of requested unity
1472	 * mappings for devices.
1473	 */
1474	for (i = dma_dom->aperture[index]->offset;
1475	     i < dma_dom->aperture_size;
1476	     i += PAGE_SIZE) {
1477		u64 *pte = fetch_pte(&dma_dom->domain, i);
1478		if (!pte || !IOMMU_PTE_PRESENT(*pte))
1479			continue;
1480
1481		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
1482	}
1483
1484	update_domain(&dma_dom->domain);
1485
1486	return 0;
1487
1488out_free:
1489	update_domain(&dma_dom->domain);
1490
1491	free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1492
1493	kfree(dma_dom->aperture[index]);
1494	dma_dom->aperture[index] = NULL;
1495
1496	return -ENOMEM;
1497}
1498
1499static unsigned long dma_ops_area_alloc(struct device *dev,
1500					struct dma_ops_domain *dom,
1501					unsigned int pages,
1502					unsigned long align_mask,
1503					u64 dma_mask,
1504					unsigned long start)
1505{
1506	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1507	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1508	int i = start >> APERTURE_RANGE_SHIFT;
1509	unsigned long boundary_size;
1510	unsigned long address = -1;
1511	unsigned long limit;
1512
1513	next_bit >>= PAGE_SHIFT;
1514
1515	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1516			PAGE_SIZE) >> PAGE_SHIFT;
1517
1518	for (;i < max_index; ++i) {
1519		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1520
1521		if (dom->aperture[i]->offset >= dma_mask)
1522			break;
1523
1524		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1525					       dma_mask >> PAGE_SHIFT);
1526
1527		address = iommu_area_alloc(dom->aperture[i]->bitmap,
1528					   limit, next_bit, pages, 0,
1529					    boundary_size, align_mask);
1530		if (address != -1) {
1531			address = dom->aperture[i]->offset +
1532				  (address << PAGE_SHIFT);
1533			dom->next_address = address + (pages << PAGE_SHIFT);
1534			break;
1535		}
1536
1537		next_bit = 0;
1538	}
1539
1540	return address;
1541}
1542
1543static unsigned long dma_ops_alloc_addresses(struct device *dev,
1544					     struct dma_ops_domain *dom,
1545					     unsigned int pages,
1546					     unsigned long align_mask,
1547					     u64 dma_mask)
1548{
1549	unsigned long address;
1550
1551#ifdef CONFIG_IOMMU_STRESS
1552	dom->next_address = 0;
1553	dom->need_flush = true;
1554#endif
1555
1556	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1557				     dma_mask, dom->next_address);
1558
1559	if (address == -1) {
1560		dom->next_address = 0;
1561		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1562					     dma_mask, 0);
1563		dom->need_flush = true;
1564	}
1565
1566	if (unlikely(address == -1))
1567		address = DMA_ERROR_CODE;
1568
1569	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1570
1571	return address;
1572}
1573
1574/*
1575 * The address free function.
1576 *
1577 * called with domain->lock held
1578 */
1579static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1580				   unsigned long address,
1581				   unsigned int pages)
1582{
1583	unsigned i = address >> APERTURE_RANGE_SHIFT;
1584	struct aperture_range *range = dom->aperture[i];
1585
1586	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1587
1588#ifdef CONFIG_IOMMU_STRESS
1589	if (i < 4)
1590		return;
1591#endif
1592
1593	if (address >= dom->next_address)
1594		dom->need_flush = true;
1595
1596	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1597
1598	bitmap_clear(range->bitmap, address, pages);
1599
1600}
1601
1602/****************************************************************************
1603 *
1604 * The next functions belong to the domain allocation. A domain is
1605 * allocated for every IOMMU as the default domain. If device isolation
1606 * is enabled, every device get its own domain. The most important thing
1607 * about domains is the page table mapping the DMA address space they
1608 * contain.
1609 *
1610 ****************************************************************************/
1611
1612/*
1613 * This function adds a protection domain to the global protection domain list
1614 */
1615static void add_domain_to_list(struct protection_domain *domain)
1616{
1617	unsigned long flags;
1618
1619	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1620	list_add(&domain->list, &amd_iommu_pd_list);
1621	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1622}
1623
1624/*
1625 * This function removes a protection domain to the global
1626 * protection domain list
1627 */
1628static void del_domain_from_list(struct protection_domain *domain)
1629{
1630	unsigned long flags;
1631
1632	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1633	list_del(&domain->list);
1634	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1635}
1636
1637static u16 domain_id_alloc(void)
1638{
1639	unsigned long flags;
1640	int id;
1641
1642	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1643	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1644	BUG_ON(id == 0);
1645	if (id > 0 && id < MAX_DOMAIN_ID)
1646		__set_bit(id, amd_iommu_pd_alloc_bitmap);
1647	else
1648		id = 0;
1649	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1650
1651	return id;
1652}
1653
1654static void domain_id_free(int id)
1655{
1656	unsigned long flags;
1657
1658	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1659	if (id > 0 && id < MAX_DOMAIN_ID)
1660		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1661	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1662}
1663
1664static void free_pagetable(struct protection_domain *domain)
1665{
1666	int i, j;
1667	u64 *p1, *p2, *p3;
1668
1669	p1 = domain->pt_root;
1670
1671	if (!p1)
1672		return;
1673
1674	for (i = 0; i < 512; ++i) {
1675		if (!IOMMU_PTE_PRESENT(p1[i]))
1676			continue;
1677
1678		p2 = IOMMU_PTE_PAGE(p1[i]);
1679		for (j = 0; j < 512; ++j) {
1680			if (!IOMMU_PTE_PRESENT(p2[j]))
1681				continue;
1682			p3 = IOMMU_PTE_PAGE(p2[j]);
1683			free_page((unsigned long)p3);
1684		}
1685
1686		free_page((unsigned long)p2);
1687	}
1688
1689	free_page((unsigned long)p1);
1690
1691	domain->pt_root = NULL;
1692}
1693
1694static void free_gcr3_tbl_level1(u64 *tbl)
1695{
1696	u64 *ptr;
1697	int i;
1698
1699	for (i = 0; i < 512; ++i) {
1700		if (!(tbl[i] & GCR3_VALID))
1701			continue;
1702
1703		ptr = __va(tbl[i] & PAGE_MASK);
1704
1705		free_page((unsigned long)ptr);
1706	}
1707}
1708
1709static void free_gcr3_tbl_level2(u64 *tbl)
1710{
1711	u64 *ptr;
1712	int i;
1713
1714	for (i = 0; i < 512; ++i) {
1715		if (!(tbl[i] & GCR3_VALID))
1716			continue;
1717
1718		ptr = __va(tbl[i] & PAGE_MASK);
1719
1720		free_gcr3_tbl_level1(ptr);
1721	}
1722}
1723
1724static void free_gcr3_table(struct protection_domain *domain)
1725{
1726	if (domain->glx == 2)
1727		free_gcr3_tbl_level2(domain->gcr3_tbl);
1728	else if (domain->glx == 1)
1729		free_gcr3_tbl_level1(domain->gcr3_tbl);
1730	else if (domain->glx != 0)
1731		BUG();
1732
1733	free_page((unsigned long)domain->gcr3_tbl);
1734}
1735
1736/*
1737 * Free a domain, only used if something went wrong in the
1738 * allocation path and we need to free an already allocated page table
1739 */
1740static void dma_ops_domain_free(struct dma_ops_domain *dom)
1741{
1742	int i;
1743
1744	if (!dom)
1745		return;
1746
1747	del_domain_from_list(&dom->domain);
1748
1749	free_pagetable(&dom->domain);
1750
1751	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1752		if (!dom->aperture[i])
1753			continue;
1754		free_page((unsigned long)dom->aperture[i]->bitmap);
1755		kfree(dom->aperture[i]);
1756	}
1757
1758	kfree(dom);
1759}
1760
1761/*
1762 * Allocates a new protection domain usable for the dma_ops functions.
1763 * It also initializes the page table and the address allocator data
1764 * structures required for the dma_ops interface
1765 */
1766static struct dma_ops_domain *dma_ops_domain_alloc(void)
1767{
1768	struct dma_ops_domain *dma_dom;
1769
1770	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1771	if (!dma_dom)
1772		return NULL;
1773
1774	spin_lock_init(&dma_dom->domain.lock);
1775
1776	dma_dom->domain.id = domain_id_alloc();
1777	if (dma_dom->domain.id == 0)
1778		goto free_dma_dom;
1779	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1780	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1781	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1782	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1783	dma_dom->domain.priv = dma_dom;
1784	if (!dma_dom->domain.pt_root)
1785		goto free_dma_dom;
1786
1787	dma_dom->need_flush = false;
1788	dma_dom->target_dev = 0xffff;
1789
1790	add_domain_to_list(&dma_dom->domain);
1791
1792	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1793		goto free_dma_dom;
1794
1795	/*
1796	 * mark the first page as allocated so we never return 0 as
1797	 * a valid dma-address. So we can use 0 as error value
1798	 */
1799	dma_dom->aperture[0]->bitmap[0] = 1;
1800	dma_dom->next_address = 0;
1801
1802
1803	return dma_dom;
1804
1805free_dma_dom:
1806	dma_ops_domain_free(dma_dom);
1807
1808	return NULL;
1809}
1810
1811/*
1812 * little helper function to check whether a given protection domain is a
1813 * dma_ops domain
1814 */
1815static bool dma_ops_domain(struct protection_domain *domain)
1816{
1817	return domain->flags & PD_DMA_OPS_MASK;
1818}
1819
1820static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1821{
1822	u64 pte_root = 0;
1823	u64 flags = 0;
1824
1825	if (domain->mode != PAGE_MODE_NONE)
1826		pte_root = virt_to_phys(domain->pt_root);
1827
1828	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1829		    << DEV_ENTRY_MODE_SHIFT;
1830	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1831
1832	flags = amd_iommu_dev_table[devid].data[1];
1833
1834	if (ats)
1835		flags |= DTE_FLAG_IOTLB;
1836
1837	if (domain->flags & PD_IOMMUV2_MASK) {
1838		u64 gcr3 = __pa(domain->gcr3_tbl);
1839		u64 glx  = domain->glx;
1840		u64 tmp;
1841
1842		pte_root |= DTE_FLAG_GV;
1843		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1844
1845		/* First mask out possible old values for GCR3 table */
1846		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1847		flags    &= ~tmp;
1848
1849		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1850		flags    &= ~tmp;
1851
1852		/* Encode GCR3 table into DTE */
1853		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1854		pte_root |= tmp;
1855
1856		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1857		flags    |= tmp;
1858
1859		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1860		flags    |= tmp;
1861	}
1862
1863	flags &= ~(0xffffUL);
1864	flags |= domain->id;
1865
1866	amd_iommu_dev_table[devid].data[1]  = flags;
1867	amd_iommu_dev_table[devid].data[0]  = pte_root;
1868}
1869
1870static void clear_dte_entry(u16 devid)
1871{
1872	/* remove entry from the device table seen by the hardware */
1873	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1874	amd_iommu_dev_table[devid].data[1] = 0;
1875
1876	amd_iommu_apply_erratum_63(devid);
1877}
1878
1879static void do_attach(struct iommu_dev_data *dev_data,
1880		      struct protection_domain *domain)
1881{
1882	struct amd_iommu *iommu;
1883	bool ats;
1884
1885	iommu = amd_iommu_rlookup_table[dev_data->devid];
1886	ats   = dev_data->ats.enabled;
1887
1888	/* Update data structures */
1889	dev_data->domain = domain;
1890	list_add(&dev_data->list, &domain->dev_list);
1891	set_dte_entry(dev_data->devid, domain, ats);
1892
1893	/* Do reference counting */
1894	domain->dev_iommu[iommu->index] += 1;
1895	domain->dev_cnt                 += 1;
1896
1897	/* Flush the DTE entry */
1898	device_flush_dte(dev_data);
1899}
1900
1901static void do_detach(struct iommu_dev_data *dev_data)
1902{
1903	struct amd_iommu *iommu;
1904
1905	iommu = amd_iommu_rlookup_table[dev_data->devid];
1906
1907	/* decrease reference counters */
1908	dev_data->domain->dev_iommu[iommu->index] -= 1;
1909	dev_data->domain->dev_cnt                 -= 1;
1910
1911	/* Update data structures */
1912	dev_data->domain = NULL;
1913	list_del(&dev_data->list);
1914	clear_dte_entry(dev_data->devid);
1915
1916	/* Flush the DTE entry */
1917	device_flush_dte(dev_data);
1918}
1919
1920/*
1921 * If a device is not yet associated with a domain, this function does
1922 * assigns it visible for the hardware
1923 */
1924static int __attach_device(struct iommu_dev_data *dev_data,
1925			   struct protection_domain *domain)
1926{
1927	int ret;
1928
1929	/* lock domain */
1930	spin_lock(&domain->lock);
1931
1932	if (dev_data->alias_data != NULL) {
1933		struct iommu_dev_data *alias_data = dev_data->alias_data;
1934
1935		/* Some sanity checks */
1936		ret = -EBUSY;
1937		if (alias_data->domain != NULL &&
1938				alias_data->domain != domain)
1939			goto out_unlock;
1940
1941		if (dev_data->domain != NULL &&
1942				dev_data->domain != domain)
1943			goto out_unlock;
1944
1945		/* Do real assignment */
1946		if (alias_data->domain == NULL)
1947			do_attach(alias_data, domain);
1948
1949		atomic_inc(&alias_data->bind);
1950	}
1951
1952	if (dev_data->domain == NULL)
1953		do_attach(dev_data, domain);
1954
1955	atomic_inc(&dev_data->bind);
1956
1957	ret = 0;
1958
1959out_unlock:
1960
1961	/* ready */
1962	spin_unlock(&domain->lock);
1963
1964	return ret;
1965}
1966
1967
1968static void pdev_iommuv2_disable(struct pci_dev *pdev)
1969{
1970	pci_disable_ats(pdev);
1971	pci_disable_pri(pdev);
1972	pci_disable_pasid(pdev);
1973}
1974
1975/* FIXME: Change generic reset-function to do the same */
1976static int pri_reset_while_enabled(struct pci_dev *pdev)
1977{
1978	u16 control;
1979	int pos;
1980
1981	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
1982	if (!pos)
1983		return -EINVAL;
1984
1985	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
1986	control |= PCI_PRI_CTRL_RESET;
1987	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
1988
1989	return 0;
1990}
1991
1992static int pdev_iommuv2_enable(struct pci_dev *pdev)
1993{
1994	bool reset_enable;
1995	int reqs, ret;
1996
1997	/* FIXME: Hardcode number of outstanding requests for now */
1998	reqs = 32;
1999	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2000		reqs = 1;
2001	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2002
2003	/* Only allow access to user-accessible pages */
2004	ret = pci_enable_pasid(pdev, 0);
2005	if (ret)
2006		goto out_err;
2007
2008	/* First reset the PRI state of the device */
2009	ret = pci_reset_pri(pdev);
2010	if (ret)
2011		goto out_err;
2012
2013	/* Enable PRI */
2014	ret = pci_enable_pri(pdev, reqs);
2015	if (ret)
2016		goto out_err;
2017
2018	if (reset_enable) {
2019		ret = pri_reset_while_enabled(pdev);
2020		if (ret)
2021			goto out_err;
2022	}
2023
2024	ret = pci_enable_ats(pdev, PAGE_SHIFT);
2025	if (ret)
2026		goto out_err;
2027
2028	return 0;
2029
2030out_err:
2031	pci_disable_pri(pdev);
2032	pci_disable_pasid(pdev);
2033
2034	return ret;
2035}
2036
2037/* FIXME: Move this to PCI code */
2038#define PCI_PRI_TLP_OFF		(1 << 2)
2039
2040bool pci_pri_tlp_required(struct pci_dev *pdev)
2041{
2042	u16 control;
2043	int pos;
2044
2045	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2046	if (!pos)
2047		return false;
2048
2049	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2050
2051	return (control & PCI_PRI_TLP_OFF) ? true : false;
2052}
2053
2054/*
2055 * If a device is not yet associated with a domain, this function does
2056 * assigns it visible for the hardware
2057 */
2058static int attach_device(struct device *dev,
2059			 struct protection_domain *domain)
2060{
2061	struct pci_dev *pdev = to_pci_dev(dev);
2062	struct iommu_dev_data *dev_data;
2063	unsigned long flags;
2064	int ret;
2065
2066	dev_data = get_dev_data(dev);
2067
2068	if (domain->flags & PD_IOMMUV2_MASK) {
2069		if (!dev_data->iommu_v2 || !dev_data->passthrough)
2070			return -EINVAL;
2071
2072		if (pdev_iommuv2_enable(pdev) != 0)
2073			return -EINVAL;
2074
2075		dev_data->ats.enabled = true;
2076		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2077		dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
2078	} else if (amd_iommu_iotlb_sup &&
2079		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2080		dev_data->ats.enabled = true;
2081		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2082	}
2083
2084	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2085	ret = __attach_device(dev_data, domain);
2086	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2087
2088	/*
2089	 * We might boot into a crash-kernel here. The crashed kernel
2090	 * left the caches in the IOMMU dirty. So we have to flush
2091	 * here to evict all dirty stuff.
2092	 */
2093	domain_flush_tlb_pde(domain);
2094
2095	return ret;
2096}
2097
2098/*
2099 * Removes a device from a protection domain (unlocked)
2100 */
2101static void __detach_device(struct iommu_dev_data *dev_data)
2102{
2103	struct protection_domain *domain;
2104	unsigned long flags;
2105
2106	BUG_ON(!dev_data->domain);
2107
2108	domain = dev_data->domain;
2109
2110	spin_lock_irqsave(&domain->lock, flags);
2111
2112	if (dev_data->alias_data != NULL) {
2113		struct iommu_dev_data *alias_data = dev_data->alias_data;
2114
2115		if (atomic_dec_and_test(&alias_data->bind))
2116			do_detach(alias_data);
2117	}
2118
2119	if (atomic_dec_and_test(&dev_data->bind))
2120		do_detach(dev_data);
2121
2122	spin_unlock_irqrestore(&domain->lock, flags);
2123
2124	/*
2125	 * If we run in passthrough mode the device must be assigned to the
2126	 * passthrough domain if it is detached from any other domain.
2127	 * Make sure we can deassign from the pt_domain itself.
2128	 */
2129	if (dev_data->passthrough &&
2130	    (dev_data->domain == NULL && domain != pt_domain))
2131		__attach_device(dev_data, pt_domain);
2132}
2133
2134/*
2135 * Removes a device from a protection domain (with devtable_lock held)
2136 */
2137static void detach_device(struct device *dev)
2138{
2139	struct protection_domain *domain;
2140	struct iommu_dev_data *dev_data;
2141	unsigned long flags;
2142
2143	dev_data = get_dev_data(dev);
2144	domain   = dev_data->domain;
2145
2146	/* lock device table */
2147	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2148	__detach_device(dev_data);
2149	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2150
2151	if (domain->flags & PD_IOMMUV2_MASK)
2152		pdev_iommuv2_disable(to_pci_dev(dev));
2153	else if (dev_data->ats.enabled)
2154		pci_disable_ats(to_pci_dev(dev));
2155
2156	dev_data->ats.enabled = false;
2157}
2158
2159/*
2160 * Find out the protection domain structure for a given PCI device. This
2161 * will give us the pointer to the page table root for example.
2162 */
2163static struct protection_domain *domain_for_device(struct device *dev)
2164{
2165	struct iommu_dev_data *dev_data;
2166	struct protection_domain *dom = NULL;
2167	unsigned long flags;
2168
2169	dev_data   = get_dev_data(dev);
2170
2171	if (dev_data->domain)
2172		return dev_data->domain;
2173
2174	if (dev_data->alias_data != NULL) {
2175		struct iommu_dev_data *alias_data = dev_data->alias_data;
2176
2177		read_lock_irqsave(&amd_iommu_devtable_lock, flags);
2178		if (alias_data->domain != NULL) {
2179			__attach_device(dev_data, alias_data->domain);
2180			dom = alias_data->domain;
2181		}
2182		read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2183	}
2184
2185	return dom;
2186}
2187
2188static int device_change_notifier(struct notifier_block *nb,
2189				  unsigned long action, void *data)
2190{
2191	struct dma_ops_domain *dma_domain;
2192	struct protection_domain *domain;
2193	struct iommu_dev_data *dev_data;
2194	struct device *dev = data;
2195	struct amd_iommu *iommu;
2196	unsigned long flags;
2197	u16 devid;
2198
2199	if (!check_device(dev))
2200		return 0;
2201
2202	devid    = get_device_id(dev);
2203	iommu    = amd_iommu_rlookup_table[devid];
2204	dev_data = get_dev_data(dev);
2205
2206	switch (action) {
2207	case BUS_NOTIFY_UNBOUND_DRIVER:
2208
2209		domain = domain_for_device(dev);
2210
2211		if (!domain)
2212			goto out;
2213		if (dev_data->passthrough)
2214			break;
2215		detach_device(dev);
2216		break;
2217	case BUS_NOTIFY_ADD_DEVICE:
2218
2219		iommu_init_device(dev);
2220
2221		domain = domain_for_device(dev);
2222
2223		/* allocate a protection domain if a device is added */
2224		dma_domain = find_protection_domain(devid);
2225		if (dma_domain)
2226			goto out;
2227		dma_domain = dma_ops_domain_alloc();
2228		if (!dma_domain)
2229			goto out;
2230		dma_domain->target_dev = devid;
2231
2232		spin_lock_irqsave(&iommu_pd_list_lock, flags);
2233		list_add_tail(&dma_domain->list, &iommu_pd_list);
2234		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
2235
2236		break;
2237	case BUS_NOTIFY_DEL_DEVICE:
2238
2239		iommu_uninit_device(dev);
2240
2241	default:
2242		goto out;
2243	}
2244
2245	iommu_completion_wait(iommu);
2246
2247out:
2248	return 0;
2249}
2250
2251static struct notifier_block device_nb = {
2252	.notifier_call = device_change_notifier,
2253};
2254
2255void amd_iommu_init_notifier(void)
2256{
2257	bus_register_notifier(&pci_bus_type, &device_nb);
2258}
2259
2260/*****************************************************************************
2261 *
2262 * The next functions belong to the dma_ops mapping/unmapping code.
2263 *
2264 *****************************************************************************/
2265
2266/*
2267 * In the dma_ops path we only have the struct device. This function
2268 * finds the corresponding IOMMU, the protection domain and the
2269 * requestor id for a given device.
2270 * If the device is not yet associated with a domain this is also done
2271 * in this function.
2272 */
2273static struct protection_domain *get_domain(struct device *dev)
2274{
2275	struct protection_domain *domain;
2276	struct dma_ops_domain *dma_dom;
2277	u16 devid = get_device_id(dev);
2278
2279	if (!check_device(dev))
2280		return ERR_PTR(-EINVAL);
2281
2282	domain = domain_for_device(dev);
2283	if (domain != NULL && !dma_ops_domain(domain))
2284		return ERR_PTR(-EBUSY);
2285
2286	if (domain != NULL)
2287		return domain;
2288
2289	/* Device not bount yet - bind it */
2290	dma_dom = find_protection_domain(devid);
2291	if (!dma_dom)
2292		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
2293	attach_device(dev, &dma_dom->domain);
2294	DUMP_printk("Using protection domain %d for device %s\n",
2295		    dma_dom->domain.id, dev_name(dev));
2296
2297	return &dma_dom->domain;
2298}
2299
2300static void update_device_table(struct protection_domain *domain)
2301{
2302	struct iommu_dev_data *dev_data;
2303
2304	list_for_each_entry(dev_data, &domain->dev_list, list)
2305		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2306}
2307
2308static void update_domain(struct protection_domain *domain)
2309{
2310	if (!domain->updated)
2311		return;
2312
2313	update_device_table(domain);
2314
2315	domain_flush_devices(domain);
2316	domain_flush_tlb_pde(domain);
2317
2318	domain->updated = false;
2319}
2320
2321/*
2322 * This function fetches the PTE for a given address in the aperture
2323 */
2324static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2325			    unsigned long address)
2326{
2327	struct aperture_range *aperture;
2328	u64 *pte, *pte_page;
2329
2330	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2331	if (!aperture)
2332		return NULL;
2333
2334	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2335	if (!pte) {
2336		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2337				GFP_ATOMIC);
2338		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2339	} else
2340		pte += PM_LEVEL_INDEX(0, address);
2341
2342	update_domain(&dom->domain);
2343
2344	return pte;
2345}
2346
2347/*
2348 * This is the generic map function. It maps one 4kb page at paddr to
2349 * the given address in the DMA address space for the domain.
2350 */
2351static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2352				     unsigned long address,
2353				     phys_addr_t paddr,
2354				     int direction)
2355{
2356	u64 *pte, __pte;
2357
2358	WARN_ON(address > dom->aperture_size);
2359
2360	paddr &= PAGE_MASK;
2361
2362	pte  = dma_ops_get_pte(dom, address);
2363	if (!pte)
2364		return DMA_ERROR_CODE;
2365
2366	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2367
2368	if (direction == DMA_TO_DEVICE)
2369		__pte |= IOMMU_PTE_IR;
2370	else if (direction == DMA_FROM_DEVICE)
2371		__pte |= IOMMU_PTE_IW;
2372	else if (direction == DMA_BIDIRECTIONAL)
2373		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2374
2375	WARN_ON(*pte);
2376
2377	*pte = __pte;
2378
2379	return (dma_addr_t)address;
2380}
2381
2382/*
2383 * The generic unmapping function for on page in the DMA address space.
2384 */
2385static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2386				 unsigned long address)
2387{
2388	struct aperture_range *aperture;
2389	u64 *pte;
2390
2391	if (address >= dom->aperture_size)
2392		return;
2393
2394	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2395	if (!aperture)
2396		return;
2397
2398	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2399	if (!pte)
2400		return;
2401
2402	pte += PM_LEVEL_INDEX(0, address);
2403
2404	WARN_ON(!*pte);
2405
2406	*pte = 0ULL;
2407}
2408
2409/*
2410 * This function contains common code for mapping of a physically
2411 * contiguous memory region into DMA address space. It is used by all
2412 * mapping functions provided with this IOMMU driver.
2413 * Must be called with the domain lock held.
2414 */
2415static dma_addr_t __map_single(struct device *dev,
2416			       struct dma_ops_domain *dma_dom,
2417			       phys_addr_t paddr,
2418			       size_t size,
2419			       int dir,
2420			       bool align,
2421			       u64 dma_mask)
2422{
2423	dma_addr_t offset = paddr & ~PAGE_MASK;
2424	dma_addr_t address, start, ret;
2425	unsigned int pages;
2426	unsigned long align_mask = 0;
2427	int i;
2428
2429	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2430	paddr &= PAGE_MASK;
2431
2432	INC_STATS_COUNTER(total_map_requests);
2433
2434	if (pages > 1)
2435		INC_STATS_COUNTER(cross_page);
2436
2437	if (align)
2438		align_mask = (1UL << get_order(size)) - 1;
2439
2440retry:
2441	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2442					  dma_mask);
2443	if (unlikely(address == DMA_ERROR_CODE)) {
2444		/*
2445		 * setting next_address here will let the address
2446		 * allocator only scan the new allocated range in the
2447		 * first run. This is a small optimization.
2448		 */
2449		dma_dom->next_address = dma_dom->aperture_size;
2450
2451		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2452			goto out;
2453
2454		/*
2455		 * aperture was successfully enlarged by 128 MB, try
2456		 * allocation again
2457		 */
2458		goto retry;
2459	}
2460
2461	start = address;
2462	for (i = 0; i < pages; ++i) {
2463		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2464		if (ret == DMA_ERROR_CODE)
2465			goto out_unmap;
2466
2467		paddr += PAGE_SIZE;
2468		start += PAGE_SIZE;
2469	}
2470	address += offset;
2471
2472	ADD_STATS_COUNTER(alloced_io_mem, size);
2473
2474	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2475		domain_flush_tlb(&dma_dom->domain);
2476		dma_dom->need_flush = false;
2477	} else if (unlikely(amd_iommu_np_cache))
2478		domain_flush_pages(&dma_dom->domain, address, size);
2479
2480out:
2481	return address;
2482
2483out_unmap:
2484
2485	for (--i; i >= 0; --i) {
2486		start -= PAGE_SIZE;
2487		dma_ops_domain_unmap(dma_dom, start);
2488	}
2489
2490	dma_ops_free_addresses(dma_dom, address, pages);
2491
2492	return DMA_ERROR_CODE;
2493}
2494
2495/*
2496 * Does the reverse of the __map_single function. Must be called with
2497 * the domain lock held too
2498 */
2499static void __unmap_single(struct dma_ops_domain *dma_dom,
2500			   dma_addr_t dma_addr,
2501			   size_t size,
2502			   int dir)
2503{
2504	dma_addr_t flush_addr;
2505	dma_addr_t i, start;
2506	unsigned int pages;
2507
2508	if ((dma_addr == DMA_ERROR_CODE) ||
2509	    (dma_addr + size > dma_dom->aperture_size))
2510		return;
2511
2512	flush_addr = dma_addr;
2513	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2514	dma_addr &= PAGE_MASK;
2515	start = dma_addr;
2516
2517	for (i = 0; i < pages; ++i) {
2518		dma_ops_domain_unmap(dma_dom, start);
2519		start += PAGE_SIZE;
2520	}
2521
2522	SUB_STATS_COUNTER(alloced_io_mem, size);
2523
2524	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2525
2526	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2527		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2528		dma_dom->need_flush = false;
2529	}
2530}
2531
2532/*
2533 * The exported map_single function for dma_ops.
2534 */
2535static dma_addr_t map_page(struct device *dev, struct page *page,
2536			   unsigned long offset, size_t size,
2537			   enum dma_data_direction dir,
2538			   struct dma_attrs *attrs)
2539{
2540	unsigned long flags;
2541	struct protection_domain *domain;
2542	dma_addr_t addr;
2543	u64 dma_mask;
2544	phys_addr_t paddr = page_to_phys(page) + offset;
2545
2546	INC_STATS_COUNTER(cnt_map_single);
2547
2548	domain = get_domain(dev);
2549	if (PTR_ERR(domain) == -EINVAL)
2550		return (dma_addr_t)paddr;
2551	else if (IS_ERR(domain))
2552		return DMA_ERROR_CODE;
2553
2554	dma_mask = *dev->dma_mask;
2555
2556	spin_lock_irqsave(&domain->lock, flags);
2557
2558	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2559			    dma_mask);
2560	if (addr == DMA_ERROR_CODE)
2561		goto out;
2562
2563	domain_flush_complete(domain);
2564
2565out:
2566	spin_unlock_irqrestore(&domain->lock, flags);
2567
2568	return addr;
2569}
2570
2571/*
2572 * The exported unmap_single function for dma_ops.
2573 */
2574static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2575		       enum dma_data_direction dir, struct dma_attrs *attrs)
2576{
2577	unsigned long flags;
2578	struct protection_domain *domain;
2579
2580	INC_STATS_COUNTER(cnt_unmap_single);
2581
2582	domain = get_domain(dev);
2583	if (IS_ERR(domain))
2584		return;
2585
2586	spin_lock_irqsave(&domain->lock, flags);
2587
2588	__unmap_single(domain->priv, dma_addr, size, dir);
2589
2590	domain_flush_complete(domain);
2591
2592	spin_unlock_irqrestore(&domain->lock, flags);
2593}
2594
2595/*
2596 * This is a special map_sg function which is used if we should map a
2597 * device which is not handled by an AMD IOMMU in the system.
2598 */
2599static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
2600			   int nelems, int dir)
2601{
2602	struct scatterlist *s;
2603	int i;
2604
2605	for_each_sg(sglist, s, nelems, i) {
2606		s->dma_address = (dma_addr_t)sg_phys(s);
2607		s->dma_length  = s->length;
2608	}
2609
2610	return nelems;
2611}
2612
2613/*
2614 * The exported map_sg function for dma_ops (handles scatter-gather
2615 * lists).
2616 */
2617static int map_sg(struct device *dev, struct scatterlist *sglist,
2618		  int nelems, enum dma_data_direction dir,
2619		  struct dma_attrs *attrs)
2620{
2621	unsigned long flags;
2622	struct protection_domain *domain;
2623	int i;
2624	struct scatterlist *s;
2625	phys_addr_t paddr;
2626	int mapped_elems = 0;
2627	u64 dma_mask;
2628
2629	INC_STATS_COUNTER(cnt_map_sg);
2630
2631	domain = get_domain(dev);
2632	if (PTR_ERR(domain) == -EINVAL)
2633		return map_sg_no_iommu(dev, sglist, nelems, dir);
2634	else if (IS_ERR(domain))
2635		return 0;
2636
2637	dma_mask = *dev->dma_mask;
2638
2639	spin_lock_irqsave(&domain->lock, flags);
2640
2641	for_each_sg(sglist, s, nelems, i) {
2642		paddr = sg_phys(s);
2643
2644		s->dma_address = __map_single(dev, domain->priv,
2645					      paddr, s->length, dir, false,
2646					      dma_mask);
2647
2648		if (s->dma_address) {
2649			s->dma_length = s->length;
2650			mapped_elems++;
2651		} else
2652			goto unmap;
2653	}
2654
2655	domain_flush_complete(domain);
2656
2657out:
2658	spin_unlock_irqrestore(&domain->lock, flags);
2659
2660	return mapped_elems;
2661unmap:
2662	for_each_sg(sglist, s, mapped_elems, i) {
2663		if (s->dma_address)
2664			__unmap_single(domain->priv, s->dma_address,
2665				       s->dma_length, dir);
2666		s->dma_address = s->dma_length = 0;
2667	}
2668
2669	mapped_elems = 0;
2670
2671	goto out;
2672}
2673
2674/*
2675 * The exported map_sg function for dma_ops (handles scatter-gather
2676 * lists).
2677 */
2678static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2679		     int nelems, enum dma_data_direction dir,
2680		     struct dma_attrs *attrs)
2681{
2682	unsigned long flags;
2683	struct protection_domain *domain;
2684	struct scatterlist *s;
2685	int i;
2686
2687	INC_STATS_COUNTER(cnt_unmap_sg);
2688
2689	domain = get_domain(dev);
2690	if (IS_ERR(domain))
2691		return;
2692
2693	spin_lock_irqsave(&domain->lock, flags);
2694
2695	for_each_sg(sglist, s, nelems, i) {
2696		__unmap_single(domain->priv, s->dma_address,
2697			       s->dma_length, dir);
2698		s->dma_address = s->dma_length = 0;
2699	}
2700
2701	domain_flush_complete(domain);
2702
2703	spin_unlock_irqrestore(&domain->lock, flags);
2704}
2705
2706/*
2707 * The exported alloc_coherent function for dma_ops.
2708 */
2709static void *alloc_coherent(struct device *dev, size_t size,
2710			    dma_addr_t *dma_addr, gfp_t flag)
2711{
2712	unsigned long flags;
2713	void *virt_addr;
2714	struct protection_domain *domain;
2715	phys_addr_t paddr;
2716	u64 dma_mask = dev->coherent_dma_mask;
2717
2718	INC_STATS_COUNTER(cnt_alloc_coherent);
2719
2720	domain = get_domain(dev);
2721	if (PTR_ERR(domain) == -EINVAL) {
2722		virt_addr = (void *)__get_free_pages(flag, get_order(size));
2723		*dma_addr = __pa(virt_addr);
2724		return virt_addr;
2725	} else if (IS_ERR(domain))
2726		return NULL;
2727
2728	dma_mask  = dev->coherent_dma_mask;
2729	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2730	flag     |= __GFP_ZERO;
2731
2732	virt_addr = (void *)__get_free_pages(flag, get_order(size));
2733	if (!virt_addr)
2734		return NULL;
2735
2736	paddr = virt_to_phys(virt_addr);
2737
2738	if (!dma_mask)
2739		dma_mask = *dev->dma_mask;
2740
2741	spin_lock_irqsave(&domain->lock, flags);
2742
2743	*dma_addr = __map_single(dev, domain->priv, paddr,
2744				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2745
2746	if (*dma_addr == DMA_ERROR_CODE) {
2747		spin_unlock_irqrestore(&domain->lock, flags);
2748		goto out_free;
2749	}
2750
2751	domain_flush_complete(domain);
2752
2753	spin_unlock_irqrestore(&domain->lock, flags);
2754
2755	return virt_addr;
2756
2757out_free:
2758
2759	free_pages((unsigned long)virt_addr, get_order(size));
2760
2761	return NULL;
2762}
2763
2764/*
2765 * The exported free_coherent function for dma_ops.
2766 */
2767static void free_coherent(struct device *dev, size_t size,
2768			  void *virt_addr, dma_addr_t dma_addr)
2769{
2770	unsigned long flags;
2771	struct protection_domain *domain;
2772
2773	INC_STATS_COUNTER(cnt_free_coherent);
2774
2775	domain = get_domain(dev);
2776	if (IS_ERR(domain))
2777		goto free_mem;
2778
2779	spin_lock_irqsave(&domain->lock, flags);
2780
2781	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2782
2783	domain_flush_complete(domain);
2784
2785	spin_unlock_irqrestore(&domain->lock, flags);
2786
2787free_mem:
2788	free_pages((unsigned long)virt_addr, get_order(size));
2789}
2790
2791/*
2792 * This function is called by the DMA layer to find out if we can handle a
2793 * particular device. It is part of the dma_ops.
2794 */
2795static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2796{
2797	return check_device(dev);
2798}
2799
2800/*
2801 * The function for pre-allocating protection domains.
2802 *
2803 * If the driver core informs the DMA layer if a driver grabs a device
2804 * we don't need to preallocate the protection domains anymore.
2805 * For now we have to.
2806 */
2807static void prealloc_protection_domains(void)
2808{
2809	struct iommu_dev_data *dev_data;
2810	struct dma_ops_domain *dma_dom;
2811	struct pci_dev *dev = NULL;
2812	u16 devid;
2813
2814	for_each_pci_dev(dev) {
2815
2816		/* Do we handle this device? */
2817		if (!check_device(&dev->dev))
2818			continue;
2819
2820		dev_data = get_dev_data(&dev->dev);
2821		if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
2822			/* Make sure passthrough domain is allocated */
2823			alloc_passthrough_domain();
2824			dev_data->passthrough = true;
2825			attach_device(&dev->dev, pt_domain);
2826			pr_info("AMD-Vi: Using passthough domain for device %s\n",
2827				dev_name(&dev->dev));
2828		}
2829
2830		/* Is there already any domain for it? */
2831		if (domain_for_device(&dev->dev))
2832			continue;
2833
2834		devid = get_device_id(&dev->dev);
2835
2836		dma_dom = dma_ops_domain_alloc();
2837		if (!dma_dom)
2838			continue;
2839		init_unity_mappings_for_device(dma_dom, devid);
2840		dma_dom->target_dev = devid;
2841
2842		attach_device(&dev->dev, &dma_dom->domain);
2843
2844		list_add_tail(&dma_dom->list, &iommu_pd_list);
2845	}
2846}
2847
2848static struct dma_map_ops amd_iommu_dma_ops = {
2849	.alloc_coherent = alloc_coherent,
2850	.free_coherent = free_coherent,
2851	.map_page = map_page,
2852	.unmap_page = unmap_page,
2853	.map_sg = map_sg,
2854	.unmap_sg = unmap_sg,
2855	.dma_supported = amd_iommu_dma_supported,
2856};
2857
2858static unsigned device_dma_ops_init(void)
2859{
2860	struct iommu_dev_data *dev_data;
2861	struct pci_dev *pdev = NULL;
2862	unsigned unhandled = 0;
2863
2864	for_each_pci_dev(pdev) {
2865		if (!check_device(&pdev->dev)) {
2866
2867			iommu_ignore_device(&pdev->dev);
2868
2869			unhandled += 1;
2870			continue;
2871		}
2872
2873		dev_data = get_dev_data(&pdev->dev);
2874
2875		if (!dev_data->passthrough)
2876			pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
2877		else
2878			pdev->dev.archdata.dma_ops = &nommu_dma_ops;
2879	}
2880
2881	return unhandled;
2882}
2883
2884/*
2885 * The function which clues the AMD IOMMU driver into dma_ops.
2886 */
2887
2888void __init amd_iommu_init_api(void)
2889{
2890	bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2891}
2892
2893int __init amd_iommu_init_dma_ops(void)
2894{
2895	struct amd_iommu *iommu;
2896	int ret, unhandled;
2897
2898	/*
2899	 * first allocate a default protection domain for every IOMMU we
2900	 * found in the system. Devices not assigned to any other
2901	 * protection domain will be assigned to the default one.
2902	 */
2903	for_each_iommu(iommu) {
2904		iommu->default_dom = dma_ops_domain_alloc();
2905		if (iommu->default_dom == NULL)
2906			return -ENOMEM;
2907		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2908		ret = iommu_init_unity_mappings(iommu);
2909		if (ret)
2910			goto free_domains;
2911	}
2912
2913	/*
2914	 * Pre-allocate the protection domains for each device.
2915	 */
2916	prealloc_protection_domains();
2917
2918	iommu_detected = 1;
2919	swiotlb = 0;
2920
2921	/* Make the driver finally visible to the drivers */
2922	unhandled = device_dma_ops_init();
2923	if (unhandled && max_pfn > MAX_DMA32_PFN) {
2924		/* There are unhandled devices - initialize swiotlb for them */
2925		swiotlb = 1;
2926	}
2927
2928	amd_iommu_stats_init();
2929
2930	return 0;
2931
2932free_domains:
2933
2934	for_each_iommu(iommu) {
2935		if (iommu->default_dom)
2936			dma_ops_domain_free(iommu->default_dom);
2937	}
2938
2939	return ret;
2940}
2941
2942/*****************************************************************************
2943 *
2944 * The following functions belong to the exported interface of AMD IOMMU
2945 *
2946 * This interface allows access to lower level functions of the IOMMU
2947 * like protection domain handling and assignement of devices to domains
2948 * which is not possible with the dma_ops interface.
2949 *
2950 *****************************************************************************/
2951
2952static void cleanup_domain(struct protection_domain *domain)
2953{
2954	struct iommu_dev_data *dev_data, *next;
2955	unsigned long flags;
2956
2957	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2958
2959	list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
2960		__detach_device(dev_data);
2961		atomic_set(&dev_data->bind, 0);
2962	}
2963
2964	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2965}
2966
2967static void protection_domain_free(struct protection_domain *domain)
2968{
2969	if (!domain)
2970		return;
2971
2972	del_domain_from_list(domain);
2973
2974	if (domain->id)
2975		domain_id_free(domain->id);
2976
2977	kfree(domain);
2978}
2979
2980static struct protection_domain *protection_domain_alloc(void)
2981{
2982	struct protection_domain *domain;
2983
2984	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2985	if (!domain)
2986		return NULL;
2987
2988	spin_lock_init(&domain->lock);
2989	mutex_init(&domain->api_lock);
2990	domain->id = domain_id_alloc();
2991	if (!domain->id)
2992		goto out_err;
2993	INIT_LIST_HEAD(&domain->dev_list);
2994
2995	add_domain_to_list(domain);
2996
2997	return domain;
2998
2999out_err:
3000	kfree(domain);
3001
3002	return NULL;
3003}
3004
3005static int __init alloc_passthrough_domain(void)
3006{
3007	if (pt_domain != NULL)
3008		return 0;
3009
3010	/* allocate passthrough domain */
3011	pt_domain = protection_domain_alloc();
3012	if (!pt_domain)
3013		return -ENOMEM;
3014
3015	pt_domain->mode = PAGE_MODE_NONE;
3016
3017	return 0;
3018}
3019static int amd_iommu_domain_init(struct iommu_domain *dom)
3020{
3021	struct protection_domain *domain;
3022
3023	domain = protection_domain_alloc();
3024	if (!domain)
3025		goto out_free;
3026
3027	domain->mode    = PAGE_MODE_3_LEVEL;
3028	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
3029	if (!domain->pt_root)
3030		goto out_free;
3031
3032	domain->iommu_domain = dom;
3033
3034	dom->priv = domain;
3035
3036	return 0;
3037
3038out_free:
3039	protection_domain_free(domain);
3040
3041	return -ENOMEM;
3042}
3043
3044static void amd_iommu_domain_destroy(struct iommu_domain *dom)
3045{
3046	struct protection_domain *domain = dom->priv;
3047
3048	if (!domain)
3049		return;
3050
3051	if (domain->dev_cnt > 0)
3052		cleanup_domain(domain);
3053
3054	BUG_ON(domain->dev_cnt != 0);
3055
3056	if (domain->mode != PAGE_MODE_NONE)
3057		free_pagetable(domain);
3058
3059	if (domain->flags & PD_IOMMUV2_MASK)
3060		free_gcr3_table(domain);
3061
3062	protection_domain_free(domain);
3063
3064	dom->priv = NULL;
3065}
3066
3067static void amd_iommu_detach_device(struct iommu_domain *dom,
3068				    struct device *dev)
3069{
3070	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3071	struct amd_iommu *iommu;
3072	u16 devid;
3073
3074	if (!check_device(dev))
3075		return;
3076
3077	devid = get_device_id(dev);
3078
3079	if (dev_data->domain != NULL)
3080		detach_device(dev);
3081
3082	iommu = amd_iommu_rlookup_table[devid];
3083	if (!iommu)
3084		return;
3085
3086	iommu_completion_wait(iommu);
3087}
3088
3089static int amd_iommu_attach_device(struct iommu_domain *dom,
3090				   struct device *dev)
3091{
3092	struct protection_domain *domain = dom->priv;
3093	struct iommu_dev_data *dev_data;
3094	struct amd_iommu *iommu;
3095	int ret;
3096
3097	if (!check_device(dev))
3098		return -EINVAL;
3099
3100	dev_data = dev->archdata.iommu;
3101
3102	iommu = amd_iommu_rlookup_table[dev_data->devid];
3103	if (!iommu)
3104		return -EINVAL;
3105
3106	if (dev_data->domain)
3107		detach_device(dev);
3108
3109	ret = attach_device(dev, domain);
3110
3111	iommu_completion_wait(iommu);
3112
3113	return ret;
3114}
3115
3116static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3117			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3118{
3119	struct protection_domain *domain = dom->priv;
3120	int prot = 0;
3121	int ret;
3122
3123	if (domain->mode == PAGE_MODE_NONE)
3124		return -EINVAL;
3125
3126	if (iommu_prot & IOMMU_READ)
3127		prot |= IOMMU_PROT_IR;
3128	if (iommu_prot & IOMMU_WRITE)
3129		prot |= IOMMU_PROT_IW;
3130
3131	mutex_lock(&domain->api_lock);
3132	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3133	mutex_unlock(&domain->api_lock);
3134
3135	return ret;
3136}
3137
3138static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3139			   size_t page_size)
3140{
3141	struct protection_domain *domain = dom->priv;
3142	size_t unmap_size;
3143
3144	if (domain->mode == PAGE_MODE_NONE)
3145		return -EINVAL;
3146
3147	mutex_lock(&domain->api_lock);
3148	unmap_size = iommu_unmap_page(domain, iova, page_size);
3149	mutex_unlock(&domain->api_lock);
3150
3151	domain_flush_tlb_pde(domain);
3152
3153	return unmap_size;
3154}
3155
3156static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3157					  unsigned long iova)
3158{
3159	struct protection_domain *domain = dom->priv;
3160	unsigned long offset_mask;
3161	phys_addr_t paddr;
3162	u64 *pte, __pte;
3163
3164	if (domain->mode == PAGE_MODE_NONE)
3165		return iova;
3166
3167	pte = fetch_pte(domain, iova);
3168
3169	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3170		return 0;
3171
3172	if (PM_PTE_LEVEL(*pte) == 0)
3173		offset_mask = PAGE_SIZE - 1;
3174	else
3175		offset_mask = PTE_PAGE_SIZE(*pte) - 1;
3176
3177	__pte = *pte & PM_ADDR_MASK;
3178	paddr = (__pte & ~offset_mask) | (iova & offset_mask);
3179
3180	return paddr;
3181}
3182
3183static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
3184				    unsigned long cap)
3185{
3186	switch (cap) {
3187	case IOMMU_CAP_CACHE_COHERENCY:
3188		return 1;
3189	}
3190
3191	return 0;
3192}
3193
3194static int amd_iommu_device_group(struct device *dev, unsigned int *groupid)
3195{
3196	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3197	struct pci_dev *pdev = to_pci_dev(dev);
3198	u16 devid;
3199
3200	if (!dev_data)
3201		return -ENODEV;
3202
3203	if (pdev->is_virtfn || !iommu_group_mf)
3204		devid = dev_data->devid;
3205	else
3206		devid = calc_devid(pdev->bus->number,
3207				   PCI_DEVFN(PCI_SLOT(pdev->devfn), 0));
3208
3209	*groupid = amd_iommu_alias_table[devid];
3210
3211	return 0;
3212}
3213
3214static struct iommu_ops amd_iommu_ops = {
3215	.domain_init = amd_iommu_domain_init,
3216	.domain_destroy = amd_iommu_domain_destroy,
3217	.attach_dev = amd_iommu_attach_device,
3218	.detach_dev = amd_iommu_detach_device,
3219	.map = amd_iommu_map,
3220	.unmap = amd_iommu_unmap,
3221	.iova_to_phys = amd_iommu_iova_to_phys,
3222	.domain_has_cap = amd_iommu_domain_has_cap,
3223	.device_group = amd_iommu_device_group,
3224	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3225};
3226
3227/*****************************************************************************
3228 *
3229 * The next functions do a basic initialization of IOMMU for pass through
3230 * mode
3231 *
3232 * In passthrough mode the IOMMU is initialized and enabled but not used for
3233 * DMA-API translation.
3234 *
3235 *****************************************************************************/
3236
3237int __init amd_iommu_init_passthrough(void)
3238{
3239	struct iommu_dev_data *dev_data;
3240	struct pci_dev *dev = NULL;
3241	struct amd_iommu *iommu;
3242	u16 devid;
3243	int ret;
3244
3245	ret = alloc_passthrough_domain();
3246	if (ret)
3247		return ret;
3248
3249	for_each_pci_dev(dev) {
3250		if (!check_device(&dev->dev))
3251			continue;
3252
3253		dev_data = get_dev_data(&dev->dev);
3254		dev_data->passthrough = true;
3255
3256		devid = get_device_id(&dev->dev);
3257
3258		iommu = amd_iommu_rlookup_table[devid];
3259		if (!iommu)
3260			continue;
3261
3262		attach_device(&dev->dev, pt_domain);
3263	}
3264
3265	amd_iommu_stats_init();
3266
3267	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
3268
3269	return 0;
3270}
3271
3272/* IOMMUv2 specific functions */
3273int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3274{
3275	return atomic_notifier_chain_register(&ppr_notifier, nb);
3276}
3277EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3278
3279int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3280{
3281	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3282}
3283EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3284
3285void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3286{
3287	struct protection_domain *domain = dom->priv;
3288	unsigned long flags;
3289
3290	spin_lock_irqsave(&domain->lock, flags);
3291
3292	/* Update data structure */
3293	domain->mode    = PAGE_MODE_NONE;
3294	domain->updated = true;
3295
3296	/* Make changes visible to IOMMUs */
3297	update_domain(domain);
3298
3299	/* Page-table is not visible to IOMMU anymore, so free it */
3300	free_pagetable(domain);
3301
3302	spin_unlock_irqrestore(&domain->lock, flags);
3303}
3304EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3305
3306int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3307{
3308	struct protection_domain *domain = dom->priv;
3309	unsigned long flags;
3310	int levels, ret;
3311
3312	if (pasids <= 0 || pasids > (PASID_MASK + 1))
3313		return -EINVAL;
3314
3315	/* Number of GCR3 table levels required */
3316	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3317		levels += 1;
3318
3319	if (levels > amd_iommu_max_glx_val)
3320		return -EINVAL;
3321
3322	spin_lock_irqsave(&domain->lock, flags);
3323
3324	/*
3325	 * Save us all sanity checks whether devices already in the
3326	 * domain support IOMMUv2. Just force that the domain has no
3327	 * devices attached when it is switched into IOMMUv2 mode.
3328	 */
3329	ret = -EBUSY;
3330	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3331		goto out;
3332
3333	ret = -ENOMEM;
3334	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3335	if (domain->gcr3_tbl == NULL)
3336		goto out;
3337
3338	domain->glx      = levels;
3339	domain->flags   |= PD_IOMMUV2_MASK;
3340	domain->updated  = true;
3341
3342	update_domain(domain);
3343
3344	ret = 0;
3345
3346out:
3347	spin_unlock_irqrestore(&domain->lock, flags);
3348
3349	return ret;
3350}
3351EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3352
3353static int __flush_pasid(struct protection_domain *domain, int pasid,
3354			 u64 address, bool size)
3355{
3356	struct iommu_dev_data *dev_data;
3357	struct iommu_cmd cmd;
3358	int i, ret;
3359
3360	if (!(domain->flags & PD_IOMMUV2_MASK))
3361		return -EINVAL;
3362
3363	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3364
3365	/*
3366	 * IOMMU TLB needs to be flushed before Device TLB to
3367	 * prevent device TLB refill from IOMMU TLB
3368	 */
3369	for (i = 0; i < amd_iommus_present; ++i) {
3370		if (domain->dev_iommu[i] == 0)
3371			continue;
3372
3373		ret = iommu_queue_command(amd_iommus[i], &cmd);
3374		if (ret != 0)
3375			goto out;
3376	}
3377
3378	/* Wait until IOMMU TLB flushes are complete */
3379	domain_flush_complete(domain);
3380
3381	/* Now flush device TLBs */
3382	list_for_each_entry(dev_data, &domain->dev_list, list) {
3383		struct amd_iommu *iommu;
3384		int qdep;
3385
3386		BUG_ON(!dev_data->ats.enabled);
3387
3388		qdep  = dev_data->ats.qdep;
3389		iommu = amd_iommu_rlookup_table[dev_data->devid];
3390
3391		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3392				      qdep, address, size);
3393
3394		ret = iommu_queue_command(iommu, &cmd);
3395		if (ret != 0)
3396			goto out;
3397	}
3398
3399	/* Wait until all device TLBs are flushed */
3400	domain_flush_complete(domain);
3401
3402	ret = 0;
3403
3404out:
3405
3406	return ret;
3407}
3408
3409static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3410				  u64 address)
3411{
3412	INC_STATS_COUNTER(invalidate_iotlb);
3413
3414	return __flush_pasid(domain, pasid, address, false);
3415}
3416
3417int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3418			 u64 address)
3419{
3420	struct protection_domain *domain = dom->priv;
3421	unsigned long flags;
3422	int ret;
3423
3424	spin_lock_irqsave(&domain->lock, flags);
3425	ret = __amd_iommu_flush_page(domain, pasid, address);
3426	spin_unlock_irqrestore(&domain->lock, flags);
3427
3428	return ret;
3429}
3430EXPORT_SYMBOL(amd_iommu_flush_page);
3431
3432static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3433{
3434	INC_STATS_COUNTER(invalidate_iotlb_all);
3435
3436	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3437			     true);
3438}
3439
3440int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3441{
3442	struct protection_domain *domain = dom->priv;
3443	unsigned long flags;
3444	int ret;
3445
3446	spin_lock_irqsave(&domain->lock, flags);
3447	ret = __amd_iommu_flush_tlb(domain, pasid);
3448	spin_unlock_irqrestore(&domain->lock, flags);
3449
3450	return ret;
3451}
3452EXPORT_SYMBOL(amd_iommu_flush_tlb);
3453
3454static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3455{
3456	int index;
3457	u64 *pte;
3458
3459	while (true) {
3460
3461		index = (pasid >> (9 * level)) & 0x1ff;
3462		pte   = &root[index];
3463
3464		if (level == 0)
3465			break;
3466
3467		if (!(*pte & GCR3_VALID)) {
3468			if (!alloc)
3469				return NULL;
3470
3471			root = (void *)get_zeroed_page(GFP_ATOMIC);
3472			if (root == NULL)
3473				return NULL;
3474
3475			*pte = __pa(root) | GCR3_VALID;
3476		}
3477
3478		root = __va(*pte & PAGE_MASK);
3479
3480		level -= 1;
3481	}
3482
3483	return pte;
3484}
3485
3486static int __set_gcr3(struct protection_domain *domain, int pasid,
3487		      unsigned long cr3)
3488{
3489	u64 *pte;
3490
3491	if (domain->mode != PAGE_MODE_NONE)
3492		return -EINVAL;
3493
3494	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3495	if (pte == NULL)
3496		return -ENOMEM;
3497
3498	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3499
3500	return __amd_iommu_flush_tlb(domain, pasid);
3501}
3502
3503static int __clear_gcr3(struct protection_domain *domain, int pasid)
3504{
3505	u64 *pte;
3506
3507	if (domain->mode != PAGE_MODE_NONE)
3508		return -EINVAL;
3509
3510	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3511	if (pte == NULL)
3512		return 0;
3513
3514	*pte = 0;
3515
3516	return __amd_iommu_flush_tlb(domain, pasid);
3517}
3518
3519int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3520			      unsigned long cr3)
3521{
3522	struct protection_domain *domain = dom->priv;
3523	unsigned long flags;
3524	int ret;
3525
3526	spin_lock_irqsave(&domain->lock, flags);
3527	ret = __set_gcr3(domain, pasid, cr3);
3528	spin_unlock_irqrestore(&domain->lock, flags);
3529
3530	return ret;
3531}
3532EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3533
3534int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3535{
3536	struct protection_domain *domain = dom->priv;
3537	unsigned long flags;
3538	int ret;
3539
3540	spin_lock_irqsave(&domain->lock, flags);
3541	ret = __clear_gcr3(domain, pasid);
3542	spin_unlock_irqrestore(&domain->lock, flags);
3543
3544	return ret;
3545}
3546EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3547
3548int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3549			   int status, int tag)
3550{
3551	struct iommu_dev_data *dev_data;
3552	struct amd_iommu *iommu;
3553	struct iommu_cmd cmd;
3554
3555	INC_STATS_COUNTER(complete_ppr);
3556
3557	dev_data = get_dev_data(&pdev->dev);
3558	iommu    = amd_iommu_rlookup_table[dev_data->devid];
3559
3560	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3561			   tag, dev_data->pri_tlp);
3562
3563	return iommu_queue_command(iommu, &cmd);
3564}
3565EXPORT_SYMBOL(amd_iommu_complete_ppr);
3566
3567struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3568{
3569	struct protection_domain *domain;
3570
3571	domain = get_domain(&pdev->dev);
3572	if (IS_ERR(domain))
3573		return NULL;
3574
3575	/* Only return IOMMUv2 domains */
3576	if (!(domain->flags & PD_IOMMUV2_MASK))
3577		return NULL;
3578
3579	return domain->iommu_domain;
3580}
3581EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3582
3583void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3584{
3585	struct iommu_dev_data *dev_data;
3586
3587	if (!amd_iommu_v2_supported())
3588		return;
3589
3590	dev_data = get_dev_data(&pdev->dev);
3591	dev_data->errata |= (1 << erratum);
3592}
3593EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3594
3595int amd_iommu_device_info(struct pci_dev *pdev,
3596                          struct amd_iommu_device_info *info)
3597{
3598	int max_pasids;
3599	int pos;
3600
3601	if (pdev == NULL || info == NULL)
3602		return -EINVAL;
3603
3604	if (!amd_iommu_v2_supported())
3605		return -EINVAL;
3606
3607	memset(info, 0, sizeof(*info));
3608
3609	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3610	if (pos)
3611		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3612
3613	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3614	if (pos)
3615		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3616
3617	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3618	if (pos) {
3619		int features;
3620
3621		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3622		max_pasids = min(max_pasids, (1 << 20));
3623
3624		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3625		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3626
3627		features = pci_pasid_features(pdev);
3628		if (features & PCI_PASID_CAP_EXEC)
3629			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3630		if (features & PCI_PASID_CAP_PRIV)
3631			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3632	}
3633
3634	return 0;
3635}
3636EXPORT_SYMBOL(amd_iommu_device_info);
3637