1/*
2 * omap_vout_vrfb.c
3 *
4 * Copyright (C) 2010 Texas Instruments.
5 *
6 * This file is licensed under the terms of the GNU General Public License
7 * version 2. This program is licensed "as is" without any warranty of any
8 * kind, whether express or implied.
9 *
10 */
11
12#include <linux/sched.h>
13#include <linux/platform_device.h>
14#include <linux/videodev2.h>
15
16#include <media/videobuf-dma-contig.h>
17#include <media/v4l2-device.h>
18
19#include <plat/dma.h>
20#include <plat/vrfb.h>
21
22#include "omap_voutdef.h"
23#include "omap_voutlib.h"
24
25/*
26 * Function for allocating video buffers
27 */
28static int omap_vout_allocate_vrfb_buffers(struct omap_vout_device *vout,
29		unsigned int *count, int startindex)
30{
31	int i, j;
32
33	for (i = 0; i < *count; i++) {
34		if (!vout->smsshado_virt_addr[i]) {
35			vout->smsshado_virt_addr[i] =
36				omap_vout_alloc_buffer(vout->smsshado_size,
37						&vout->smsshado_phy_addr[i]);
38		}
39		if (!vout->smsshado_virt_addr[i] && startindex != -1) {
40			if (V4L2_MEMORY_MMAP == vout->memory && i >= startindex)
41				break;
42		}
43		if (!vout->smsshado_virt_addr[i]) {
44			for (j = 0; j < i; j++) {
45				omap_vout_free_buffer(
46						vout->smsshado_virt_addr[j],
47						vout->smsshado_size);
48				vout->smsshado_virt_addr[j] = 0;
49				vout->smsshado_phy_addr[j] = 0;
50			}
51			*count = 0;
52			return -ENOMEM;
53		}
54		memset((void *) vout->smsshado_virt_addr[i], 0,
55				vout->smsshado_size);
56	}
57	return 0;
58}
59
60/*
61 * Wakes up the application once the DMA transfer to VRFB space is completed.
62 */
63static void omap_vout_vrfb_dma_tx_callback(int lch, u16 ch_status, void *data)
64{
65	struct vid_vrfb_dma *t = (struct vid_vrfb_dma *) data;
66
67	t->tx_status = 1;
68	wake_up_interruptible(&t->wait);
69}
70
71/*
72 * Free VRFB buffers
73 */
74void omap_vout_free_vrfb_buffers(struct omap_vout_device *vout)
75{
76	int j;
77
78	for (j = 0; j < VRFB_NUM_BUFS; j++) {
79		omap_vout_free_buffer(vout->smsshado_virt_addr[j],
80				vout->smsshado_size);
81		vout->smsshado_virt_addr[j] = 0;
82		vout->smsshado_phy_addr[j] = 0;
83	}
84}
85
86int omap_vout_setup_vrfb_bufs(struct platform_device *pdev, int vid_num,
87			      bool static_vrfb_allocation)
88{
89	int ret = 0, i, j;
90	struct omap_vout_device *vout;
91	struct video_device *vfd;
92	int image_width, image_height;
93	int vrfb_num_bufs = VRFB_NUM_BUFS;
94	struct v4l2_device *v4l2_dev = platform_get_drvdata(pdev);
95	struct omap2video_device *vid_dev =
96		container_of(v4l2_dev, struct omap2video_device, v4l2_dev);
97
98	vout = vid_dev->vouts[vid_num];
99	vfd = vout->vfd;
100
101	for (i = 0; i < VRFB_NUM_BUFS; i++) {
102		if (omap_vrfb_request_ctx(&vout->vrfb_context[i])) {
103			dev_info(&pdev->dev, ": VRFB allocation failed\n");
104			for (j = 0; j < i; j++)
105				omap_vrfb_release_ctx(&vout->vrfb_context[j]);
106			ret = -ENOMEM;
107			goto free_buffers;
108		}
109	}
110
111	/* Calculate VRFB memory size */
112	/* allocate for worst case size */
113	image_width = VID_MAX_WIDTH / TILE_SIZE;
114	if (VID_MAX_WIDTH % TILE_SIZE)
115		image_width++;
116
117	image_width = image_width * TILE_SIZE;
118	image_height = VID_MAX_HEIGHT / TILE_SIZE;
119
120	if (VID_MAX_HEIGHT % TILE_SIZE)
121		image_height++;
122
123	image_height = image_height * TILE_SIZE;
124	vout->smsshado_size = PAGE_ALIGN(image_width * image_height * 2 * 2);
125
126	/*
127	 * Request and Initialize DMA, for DMA based VRFB transfer
128	 */
129	vout->vrfb_dma_tx.dev_id = OMAP_DMA_NO_DEVICE;
130	vout->vrfb_dma_tx.dma_ch = -1;
131	vout->vrfb_dma_tx.req_status = DMA_CHAN_ALLOTED;
132	ret = omap_request_dma(vout->vrfb_dma_tx.dev_id, "VRFB DMA TX",
133			omap_vout_vrfb_dma_tx_callback,
134			(void *) &vout->vrfb_dma_tx, &vout->vrfb_dma_tx.dma_ch);
135	if (ret < 0) {
136		vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
137		dev_info(&pdev->dev, ": failed to allocate DMA Channel for"
138				" video%d\n", vfd->minor);
139	}
140	init_waitqueue_head(&vout->vrfb_dma_tx.wait);
141
142	/* statically allocated the VRFB buffer is done through
143	   commands line aruments */
144	if (static_vrfb_allocation) {
145		if (omap_vout_allocate_vrfb_buffers(vout, &vrfb_num_bufs, -1)) {
146			ret =  -ENOMEM;
147			goto release_vrfb_ctx;
148		}
149		vout->vrfb_static_allocation = 1;
150	}
151	return 0;
152
153release_vrfb_ctx:
154	for (j = 0; j < VRFB_NUM_BUFS; j++)
155		omap_vrfb_release_ctx(&vout->vrfb_context[j]);
156free_buffers:
157	omap_vout_free_buffers(vout);
158
159	return ret;
160}
161
162/*
163 * Release the VRFB context once the module exits
164 */
165void omap_vout_release_vrfb(struct omap_vout_device *vout)
166{
167	int i;
168
169	for (i = 0; i < VRFB_NUM_BUFS; i++)
170		omap_vrfb_release_ctx(&vout->vrfb_context[i]);
171
172	if (vout->vrfb_dma_tx.req_status == DMA_CHAN_ALLOTED) {
173		vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
174		omap_free_dma(vout->vrfb_dma_tx.dma_ch);
175	}
176}
177
178/*
179 * Allocate the buffers for the VRFB space.  Data is copied from V4L2
180 * buffers to the VRFB buffers using the DMA engine.
181 */
182int omap_vout_vrfb_buffer_setup(struct omap_vout_device *vout,
183			  unsigned int *count, unsigned int startindex)
184{
185	int i;
186	bool yuv_mode;
187
188	if (!is_rotation_enabled(vout))
189		return 0;
190
191	/* If rotation is enabled, allocate memory for VRFB space also */
192	*count = *count > VRFB_NUM_BUFS ? VRFB_NUM_BUFS : *count;
193
194	/* Allocate the VRFB buffers only if the buffers are not
195	 * allocated during init time.
196	 */
197	if (!vout->vrfb_static_allocation)
198		if (omap_vout_allocate_vrfb_buffers(vout, count, startindex))
199			return -ENOMEM;
200
201	if (vout->dss_mode == OMAP_DSS_COLOR_YUV2 ||
202			vout->dss_mode == OMAP_DSS_COLOR_UYVY)
203		yuv_mode = true;
204	else
205		yuv_mode = false;
206
207	for (i = 0; i < *count; i++)
208		omap_vrfb_setup(&vout->vrfb_context[i],
209				vout->smsshado_phy_addr[i], vout->pix.width,
210				vout->pix.height, vout->bpp, yuv_mode);
211
212	return 0;
213}
214
215int omap_vout_prepare_vrfb(struct omap_vout_device *vout,
216				struct videobuf_buffer *vb)
217{
218	dma_addr_t dmabuf;
219	struct vid_vrfb_dma *tx;
220	enum dss_rotation rotation;
221	u32 dest_frame_index = 0, src_element_index = 0;
222	u32 dest_element_index = 0, src_frame_index = 0;
223	u32 elem_count = 0, frame_count = 0, pixsize = 2;
224
225	if (!is_rotation_enabled(vout))
226		return 0;
227
228	dmabuf = vout->buf_phy_addr[vb->i];
229	/* If rotation is enabled, copy input buffer into VRFB
230	 * memory space using DMA. We are copying input buffer
231	 * into VRFB memory space of desired angle and DSS will
232	 * read image VRFB memory for 0 degree angle
233	 */
234	pixsize = vout->bpp * vout->vrfb_bpp;
235	/*
236	 * DMA transfer in double index mode
237	 */
238
239	/* Frame index */
240	dest_frame_index = ((MAX_PIXELS_PER_LINE * pixsize) -
241			(vout->pix.width * vout->bpp)) + 1;
242
243	/* Source and destination parameters */
244	src_element_index = 0;
245	src_frame_index = 0;
246	dest_element_index = 1;
247	/* Number of elements per frame */
248	elem_count = vout->pix.width * vout->bpp;
249	frame_count = vout->pix.height;
250	tx = &vout->vrfb_dma_tx;
251	tx->tx_status = 0;
252	omap_set_dma_transfer_params(tx->dma_ch, OMAP_DMA_DATA_TYPE_S32,
253			(elem_count / 4), frame_count, OMAP_DMA_SYNC_ELEMENT,
254			tx->dev_id, 0x0);
255	/* src_port required only for OMAP1 */
256	omap_set_dma_src_params(tx->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
257			dmabuf, src_element_index, src_frame_index);
258	/*set dma source burst mode for VRFB */
259	omap_set_dma_src_burst_mode(tx->dma_ch, OMAP_DMA_DATA_BURST_16);
260	rotation = calc_rotation(vout);
261
262	/* dest_port required only for OMAP1 */
263	omap_set_dma_dest_params(tx->dma_ch, 0, OMAP_DMA_AMODE_DOUBLE_IDX,
264			vout->vrfb_context[vb->i].paddr[0], dest_element_index,
265			dest_frame_index);
266	/*set dma dest burst mode for VRFB */
267	omap_set_dma_dest_burst_mode(tx->dma_ch, OMAP_DMA_DATA_BURST_16);
268	omap_dma_set_global_params(DMA_DEFAULT_ARB_RATE, 0x20, 0);
269
270	omap_start_dma(tx->dma_ch);
271	interruptible_sleep_on_timeout(&tx->wait, VRFB_TX_TIMEOUT);
272
273	if (tx->tx_status == 0) {
274		omap_stop_dma(tx->dma_ch);
275		return -EINVAL;
276	}
277	/* Store buffers physical address into an array. Addresses
278	 * from this array will be used to configure DSS */
279	vout->queued_buf_addr[vb->i] = (u8 *)
280		vout->vrfb_context[vb->i].paddr[rotation];
281	return 0;
282}
283
284/*
285 * Calculate the buffer offsets from which the streaming should
286 * start. This offset calculation is mainly required because of
287 * the VRFB 32 pixels alignment with rotation.
288 */
289void omap_vout_calculate_vrfb_offset(struct omap_vout_device *vout)
290{
291	enum dss_rotation rotation;
292	bool mirroring = vout->mirror;
293	struct v4l2_rect *crop = &vout->crop;
294	struct v4l2_pix_format *pix = &vout->pix;
295	int *cropped_offset = &vout->cropped_offset;
296	int vr_ps = 1, ps = 2, temp_ps = 2;
297	int offset = 0, ctop = 0, cleft = 0, line_length = 0;
298
299	rotation = calc_rotation(vout);
300
301	if (V4L2_PIX_FMT_YUYV == pix->pixelformat ||
302			V4L2_PIX_FMT_UYVY == pix->pixelformat) {
303		if (is_rotation_enabled(vout)) {
304			/*
305			 * ps    - Actual pixel size for YUYV/UYVY for
306			 *         VRFB/Mirroring is 4 bytes
307			 * vr_ps - Virtually pixel size for YUYV/UYVY is
308			 *         2 bytes
309			 */
310			ps = 4;
311			vr_ps = 2;
312		} else {
313			ps = 2;	/* otherwise the pixel size is 2 byte */
314		}
315	} else if (V4L2_PIX_FMT_RGB32 == pix->pixelformat) {
316		ps = 4;
317	} else if (V4L2_PIX_FMT_RGB24 == pix->pixelformat) {
318		ps = 3;
319	}
320	vout->ps = ps;
321	vout->vr_ps = vr_ps;
322
323	if (is_rotation_enabled(vout)) {
324		line_length = MAX_PIXELS_PER_LINE;
325		ctop = (pix->height - crop->height) - crop->top;
326		cleft = (pix->width - crop->width) - crop->left;
327	} else {
328		line_length = pix->width;
329	}
330	vout->line_length = line_length;
331	switch (rotation) {
332	case dss_rotation_90_degree:
333		offset = vout->vrfb_context[0].yoffset *
334			vout->vrfb_context[0].bytespp;
335		temp_ps = ps / vr_ps;
336		if (mirroring == 0) {
337			*cropped_offset = offset + line_length *
338				temp_ps * cleft + crop->top * temp_ps;
339		} else {
340			*cropped_offset = offset + line_length * temp_ps *
341				cleft + crop->top * temp_ps + (line_length *
342				((crop->width / (vr_ps)) - 1) * ps);
343		}
344		break;
345	case dss_rotation_180_degree:
346		offset = ((MAX_PIXELS_PER_LINE * vout->vrfb_context[0].yoffset *
347			vout->vrfb_context[0].bytespp) +
348			(vout->vrfb_context[0].xoffset *
349			vout->vrfb_context[0].bytespp));
350		if (mirroring == 0) {
351			*cropped_offset = offset + (line_length * ps * ctop) +
352				(cleft / vr_ps) * ps;
353
354		} else {
355			*cropped_offset = offset + (line_length * ps * ctop) +
356				(cleft / vr_ps) * ps + (line_length *
357				(crop->height - 1) * ps);
358		}
359		break;
360	case dss_rotation_270_degree:
361		offset = MAX_PIXELS_PER_LINE * vout->vrfb_context[0].xoffset *
362			vout->vrfb_context[0].bytespp;
363		temp_ps = ps / vr_ps;
364		if (mirroring == 0) {
365			*cropped_offset = offset + line_length *
366			    temp_ps * crop->left + ctop * ps;
367		} else {
368			*cropped_offset = offset + line_length *
369				temp_ps * crop->left + ctop * ps +
370				(line_length * ((crop->width / vr_ps) - 1) *
371				 ps);
372		}
373		break;
374	case dss_rotation_0_degree:
375		if (mirroring == 0) {
376			*cropped_offset = (line_length * ps) *
377				crop->top + (crop->left / vr_ps) * ps;
378		} else {
379			*cropped_offset = (line_length * ps) *
380				crop->top + (crop->left / vr_ps) * ps +
381				(line_length * (crop->height - 1) * ps);
382		}
383		break;
384	default:
385		*cropped_offset = (line_length * ps * crop->top) /
386			vr_ps + (crop->left * ps) / vr_ps +
387			((crop->width / vr_ps) - 1) * ps;
388		break;
389	}
390}
391