1/*
2 * Driver for
3 *    Samsung S5H1420 and
4 *    PnpNetwork PN1010 QPSK Demodulator
5 *
6 * Copyright (C) 2005 Andrew de Quincey <adq_dvb@lidskialf.net>
7 * Copyright (C) 2005-8 Patrick Boettcher <pb@linuxtv.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 *
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25#include <linux/kernel.h>
26#include <linux/module.h>
27#include <linux/init.h>
28#include <linux/string.h>
29#include <linux/slab.h>
30#include <linux/delay.h>
31#include <linux/jiffies.h>
32#include <asm/div64.h>
33
34#include <linux/i2c.h>
35
36
37#include "dvb_frontend.h"
38#include "s5h1420.h"
39#include "s5h1420_priv.h"
40
41#define TONE_FREQ 22000
42
43struct s5h1420_state {
44	struct i2c_adapter* i2c;
45	const struct s5h1420_config* config;
46
47	struct dvb_frontend frontend;
48	struct i2c_adapter tuner_i2c_adapter;
49
50	u8 CON_1_val;
51
52	u8 postlocked:1;
53	u32 fclk;
54	u32 tunedfreq;
55	fe_code_rate_t fec_inner;
56	u32 symbol_rate;
57
58	/* FIXME: ugly workaround for flexcop's incapable i2c-controller
59	 * it does not support repeated-start, workaround: write addr-1
60	 * and then read
61	 */
62	u8 shadow[256];
63};
64
65static u32 s5h1420_getsymbolrate(struct s5h1420_state* state);
66static int s5h1420_get_tune_settings(struct dvb_frontend* fe,
67				     struct dvb_frontend_tune_settings* fesettings);
68
69
70static int debug;
71module_param(debug, int, 0644);
72MODULE_PARM_DESC(debug, "enable debugging");
73
74#define dprintk(x...) do { \
75	if (debug) \
76		printk(KERN_DEBUG "S5H1420: " x); \
77} while (0)
78
79static u8 s5h1420_readreg(struct s5h1420_state *state, u8 reg)
80{
81	int ret;
82	u8 b[2];
83	struct i2c_msg msg[] = {
84		{ .addr = state->config->demod_address, .flags = 0, .buf = b, .len = 2 },
85		{ .addr = state->config->demod_address, .flags = 0, .buf = &reg, .len = 1 },
86		{ .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b, .len = 1 },
87	};
88
89	b[0] = (reg - 1) & 0xff;
90	b[1] = state->shadow[(reg - 1) & 0xff];
91
92	if (state->config->repeated_start_workaround) {
93		ret = i2c_transfer(state->i2c, msg, 3);
94		if (ret != 3)
95			return ret;
96	} else {
97		ret = i2c_transfer(state->i2c, &msg[1], 1);
98		if (ret != 1)
99			return ret;
100		ret = i2c_transfer(state->i2c, &msg[2], 1);
101		if (ret != 1)
102			return ret;
103	}
104
105	/* dprintk("rd(%02x): %02x %02x\n", state->config->demod_address, reg, b[0]); */
106
107	return b[0];
108}
109
110static int s5h1420_writereg (struct s5h1420_state* state, u8 reg, u8 data)
111{
112	u8 buf[] = { reg, data };
113	struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 };
114	int err;
115
116	/* dprintk("wr(%02x): %02x %02x\n", state->config->demod_address, reg, data); */
117	err = i2c_transfer(state->i2c, &msg, 1);
118	if (err != 1) {
119		dprintk("%s: writereg error (err == %i, reg == 0x%02x, data == 0x%02x)\n", __func__, err, reg, data);
120		return -EREMOTEIO;
121	}
122	state->shadow[reg] = data;
123
124	return 0;
125}
126
127static int s5h1420_set_voltage (struct dvb_frontend* fe, fe_sec_voltage_t voltage)
128{
129	struct s5h1420_state* state = fe->demodulator_priv;
130
131	dprintk("enter %s\n", __func__);
132
133	switch(voltage) {
134	case SEC_VOLTAGE_13:
135		s5h1420_writereg(state, 0x3c,
136				 (s5h1420_readreg(state, 0x3c) & 0xfe) | 0x02);
137		break;
138
139	case SEC_VOLTAGE_18:
140		s5h1420_writereg(state, 0x3c, s5h1420_readreg(state, 0x3c) | 0x03);
141		break;
142
143	case SEC_VOLTAGE_OFF:
144		s5h1420_writereg(state, 0x3c, s5h1420_readreg(state, 0x3c) & 0xfd);
145		break;
146	}
147
148	dprintk("leave %s\n", __func__);
149	return 0;
150}
151
152static int s5h1420_set_tone (struct dvb_frontend* fe, fe_sec_tone_mode_t tone)
153{
154	struct s5h1420_state* state = fe->demodulator_priv;
155
156	dprintk("enter %s\n", __func__);
157	switch(tone) {
158	case SEC_TONE_ON:
159		s5h1420_writereg(state, 0x3b,
160				 (s5h1420_readreg(state, 0x3b) & 0x74) | 0x08);
161		break;
162
163	case SEC_TONE_OFF:
164		s5h1420_writereg(state, 0x3b,
165				 (s5h1420_readreg(state, 0x3b) & 0x74) | 0x01);
166		break;
167	}
168	dprintk("leave %s\n", __func__);
169
170	return 0;
171}
172
173static int s5h1420_send_master_cmd (struct dvb_frontend* fe,
174				    struct dvb_diseqc_master_cmd* cmd)
175{
176	struct s5h1420_state* state = fe->demodulator_priv;
177	u8 val;
178	int i;
179	unsigned long timeout;
180	int result = 0;
181
182	dprintk("enter %s\n", __func__);
183	if (cmd->msg_len > 8)
184		return -EINVAL;
185
186	/* setup for DISEQC */
187	val = s5h1420_readreg(state, 0x3b);
188	s5h1420_writereg(state, 0x3b, 0x02);
189	msleep(15);
190
191	/* write the DISEQC command bytes */
192	for(i=0; i< cmd->msg_len; i++) {
193		s5h1420_writereg(state, 0x3d + i, cmd->msg[i]);
194	}
195
196	/* kick off transmission */
197	s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) |
198				      ((cmd->msg_len-1) << 4) | 0x08);
199
200	/* wait for transmission to complete */
201	timeout = jiffies + ((100*HZ) / 1000);
202	while(time_before(jiffies, timeout)) {
203		if (!(s5h1420_readreg(state, 0x3b) & 0x08))
204			break;
205
206		msleep(5);
207	}
208	if (time_after(jiffies, timeout))
209		result = -ETIMEDOUT;
210
211	/* restore original settings */
212	s5h1420_writereg(state, 0x3b, val);
213	msleep(15);
214	dprintk("leave %s\n", __func__);
215	return result;
216}
217
218static int s5h1420_recv_slave_reply (struct dvb_frontend* fe,
219				     struct dvb_diseqc_slave_reply* reply)
220{
221	struct s5h1420_state* state = fe->demodulator_priv;
222	u8 val;
223	int i;
224	int length;
225	unsigned long timeout;
226	int result = 0;
227
228	/* setup for DISEQC receive */
229	val = s5h1420_readreg(state, 0x3b);
230	s5h1420_writereg(state, 0x3b, 0x82); /* FIXME: guess - do we need to set DIS_RDY(0x08) in receive mode? */
231	msleep(15);
232
233	/* wait for reception to complete */
234	timeout = jiffies + ((reply->timeout*HZ) / 1000);
235	while(time_before(jiffies, timeout)) {
236		if (!(s5h1420_readreg(state, 0x3b) & 0x80)) /* FIXME: do we test DIS_RDY(0x08) or RCV_EN(0x80)? */
237			break;
238
239		msleep(5);
240	}
241	if (time_after(jiffies, timeout)) {
242		result = -ETIMEDOUT;
243		goto exit;
244	}
245
246	/* check error flag - FIXME: not sure what this does - docs do not describe
247	 * beyond "error flag for diseqc receive data :( */
248	if (s5h1420_readreg(state, 0x49)) {
249		result = -EIO;
250		goto exit;
251	}
252
253	/* check length */
254	length = (s5h1420_readreg(state, 0x3b) & 0x70) >> 4;
255	if (length > sizeof(reply->msg)) {
256		result = -EOVERFLOW;
257		goto exit;
258	}
259	reply->msg_len = length;
260
261	/* extract data */
262	for(i=0; i< length; i++) {
263		reply->msg[i] = s5h1420_readreg(state, 0x3d + i);
264	}
265
266exit:
267	/* restore original settings */
268	s5h1420_writereg(state, 0x3b, val);
269	msleep(15);
270	return result;
271}
272
273static int s5h1420_send_burst (struct dvb_frontend* fe, fe_sec_mini_cmd_t minicmd)
274{
275	struct s5h1420_state* state = fe->demodulator_priv;
276	u8 val;
277	int result = 0;
278	unsigned long timeout;
279
280	/* setup for tone burst */
281	val = s5h1420_readreg(state, 0x3b);
282	s5h1420_writereg(state, 0x3b, (s5h1420_readreg(state, 0x3b) & 0x70) | 0x01);
283
284	/* set value for B position if requested */
285	if (minicmd == SEC_MINI_B) {
286		s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) | 0x04);
287	}
288	msleep(15);
289
290	/* start transmission */
291	s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) | 0x08);
292
293	/* wait for transmission to complete */
294	timeout = jiffies + ((100*HZ) / 1000);
295	while(time_before(jiffies, timeout)) {
296		if (!(s5h1420_readreg(state, 0x3b) & 0x08))
297			break;
298
299		msleep(5);
300	}
301	if (time_after(jiffies, timeout))
302		result = -ETIMEDOUT;
303
304	/* restore original settings */
305	s5h1420_writereg(state, 0x3b, val);
306	msleep(15);
307	return result;
308}
309
310static fe_status_t s5h1420_get_status_bits(struct s5h1420_state* state)
311{
312	u8 val;
313	fe_status_t status = 0;
314
315	val = s5h1420_readreg(state, 0x14);
316	if (val & 0x02)
317		status |=  FE_HAS_SIGNAL;
318	if (val & 0x01)
319		status |=  FE_HAS_CARRIER;
320	val = s5h1420_readreg(state, 0x36);
321	if (val & 0x01)
322		status |=  FE_HAS_VITERBI;
323	if (val & 0x20)
324		status |=  FE_HAS_SYNC;
325	if (status == (FE_HAS_SIGNAL|FE_HAS_CARRIER|FE_HAS_VITERBI|FE_HAS_SYNC))
326		status |=  FE_HAS_LOCK;
327
328	return status;
329}
330
331static int s5h1420_read_status(struct dvb_frontend* fe, fe_status_t* status)
332{
333	struct s5h1420_state* state = fe->demodulator_priv;
334	u8 val;
335
336	dprintk("enter %s\n", __func__);
337
338	if (status == NULL)
339		return -EINVAL;
340
341	/* determine lock state */
342	*status = s5h1420_get_status_bits(state);
343
344	/* fix for FEC 5/6 inversion issue - if it doesn't quite lock, invert
345	the inversion, wait a bit and check again */
346	if (*status == (FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI)) {
347		val = s5h1420_readreg(state, Vit10);
348		if ((val & 0x07) == 0x03) {
349			if (val & 0x08)
350				s5h1420_writereg(state, Vit09, 0x13);
351			else
352				s5h1420_writereg(state, Vit09, 0x1b);
353
354			/* wait a bit then update lock status */
355			mdelay(200);
356			*status = s5h1420_get_status_bits(state);
357		}
358	}
359
360	/* perform post lock setup */
361	if ((*status & FE_HAS_LOCK) && !state->postlocked) {
362
363		/* calculate the data rate */
364		u32 tmp = s5h1420_getsymbolrate(state);
365		switch (s5h1420_readreg(state, Vit10) & 0x07) {
366		case 0: tmp = (tmp * 2 * 1) / 2; break;
367		case 1: tmp = (tmp * 2 * 2) / 3; break;
368		case 2: tmp = (tmp * 2 * 3) / 4; break;
369		case 3: tmp = (tmp * 2 * 5) / 6; break;
370		case 4: tmp = (tmp * 2 * 6) / 7; break;
371		case 5: tmp = (tmp * 2 * 7) / 8; break;
372		}
373
374		if (tmp == 0) {
375			printk(KERN_ERR "s5h1420: avoided division by 0\n");
376			tmp = 1;
377		}
378		tmp = state->fclk / tmp;
379
380
381		/* set the MPEG_CLK_INTL for the calculated data rate */
382		if (tmp < 2)
383			val = 0x00;
384		else if (tmp < 5)
385			val = 0x01;
386		else if (tmp < 9)
387			val = 0x02;
388		else if (tmp < 13)
389			val = 0x03;
390		else if (tmp < 17)
391			val = 0x04;
392		else if (tmp < 25)
393			val = 0x05;
394		else if (tmp < 33)
395			val = 0x06;
396		else
397			val = 0x07;
398		dprintk("for MPEG_CLK_INTL %d %x\n", tmp, val);
399
400		s5h1420_writereg(state, FEC01, 0x18);
401		s5h1420_writereg(state, FEC01, 0x10);
402		s5h1420_writereg(state, FEC01, val);
403
404		/* Enable "MPEG_Out" */
405		val = s5h1420_readreg(state, Mpeg02);
406		s5h1420_writereg(state, Mpeg02, val | (1 << 6));
407
408		/* kicker disable */
409		val = s5h1420_readreg(state, QPSK01) & 0x7f;
410		s5h1420_writereg(state, QPSK01, val);
411
412		/* DC freeze TODO it was never activated by default or it can stay activated */
413
414		if (s5h1420_getsymbolrate(state) >= 20000000) {
415			s5h1420_writereg(state, Loop04, 0x8a);
416			s5h1420_writereg(state, Loop05, 0x6a);
417		} else {
418			s5h1420_writereg(state, Loop04, 0x58);
419			s5h1420_writereg(state, Loop05, 0x27);
420		}
421
422		/* post-lock processing has been done! */
423		state->postlocked = 1;
424	}
425
426	dprintk("leave %s\n", __func__);
427
428	return 0;
429}
430
431static int s5h1420_read_ber(struct dvb_frontend* fe, u32* ber)
432{
433	struct s5h1420_state* state = fe->demodulator_priv;
434
435	s5h1420_writereg(state, 0x46, 0x1d);
436	mdelay(25);
437
438	*ber = (s5h1420_readreg(state, 0x48) << 8) | s5h1420_readreg(state, 0x47);
439
440	return 0;
441}
442
443static int s5h1420_read_signal_strength(struct dvb_frontend* fe, u16* strength)
444{
445	struct s5h1420_state* state = fe->demodulator_priv;
446
447	u8 val = s5h1420_readreg(state, 0x15);
448
449	*strength =  (u16) ((val << 8) | val);
450
451	return 0;
452}
453
454static int s5h1420_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
455{
456	struct s5h1420_state* state = fe->demodulator_priv;
457
458	s5h1420_writereg(state, 0x46, 0x1f);
459	mdelay(25);
460
461	*ucblocks = (s5h1420_readreg(state, 0x48) << 8) | s5h1420_readreg(state, 0x47);
462
463	return 0;
464}
465
466static void s5h1420_reset(struct s5h1420_state* state)
467{
468	dprintk("%s\n", __func__);
469	s5h1420_writereg (state, 0x01, 0x08);
470	s5h1420_writereg (state, 0x01, 0x00);
471	udelay(10);
472}
473
474static void s5h1420_setsymbolrate(struct s5h1420_state* state,
475				  struct dtv_frontend_properties *p)
476{
477	u8 v;
478	u64 val;
479
480	dprintk("enter %s\n", __func__);
481
482	val = ((u64) p->symbol_rate / 1000ULL) * (1ULL<<24);
483	if (p->symbol_rate < 29000000)
484		val *= 2;
485	do_div(val, (state->fclk / 1000));
486
487	dprintk("symbol rate register: %06llx\n", (unsigned long long)val);
488
489	v = s5h1420_readreg(state, Loop01);
490	s5h1420_writereg(state, Loop01, v & 0x7f);
491	s5h1420_writereg(state, Tnco01, val >> 16);
492	s5h1420_writereg(state, Tnco02, val >> 8);
493	s5h1420_writereg(state, Tnco03, val & 0xff);
494	s5h1420_writereg(state, Loop01,  v | 0x80);
495	dprintk("leave %s\n", __func__);
496}
497
498static u32 s5h1420_getsymbolrate(struct s5h1420_state* state)
499{
500	return state->symbol_rate;
501}
502
503static void s5h1420_setfreqoffset(struct s5h1420_state* state, int freqoffset)
504{
505	int val;
506	u8 v;
507
508	dprintk("enter %s\n", __func__);
509
510	/* remember freqoffset is in kHz, but the chip wants the offset in Hz, so
511	 * divide fclk by 1000000 to get the correct value. */
512	val = -(int) ((freqoffset * (1<<24)) / (state->fclk / 1000000));
513
514	dprintk("phase rotator/freqoffset: %d %06x\n", freqoffset, val);
515
516	v = s5h1420_readreg(state, Loop01);
517	s5h1420_writereg(state, Loop01, v & 0xbf);
518	s5h1420_writereg(state, Pnco01, val >> 16);
519	s5h1420_writereg(state, Pnco02, val >> 8);
520	s5h1420_writereg(state, Pnco03, val & 0xff);
521	s5h1420_writereg(state, Loop01, v | 0x40);
522	dprintk("leave %s\n", __func__);
523}
524
525static int s5h1420_getfreqoffset(struct s5h1420_state* state)
526{
527	int val;
528
529	s5h1420_writereg(state, 0x06, s5h1420_readreg(state, 0x06) | 0x08);
530	val  = s5h1420_readreg(state, 0x0e) << 16;
531	val |= s5h1420_readreg(state, 0x0f) << 8;
532	val |= s5h1420_readreg(state, 0x10);
533	s5h1420_writereg(state, 0x06, s5h1420_readreg(state, 0x06) & 0xf7);
534
535	if (val & 0x800000)
536		val |= 0xff000000;
537
538	/* remember freqoffset is in kHz, but the chip wants the offset in Hz, so
539	 * divide fclk by 1000000 to get the correct value. */
540	val = (((-val) * (state->fclk/1000000)) / (1<<24));
541
542	return val;
543}
544
545static void s5h1420_setfec_inversion(struct s5h1420_state* state,
546				     struct dtv_frontend_properties *p)
547{
548	u8 inversion = 0;
549	u8 vit08, vit09;
550
551	dprintk("enter %s\n", __func__);
552
553	if (p->inversion == INVERSION_OFF)
554		inversion = state->config->invert ? 0x08 : 0;
555	else if (p->inversion == INVERSION_ON)
556		inversion = state->config->invert ? 0 : 0x08;
557
558	if ((p->fec_inner == FEC_AUTO) || (p->inversion == INVERSION_AUTO)) {
559		vit08 = 0x3f;
560		vit09 = 0;
561	} else {
562		switch (p->fec_inner) {
563		case FEC_1_2:
564			vit08 = 0x01; vit09 = 0x10;
565			break;
566
567		case FEC_2_3:
568			vit08 = 0x02; vit09 = 0x11;
569			break;
570
571		case FEC_3_4:
572			vit08 = 0x04; vit09 = 0x12;
573			break;
574
575		case FEC_5_6:
576			vit08 = 0x08; vit09 = 0x13;
577			break;
578
579		case FEC_6_7:
580			vit08 = 0x10; vit09 = 0x14;
581			break;
582
583		case FEC_7_8:
584			vit08 = 0x20; vit09 = 0x15;
585			break;
586
587		default:
588			return;
589		}
590	}
591	vit09 |= inversion;
592	dprintk("fec: %02x %02x\n", vit08, vit09);
593	s5h1420_writereg(state, Vit08, vit08);
594	s5h1420_writereg(state, Vit09, vit09);
595	dprintk("leave %s\n", __func__);
596}
597
598static fe_code_rate_t s5h1420_getfec(struct s5h1420_state* state)
599{
600	switch(s5h1420_readreg(state, 0x32) & 0x07) {
601	case 0:
602		return FEC_1_2;
603
604	case 1:
605		return FEC_2_3;
606
607	case 2:
608		return FEC_3_4;
609
610	case 3:
611		return FEC_5_6;
612
613	case 4:
614		return FEC_6_7;
615
616	case 5:
617		return FEC_7_8;
618	}
619
620	return FEC_NONE;
621}
622
623static fe_spectral_inversion_t s5h1420_getinversion(struct s5h1420_state* state)
624{
625	if (s5h1420_readreg(state, 0x32) & 0x08)
626		return INVERSION_ON;
627
628	return INVERSION_OFF;
629}
630
631static int s5h1420_set_frontend(struct dvb_frontend *fe)
632{
633	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
634	struct s5h1420_state* state = fe->demodulator_priv;
635	int frequency_delta;
636	struct dvb_frontend_tune_settings fesettings;
637	uint8_t clock_setting;
638
639	dprintk("enter %s\n", __func__);
640
641	/* check if we should do a fast-tune */
642	s5h1420_get_tune_settings(fe, &fesettings);
643	frequency_delta = p->frequency - state->tunedfreq;
644	if ((frequency_delta > -fesettings.max_drift) &&
645			(frequency_delta < fesettings.max_drift) &&
646			(frequency_delta != 0) &&
647			(state->fec_inner == p->fec_inner) &&
648			(state->symbol_rate == p->symbol_rate)) {
649
650		if (fe->ops.tuner_ops.set_params) {
651			fe->ops.tuner_ops.set_params(fe);
652			if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
653		}
654		if (fe->ops.tuner_ops.get_frequency) {
655			u32 tmp;
656			fe->ops.tuner_ops.get_frequency(fe, &tmp);
657			if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
658			s5h1420_setfreqoffset(state, p->frequency - tmp);
659		} else {
660			s5h1420_setfreqoffset(state, 0);
661		}
662		dprintk("simple tune\n");
663		return 0;
664	}
665	dprintk("tuning demod\n");
666
667	/* first of all, software reset */
668	s5h1420_reset(state);
669
670	/* set s5h1420 fclk PLL according to desired symbol rate */
671	if (p->symbol_rate > 33000000)
672		state->fclk = 80000000;
673	else if (p->symbol_rate > 28500000)
674		state->fclk = 59000000;
675	else if (p->symbol_rate > 25000000)
676		state->fclk = 86000000;
677	else if (p->symbol_rate > 1900000)
678		state->fclk = 88000000;
679	else
680		state->fclk = 44000000;
681
682	/* Clock */
683	switch (state->fclk) {
684	default:
685	case 88000000:
686		clock_setting = 80;
687		break;
688	case 86000000:
689		clock_setting = 78;
690		break;
691	case 80000000:
692		clock_setting = 72;
693		break;
694	case 59000000:
695		clock_setting = 51;
696		break;
697	case 44000000:
698		clock_setting = 36;
699		break;
700	}
701	dprintk("pll01: %d, ToneFreq: %d\n", state->fclk/1000000 - 8, (state->fclk + (TONE_FREQ * 32) - 1) / (TONE_FREQ * 32));
702	s5h1420_writereg(state, PLL01, state->fclk/1000000 - 8);
703	s5h1420_writereg(state, PLL02, 0x40);
704	s5h1420_writereg(state, DiS01, (state->fclk + (TONE_FREQ * 32) - 1) / (TONE_FREQ * 32));
705
706	/* TODO DC offset removal, config parameter ? */
707	if (p->symbol_rate > 29000000)
708		s5h1420_writereg(state, QPSK01, 0xae | 0x10);
709	else
710		s5h1420_writereg(state, QPSK01, 0xac | 0x10);
711
712	/* set misc registers */
713	s5h1420_writereg(state, CON_1, 0x00);
714	s5h1420_writereg(state, QPSK02, 0x00);
715	s5h1420_writereg(state, Pre01, 0xb0);
716
717	s5h1420_writereg(state, Loop01, 0xF0);
718	s5h1420_writereg(state, Loop02, 0x2a); /* e7 for s5h1420 */
719	s5h1420_writereg(state, Loop03, 0x79); /* 78 for s5h1420 */
720	if (p->symbol_rate > 20000000)
721		s5h1420_writereg(state, Loop04, 0x79);
722	else
723		s5h1420_writereg(state, Loop04, 0x58);
724	s5h1420_writereg(state, Loop05, 0x6b);
725
726	if (p->symbol_rate >= 8000000)
727		s5h1420_writereg(state, Post01, (0 << 6) | 0x10);
728	else if (p->symbol_rate >= 4000000)
729		s5h1420_writereg(state, Post01, (1 << 6) | 0x10);
730	else
731		s5h1420_writereg(state, Post01, (3 << 6) | 0x10);
732
733	s5h1420_writereg(state, Monitor12, 0x00); /* unfreeze DC compensation */
734
735	s5h1420_writereg(state, Sync01, 0x33);
736	s5h1420_writereg(state, Mpeg01, state->config->cdclk_polarity);
737	s5h1420_writereg(state, Mpeg02, 0x3d); /* Parallel output more, disabled -> enabled later */
738	s5h1420_writereg(state, Err01, 0x03); /* 0x1d for s5h1420 */
739
740	s5h1420_writereg(state, Vit06, 0x6e); /* 0x8e for s5h1420 */
741	s5h1420_writereg(state, DiS03, 0x00);
742	s5h1420_writereg(state, Rf01, 0x61); /* Tuner i2c address - for the gate controller */
743
744	/* set tuner PLL */
745	if (fe->ops.tuner_ops.set_params) {
746		fe->ops.tuner_ops.set_params(fe);
747		if (fe->ops.i2c_gate_ctrl)
748			fe->ops.i2c_gate_ctrl(fe, 0);
749		s5h1420_setfreqoffset(state, 0);
750	}
751
752	/* set the reset of the parameters */
753	s5h1420_setsymbolrate(state, p);
754	s5h1420_setfec_inversion(state, p);
755
756	/* start QPSK */
757	s5h1420_writereg(state, QPSK01, s5h1420_readreg(state, QPSK01) | 1);
758
759	state->fec_inner = p->fec_inner;
760	state->symbol_rate = p->symbol_rate;
761	state->postlocked = 0;
762	state->tunedfreq = p->frequency;
763
764	dprintk("leave %s\n", __func__);
765	return 0;
766}
767
768static int s5h1420_get_frontend(struct dvb_frontend* fe)
769{
770	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
771	struct s5h1420_state* state = fe->demodulator_priv;
772
773	p->frequency = state->tunedfreq + s5h1420_getfreqoffset(state);
774	p->inversion = s5h1420_getinversion(state);
775	p->symbol_rate = s5h1420_getsymbolrate(state);
776	p->fec_inner = s5h1420_getfec(state);
777
778	return 0;
779}
780
781static int s5h1420_get_tune_settings(struct dvb_frontend* fe,
782				     struct dvb_frontend_tune_settings* fesettings)
783{
784	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
785	if (p->symbol_rate > 20000000) {
786		fesettings->min_delay_ms = 50;
787		fesettings->step_size = 2000;
788		fesettings->max_drift = 8000;
789	} else if (p->symbol_rate > 12000000) {
790		fesettings->min_delay_ms = 100;
791		fesettings->step_size = 1500;
792		fesettings->max_drift = 9000;
793	} else if (p->symbol_rate > 8000000) {
794		fesettings->min_delay_ms = 100;
795		fesettings->step_size = 1000;
796		fesettings->max_drift = 8000;
797	} else if (p->symbol_rate > 4000000) {
798		fesettings->min_delay_ms = 100;
799		fesettings->step_size = 500;
800		fesettings->max_drift = 7000;
801	} else if (p->symbol_rate > 2000000) {
802		fesettings->min_delay_ms = 200;
803		fesettings->step_size = (p->symbol_rate / 8000);
804		fesettings->max_drift = 14 * fesettings->step_size;
805	} else {
806		fesettings->min_delay_ms = 200;
807		fesettings->step_size = (p->symbol_rate / 8000);
808		fesettings->max_drift = 18 * fesettings->step_size;
809	}
810
811	return 0;
812}
813
814static int s5h1420_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
815{
816	struct s5h1420_state* state = fe->demodulator_priv;
817
818	if (enable)
819		return s5h1420_writereg(state, 0x02, state->CON_1_val | 1);
820	else
821		return s5h1420_writereg(state, 0x02, state->CON_1_val & 0xfe);
822}
823
824static int s5h1420_init (struct dvb_frontend* fe)
825{
826	struct s5h1420_state* state = fe->demodulator_priv;
827
828	/* disable power down and do reset */
829	state->CON_1_val = state->config->serial_mpeg << 4;
830	s5h1420_writereg(state, 0x02, state->CON_1_val);
831	msleep(10);
832	s5h1420_reset(state);
833
834	return 0;
835}
836
837static int s5h1420_sleep(struct dvb_frontend* fe)
838{
839	struct s5h1420_state* state = fe->demodulator_priv;
840	state->CON_1_val = 0x12;
841	return s5h1420_writereg(state, 0x02, state->CON_1_val);
842}
843
844static void s5h1420_release(struct dvb_frontend* fe)
845{
846	struct s5h1420_state* state = fe->demodulator_priv;
847	i2c_del_adapter(&state->tuner_i2c_adapter);
848	kfree(state);
849}
850
851static u32 s5h1420_tuner_i2c_func(struct i2c_adapter *adapter)
852{
853	return I2C_FUNC_I2C;
854}
855
856static int s5h1420_tuner_i2c_tuner_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
857{
858	struct s5h1420_state *state = i2c_get_adapdata(i2c_adap);
859	struct i2c_msg m[1 + num];
860	u8 tx_open[2] = { CON_1, state->CON_1_val | 1 }; /* repeater stops once there was a stop condition */
861
862	memset(m, 0, sizeof(struct i2c_msg) * (1 + num));
863
864	m[0].addr = state->config->demod_address;
865	m[0].buf  = tx_open;
866	m[0].len  = 2;
867
868	memcpy(&m[1], msg, sizeof(struct i2c_msg) * num);
869
870	return i2c_transfer(state->i2c, m, 1+num) == 1 + num ? num : -EIO;
871}
872
873static struct i2c_algorithm s5h1420_tuner_i2c_algo = {
874	.master_xfer   = s5h1420_tuner_i2c_tuner_xfer,
875	.functionality = s5h1420_tuner_i2c_func,
876};
877
878struct i2c_adapter *s5h1420_get_tuner_i2c_adapter(struct dvb_frontend *fe)
879{
880	struct s5h1420_state *state = fe->demodulator_priv;
881	return &state->tuner_i2c_adapter;
882}
883EXPORT_SYMBOL(s5h1420_get_tuner_i2c_adapter);
884
885static struct dvb_frontend_ops s5h1420_ops;
886
887struct dvb_frontend *s5h1420_attach(const struct s5h1420_config *config,
888				    struct i2c_adapter *i2c)
889{
890	/* allocate memory for the internal state */
891	struct s5h1420_state *state = kzalloc(sizeof(struct s5h1420_state), GFP_KERNEL);
892	u8 i;
893
894	if (state == NULL)
895		goto error;
896
897	/* setup the state */
898	state->config = config;
899	state->i2c = i2c;
900	state->postlocked = 0;
901	state->fclk = 88000000;
902	state->tunedfreq = 0;
903	state->fec_inner = FEC_NONE;
904	state->symbol_rate = 0;
905
906	/* check if the demod is there + identify it */
907	i = s5h1420_readreg(state, ID01);
908	if (i != 0x03)
909		goto error;
910
911	memset(state->shadow, 0xff, sizeof(state->shadow));
912
913	for (i = 0; i < 0x50; i++)
914		state->shadow[i] = s5h1420_readreg(state, i);
915
916	/* create dvb_frontend */
917	memcpy(&state->frontend.ops, &s5h1420_ops, sizeof(struct dvb_frontend_ops));
918	state->frontend.demodulator_priv = state;
919
920	/* create tuner i2c adapter */
921	strlcpy(state->tuner_i2c_adapter.name, "S5H1420-PN1010 tuner I2C bus",
922		sizeof(state->tuner_i2c_adapter.name));
923	state->tuner_i2c_adapter.algo      = &s5h1420_tuner_i2c_algo;
924	state->tuner_i2c_adapter.algo_data = NULL;
925	i2c_set_adapdata(&state->tuner_i2c_adapter, state);
926	if (i2c_add_adapter(&state->tuner_i2c_adapter) < 0) {
927		printk(KERN_ERR "S5H1420/PN1010: tuner i2c bus could not be initialized\n");
928		goto error;
929	}
930
931	return &state->frontend;
932
933error:
934	kfree(state);
935	return NULL;
936}
937EXPORT_SYMBOL(s5h1420_attach);
938
939static struct dvb_frontend_ops s5h1420_ops = {
940	.delsys = { SYS_DVBS },
941	.info = {
942		.name     = "Samsung S5H1420/PnpNetwork PN1010 DVB-S",
943		.frequency_min    = 950000,
944		.frequency_max    = 2150000,
945		.frequency_stepsize = 125,     /* kHz for QPSK frontends */
946		.frequency_tolerance  = 29500,
947		.symbol_rate_min  = 1000000,
948		.symbol_rate_max  = 45000000,
949		/*  .symbol_rate_tolerance  = ???,*/
950		.caps = FE_CAN_INVERSION_AUTO |
951		FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
952		FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
953		FE_CAN_QPSK
954	},
955
956	.release = s5h1420_release,
957
958	.init = s5h1420_init,
959	.sleep = s5h1420_sleep,
960	.i2c_gate_ctrl = s5h1420_i2c_gate_ctrl,
961
962	.set_frontend = s5h1420_set_frontend,
963	.get_frontend = s5h1420_get_frontend,
964	.get_tune_settings = s5h1420_get_tune_settings,
965
966	.read_status = s5h1420_read_status,
967	.read_ber = s5h1420_read_ber,
968	.read_signal_strength = s5h1420_read_signal_strength,
969	.read_ucblocks = s5h1420_read_ucblocks,
970
971	.diseqc_send_master_cmd = s5h1420_send_master_cmd,
972	.diseqc_recv_slave_reply = s5h1420_recv_slave_reply,
973	.diseqc_send_burst = s5h1420_send_burst,
974	.set_tone = s5h1420_set_tone,
975	.set_voltage = s5h1420_set_voltage,
976};
977
978MODULE_DESCRIPTION("Samsung S5H1420/PnpNetwork PN1010 DVB-S Demodulator driver");
979MODULE_AUTHOR("Andrew de Quincey, Patrick Boettcher");
980MODULE_LICENSE("GPL");
981