1/*
2 * Copyright (C) 2011 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm-thin-metadata.h"
8
9#include <linux/device-mapper.h>
10#include <linux/dm-io.h>
11#include <linux/dm-kcopyd.h>
12#include <linux/list.h>
13#include <linux/init.h>
14#include <linux/module.h>
15#include <linux/slab.h>
16
17#define	DM_MSG_PREFIX	"thin"
18
19/*
20 * Tunable constants
21 */
22#define ENDIO_HOOK_POOL_SIZE 10240
23#define DEFERRED_SET_SIZE 64
24#define MAPPING_POOL_SIZE 1024
25#define PRISON_CELLS 1024
26
27/*
28 * The block size of the device holding pool data must be
29 * between 64KB and 1GB.
30 */
31#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
32#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
33
34/*
35 * The metadata device is currently limited in size.  The limitation is
36 * checked lower down in dm-space-map-metadata, but we also check it here
37 * so we can fail early.
38 *
39 * We have one block of index, which can hold 255 index entries.  Each
40 * index entry contains allocation info about 16k metadata blocks.
41 */
42#define METADATA_DEV_MAX_SECTORS (255 * (1 << 14) * (THIN_METADATA_BLOCK_SIZE / (1 << SECTOR_SHIFT)))
43
44/*
45 * Device id is restricted to 24 bits.
46 */
47#define MAX_DEV_ID ((1 << 24) - 1)
48
49/*
50 * How do we handle breaking sharing of data blocks?
51 * =================================================
52 *
53 * We use a standard copy-on-write btree to store the mappings for the
54 * devices (note I'm talking about copy-on-write of the metadata here, not
55 * the data).  When you take an internal snapshot you clone the root node
56 * of the origin btree.  After this there is no concept of an origin or a
57 * snapshot.  They are just two device trees that happen to point to the
58 * same data blocks.
59 *
60 * When we get a write in we decide if it's to a shared data block using
61 * some timestamp magic.  If it is, we have to break sharing.
62 *
63 * Let's say we write to a shared block in what was the origin.  The
64 * steps are:
65 *
66 * i) plug io further to this physical block. (see bio_prison code).
67 *
68 * ii) quiesce any read io to that shared data block.  Obviously
69 * including all devices that share this block.  (see deferred_set code)
70 *
71 * iii) copy the data block to a newly allocate block.  This step can be
72 * missed out if the io covers the block. (schedule_copy).
73 *
74 * iv) insert the new mapping into the origin's btree
75 * (process_prepared_mappings).  This act of inserting breaks some
76 * sharing of btree nodes between the two devices.  Breaking sharing only
77 * effects the btree of that specific device.  Btrees for the other
78 * devices that share the block never change.  The btree for the origin
79 * device as it was after the last commit is untouched, ie. we're using
80 * persistent data structures in the functional programming sense.
81 *
82 * v) unplug io to this physical block, including the io that triggered
83 * the breaking of sharing.
84 *
85 * Steps (ii) and (iii) occur in parallel.
86 *
87 * The metadata _doesn't_ need to be committed before the io continues.  We
88 * get away with this because the io is always written to a _new_ block.
89 * If there's a crash, then:
90 *
91 * - The origin mapping will point to the old origin block (the shared
92 * one).  This will contain the data as it was before the io that triggered
93 * the breaking of sharing came in.
94 *
95 * - The snap mapping still points to the old block.  As it would after
96 * the commit.
97 *
98 * The downside of this scheme is the timestamp magic isn't perfect, and
99 * will continue to think that data block in the snapshot device is shared
100 * even after the write to the origin has broken sharing.  I suspect data
101 * blocks will typically be shared by many different devices, so we're
102 * breaking sharing n + 1 times, rather than n, where n is the number of
103 * devices that reference this data block.  At the moment I think the
104 * benefits far, far outweigh the disadvantages.
105 */
106
107/*----------------------------------------------------------------*/
108
109/*
110 * Sometimes we can't deal with a bio straight away.  We put them in prison
111 * where they can't cause any mischief.  Bios are put in a cell identified
112 * by a key, multiple bios can be in the same cell.  When the cell is
113 * subsequently unlocked the bios become available.
114 */
115struct bio_prison;
116
117struct cell_key {
118	int virtual;
119	dm_thin_id dev;
120	dm_block_t block;
121};
122
123struct cell {
124	struct hlist_node list;
125	struct bio_prison *prison;
126	struct cell_key key;
127	unsigned count;
128	struct bio_list bios;
129};
130
131struct bio_prison {
132	spinlock_t lock;
133	mempool_t *cell_pool;
134
135	unsigned nr_buckets;
136	unsigned hash_mask;
137	struct hlist_head *cells;
138};
139
140static uint32_t calc_nr_buckets(unsigned nr_cells)
141{
142	uint32_t n = 128;
143
144	nr_cells /= 4;
145	nr_cells = min(nr_cells, 8192u);
146
147	while (n < nr_cells)
148		n <<= 1;
149
150	return n;
151}
152
153/*
154 * @nr_cells should be the number of cells you want in use _concurrently_.
155 * Don't confuse it with the number of distinct keys.
156 */
157static struct bio_prison *prison_create(unsigned nr_cells)
158{
159	unsigned i;
160	uint32_t nr_buckets = calc_nr_buckets(nr_cells);
161	size_t len = sizeof(struct bio_prison) +
162		(sizeof(struct hlist_head) * nr_buckets);
163	struct bio_prison *prison = kmalloc(len, GFP_KERNEL);
164
165	if (!prison)
166		return NULL;
167
168	spin_lock_init(&prison->lock);
169	prison->cell_pool = mempool_create_kmalloc_pool(nr_cells,
170							sizeof(struct cell));
171	if (!prison->cell_pool) {
172		kfree(prison);
173		return NULL;
174	}
175
176	prison->nr_buckets = nr_buckets;
177	prison->hash_mask = nr_buckets - 1;
178	prison->cells = (struct hlist_head *) (prison + 1);
179	for (i = 0; i < nr_buckets; i++)
180		INIT_HLIST_HEAD(prison->cells + i);
181
182	return prison;
183}
184
185static void prison_destroy(struct bio_prison *prison)
186{
187	mempool_destroy(prison->cell_pool);
188	kfree(prison);
189}
190
191static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key)
192{
193	const unsigned long BIG_PRIME = 4294967291UL;
194	uint64_t hash = key->block * BIG_PRIME;
195
196	return (uint32_t) (hash & prison->hash_mask);
197}
198
199static int keys_equal(struct cell_key *lhs, struct cell_key *rhs)
200{
201	       return (lhs->virtual == rhs->virtual) &&
202		       (lhs->dev == rhs->dev) &&
203		       (lhs->block == rhs->block);
204}
205
206static struct cell *__search_bucket(struct hlist_head *bucket,
207				    struct cell_key *key)
208{
209	struct cell *cell;
210	struct hlist_node *tmp;
211
212	hlist_for_each_entry(cell, tmp, bucket, list)
213		if (keys_equal(&cell->key, key))
214			return cell;
215
216	return NULL;
217}
218
219/*
220 * This may block if a new cell needs allocating.  You must ensure that
221 * cells will be unlocked even if the calling thread is blocked.
222 *
223 * Returns the number of entries in the cell prior to the new addition
224 * or < 0 on failure.
225 */
226static int bio_detain(struct bio_prison *prison, struct cell_key *key,
227		      struct bio *inmate, struct cell **ref)
228{
229	int r;
230	unsigned long flags;
231	uint32_t hash = hash_key(prison, key);
232	struct cell *uninitialized_var(cell), *cell2 = NULL;
233
234	BUG_ON(hash > prison->nr_buckets);
235
236	spin_lock_irqsave(&prison->lock, flags);
237	cell = __search_bucket(prison->cells + hash, key);
238
239	if (!cell) {
240		/*
241		 * Allocate a new cell
242		 */
243		spin_unlock_irqrestore(&prison->lock, flags);
244		cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO);
245		spin_lock_irqsave(&prison->lock, flags);
246
247		/*
248		 * We've been unlocked, so we have to double check that
249		 * nobody else has inserted this cell in the meantime.
250		 */
251		cell = __search_bucket(prison->cells + hash, key);
252
253		if (!cell) {
254			cell = cell2;
255			cell2 = NULL;
256
257			cell->prison = prison;
258			memcpy(&cell->key, key, sizeof(cell->key));
259			cell->count = 0;
260			bio_list_init(&cell->bios);
261			hlist_add_head(&cell->list, prison->cells + hash);
262		}
263	}
264
265	r = cell->count++;
266	bio_list_add(&cell->bios, inmate);
267	spin_unlock_irqrestore(&prison->lock, flags);
268
269	if (cell2)
270		mempool_free(cell2, prison->cell_pool);
271
272	*ref = cell;
273
274	return r;
275}
276
277/*
278 * @inmates must have been initialised prior to this call
279 */
280static void __cell_release(struct cell *cell, struct bio_list *inmates)
281{
282	struct bio_prison *prison = cell->prison;
283
284	hlist_del(&cell->list);
285
286	if (inmates)
287		bio_list_merge(inmates, &cell->bios);
288
289	mempool_free(cell, prison->cell_pool);
290}
291
292static void cell_release(struct cell *cell, struct bio_list *bios)
293{
294	unsigned long flags;
295	struct bio_prison *prison = cell->prison;
296
297	spin_lock_irqsave(&prison->lock, flags);
298	__cell_release(cell, bios);
299	spin_unlock_irqrestore(&prison->lock, flags);
300}
301
302/*
303 * There are a couple of places where we put a bio into a cell briefly
304 * before taking it out again.  In these situations we know that no other
305 * bio may be in the cell.  This function releases the cell, and also does
306 * a sanity check.
307 */
308static void cell_release_singleton(struct cell *cell, struct bio *bio)
309{
310	struct bio_prison *prison = cell->prison;
311	struct bio_list bios;
312	struct bio *b;
313	unsigned long flags;
314
315	bio_list_init(&bios);
316
317	spin_lock_irqsave(&prison->lock, flags);
318	__cell_release(cell, &bios);
319	spin_unlock_irqrestore(&prison->lock, flags);
320
321	b = bio_list_pop(&bios);
322	BUG_ON(b != bio);
323	BUG_ON(!bio_list_empty(&bios));
324}
325
326static void cell_error(struct cell *cell)
327{
328	struct bio_prison *prison = cell->prison;
329	struct bio_list bios;
330	struct bio *bio;
331	unsigned long flags;
332
333	bio_list_init(&bios);
334
335	spin_lock_irqsave(&prison->lock, flags);
336	__cell_release(cell, &bios);
337	spin_unlock_irqrestore(&prison->lock, flags);
338
339	while ((bio = bio_list_pop(&bios)))
340		bio_io_error(bio);
341}
342
343/*----------------------------------------------------------------*/
344
345/*
346 * We use the deferred set to keep track of pending reads to shared blocks.
347 * We do this to ensure the new mapping caused by a write isn't performed
348 * until these prior reads have completed.  Otherwise the insertion of the
349 * new mapping could free the old block that the read bios are mapped to.
350 */
351
352struct deferred_set;
353struct deferred_entry {
354	struct deferred_set *ds;
355	unsigned count;
356	struct list_head work_items;
357};
358
359struct deferred_set {
360	spinlock_t lock;
361	unsigned current_entry;
362	unsigned sweeper;
363	struct deferred_entry entries[DEFERRED_SET_SIZE];
364};
365
366static void ds_init(struct deferred_set *ds)
367{
368	int i;
369
370	spin_lock_init(&ds->lock);
371	ds->current_entry = 0;
372	ds->sweeper = 0;
373	for (i = 0; i < DEFERRED_SET_SIZE; i++) {
374		ds->entries[i].ds = ds;
375		ds->entries[i].count = 0;
376		INIT_LIST_HEAD(&ds->entries[i].work_items);
377	}
378}
379
380static struct deferred_entry *ds_inc(struct deferred_set *ds)
381{
382	unsigned long flags;
383	struct deferred_entry *entry;
384
385	spin_lock_irqsave(&ds->lock, flags);
386	entry = ds->entries + ds->current_entry;
387	entry->count++;
388	spin_unlock_irqrestore(&ds->lock, flags);
389
390	return entry;
391}
392
393static unsigned ds_next(unsigned index)
394{
395	return (index + 1) % DEFERRED_SET_SIZE;
396}
397
398static void __sweep(struct deferred_set *ds, struct list_head *head)
399{
400	while ((ds->sweeper != ds->current_entry) &&
401	       !ds->entries[ds->sweeper].count) {
402		list_splice_init(&ds->entries[ds->sweeper].work_items, head);
403		ds->sweeper = ds_next(ds->sweeper);
404	}
405
406	if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count)
407		list_splice_init(&ds->entries[ds->sweeper].work_items, head);
408}
409
410static void ds_dec(struct deferred_entry *entry, struct list_head *head)
411{
412	unsigned long flags;
413
414	spin_lock_irqsave(&entry->ds->lock, flags);
415	BUG_ON(!entry->count);
416	--entry->count;
417	__sweep(entry->ds, head);
418	spin_unlock_irqrestore(&entry->ds->lock, flags);
419}
420
421/*
422 * Returns 1 if deferred or 0 if no pending items to delay job.
423 */
424static int ds_add_work(struct deferred_set *ds, struct list_head *work)
425{
426	int r = 1;
427	unsigned long flags;
428	unsigned next_entry;
429
430	spin_lock_irqsave(&ds->lock, flags);
431	if ((ds->sweeper == ds->current_entry) &&
432	    !ds->entries[ds->current_entry].count)
433		r = 0;
434	else {
435		list_add(work, &ds->entries[ds->current_entry].work_items);
436		next_entry = ds_next(ds->current_entry);
437		if (!ds->entries[next_entry].count)
438			ds->current_entry = next_entry;
439	}
440	spin_unlock_irqrestore(&ds->lock, flags);
441
442	return r;
443}
444
445/*----------------------------------------------------------------*/
446
447/*
448 * Key building.
449 */
450static void build_data_key(struct dm_thin_device *td,
451			   dm_block_t b, struct cell_key *key)
452{
453	key->virtual = 0;
454	key->dev = dm_thin_dev_id(td);
455	key->block = b;
456}
457
458static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
459			      struct cell_key *key)
460{
461	key->virtual = 1;
462	key->dev = dm_thin_dev_id(td);
463	key->block = b;
464}
465
466/*----------------------------------------------------------------*/
467
468/*
469 * A pool device ties together a metadata device and a data device.  It
470 * also provides the interface for creating and destroying internal
471 * devices.
472 */
473struct new_mapping;
474struct pool {
475	struct list_head list;
476	struct dm_target *ti;	/* Only set if a pool target is bound */
477
478	struct mapped_device *pool_md;
479	struct block_device *md_dev;
480	struct dm_pool_metadata *pmd;
481
482	uint32_t sectors_per_block;
483	unsigned block_shift;
484	dm_block_t offset_mask;
485	dm_block_t low_water_blocks;
486
487	unsigned zero_new_blocks:1;
488	unsigned low_water_triggered:1;	/* A dm event has been sent */
489	unsigned no_free_space:1;	/* A -ENOSPC warning has been issued */
490
491	struct bio_prison *prison;
492	struct dm_kcopyd_client *copier;
493
494	struct workqueue_struct *wq;
495	struct work_struct worker;
496
497	unsigned ref_count;
498
499	spinlock_t lock;
500	struct bio_list deferred_bios;
501	struct bio_list deferred_flush_bios;
502	struct list_head prepared_mappings;
503
504	struct bio_list retry_on_resume_list;
505
506	struct deferred_set ds;	/* FIXME: move to thin_c */
507
508	struct new_mapping *next_mapping;
509	mempool_t *mapping_pool;
510	mempool_t *endio_hook_pool;
511};
512
513/*
514 * Target context for a pool.
515 */
516struct pool_c {
517	struct dm_target *ti;
518	struct pool *pool;
519	struct dm_dev *data_dev;
520	struct dm_dev *metadata_dev;
521	struct dm_target_callbacks callbacks;
522
523	dm_block_t low_water_blocks;
524	unsigned zero_new_blocks:1;
525};
526
527/*
528 * Target context for a thin.
529 */
530struct thin_c {
531	struct dm_dev *pool_dev;
532	dm_thin_id dev_id;
533
534	struct pool *pool;
535	struct dm_thin_device *td;
536};
537
538/*----------------------------------------------------------------*/
539
540/*
541 * A global list of pools that uses a struct mapped_device as a key.
542 */
543static struct dm_thin_pool_table {
544	struct mutex mutex;
545	struct list_head pools;
546} dm_thin_pool_table;
547
548static void pool_table_init(void)
549{
550	mutex_init(&dm_thin_pool_table.mutex);
551	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
552}
553
554static void __pool_table_insert(struct pool *pool)
555{
556	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
557	list_add(&pool->list, &dm_thin_pool_table.pools);
558}
559
560static void __pool_table_remove(struct pool *pool)
561{
562	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
563	list_del(&pool->list);
564}
565
566static struct pool *__pool_table_lookup(struct mapped_device *md)
567{
568	struct pool *pool = NULL, *tmp;
569
570	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
571
572	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
573		if (tmp->pool_md == md) {
574			pool = tmp;
575			break;
576		}
577	}
578
579	return pool;
580}
581
582static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
583{
584	struct pool *pool = NULL, *tmp;
585
586	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
587
588	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
589		if (tmp->md_dev == md_dev) {
590			pool = tmp;
591			break;
592		}
593	}
594
595	return pool;
596}
597
598/*----------------------------------------------------------------*/
599
600static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
601{
602	struct bio *bio;
603	struct bio_list bios;
604
605	bio_list_init(&bios);
606	bio_list_merge(&bios, master);
607	bio_list_init(master);
608
609	while ((bio = bio_list_pop(&bios))) {
610		if (dm_get_mapinfo(bio)->ptr == tc)
611			bio_endio(bio, DM_ENDIO_REQUEUE);
612		else
613			bio_list_add(master, bio);
614	}
615}
616
617static void requeue_io(struct thin_c *tc)
618{
619	struct pool *pool = tc->pool;
620	unsigned long flags;
621
622	spin_lock_irqsave(&pool->lock, flags);
623	__requeue_bio_list(tc, &pool->deferred_bios);
624	__requeue_bio_list(tc, &pool->retry_on_resume_list);
625	spin_unlock_irqrestore(&pool->lock, flags);
626}
627
628/*
629 * This section of code contains the logic for processing a thin device's IO.
630 * Much of the code depends on pool object resources (lists, workqueues, etc)
631 * but most is exclusively called from the thin target rather than the thin-pool
632 * target.
633 */
634
635static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
636{
637	return bio->bi_sector >> tc->pool->block_shift;
638}
639
640static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
641{
642	struct pool *pool = tc->pool;
643
644	bio->bi_bdev = tc->pool_dev->bdev;
645	bio->bi_sector = (block << pool->block_shift) +
646		(bio->bi_sector & pool->offset_mask);
647}
648
649static void remap_and_issue(struct thin_c *tc, struct bio *bio,
650			    dm_block_t block)
651{
652	struct pool *pool = tc->pool;
653	unsigned long flags;
654
655	remap(tc, bio, block);
656
657	/*
658	 * Batch together any FUA/FLUSH bios we find and then issue
659	 * a single commit for them in process_deferred_bios().
660	 */
661	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
662		spin_lock_irqsave(&pool->lock, flags);
663		bio_list_add(&pool->deferred_flush_bios, bio);
664		spin_unlock_irqrestore(&pool->lock, flags);
665	} else
666		generic_make_request(bio);
667}
668
669/*
670 * wake_worker() is used when new work is queued and when pool_resume is
671 * ready to continue deferred IO processing.
672 */
673static void wake_worker(struct pool *pool)
674{
675	queue_work(pool->wq, &pool->worker);
676}
677
678/*----------------------------------------------------------------*/
679
680/*
681 * Bio endio functions.
682 */
683struct endio_hook {
684	struct thin_c *tc;
685	bio_end_io_t *saved_bi_end_io;
686	struct deferred_entry *entry;
687};
688
689struct new_mapping {
690	struct list_head list;
691
692	int prepared;
693
694	struct thin_c *tc;
695	dm_block_t virt_block;
696	dm_block_t data_block;
697	struct cell *cell;
698	int err;
699
700	/*
701	 * If the bio covers the whole area of a block then we can avoid
702	 * zeroing or copying.  Instead this bio is hooked.  The bio will
703	 * still be in the cell, so care has to be taken to avoid issuing
704	 * the bio twice.
705	 */
706	struct bio *bio;
707	bio_end_io_t *saved_bi_end_io;
708};
709
710static void __maybe_add_mapping(struct new_mapping *m)
711{
712	struct pool *pool = m->tc->pool;
713
714	if (list_empty(&m->list) && m->prepared) {
715		list_add(&m->list, &pool->prepared_mappings);
716		wake_worker(pool);
717	}
718}
719
720static void copy_complete(int read_err, unsigned long write_err, void *context)
721{
722	unsigned long flags;
723	struct new_mapping *m = context;
724	struct pool *pool = m->tc->pool;
725
726	m->err = read_err || write_err ? -EIO : 0;
727
728	spin_lock_irqsave(&pool->lock, flags);
729	m->prepared = 1;
730	__maybe_add_mapping(m);
731	spin_unlock_irqrestore(&pool->lock, flags);
732}
733
734static void overwrite_endio(struct bio *bio, int err)
735{
736	unsigned long flags;
737	struct new_mapping *m = dm_get_mapinfo(bio)->ptr;
738	struct pool *pool = m->tc->pool;
739
740	m->err = err;
741
742	spin_lock_irqsave(&pool->lock, flags);
743	m->prepared = 1;
744	__maybe_add_mapping(m);
745	spin_unlock_irqrestore(&pool->lock, flags);
746}
747
748static void shared_read_endio(struct bio *bio, int err)
749{
750	struct list_head mappings;
751	struct new_mapping *m, *tmp;
752	struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
753	unsigned long flags;
754	struct pool *pool = h->tc->pool;
755
756	bio->bi_end_io = h->saved_bi_end_io;
757	bio_endio(bio, err);
758
759	INIT_LIST_HEAD(&mappings);
760	ds_dec(h->entry, &mappings);
761
762	spin_lock_irqsave(&pool->lock, flags);
763	list_for_each_entry_safe(m, tmp, &mappings, list) {
764		list_del(&m->list);
765		INIT_LIST_HEAD(&m->list);
766		__maybe_add_mapping(m);
767	}
768	spin_unlock_irqrestore(&pool->lock, flags);
769
770	mempool_free(h, pool->endio_hook_pool);
771}
772
773/*----------------------------------------------------------------*/
774
775/*
776 * Workqueue.
777 */
778
779/*
780 * Prepared mapping jobs.
781 */
782
783/*
784 * This sends the bios in the cell back to the deferred_bios list.
785 */
786static void cell_defer(struct thin_c *tc, struct cell *cell,
787		       dm_block_t data_block)
788{
789	struct pool *pool = tc->pool;
790	unsigned long flags;
791
792	spin_lock_irqsave(&pool->lock, flags);
793	cell_release(cell, &pool->deferred_bios);
794	spin_unlock_irqrestore(&tc->pool->lock, flags);
795
796	wake_worker(pool);
797}
798
799/*
800 * Same as cell_defer above, except it omits one particular detainee,
801 * a write bio that covers the block and has already been processed.
802 */
803static void cell_defer_except(struct thin_c *tc, struct cell *cell,
804			      struct bio *exception)
805{
806	struct bio_list bios;
807	struct bio *bio;
808	struct pool *pool = tc->pool;
809	unsigned long flags;
810
811	bio_list_init(&bios);
812	cell_release(cell, &bios);
813
814	spin_lock_irqsave(&pool->lock, flags);
815	while ((bio = bio_list_pop(&bios)))
816		if (bio != exception)
817			bio_list_add(&pool->deferred_bios, bio);
818	spin_unlock_irqrestore(&pool->lock, flags);
819
820	wake_worker(pool);
821}
822
823static void process_prepared_mapping(struct new_mapping *m)
824{
825	struct thin_c *tc = m->tc;
826	struct bio *bio;
827	int r;
828
829	bio = m->bio;
830	if (bio)
831		bio->bi_end_io = m->saved_bi_end_io;
832
833	if (m->err) {
834		cell_error(m->cell);
835		return;
836	}
837
838	/*
839	 * Commit the prepared block into the mapping btree.
840	 * Any I/O for this block arriving after this point will get
841	 * remapped to it directly.
842	 */
843	r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
844	if (r) {
845		DMERR("dm_thin_insert_block() failed");
846		cell_error(m->cell);
847		return;
848	}
849
850	/*
851	 * Release any bios held while the block was being provisioned.
852	 * If we are processing a write bio that completely covers the block,
853	 * we already processed it so can ignore it now when processing
854	 * the bios in the cell.
855	 */
856	if (bio) {
857		cell_defer_except(tc, m->cell, bio);
858		bio_endio(bio, 0);
859	} else
860		cell_defer(tc, m->cell, m->data_block);
861
862	list_del(&m->list);
863	mempool_free(m, tc->pool->mapping_pool);
864}
865
866static void process_prepared_mappings(struct pool *pool)
867{
868	unsigned long flags;
869	struct list_head maps;
870	struct new_mapping *m, *tmp;
871
872	INIT_LIST_HEAD(&maps);
873	spin_lock_irqsave(&pool->lock, flags);
874	list_splice_init(&pool->prepared_mappings, &maps);
875	spin_unlock_irqrestore(&pool->lock, flags);
876
877	list_for_each_entry_safe(m, tmp, &maps, list)
878		process_prepared_mapping(m);
879}
880
881/*
882 * Deferred bio jobs.
883 */
884static int io_overwrites_block(struct pool *pool, struct bio *bio)
885{
886	return ((bio_data_dir(bio) == WRITE) &&
887		!(bio->bi_sector & pool->offset_mask)) &&
888		(bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT));
889}
890
891static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
892			       bio_end_io_t *fn)
893{
894	*save = bio->bi_end_io;
895	bio->bi_end_io = fn;
896}
897
898static int ensure_next_mapping(struct pool *pool)
899{
900	if (pool->next_mapping)
901		return 0;
902
903	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
904
905	return pool->next_mapping ? 0 : -ENOMEM;
906}
907
908static struct new_mapping *get_next_mapping(struct pool *pool)
909{
910	struct new_mapping *r = pool->next_mapping;
911
912	BUG_ON(!pool->next_mapping);
913
914	pool->next_mapping = NULL;
915
916	return r;
917}
918
919static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
920			  dm_block_t data_origin, dm_block_t data_dest,
921			  struct cell *cell, struct bio *bio)
922{
923	int r;
924	struct pool *pool = tc->pool;
925	struct new_mapping *m = get_next_mapping(pool);
926
927	INIT_LIST_HEAD(&m->list);
928	m->prepared = 0;
929	m->tc = tc;
930	m->virt_block = virt_block;
931	m->data_block = data_dest;
932	m->cell = cell;
933	m->err = 0;
934	m->bio = NULL;
935
936	ds_add_work(&pool->ds, &m->list);
937
938	/*
939	 * IO to pool_dev remaps to the pool target's data_dev.
940	 *
941	 * If the whole block of data is being overwritten, we can issue the
942	 * bio immediately. Otherwise we use kcopyd to clone the data first.
943	 */
944	if (io_overwrites_block(pool, bio)) {
945		m->bio = bio;
946		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
947		dm_get_mapinfo(bio)->ptr = m;
948		remap_and_issue(tc, bio, data_dest);
949	} else {
950		struct dm_io_region from, to;
951
952		from.bdev = tc->pool_dev->bdev;
953		from.sector = data_origin * pool->sectors_per_block;
954		from.count = pool->sectors_per_block;
955
956		to.bdev = tc->pool_dev->bdev;
957		to.sector = data_dest * pool->sectors_per_block;
958		to.count = pool->sectors_per_block;
959
960		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
961				   0, copy_complete, m);
962		if (r < 0) {
963			mempool_free(m, pool->mapping_pool);
964			DMERR("dm_kcopyd_copy() failed");
965			cell_error(cell);
966		}
967	}
968}
969
970static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
971			  dm_block_t data_block, struct cell *cell,
972			  struct bio *bio)
973{
974	struct pool *pool = tc->pool;
975	struct new_mapping *m = get_next_mapping(pool);
976
977	INIT_LIST_HEAD(&m->list);
978	m->prepared = 0;
979	m->tc = tc;
980	m->virt_block = virt_block;
981	m->data_block = data_block;
982	m->cell = cell;
983	m->err = 0;
984	m->bio = NULL;
985
986	/*
987	 * If the whole block of data is being overwritten or we are not
988	 * zeroing pre-existing data, we can issue the bio immediately.
989	 * Otherwise we use kcopyd to zero the data first.
990	 */
991	if (!pool->zero_new_blocks)
992		process_prepared_mapping(m);
993
994	else if (io_overwrites_block(pool, bio)) {
995		m->bio = bio;
996		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
997		dm_get_mapinfo(bio)->ptr = m;
998		remap_and_issue(tc, bio, data_block);
999
1000	} else {
1001		int r;
1002		struct dm_io_region to;
1003
1004		to.bdev = tc->pool_dev->bdev;
1005		to.sector = data_block * pool->sectors_per_block;
1006		to.count = pool->sectors_per_block;
1007
1008		r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
1009		if (r < 0) {
1010			mempool_free(m, pool->mapping_pool);
1011			DMERR("dm_kcopyd_zero() failed");
1012			cell_error(cell);
1013		}
1014	}
1015}
1016
1017static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1018{
1019	int r;
1020	dm_block_t free_blocks;
1021	unsigned long flags;
1022	struct pool *pool = tc->pool;
1023
1024	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1025	if (r)
1026		return r;
1027
1028	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1029		DMWARN("%s: reached low water mark, sending event.",
1030		       dm_device_name(pool->pool_md));
1031		spin_lock_irqsave(&pool->lock, flags);
1032		pool->low_water_triggered = 1;
1033		spin_unlock_irqrestore(&pool->lock, flags);
1034		dm_table_event(pool->ti->table);
1035	}
1036
1037	if (!free_blocks) {
1038		if (pool->no_free_space)
1039			return -ENOSPC;
1040		else {
1041			/*
1042			 * Try to commit to see if that will free up some
1043			 * more space.
1044			 */
1045			r = dm_pool_commit_metadata(pool->pmd);
1046			if (r) {
1047				DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1048				      __func__, r);
1049				return r;
1050			}
1051
1052			r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1053			if (r)
1054				return r;
1055
1056			/*
1057			 * If we still have no space we set a flag to avoid
1058			 * doing all this checking and return -ENOSPC.
1059			 */
1060			if (!free_blocks) {
1061				DMWARN("%s: no free space available.",
1062				       dm_device_name(pool->pool_md));
1063				spin_lock_irqsave(&pool->lock, flags);
1064				pool->no_free_space = 1;
1065				spin_unlock_irqrestore(&pool->lock, flags);
1066				return -ENOSPC;
1067			}
1068		}
1069	}
1070
1071	r = dm_pool_alloc_data_block(pool->pmd, result);
1072	if (r)
1073		return r;
1074
1075	return 0;
1076}
1077
1078/*
1079 * If we have run out of space, queue bios until the device is
1080 * resumed, presumably after having been reloaded with more space.
1081 */
1082static void retry_on_resume(struct bio *bio)
1083{
1084	struct thin_c *tc = dm_get_mapinfo(bio)->ptr;
1085	struct pool *pool = tc->pool;
1086	unsigned long flags;
1087
1088	spin_lock_irqsave(&pool->lock, flags);
1089	bio_list_add(&pool->retry_on_resume_list, bio);
1090	spin_unlock_irqrestore(&pool->lock, flags);
1091}
1092
1093static void no_space(struct cell *cell)
1094{
1095	struct bio *bio;
1096	struct bio_list bios;
1097
1098	bio_list_init(&bios);
1099	cell_release(cell, &bios);
1100
1101	while ((bio = bio_list_pop(&bios)))
1102		retry_on_resume(bio);
1103}
1104
1105static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1106			  struct cell_key *key,
1107			  struct dm_thin_lookup_result *lookup_result,
1108			  struct cell *cell)
1109{
1110	int r;
1111	dm_block_t data_block;
1112
1113	r = alloc_data_block(tc, &data_block);
1114	switch (r) {
1115	case 0:
1116		schedule_copy(tc, block, lookup_result->block,
1117			      data_block, cell, bio);
1118		break;
1119
1120	case -ENOSPC:
1121		no_space(cell);
1122		break;
1123
1124	default:
1125		DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1126		cell_error(cell);
1127		break;
1128	}
1129}
1130
1131static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1132			       dm_block_t block,
1133			       struct dm_thin_lookup_result *lookup_result)
1134{
1135	struct cell *cell;
1136	struct pool *pool = tc->pool;
1137	struct cell_key key;
1138
1139	/*
1140	 * If cell is already occupied, then sharing is already in the process
1141	 * of being broken so we have nothing further to do here.
1142	 */
1143	build_data_key(tc->td, lookup_result->block, &key);
1144	if (bio_detain(pool->prison, &key, bio, &cell))
1145		return;
1146
1147	if (bio_data_dir(bio) == WRITE)
1148		break_sharing(tc, bio, block, &key, lookup_result, cell);
1149	else {
1150		struct endio_hook *h;
1151		h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO);
1152
1153		h->tc = tc;
1154		h->entry = ds_inc(&pool->ds);
1155		save_and_set_endio(bio, &h->saved_bi_end_io, shared_read_endio);
1156		dm_get_mapinfo(bio)->ptr = h;
1157
1158		cell_release_singleton(cell, bio);
1159		remap_and_issue(tc, bio, lookup_result->block);
1160	}
1161}
1162
1163static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1164			    struct cell *cell)
1165{
1166	int r;
1167	dm_block_t data_block;
1168
1169	/*
1170	 * Remap empty bios (flushes) immediately, without provisioning.
1171	 */
1172	if (!bio->bi_size) {
1173		cell_release_singleton(cell, bio);
1174		remap_and_issue(tc, bio, 0);
1175		return;
1176	}
1177
1178	/*
1179	 * Fill read bios with zeroes and complete them immediately.
1180	 */
1181	if (bio_data_dir(bio) == READ) {
1182		zero_fill_bio(bio);
1183		cell_release_singleton(cell, bio);
1184		bio_endio(bio, 0);
1185		return;
1186	}
1187
1188	r = alloc_data_block(tc, &data_block);
1189	switch (r) {
1190	case 0:
1191		schedule_zero(tc, block, data_block, cell, bio);
1192		break;
1193
1194	case -ENOSPC:
1195		no_space(cell);
1196		break;
1197
1198	default:
1199		DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1200		cell_error(cell);
1201		break;
1202	}
1203}
1204
1205static void process_bio(struct thin_c *tc, struct bio *bio)
1206{
1207	int r;
1208	dm_block_t block = get_bio_block(tc, bio);
1209	struct cell *cell;
1210	struct cell_key key;
1211	struct dm_thin_lookup_result lookup_result;
1212
1213	/*
1214	 * If cell is already occupied, then the block is already
1215	 * being provisioned so we have nothing further to do here.
1216	 */
1217	build_virtual_key(tc->td, block, &key);
1218	if (bio_detain(tc->pool->prison, &key, bio, &cell))
1219		return;
1220
1221	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1222	switch (r) {
1223	case 0:
1224		/*
1225		 * We can release this cell now.  This thread is the only
1226		 * one that puts bios into a cell, and we know there were
1227		 * no preceding bios.
1228		 */
1229		/*
1230		 * TODO: this will probably have to change when discard goes
1231		 * back in.
1232		 */
1233		cell_release_singleton(cell, bio);
1234
1235		if (lookup_result.shared)
1236			process_shared_bio(tc, bio, block, &lookup_result);
1237		else
1238			remap_and_issue(tc, bio, lookup_result.block);
1239		break;
1240
1241	case -ENODATA:
1242		provision_block(tc, bio, block, cell);
1243		break;
1244
1245	default:
1246		DMERR("dm_thin_find_block() failed, error = %d", r);
1247		bio_io_error(bio);
1248		break;
1249	}
1250}
1251
1252static void process_deferred_bios(struct pool *pool)
1253{
1254	unsigned long flags;
1255	struct bio *bio;
1256	struct bio_list bios;
1257	int r;
1258
1259	bio_list_init(&bios);
1260
1261	spin_lock_irqsave(&pool->lock, flags);
1262	bio_list_merge(&bios, &pool->deferred_bios);
1263	bio_list_init(&pool->deferred_bios);
1264	spin_unlock_irqrestore(&pool->lock, flags);
1265
1266	while ((bio = bio_list_pop(&bios))) {
1267		struct thin_c *tc = dm_get_mapinfo(bio)->ptr;
1268		/*
1269		 * If we've got no free new_mapping structs, and processing
1270		 * this bio might require one, we pause until there are some
1271		 * prepared mappings to process.
1272		 */
1273		if (ensure_next_mapping(pool)) {
1274			spin_lock_irqsave(&pool->lock, flags);
1275			bio_list_merge(&pool->deferred_bios, &bios);
1276			spin_unlock_irqrestore(&pool->lock, flags);
1277
1278			break;
1279		}
1280		process_bio(tc, bio);
1281	}
1282
1283	/*
1284	 * If there are any deferred flush bios, we must commit
1285	 * the metadata before issuing them.
1286	 */
1287	bio_list_init(&bios);
1288	spin_lock_irqsave(&pool->lock, flags);
1289	bio_list_merge(&bios, &pool->deferred_flush_bios);
1290	bio_list_init(&pool->deferred_flush_bios);
1291	spin_unlock_irqrestore(&pool->lock, flags);
1292
1293	if (bio_list_empty(&bios))
1294		return;
1295
1296	r = dm_pool_commit_metadata(pool->pmd);
1297	if (r) {
1298		DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1299		      __func__, r);
1300		while ((bio = bio_list_pop(&bios)))
1301			bio_io_error(bio);
1302		return;
1303	}
1304
1305	while ((bio = bio_list_pop(&bios)))
1306		generic_make_request(bio);
1307}
1308
1309static void do_worker(struct work_struct *ws)
1310{
1311	struct pool *pool = container_of(ws, struct pool, worker);
1312
1313	process_prepared_mappings(pool);
1314	process_deferred_bios(pool);
1315}
1316
1317/*----------------------------------------------------------------*/
1318
1319/*
1320 * Mapping functions.
1321 */
1322
1323/*
1324 * Called only while mapping a thin bio to hand it over to the workqueue.
1325 */
1326static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1327{
1328	unsigned long flags;
1329	struct pool *pool = tc->pool;
1330
1331	spin_lock_irqsave(&pool->lock, flags);
1332	bio_list_add(&pool->deferred_bios, bio);
1333	spin_unlock_irqrestore(&pool->lock, flags);
1334
1335	wake_worker(pool);
1336}
1337
1338/*
1339 * Non-blocking function called from the thin target's map function.
1340 */
1341static int thin_bio_map(struct dm_target *ti, struct bio *bio,
1342			union map_info *map_context)
1343{
1344	int r;
1345	struct thin_c *tc = ti->private;
1346	dm_block_t block = get_bio_block(tc, bio);
1347	struct dm_thin_device *td = tc->td;
1348	struct dm_thin_lookup_result result;
1349
1350	/*
1351	 * Save the thin context for easy access from the deferred bio later.
1352	 */
1353	map_context->ptr = tc;
1354
1355	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1356		thin_defer_bio(tc, bio);
1357		return DM_MAPIO_SUBMITTED;
1358	}
1359
1360	r = dm_thin_find_block(td, block, 0, &result);
1361
1362	/*
1363	 * Note that we defer readahead too.
1364	 */
1365	switch (r) {
1366	case 0:
1367		if (unlikely(result.shared)) {
1368			/*
1369			 * We have a race condition here between the
1370			 * result.shared value returned by the lookup and
1371			 * snapshot creation, which may cause new
1372			 * sharing.
1373			 *
1374			 * To avoid this always quiesce the origin before
1375			 * taking the snap.  You want to do this anyway to
1376			 * ensure a consistent application view
1377			 * (i.e. lockfs).
1378			 *
1379			 * More distant ancestors are irrelevant. The
1380			 * shared flag will be set in their case.
1381			 */
1382			thin_defer_bio(tc, bio);
1383			r = DM_MAPIO_SUBMITTED;
1384		} else {
1385			remap(tc, bio, result.block);
1386			r = DM_MAPIO_REMAPPED;
1387		}
1388		break;
1389
1390	case -ENODATA:
1391		/*
1392		 * In future, the failed dm_thin_find_block above could
1393		 * provide the hint to load the metadata into cache.
1394		 */
1395	case -EWOULDBLOCK:
1396		thin_defer_bio(tc, bio);
1397		r = DM_MAPIO_SUBMITTED;
1398		break;
1399	}
1400
1401	return r;
1402}
1403
1404static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1405{
1406	int r;
1407	unsigned long flags;
1408	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1409
1410	spin_lock_irqsave(&pt->pool->lock, flags);
1411	r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1412	spin_unlock_irqrestore(&pt->pool->lock, flags);
1413
1414	if (!r) {
1415		struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1416		r = bdi_congested(&q->backing_dev_info, bdi_bits);
1417	}
1418
1419	return r;
1420}
1421
1422static void __requeue_bios(struct pool *pool)
1423{
1424	bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1425	bio_list_init(&pool->retry_on_resume_list);
1426}
1427
1428/*----------------------------------------------------------------
1429 * Binding of control targets to a pool object
1430 *--------------------------------------------------------------*/
1431static int bind_control_target(struct pool *pool, struct dm_target *ti)
1432{
1433	struct pool_c *pt = ti->private;
1434
1435	pool->ti = ti;
1436	pool->low_water_blocks = pt->low_water_blocks;
1437	pool->zero_new_blocks = pt->zero_new_blocks;
1438
1439	return 0;
1440}
1441
1442static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1443{
1444	if (pool->ti == ti)
1445		pool->ti = NULL;
1446}
1447
1448/*----------------------------------------------------------------
1449 * Pool creation
1450 *--------------------------------------------------------------*/
1451static void __pool_destroy(struct pool *pool)
1452{
1453	__pool_table_remove(pool);
1454
1455	if (dm_pool_metadata_close(pool->pmd) < 0)
1456		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1457
1458	prison_destroy(pool->prison);
1459	dm_kcopyd_client_destroy(pool->copier);
1460
1461	if (pool->wq)
1462		destroy_workqueue(pool->wq);
1463
1464	if (pool->next_mapping)
1465		mempool_free(pool->next_mapping, pool->mapping_pool);
1466	mempool_destroy(pool->mapping_pool);
1467	mempool_destroy(pool->endio_hook_pool);
1468	kfree(pool);
1469}
1470
1471static struct pool *pool_create(struct mapped_device *pool_md,
1472				struct block_device *metadata_dev,
1473				unsigned long block_size, char **error)
1474{
1475	int r;
1476	void *err_p;
1477	struct pool *pool;
1478	struct dm_pool_metadata *pmd;
1479
1480	pmd = dm_pool_metadata_open(metadata_dev, block_size);
1481	if (IS_ERR(pmd)) {
1482		*error = "Error creating metadata object";
1483		return (struct pool *)pmd;
1484	}
1485
1486	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1487	if (!pool) {
1488		*error = "Error allocating memory for pool";
1489		err_p = ERR_PTR(-ENOMEM);
1490		goto bad_pool;
1491	}
1492
1493	pool->pmd = pmd;
1494	pool->sectors_per_block = block_size;
1495	pool->block_shift = ffs(block_size) - 1;
1496	pool->offset_mask = block_size - 1;
1497	pool->low_water_blocks = 0;
1498	pool->zero_new_blocks = 1;
1499	pool->prison = prison_create(PRISON_CELLS);
1500	if (!pool->prison) {
1501		*error = "Error creating pool's bio prison";
1502		err_p = ERR_PTR(-ENOMEM);
1503		goto bad_prison;
1504	}
1505
1506	pool->copier = dm_kcopyd_client_create();
1507	if (IS_ERR(pool->copier)) {
1508		r = PTR_ERR(pool->copier);
1509		*error = "Error creating pool's kcopyd client";
1510		err_p = ERR_PTR(r);
1511		goto bad_kcopyd_client;
1512	}
1513
1514	/*
1515	 * Create singlethreaded workqueue that will service all devices
1516	 * that use this metadata.
1517	 */
1518	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1519	if (!pool->wq) {
1520		*error = "Error creating pool's workqueue";
1521		err_p = ERR_PTR(-ENOMEM);
1522		goto bad_wq;
1523	}
1524
1525	INIT_WORK(&pool->worker, do_worker);
1526	spin_lock_init(&pool->lock);
1527	bio_list_init(&pool->deferred_bios);
1528	bio_list_init(&pool->deferred_flush_bios);
1529	INIT_LIST_HEAD(&pool->prepared_mappings);
1530	pool->low_water_triggered = 0;
1531	pool->no_free_space = 0;
1532	bio_list_init(&pool->retry_on_resume_list);
1533	ds_init(&pool->ds);
1534
1535	pool->next_mapping = NULL;
1536	pool->mapping_pool =
1537		mempool_create_kmalloc_pool(MAPPING_POOL_SIZE, sizeof(struct new_mapping));
1538	if (!pool->mapping_pool) {
1539		*error = "Error creating pool's mapping mempool";
1540		err_p = ERR_PTR(-ENOMEM);
1541		goto bad_mapping_pool;
1542	}
1543
1544	pool->endio_hook_pool =
1545		mempool_create_kmalloc_pool(ENDIO_HOOK_POOL_SIZE, sizeof(struct endio_hook));
1546	if (!pool->endio_hook_pool) {
1547		*error = "Error creating pool's endio_hook mempool";
1548		err_p = ERR_PTR(-ENOMEM);
1549		goto bad_endio_hook_pool;
1550	}
1551	pool->ref_count = 1;
1552	pool->pool_md = pool_md;
1553	pool->md_dev = metadata_dev;
1554	__pool_table_insert(pool);
1555
1556	return pool;
1557
1558bad_endio_hook_pool:
1559	mempool_destroy(pool->mapping_pool);
1560bad_mapping_pool:
1561	destroy_workqueue(pool->wq);
1562bad_wq:
1563	dm_kcopyd_client_destroy(pool->copier);
1564bad_kcopyd_client:
1565	prison_destroy(pool->prison);
1566bad_prison:
1567	kfree(pool);
1568bad_pool:
1569	if (dm_pool_metadata_close(pmd))
1570		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1571
1572	return err_p;
1573}
1574
1575static void __pool_inc(struct pool *pool)
1576{
1577	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1578	pool->ref_count++;
1579}
1580
1581static void __pool_dec(struct pool *pool)
1582{
1583	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1584	BUG_ON(!pool->ref_count);
1585	if (!--pool->ref_count)
1586		__pool_destroy(pool);
1587}
1588
1589static struct pool *__pool_find(struct mapped_device *pool_md,
1590				struct block_device *metadata_dev,
1591				unsigned long block_size, char **error)
1592{
1593	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1594
1595	if (pool) {
1596		if (pool->pool_md != pool_md)
1597			return ERR_PTR(-EBUSY);
1598		__pool_inc(pool);
1599
1600	} else {
1601		pool = __pool_table_lookup(pool_md);
1602		if (pool) {
1603			if (pool->md_dev != metadata_dev)
1604				return ERR_PTR(-EINVAL);
1605			__pool_inc(pool);
1606
1607		} else
1608			pool = pool_create(pool_md, metadata_dev, block_size, error);
1609	}
1610
1611	return pool;
1612}
1613
1614/*----------------------------------------------------------------
1615 * Pool target methods
1616 *--------------------------------------------------------------*/
1617static void pool_dtr(struct dm_target *ti)
1618{
1619	struct pool_c *pt = ti->private;
1620
1621	mutex_lock(&dm_thin_pool_table.mutex);
1622
1623	unbind_control_target(pt->pool, ti);
1624	__pool_dec(pt->pool);
1625	dm_put_device(ti, pt->metadata_dev);
1626	dm_put_device(ti, pt->data_dev);
1627	kfree(pt);
1628
1629	mutex_unlock(&dm_thin_pool_table.mutex);
1630}
1631
1632struct pool_features {
1633	unsigned zero_new_blocks:1;
1634};
1635
1636static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1637			       struct dm_target *ti)
1638{
1639	int r;
1640	unsigned argc;
1641	const char *arg_name;
1642
1643	static struct dm_arg _args[] = {
1644		{0, 1, "Invalid number of pool feature arguments"},
1645	};
1646
1647	/*
1648	 * No feature arguments supplied.
1649	 */
1650	if (!as->argc)
1651		return 0;
1652
1653	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1654	if (r)
1655		return -EINVAL;
1656
1657	while (argc && !r) {
1658		arg_name = dm_shift_arg(as);
1659		argc--;
1660
1661		if (!strcasecmp(arg_name, "skip_block_zeroing")) {
1662			pf->zero_new_blocks = 0;
1663			continue;
1664		}
1665
1666		ti->error = "Unrecognised pool feature requested";
1667		r = -EINVAL;
1668	}
1669
1670	return r;
1671}
1672
1673/*
1674 * thin-pool <metadata dev> <data dev>
1675 *	     <data block size (sectors)>
1676 *	     <low water mark (blocks)>
1677 *	     [<#feature args> [<arg>]*]
1678 *
1679 * Optional feature arguments are:
1680 *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1681 */
1682static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1683{
1684	int r;
1685	struct pool_c *pt;
1686	struct pool *pool;
1687	struct pool_features pf;
1688	struct dm_arg_set as;
1689	struct dm_dev *data_dev;
1690	unsigned long block_size;
1691	dm_block_t low_water_blocks;
1692	struct dm_dev *metadata_dev;
1693	sector_t metadata_dev_size;
1694
1695	/*
1696	 * FIXME Remove validation from scope of lock.
1697	 */
1698	mutex_lock(&dm_thin_pool_table.mutex);
1699
1700	if (argc < 4) {
1701		ti->error = "Invalid argument count";
1702		r = -EINVAL;
1703		goto out_unlock;
1704	}
1705	as.argc = argc;
1706	as.argv = argv;
1707
1708	r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
1709	if (r) {
1710		ti->error = "Error opening metadata block device";
1711		goto out_unlock;
1712	}
1713
1714	metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
1715	if (metadata_dev_size > METADATA_DEV_MAX_SECTORS) {
1716		ti->error = "Metadata device is too large";
1717		r = -EINVAL;
1718		goto out_metadata;
1719	}
1720
1721	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
1722	if (r) {
1723		ti->error = "Error getting data device";
1724		goto out_metadata;
1725	}
1726
1727	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
1728	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1729	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
1730	    !is_power_of_2(block_size)) {
1731		ti->error = "Invalid block size";
1732		r = -EINVAL;
1733		goto out;
1734	}
1735
1736	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
1737		ti->error = "Invalid low water mark";
1738		r = -EINVAL;
1739		goto out;
1740	}
1741
1742	/*
1743	 * Set default pool features.
1744	 */
1745	memset(&pf, 0, sizeof(pf));
1746	pf.zero_new_blocks = 1;
1747
1748	dm_consume_args(&as, 4);
1749	r = parse_pool_features(&as, &pf, ti);
1750	if (r)
1751		goto out;
1752
1753	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
1754	if (!pt) {
1755		r = -ENOMEM;
1756		goto out;
1757	}
1758
1759	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
1760			   block_size, &ti->error);
1761	if (IS_ERR(pool)) {
1762		r = PTR_ERR(pool);
1763		goto out_free_pt;
1764	}
1765
1766	pt->pool = pool;
1767	pt->ti = ti;
1768	pt->metadata_dev = metadata_dev;
1769	pt->data_dev = data_dev;
1770	pt->low_water_blocks = low_water_blocks;
1771	pt->zero_new_blocks = pf.zero_new_blocks;
1772	ti->num_flush_requests = 1;
1773	ti->num_discard_requests = 0;
1774	ti->private = pt;
1775
1776	pt->callbacks.congested_fn = pool_is_congested;
1777	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
1778
1779	mutex_unlock(&dm_thin_pool_table.mutex);
1780
1781	return 0;
1782
1783out_free_pt:
1784	kfree(pt);
1785out:
1786	dm_put_device(ti, data_dev);
1787out_metadata:
1788	dm_put_device(ti, metadata_dev);
1789out_unlock:
1790	mutex_unlock(&dm_thin_pool_table.mutex);
1791
1792	return r;
1793}
1794
1795static int pool_map(struct dm_target *ti, struct bio *bio,
1796		    union map_info *map_context)
1797{
1798	int r;
1799	struct pool_c *pt = ti->private;
1800	struct pool *pool = pt->pool;
1801	unsigned long flags;
1802
1803	/*
1804	 * As this is a singleton target, ti->begin is always zero.
1805	 */
1806	spin_lock_irqsave(&pool->lock, flags);
1807	bio->bi_bdev = pt->data_dev->bdev;
1808	r = DM_MAPIO_REMAPPED;
1809	spin_unlock_irqrestore(&pool->lock, flags);
1810
1811	return r;
1812}
1813
1814/*
1815 * Retrieves the number of blocks of the data device from
1816 * the superblock and compares it to the actual device size,
1817 * thus resizing the data device in case it has grown.
1818 *
1819 * This both copes with opening preallocated data devices in the ctr
1820 * being followed by a resume
1821 * -and-
1822 * calling the resume method individually after userspace has
1823 * grown the data device in reaction to a table event.
1824 */
1825static int pool_preresume(struct dm_target *ti)
1826{
1827	int r;
1828	struct pool_c *pt = ti->private;
1829	struct pool *pool = pt->pool;
1830	dm_block_t data_size, sb_data_size;
1831
1832	/*
1833	 * Take control of the pool object.
1834	 */
1835	r = bind_control_target(pool, ti);
1836	if (r)
1837		return r;
1838
1839	data_size = ti->len >> pool->block_shift;
1840	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
1841	if (r) {
1842		DMERR("failed to retrieve data device size");
1843		return r;
1844	}
1845
1846	if (data_size < sb_data_size) {
1847		DMERR("pool target too small, is %llu blocks (expected %llu)",
1848		      data_size, sb_data_size);
1849		return -EINVAL;
1850
1851	} else if (data_size > sb_data_size) {
1852		r = dm_pool_resize_data_dev(pool->pmd, data_size);
1853		if (r) {
1854			DMERR("failed to resize data device");
1855			return r;
1856		}
1857
1858		r = dm_pool_commit_metadata(pool->pmd);
1859		if (r) {
1860			DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1861			      __func__, r);
1862			return r;
1863		}
1864	}
1865
1866	return 0;
1867}
1868
1869static void pool_resume(struct dm_target *ti)
1870{
1871	struct pool_c *pt = ti->private;
1872	struct pool *pool = pt->pool;
1873	unsigned long flags;
1874
1875	spin_lock_irqsave(&pool->lock, flags);
1876	pool->low_water_triggered = 0;
1877	pool->no_free_space = 0;
1878	__requeue_bios(pool);
1879	spin_unlock_irqrestore(&pool->lock, flags);
1880
1881	wake_worker(pool);
1882}
1883
1884static void pool_postsuspend(struct dm_target *ti)
1885{
1886	int r;
1887	struct pool_c *pt = ti->private;
1888	struct pool *pool = pt->pool;
1889
1890	flush_workqueue(pool->wq);
1891
1892	r = dm_pool_commit_metadata(pool->pmd);
1893	if (r < 0) {
1894		DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1895		      __func__, r);
1896		/* FIXME: invalidate device? error the next FUA or FLUSH bio ?*/
1897	}
1898}
1899
1900static int check_arg_count(unsigned argc, unsigned args_required)
1901{
1902	if (argc != args_required) {
1903		DMWARN("Message received with %u arguments instead of %u.",
1904		       argc, args_required);
1905		return -EINVAL;
1906	}
1907
1908	return 0;
1909}
1910
1911static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
1912{
1913	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
1914	    *dev_id <= MAX_DEV_ID)
1915		return 0;
1916
1917	if (warning)
1918		DMWARN("Message received with invalid device id: %s", arg);
1919
1920	return -EINVAL;
1921}
1922
1923static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
1924{
1925	dm_thin_id dev_id;
1926	int r;
1927
1928	r = check_arg_count(argc, 2);
1929	if (r)
1930		return r;
1931
1932	r = read_dev_id(argv[1], &dev_id, 1);
1933	if (r)
1934		return r;
1935
1936	r = dm_pool_create_thin(pool->pmd, dev_id);
1937	if (r) {
1938		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
1939		       argv[1]);
1940		return r;
1941	}
1942
1943	return 0;
1944}
1945
1946static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
1947{
1948	dm_thin_id dev_id;
1949	dm_thin_id origin_dev_id;
1950	int r;
1951
1952	r = check_arg_count(argc, 3);
1953	if (r)
1954		return r;
1955
1956	r = read_dev_id(argv[1], &dev_id, 1);
1957	if (r)
1958		return r;
1959
1960	r = read_dev_id(argv[2], &origin_dev_id, 1);
1961	if (r)
1962		return r;
1963
1964	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
1965	if (r) {
1966		DMWARN("Creation of new snapshot %s of device %s failed.",
1967		       argv[1], argv[2]);
1968		return r;
1969	}
1970
1971	return 0;
1972}
1973
1974static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
1975{
1976	dm_thin_id dev_id;
1977	int r;
1978
1979	r = check_arg_count(argc, 2);
1980	if (r)
1981		return r;
1982
1983	r = read_dev_id(argv[1], &dev_id, 1);
1984	if (r)
1985		return r;
1986
1987	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
1988	if (r)
1989		DMWARN("Deletion of thin device %s failed.", argv[1]);
1990
1991	return r;
1992}
1993
1994static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
1995{
1996	dm_thin_id old_id, new_id;
1997	int r;
1998
1999	r = check_arg_count(argc, 3);
2000	if (r)
2001		return r;
2002
2003	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2004		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2005		return -EINVAL;
2006	}
2007
2008	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2009		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2010		return -EINVAL;
2011	}
2012
2013	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2014	if (r) {
2015		DMWARN("Failed to change transaction id from %s to %s.",
2016		       argv[1], argv[2]);
2017		return r;
2018	}
2019
2020	return 0;
2021}
2022
2023/*
2024 * Messages supported:
2025 *   create_thin	<dev_id>
2026 *   create_snap	<dev_id> <origin_id>
2027 *   delete		<dev_id>
2028 *   trim		<dev_id> <new_size_in_sectors>
2029 *   set_transaction_id <current_trans_id> <new_trans_id>
2030 */
2031static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2032{
2033	int r = -EINVAL;
2034	struct pool_c *pt = ti->private;
2035	struct pool *pool = pt->pool;
2036
2037	if (!strcasecmp(argv[0], "create_thin"))
2038		r = process_create_thin_mesg(argc, argv, pool);
2039
2040	else if (!strcasecmp(argv[0], "create_snap"))
2041		r = process_create_snap_mesg(argc, argv, pool);
2042
2043	else if (!strcasecmp(argv[0], "delete"))
2044		r = process_delete_mesg(argc, argv, pool);
2045
2046	else if (!strcasecmp(argv[0], "set_transaction_id"))
2047		r = process_set_transaction_id_mesg(argc, argv, pool);
2048
2049	else
2050		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2051
2052	if (!r) {
2053		r = dm_pool_commit_metadata(pool->pmd);
2054		if (r)
2055			DMERR("%s message: dm_pool_commit_metadata() failed, error = %d",
2056			      argv[0], r);
2057	}
2058
2059	return r;
2060}
2061
2062/*
2063 * Status line is:
2064 *    <transaction id> <used metadata sectors>/<total metadata sectors>
2065 *    <used data sectors>/<total data sectors> <held metadata root>
2066 */
2067static int pool_status(struct dm_target *ti, status_type_t type,
2068		       char *result, unsigned maxlen)
2069{
2070	int r;
2071	unsigned sz = 0;
2072	uint64_t transaction_id;
2073	dm_block_t nr_free_blocks_data;
2074	dm_block_t nr_free_blocks_metadata;
2075	dm_block_t nr_blocks_data;
2076	dm_block_t nr_blocks_metadata;
2077	dm_block_t held_root;
2078	char buf[BDEVNAME_SIZE];
2079	char buf2[BDEVNAME_SIZE];
2080	struct pool_c *pt = ti->private;
2081	struct pool *pool = pt->pool;
2082
2083	switch (type) {
2084	case STATUSTYPE_INFO:
2085		r = dm_pool_get_metadata_transaction_id(pool->pmd,
2086							&transaction_id);
2087		if (r)
2088			return r;
2089
2090		r = dm_pool_get_free_metadata_block_count(pool->pmd,
2091							  &nr_free_blocks_metadata);
2092		if (r)
2093			return r;
2094
2095		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2096		if (r)
2097			return r;
2098
2099		r = dm_pool_get_free_block_count(pool->pmd,
2100						 &nr_free_blocks_data);
2101		if (r)
2102			return r;
2103
2104		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2105		if (r)
2106			return r;
2107
2108		r = dm_pool_get_held_metadata_root(pool->pmd, &held_root);
2109		if (r)
2110			return r;
2111
2112		DMEMIT("%llu %llu/%llu %llu/%llu ",
2113		       (unsigned long long)transaction_id,
2114		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2115		       (unsigned long long)nr_blocks_metadata,
2116		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2117		       (unsigned long long)nr_blocks_data);
2118
2119		if (held_root)
2120			DMEMIT("%llu", held_root);
2121		else
2122			DMEMIT("-");
2123
2124		break;
2125
2126	case STATUSTYPE_TABLE:
2127		DMEMIT("%s %s %lu %llu ",
2128		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2129		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2130		       (unsigned long)pool->sectors_per_block,
2131		       (unsigned long long)pt->low_water_blocks);
2132
2133		DMEMIT("%u ", !pool->zero_new_blocks);
2134
2135		if (!pool->zero_new_blocks)
2136			DMEMIT("skip_block_zeroing ");
2137		break;
2138	}
2139
2140	return 0;
2141}
2142
2143static int pool_iterate_devices(struct dm_target *ti,
2144				iterate_devices_callout_fn fn, void *data)
2145{
2146	struct pool_c *pt = ti->private;
2147
2148	return fn(ti, pt->data_dev, 0, ti->len, data);
2149}
2150
2151static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2152		      struct bio_vec *biovec, int max_size)
2153{
2154	struct pool_c *pt = ti->private;
2155	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2156
2157	if (!q->merge_bvec_fn)
2158		return max_size;
2159
2160	bvm->bi_bdev = pt->data_dev->bdev;
2161
2162	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2163}
2164
2165static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2166{
2167	struct pool_c *pt = ti->private;
2168	struct pool *pool = pt->pool;
2169
2170	blk_limits_io_min(limits, 0);
2171	blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2172}
2173
2174static struct target_type pool_target = {
2175	.name = "thin-pool",
2176	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2177		    DM_TARGET_IMMUTABLE,
2178	.version = {1, 0, 0},
2179	.module = THIS_MODULE,
2180	.ctr = pool_ctr,
2181	.dtr = pool_dtr,
2182	.map = pool_map,
2183	.postsuspend = pool_postsuspend,
2184	.preresume = pool_preresume,
2185	.resume = pool_resume,
2186	.message = pool_message,
2187	.status = pool_status,
2188	.merge = pool_merge,
2189	.iterate_devices = pool_iterate_devices,
2190	.io_hints = pool_io_hints,
2191};
2192
2193/*----------------------------------------------------------------
2194 * Thin target methods
2195 *--------------------------------------------------------------*/
2196static void thin_dtr(struct dm_target *ti)
2197{
2198	struct thin_c *tc = ti->private;
2199
2200	mutex_lock(&dm_thin_pool_table.mutex);
2201
2202	__pool_dec(tc->pool);
2203	dm_pool_close_thin_device(tc->td);
2204	dm_put_device(ti, tc->pool_dev);
2205	kfree(tc);
2206
2207	mutex_unlock(&dm_thin_pool_table.mutex);
2208}
2209
2210/*
2211 * Thin target parameters:
2212 *
2213 * <pool_dev> <dev_id>
2214 *
2215 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2216 * dev_id: the internal device identifier
2217 */
2218static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2219{
2220	int r;
2221	struct thin_c *tc;
2222	struct dm_dev *pool_dev;
2223	struct mapped_device *pool_md;
2224
2225	mutex_lock(&dm_thin_pool_table.mutex);
2226
2227	if (argc != 2) {
2228		ti->error = "Invalid argument count";
2229		r = -EINVAL;
2230		goto out_unlock;
2231	}
2232
2233	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2234	if (!tc) {
2235		ti->error = "Out of memory";
2236		r = -ENOMEM;
2237		goto out_unlock;
2238	}
2239
2240	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2241	if (r) {
2242		ti->error = "Error opening pool device";
2243		goto bad_pool_dev;
2244	}
2245	tc->pool_dev = pool_dev;
2246
2247	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2248		ti->error = "Invalid device id";
2249		r = -EINVAL;
2250		goto bad_common;
2251	}
2252
2253	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2254	if (!pool_md) {
2255		ti->error = "Couldn't get pool mapped device";
2256		r = -EINVAL;
2257		goto bad_common;
2258	}
2259
2260	tc->pool = __pool_table_lookup(pool_md);
2261	if (!tc->pool) {
2262		ti->error = "Couldn't find pool object";
2263		r = -EINVAL;
2264		goto bad_pool_lookup;
2265	}
2266	__pool_inc(tc->pool);
2267
2268	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2269	if (r) {
2270		ti->error = "Couldn't open thin internal device";
2271		goto bad_thin_open;
2272	}
2273
2274	ti->split_io = tc->pool->sectors_per_block;
2275	ti->num_flush_requests = 1;
2276	ti->num_discard_requests = 0;
2277	ti->discards_supported = 0;
2278
2279	dm_put(pool_md);
2280
2281	mutex_unlock(&dm_thin_pool_table.mutex);
2282
2283	return 0;
2284
2285bad_thin_open:
2286	__pool_dec(tc->pool);
2287bad_pool_lookup:
2288	dm_put(pool_md);
2289bad_common:
2290	dm_put_device(ti, tc->pool_dev);
2291bad_pool_dev:
2292	kfree(tc);
2293out_unlock:
2294	mutex_unlock(&dm_thin_pool_table.mutex);
2295
2296	return r;
2297}
2298
2299static int thin_map(struct dm_target *ti, struct bio *bio,
2300		    union map_info *map_context)
2301{
2302	bio->bi_sector -= ti->begin;
2303
2304	return thin_bio_map(ti, bio, map_context);
2305}
2306
2307static void thin_postsuspend(struct dm_target *ti)
2308{
2309	if (dm_noflush_suspending(ti))
2310		requeue_io((struct thin_c *)ti->private);
2311}
2312
2313/*
2314 * <nr mapped sectors> <highest mapped sector>
2315 */
2316static int thin_status(struct dm_target *ti, status_type_t type,
2317		       char *result, unsigned maxlen)
2318{
2319	int r;
2320	ssize_t sz = 0;
2321	dm_block_t mapped, highest;
2322	char buf[BDEVNAME_SIZE];
2323	struct thin_c *tc = ti->private;
2324
2325	if (!tc->td)
2326		DMEMIT("-");
2327	else {
2328		switch (type) {
2329		case STATUSTYPE_INFO:
2330			r = dm_thin_get_mapped_count(tc->td, &mapped);
2331			if (r)
2332				return r;
2333
2334			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2335			if (r < 0)
2336				return r;
2337
2338			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2339			if (r)
2340				DMEMIT("%llu", ((highest + 1) *
2341						tc->pool->sectors_per_block) - 1);
2342			else
2343				DMEMIT("-");
2344			break;
2345
2346		case STATUSTYPE_TABLE:
2347			DMEMIT("%s %lu",
2348			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2349			       (unsigned long) tc->dev_id);
2350			break;
2351		}
2352	}
2353
2354	return 0;
2355}
2356
2357static int thin_iterate_devices(struct dm_target *ti,
2358				iterate_devices_callout_fn fn, void *data)
2359{
2360	dm_block_t blocks;
2361	struct thin_c *tc = ti->private;
2362
2363	/*
2364	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
2365	 * we follow a more convoluted path through to the pool's target.
2366	 */
2367	if (!tc->pool->ti)
2368		return 0;	/* nothing is bound */
2369
2370	blocks = tc->pool->ti->len >> tc->pool->block_shift;
2371	if (blocks)
2372		return fn(ti, tc->pool_dev, 0, tc->pool->sectors_per_block * blocks, data);
2373
2374	return 0;
2375}
2376
2377static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
2378{
2379	struct thin_c *tc = ti->private;
2380
2381	blk_limits_io_min(limits, 0);
2382	blk_limits_io_opt(limits, tc->pool->sectors_per_block << SECTOR_SHIFT);
2383}
2384
2385static struct target_type thin_target = {
2386	.name = "thin",
2387	.version = {1, 0, 0},
2388	.module	= THIS_MODULE,
2389	.ctr = thin_ctr,
2390	.dtr = thin_dtr,
2391	.map = thin_map,
2392	.postsuspend = thin_postsuspend,
2393	.status = thin_status,
2394	.iterate_devices = thin_iterate_devices,
2395	.io_hints = thin_io_hints,
2396};
2397
2398/*----------------------------------------------------------------*/
2399
2400static int __init dm_thin_init(void)
2401{
2402	int r;
2403
2404	pool_table_init();
2405
2406	r = dm_register_target(&thin_target);
2407	if (r)
2408		return r;
2409
2410	r = dm_register_target(&pool_target);
2411	if (r)
2412		dm_unregister_target(&thin_target);
2413
2414	return r;
2415}
2416
2417static void dm_thin_exit(void)
2418{
2419	dm_unregister_target(&thin_target);
2420	dm_unregister_target(&pool_target);
2421}
2422
2423module_init(dm_thin_init);
2424module_exit(dm_thin_exit);
2425
2426MODULE_DESCRIPTION(DM_NAME "device-mapper thin provisioning target");
2427MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2428MODULE_LICENSE("GPL");
2429