1/*
2 *      Davicom DM9000 Fast Ethernet driver for Linux.
3 * 	Copyright (C) 1997  Sten Wang
4 *
5 * 	This program is free software; you can redistribute it and/or
6 * 	modify it under the terms of the GNU General Public License
7 * 	as published by the Free Software Foundation; either version 2
8 * 	of the License, or (at your option) any later version.
9 *
10 * 	This program is distributed in the hope that it will be useful,
11 * 	but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * 	GNU General Public License for more details.
14 *
15 * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
16 *
17 * Additional updates, Copyright:
18 *	Ben Dooks <ben@simtec.co.uk>
19 *	Sascha Hauer <s.hauer@pengutronix.de>
20 */
21
22#include <linux/module.h>
23#include <linux/ioport.h>
24#include <linux/netdevice.h>
25#include <linux/etherdevice.h>
26#include <linux/init.h>
27#include <linux/interrupt.h>
28#include <linux/skbuff.h>
29#include <linux/spinlock.h>
30#include <linux/crc32.h>
31#include <linux/mii.h>
32#include <linux/ethtool.h>
33#include <linux/dm9000.h>
34#include <linux/delay.h>
35#include <linux/platform_device.h>
36#include <linux/irq.h>
37#include <linux/slab.h>
38
39#include <asm/delay.h>
40#include <asm/irq.h>
41#include <asm/io.h>
42
43#include "dm9000.h"
44
45/* Board/System/Debug information/definition ---------------- */
46
47#define DM9000_PHY		0x40	/* PHY address 0x01 */
48
49#define CARDNAME	"dm9000"
50#define DRV_VERSION	"1.31"
51
52/*
53 * Transmit timeout, default 5 seconds.
54 */
55static int watchdog = 5000;
56module_param(watchdog, int, 0400);
57MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
58
59/*
60 * Debug messages level
61 */
62static int debug;
63module_param(debug, int, 0644);
64MODULE_PARM_DESC(debug, "dm9000 debug level (0-4)");
65
66/* DM9000 register address locking.
67 *
68 * The DM9000 uses an address register to control where data written
69 * to the data register goes. This means that the address register
70 * must be preserved over interrupts or similar calls.
71 *
72 * During interrupt and other critical calls, a spinlock is used to
73 * protect the system, but the calls themselves save the address
74 * in the address register in case they are interrupting another
75 * access to the device.
76 *
77 * For general accesses a lock is provided so that calls which are
78 * allowed to sleep are serialised so that the address register does
79 * not need to be saved. This lock also serves to serialise access
80 * to the EEPROM and PHY access registers which are shared between
81 * these two devices.
82 */
83
84/* The driver supports the original DM9000E, and now the two newer
85 * devices, DM9000A and DM9000B.
86 */
87
88enum dm9000_type {
89	TYPE_DM9000E,	/* original DM9000 */
90	TYPE_DM9000A,
91	TYPE_DM9000B
92};
93
94/* Structure/enum declaration ------------------------------- */
95typedef struct board_info {
96
97	void __iomem	*io_addr;	/* Register I/O base address */
98	void __iomem	*io_data;	/* Data I/O address */
99	u16		 irq;		/* IRQ */
100
101	u16		tx_pkt_cnt;
102	u16		queue_pkt_len;
103	u16		queue_start_addr;
104	u16		queue_ip_summed;
105	u16		dbug_cnt;
106	u8		io_mode;		/* 0:word, 2:byte */
107	u8		phy_addr;
108	u8		imr_all;
109
110	unsigned int	flags;
111	unsigned int	in_suspend :1;
112	unsigned int	wake_supported :1;
113
114	enum dm9000_type type;
115
116	void (*inblk)(void __iomem *port, void *data, int length);
117	void (*outblk)(void __iomem *port, void *data, int length);
118	void (*dumpblk)(void __iomem *port, int length);
119
120	struct device	*dev;	     /* parent device */
121
122	struct resource	*addr_res;   /* resources found */
123	struct resource *data_res;
124	struct resource	*addr_req;   /* resources requested */
125	struct resource *data_req;
126	struct resource *irq_res;
127
128	int		 irq_wake;
129
130	struct mutex	 addr_lock;	/* phy and eeprom access lock */
131
132	struct delayed_work phy_poll;
133	struct net_device  *ndev;
134
135	spinlock_t	lock;
136
137	struct mii_if_info mii;
138	u32		msg_enable;
139	u32		wake_state;
140
141	int		ip_summed;
142} board_info_t;
143
144/* debug code */
145
146#define dm9000_dbg(db, lev, msg...) do {		\
147	if ((lev) < debug) {				\
148		dev_dbg(db->dev, msg);			\
149	}						\
150} while (0)
151
152static inline board_info_t *to_dm9000_board(struct net_device *dev)
153{
154	return netdev_priv(dev);
155}
156
157/* DM9000 network board routine ---------------------------- */
158
159static void
160dm9000_reset(board_info_t * db)
161{
162	dev_dbg(db->dev, "resetting device\n");
163
164	/* RESET device */
165	writeb(DM9000_NCR, db->io_addr);
166	udelay(200);
167	writeb(NCR_RST, db->io_data);
168	udelay(200);
169}
170
171/*
172 *   Read a byte from I/O port
173 */
174static u8
175ior(board_info_t * db, int reg)
176{
177	writeb(reg, db->io_addr);
178	return readb(db->io_data);
179}
180
181/*
182 *   Write a byte to I/O port
183 */
184
185static void
186iow(board_info_t * db, int reg, int value)
187{
188	writeb(reg, db->io_addr);
189	writeb(value, db->io_data);
190}
191
192/* routines for sending block to chip */
193
194static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
195{
196	writesb(reg, data, count);
197}
198
199static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
200{
201	writesw(reg, data, (count+1) >> 1);
202}
203
204static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
205{
206	writesl(reg, data, (count+3) >> 2);
207}
208
209/* input block from chip to memory */
210
211static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
212{
213	readsb(reg, data, count);
214}
215
216
217static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
218{
219	readsw(reg, data, (count+1) >> 1);
220}
221
222static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
223{
224	readsl(reg, data, (count+3) >> 2);
225}
226
227/* dump block from chip to null */
228
229static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
230{
231	int i;
232	int tmp;
233
234	for (i = 0; i < count; i++)
235		tmp = readb(reg);
236}
237
238static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
239{
240	int i;
241	int tmp;
242
243	count = (count + 1) >> 1;
244
245	for (i = 0; i < count; i++)
246		tmp = readw(reg);
247}
248
249static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
250{
251	int i;
252	int tmp;
253
254	count = (count + 3) >> 2;
255
256	for (i = 0; i < count; i++)
257		tmp = readl(reg);
258}
259
260/* dm9000_set_io
261 *
262 * select the specified set of io routines to use with the
263 * device
264 */
265
266static void dm9000_set_io(struct board_info *db, int byte_width)
267{
268	/* use the size of the data resource to work out what IO
269	 * routines we want to use
270	 */
271
272	switch (byte_width) {
273	case 1:
274		db->dumpblk = dm9000_dumpblk_8bit;
275		db->outblk  = dm9000_outblk_8bit;
276		db->inblk   = dm9000_inblk_8bit;
277		break;
278
279
280	case 3:
281		dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
282	case 2:
283		db->dumpblk = dm9000_dumpblk_16bit;
284		db->outblk  = dm9000_outblk_16bit;
285		db->inblk   = dm9000_inblk_16bit;
286		break;
287
288	case 4:
289	default:
290		db->dumpblk = dm9000_dumpblk_32bit;
291		db->outblk  = dm9000_outblk_32bit;
292		db->inblk   = dm9000_inblk_32bit;
293		break;
294	}
295}
296
297static void dm9000_schedule_poll(board_info_t *db)
298{
299	if (db->type == TYPE_DM9000E)
300		schedule_delayed_work(&db->phy_poll, HZ * 2);
301}
302
303static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
304{
305	board_info_t *dm = to_dm9000_board(dev);
306
307	if (!netif_running(dev))
308		return -EINVAL;
309
310	return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
311}
312
313static unsigned int
314dm9000_read_locked(board_info_t *db, int reg)
315{
316	unsigned long flags;
317	unsigned int ret;
318
319	spin_lock_irqsave(&db->lock, flags);
320	ret = ior(db, reg);
321	spin_unlock_irqrestore(&db->lock, flags);
322
323	return ret;
324}
325
326static int dm9000_wait_eeprom(board_info_t *db)
327{
328	unsigned int status;
329	int timeout = 8;	/* wait max 8msec */
330
331	/* The DM9000 data sheets say we should be able to
332	 * poll the ERRE bit in EPCR to wait for the EEPROM
333	 * operation. From testing several chips, this bit
334	 * does not seem to work.
335	 *
336	 * We attempt to use the bit, but fall back to the
337	 * timeout (which is why we do not return an error
338	 * on expiry) to say that the EEPROM operation has
339	 * completed.
340	 */
341
342	while (1) {
343		status = dm9000_read_locked(db, DM9000_EPCR);
344
345		if ((status & EPCR_ERRE) == 0)
346			break;
347
348		msleep(1);
349
350		if (timeout-- < 0) {
351			dev_dbg(db->dev, "timeout waiting EEPROM\n");
352			break;
353		}
354	}
355
356	return 0;
357}
358
359/*
360 *  Read a word data from EEPROM
361 */
362static void
363dm9000_read_eeprom(board_info_t *db, int offset, u8 *to)
364{
365	unsigned long flags;
366
367	if (db->flags & DM9000_PLATF_NO_EEPROM) {
368		to[0] = 0xff;
369		to[1] = 0xff;
370		return;
371	}
372
373	mutex_lock(&db->addr_lock);
374
375	spin_lock_irqsave(&db->lock, flags);
376
377	iow(db, DM9000_EPAR, offset);
378	iow(db, DM9000_EPCR, EPCR_ERPRR);
379
380	spin_unlock_irqrestore(&db->lock, flags);
381
382	dm9000_wait_eeprom(db);
383
384	/* delay for at-least 150uS */
385	msleep(1);
386
387	spin_lock_irqsave(&db->lock, flags);
388
389	iow(db, DM9000_EPCR, 0x0);
390
391	to[0] = ior(db, DM9000_EPDRL);
392	to[1] = ior(db, DM9000_EPDRH);
393
394	spin_unlock_irqrestore(&db->lock, flags);
395
396	mutex_unlock(&db->addr_lock);
397}
398
399/*
400 * Write a word data to SROM
401 */
402static void
403dm9000_write_eeprom(board_info_t *db, int offset, u8 *data)
404{
405	unsigned long flags;
406
407	if (db->flags & DM9000_PLATF_NO_EEPROM)
408		return;
409
410	mutex_lock(&db->addr_lock);
411
412	spin_lock_irqsave(&db->lock, flags);
413	iow(db, DM9000_EPAR, offset);
414	iow(db, DM9000_EPDRH, data[1]);
415	iow(db, DM9000_EPDRL, data[0]);
416	iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
417	spin_unlock_irqrestore(&db->lock, flags);
418
419	dm9000_wait_eeprom(db);
420
421	mdelay(1);	/* wait at least 150uS to clear */
422
423	spin_lock_irqsave(&db->lock, flags);
424	iow(db, DM9000_EPCR, 0);
425	spin_unlock_irqrestore(&db->lock, flags);
426
427	mutex_unlock(&db->addr_lock);
428}
429
430/* ethtool ops */
431
432static void dm9000_get_drvinfo(struct net_device *dev,
433			       struct ethtool_drvinfo *info)
434{
435	board_info_t *dm = to_dm9000_board(dev);
436
437	strcpy(info->driver, CARDNAME);
438	strcpy(info->version, DRV_VERSION);
439	strcpy(info->bus_info, to_platform_device(dm->dev)->name);
440}
441
442static u32 dm9000_get_msglevel(struct net_device *dev)
443{
444	board_info_t *dm = to_dm9000_board(dev);
445
446	return dm->msg_enable;
447}
448
449static void dm9000_set_msglevel(struct net_device *dev, u32 value)
450{
451	board_info_t *dm = to_dm9000_board(dev);
452
453	dm->msg_enable = value;
454}
455
456static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
457{
458	board_info_t *dm = to_dm9000_board(dev);
459
460	mii_ethtool_gset(&dm->mii, cmd);
461	return 0;
462}
463
464static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
465{
466	board_info_t *dm = to_dm9000_board(dev);
467
468	return mii_ethtool_sset(&dm->mii, cmd);
469}
470
471static int dm9000_nway_reset(struct net_device *dev)
472{
473	board_info_t *dm = to_dm9000_board(dev);
474	return mii_nway_restart(&dm->mii);
475}
476
477static int dm9000_set_features(struct net_device *dev,
478	netdev_features_t features)
479{
480	board_info_t *dm = to_dm9000_board(dev);
481	netdev_features_t changed = dev->features ^ features;
482	unsigned long flags;
483
484	if (!(changed & NETIF_F_RXCSUM))
485		return 0;
486
487	spin_lock_irqsave(&dm->lock, flags);
488	iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
489	spin_unlock_irqrestore(&dm->lock, flags);
490
491	return 0;
492}
493
494static u32 dm9000_get_link(struct net_device *dev)
495{
496	board_info_t *dm = to_dm9000_board(dev);
497	u32 ret;
498
499	if (dm->flags & DM9000_PLATF_EXT_PHY)
500		ret = mii_link_ok(&dm->mii);
501	else
502		ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
503
504	return ret;
505}
506
507#define DM_EEPROM_MAGIC		(0x444D394B)
508
509static int dm9000_get_eeprom_len(struct net_device *dev)
510{
511	return 128;
512}
513
514static int dm9000_get_eeprom(struct net_device *dev,
515			     struct ethtool_eeprom *ee, u8 *data)
516{
517	board_info_t *dm = to_dm9000_board(dev);
518	int offset = ee->offset;
519	int len = ee->len;
520	int i;
521
522	/* EEPROM access is aligned to two bytes */
523
524	if ((len & 1) != 0 || (offset & 1) != 0)
525		return -EINVAL;
526
527	if (dm->flags & DM9000_PLATF_NO_EEPROM)
528		return -ENOENT;
529
530	ee->magic = DM_EEPROM_MAGIC;
531
532	for (i = 0; i < len; i += 2)
533		dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
534
535	return 0;
536}
537
538static int dm9000_set_eeprom(struct net_device *dev,
539			     struct ethtool_eeprom *ee, u8 *data)
540{
541	board_info_t *dm = to_dm9000_board(dev);
542	int offset = ee->offset;
543	int len = ee->len;
544	int done;
545
546	/* EEPROM access is aligned to two bytes */
547
548	if (dm->flags & DM9000_PLATF_NO_EEPROM)
549		return -ENOENT;
550
551	if (ee->magic != DM_EEPROM_MAGIC)
552		return -EINVAL;
553
554	while (len > 0) {
555		if (len & 1 || offset & 1) {
556			int which = offset & 1;
557			u8 tmp[2];
558
559			dm9000_read_eeprom(dm, offset / 2, tmp);
560			tmp[which] = *data;
561			dm9000_write_eeprom(dm, offset / 2, tmp);
562
563			done = 1;
564		} else {
565			dm9000_write_eeprom(dm, offset / 2, data);
566			done = 2;
567		}
568
569		data += done;
570		offset += done;
571		len -= done;
572	}
573
574	return 0;
575}
576
577static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
578{
579	board_info_t *dm = to_dm9000_board(dev);
580
581	memset(w, 0, sizeof(struct ethtool_wolinfo));
582
583	/* note, we could probably support wake-phy too */
584	w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
585	w->wolopts = dm->wake_state;
586}
587
588static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
589{
590	board_info_t *dm = to_dm9000_board(dev);
591	unsigned long flags;
592	u32 opts = w->wolopts;
593	u32 wcr = 0;
594
595	if (!dm->wake_supported)
596		return -EOPNOTSUPP;
597
598	if (opts & ~WAKE_MAGIC)
599		return -EINVAL;
600
601	if (opts & WAKE_MAGIC)
602		wcr |= WCR_MAGICEN;
603
604	mutex_lock(&dm->addr_lock);
605
606	spin_lock_irqsave(&dm->lock, flags);
607	iow(dm, DM9000_WCR, wcr);
608	spin_unlock_irqrestore(&dm->lock, flags);
609
610	mutex_unlock(&dm->addr_lock);
611
612	if (dm->wake_state != opts) {
613		/* change in wol state, update IRQ state */
614
615		if (!dm->wake_state)
616			irq_set_irq_wake(dm->irq_wake, 1);
617		else if (dm->wake_state && !opts)
618			irq_set_irq_wake(dm->irq_wake, 0);
619	}
620
621	dm->wake_state = opts;
622	return 0;
623}
624
625static const struct ethtool_ops dm9000_ethtool_ops = {
626	.get_drvinfo		= dm9000_get_drvinfo,
627	.get_settings		= dm9000_get_settings,
628	.set_settings		= dm9000_set_settings,
629	.get_msglevel		= dm9000_get_msglevel,
630	.set_msglevel		= dm9000_set_msglevel,
631	.nway_reset		= dm9000_nway_reset,
632	.get_link		= dm9000_get_link,
633	.get_wol		= dm9000_get_wol,
634	.set_wol		= dm9000_set_wol,
635 	.get_eeprom_len		= dm9000_get_eeprom_len,
636 	.get_eeprom		= dm9000_get_eeprom,
637 	.set_eeprom		= dm9000_set_eeprom,
638};
639
640static void dm9000_show_carrier(board_info_t *db,
641				unsigned carrier, unsigned nsr)
642{
643	struct net_device *ndev = db->ndev;
644	unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
645
646	if (carrier)
647		dev_info(db->dev, "%s: link up, %dMbps, %s-duplex, no LPA\n",
648			 ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
649			 (ncr & NCR_FDX) ? "full" : "half");
650	else
651		dev_info(db->dev, "%s: link down\n", ndev->name);
652}
653
654static void
655dm9000_poll_work(struct work_struct *w)
656{
657	struct delayed_work *dw = to_delayed_work(w);
658	board_info_t *db = container_of(dw, board_info_t, phy_poll);
659	struct net_device *ndev = db->ndev;
660
661	if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
662	    !(db->flags & DM9000_PLATF_EXT_PHY)) {
663		unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
664		unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
665		unsigned new_carrier;
666
667		new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
668
669		if (old_carrier != new_carrier) {
670			if (netif_msg_link(db))
671				dm9000_show_carrier(db, new_carrier, nsr);
672
673			if (!new_carrier)
674				netif_carrier_off(ndev);
675			else
676				netif_carrier_on(ndev);
677		}
678	} else
679		mii_check_media(&db->mii, netif_msg_link(db), 0);
680
681	if (netif_running(ndev))
682		dm9000_schedule_poll(db);
683}
684
685/* dm9000_release_board
686 *
687 * release a board, and any mapped resources
688 */
689
690static void
691dm9000_release_board(struct platform_device *pdev, struct board_info *db)
692{
693	/* unmap our resources */
694
695	iounmap(db->io_addr);
696	iounmap(db->io_data);
697
698	/* release the resources */
699
700	release_resource(db->data_req);
701	kfree(db->data_req);
702
703	release_resource(db->addr_req);
704	kfree(db->addr_req);
705}
706
707static unsigned char dm9000_type_to_char(enum dm9000_type type)
708{
709	switch (type) {
710	case TYPE_DM9000E: return 'e';
711	case TYPE_DM9000A: return 'a';
712	case TYPE_DM9000B: return 'b';
713	}
714
715	return '?';
716}
717
718/*
719 *  Set DM9000 multicast address
720 */
721static void
722dm9000_hash_table_unlocked(struct net_device *dev)
723{
724	board_info_t *db = netdev_priv(dev);
725	struct netdev_hw_addr *ha;
726	int i, oft;
727	u32 hash_val;
728	u16 hash_table[4];
729	u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
730
731	dm9000_dbg(db, 1, "entering %s\n", __func__);
732
733	for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
734		iow(db, oft, dev->dev_addr[i]);
735
736	/* Clear Hash Table */
737	for (i = 0; i < 4; i++)
738		hash_table[i] = 0x0;
739
740	/* broadcast address */
741	hash_table[3] = 0x8000;
742
743	if (dev->flags & IFF_PROMISC)
744		rcr |= RCR_PRMSC;
745
746	if (dev->flags & IFF_ALLMULTI)
747		rcr |= RCR_ALL;
748
749	/* the multicast address in Hash Table : 64 bits */
750	netdev_for_each_mc_addr(ha, dev) {
751		hash_val = ether_crc_le(6, ha->addr) & 0x3f;
752		hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
753	}
754
755	/* Write the hash table to MAC MD table */
756	for (i = 0, oft = DM9000_MAR; i < 4; i++) {
757		iow(db, oft++, hash_table[i]);
758		iow(db, oft++, hash_table[i] >> 8);
759	}
760
761	iow(db, DM9000_RCR, rcr);
762}
763
764static void
765dm9000_hash_table(struct net_device *dev)
766{
767	board_info_t *db = netdev_priv(dev);
768	unsigned long flags;
769
770	spin_lock_irqsave(&db->lock, flags);
771	dm9000_hash_table_unlocked(dev);
772	spin_unlock_irqrestore(&db->lock, flags);
773}
774
775/*
776 * Initialize dm9000 board
777 */
778static void
779dm9000_init_dm9000(struct net_device *dev)
780{
781	board_info_t *db = netdev_priv(dev);
782	unsigned int imr;
783	unsigned int ncr;
784
785	dm9000_dbg(db, 1, "entering %s\n", __func__);
786
787	/* I/O mode */
788	db->io_mode = ior(db, DM9000_ISR) >> 6;	/* ISR bit7:6 keeps I/O mode */
789
790	/* Checksum mode */
791	if (dev->hw_features & NETIF_F_RXCSUM)
792		iow(db, DM9000_RCSR,
793			(dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
794
795	iow(db, DM9000_GPCR, GPCR_GEP_CNTL);	/* Let GPIO0 output */
796
797	ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
798
799	/* if wol is needed, then always set NCR_WAKEEN otherwise we end
800	 * up dumping the wake events if we disable this. There is already
801	 * a wake-mask in DM9000_WCR */
802	if (db->wake_supported)
803		ncr |= NCR_WAKEEN;
804
805	iow(db, DM9000_NCR, ncr);
806
807	/* Program operating register */
808	iow(db, DM9000_TCR, 0);	        /* TX Polling clear */
809	iow(db, DM9000_BPTR, 0x3f);	/* Less 3Kb, 200us */
810	iow(db, DM9000_FCR, 0xff);	/* Flow Control */
811	iow(db, DM9000_SMCR, 0);        /* Special Mode */
812	/* clear TX status */
813	iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
814	iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
815
816	/* Set address filter table */
817	dm9000_hash_table_unlocked(dev);
818
819	imr = IMR_PAR | IMR_PTM | IMR_PRM;
820	if (db->type != TYPE_DM9000E)
821		imr |= IMR_LNKCHNG;
822
823	db->imr_all = imr;
824
825	/* Enable TX/RX interrupt mask */
826	iow(db, DM9000_IMR, imr);
827
828	/* Init Driver variable */
829	db->tx_pkt_cnt = 0;
830	db->queue_pkt_len = 0;
831	dev->trans_start = jiffies;
832}
833
834/* Our watchdog timed out. Called by the networking layer */
835static void dm9000_timeout(struct net_device *dev)
836{
837	board_info_t *db = netdev_priv(dev);
838	u8 reg_save;
839	unsigned long flags;
840
841	/* Save previous register address */
842	spin_lock_irqsave(&db->lock, flags);
843	reg_save = readb(db->io_addr);
844
845	netif_stop_queue(dev);
846	dm9000_reset(db);
847	dm9000_init_dm9000(dev);
848	/* We can accept TX packets again */
849	dev->trans_start = jiffies; /* prevent tx timeout */
850	netif_wake_queue(dev);
851
852	/* Restore previous register address */
853	writeb(reg_save, db->io_addr);
854	spin_unlock_irqrestore(&db->lock, flags);
855}
856
857static void dm9000_send_packet(struct net_device *dev,
858			       int ip_summed,
859			       u16 pkt_len)
860{
861	board_info_t *dm = to_dm9000_board(dev);
862
863	/* The DM9000 is not smart enough to leave fragmented packets alone. */
864	if (dm->ip_summed != ip_summed) {
865		if (ip_summed == CHECKSUM_NONE)
866			iow(dm, DM9000_TCCR, 0);
867		else
868			iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
869		dm->ip_summed = ip_summed;
870	}
871
872	/* Set TX length to DM9000 */
873	iow(dm, DM9000_TXPLL, pkt_len);
874	iow(dm, DM9000_TXPLH, pkt_len >> 8);
875
876	/* Issue TX polling command */
877	iow(dm, DM9000_TCR, TCR_TXREQ);	/* Cleared after TX complete */
878}
879
880/*
881 *  Hardware start transmission.
882 *  Send a packet to media from the upper layer.
883 */
884static int
885dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
886{
887	unsigned long flags;
888	board_info_t *db = netdev_priv(dev);
889
890	dm9000_dbg(db, 3, "%s:\n", __func__);
891
892	if (db->tx_pkt_cnt > 1)
893		return NETDEV_TX_BUSY;
894
895	spin_lock_irqsave(&db->lock, flags);
896
897	/* Move data to DM9000 TX RAM */
898	writeb(DM9000_MWCMD, db->io_addr);
899
900	(db->outblk)(db->io_data, skb->data, skb->len);
901	dev->stats.tx_bytes += skb->len;
902
903	db->tx_pkt_cnt++;
904	/* TX control: First packet immediately send, second packet queue */
905	if (db->tx_pkt_cnt == 1) {
906		dm9000_send_packet(dev, skb->ip_summed, skb->len);
907	} else {
908		/* Second packet */
909		db->queue_pkt_len = skb->len;
910		db->queue_ip_summed = skb->ip_summed;
911		netif_stop_queue(dev);
912	}
913
914	spin_unlock_irqrestore(&db->lock, flags);
915
916	/* free this SKB */
917	dev_kfree_skb(skb);
918
919	return NETDEV_TX_OK;
920}
921
922/*
923 * DM9000 interrupt handler
924 * receive the packet to upper layer, free the transmitted packet
925 */
926
927static void dm9000_tx_done(struct net_device *dev, board_info_t *db)
928{
929	int tx_status = ior(db, DM9000_NSR);	/* Got TX status */
930
931	if (tx_status & (NSR_TX2END | NSR_TX1END)) {
932		/* One packet sent complete */
933		db->tx_pkt_cnt--;
934		dev->stats.tx_packets++;
935
936		if (netif_msg_tx_done(db))
937			dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
938
939		/* Queue packet check & send */
940		if (db->tx_pkt_cnt > 0)
941			dm9000_send_packet(dev, db->queue_ip_summed,
942					   db->queue_pkt_len);
943		netif_wake_queue(dev);
944	}
945}
946
947struct dm9000_rxhdr {
948	u8	RxPktReady;
949	u8	RxStatus;
950	__le16	RxLen;
951} __packed;
952
953/*
954 *  Received a packet and pass to upper layer
955 */
956static void
957dm9000_rx(struct net_device *dev)
958{
959	board_info_t *db = netdev_priv(dev);
960	struct dm9000_rxhdr rxhdr;
961	struct sk_buff *skb;
962	u8 rxbyte, *rdptr;
963	bool GoodPacket;
964	int RxLen;
965
966	/* Check packet ready or not */
967	do {
968		ior(db, DM9000_MRCMDX);	/* Dummy read */
969
970		/* Get most updated data */
971		rxbyte = readb(db->io_data);
972
973		/* Status check: this byte must be 0 or 1 */
974		if (rxbyte & DM9000_PKT_ERR) {
975			dev_warn(db->dev, "status check fail: %d\n", rxbyte);
976			iow(db, DM9000_RCR, 0x00);	/* Stop Device */
977			iow(db, DM9000_ISR, IMR_PAR);	/* Stop INT request */
978			return;
979		}
980
981		if (!(rxbyte & DM9000_PKT_RDY))
982			return;
983
984		/* A packet ready now  & Get status/length */
985		GoodPacket = true;
986		writeb(DM9000_MRCMD, db->io_addr);
987
988		(db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
989
990		RxLen = le16_to_cpu(rxhdr.RxLen);
991
992		if (netif_msg_rx_status(db))
993			dev_dbg(db->dev, "RX: status %02x, length %04x\n",
994				rxhdr.RxStatus, RxLen);
995
996		/* Packet Status check */
997		if (RxLen < 0x40) {
998			GoodPacket = false;
999			if (netif_msg_rx_err(db))
1000				dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
1001		}
1002
1003		if (RxLen > DM9000_PKT_MAX) {
1004			dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
1005		}
1006
1007		/* rxhdr.RxStatus is identical to RSR register. */
1008		if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
1009				      RSR_PLE | RSR_RWTO |
1010				      RSR_LCS | RSR_RF)) {
1011			GoodPacket = false;
1012			if (rxhdr.RxStatus & RSR_FOE) {
1013				if (netif_msg_rx_err(db))
1014					dev_dbg(db->dev, "fifo error\n");
1015				dev->stats.rx_fifo_errors++;
1016			}
1017			if (rxhdr.RxStatus & RSR_CE) {
1018				if (netif_msg_rx_err(db))
1019					dev_dbg(db->dev, "crc error\n");
1020				dev->stats.rx_crc_errors++;
1021			}
1022			if (rxhdr.RxStatus & RSR_RF) {
1023				if (netif_msg_rx_err(db))
1024					dev_dbg(db->dev, "length error\n");
1025				dev->stats.rx_length_errors++;
1026			}
1027		}
1028
1029		/* Move data from DM9000 */
1030		if (GoodPacket &&
1031		    ((skb = dev_alloc_skb(RxLen + 4)) != NULL)) {
1032			skb_reserve(skb, 2);
1033			rdptr = (u8 *) skb_put(skb, RxLen - 4);
1034
1035			/* Read received packet from RX SRAM */
1036
1037			(db->inblk)(db->io_data, rdptr, RxLen);
1038			dev->stats.rx_bytes += RxLen;
1039
1040			/* Pass to upper layer */
1041			skb->protocol = eth_type_trans(skb, dev);
1042			if (dev->features & NETIF_F_RXCSUM) {
1043				if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
1044					skb->ip_summed = CHECKSUM_UNNECESSARY;
1045				else
1046					skb_checksum_none_assert(skb);
1047			}
1048			netif_rx(skb);
1049			dev->stats.rx_packets++;
1050
1051		} else {
1052			/* need to dump the packet's data */
1053
1054			(db->dumpblk)(db->io_data, RxLen);
1055		}
1056	} while (rxbyte & DM9000_PKT_RDY);
1057}
1058
1059static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
1060{
1061	struct net_device *dev = dev_id;
1062	board_info_t *db = netdev_priv(dev);
1063	int int_status;
1064	unsigned long flags;
1065	u8 reg_save;
1066
1067	dm9000_dbg(db, 3, "entering %s\n", __func__);
1068
1069	/* A real interrupt coming */
1070
1071	/* holders of db->lock must always block IRQs */
1072	spin_lock_irqsave(&db->lock, flags);
1073
1074	/* Save previous register address */
1075	reg_save = readb(db->io_addr);
1076
1077	/* Disable all interrupts */
1078	iow(db, DM9000_IMR, IMR_PAR);
1079
1080	/* Got DM9000 interrupt status */
1081	int_status = ior(db, DM9000_ISR);	/* Got ISR */
1082	iow(db, DM9000_ISR, int_status);	/* Clear ISR status */
1083
1084	if (netif_msg_intr(db))
1085		dev_dbg(db->dev, "interrupt status %02x\n", int_status);
1086
1087	/* Received the coming packet */
1088	if (int_status & ISR_PRS)
1089		dm9000_rx(dev);
1090
1091	/* Trnasmit Interrupt check */
1092	if (int_status & ISR_PTS)
1093		dm9000_tx_done(dev, db);
1094
1095	if (db->type != TYPE_DM9000E) {
1096		if (int_status & ISR_LNKCHNG) {
1097			/* fire a link-change request */
1098			schedule_delayed_work(&db->phy_poll, 1);
1099		}
1100	}
1101
1102	/* Re-enable interrupt mask */
1103	iow(db, DM9000_IMR, db->imr_all);
1104
1105	/* Restore previous register address */
1106	writeb(reg_save, db->io_addr);
1107
1108	spin_unlock_irqrestore(&db->lock, flags);
1109
1110	return IRQ_HANDLED;
1111}
1112
1113static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
1114{
1115	struct net_device *dev = dev_id;
1116	board_info_t *db = netdev_priv(dev);
1117	unsigned long flags;
1118	unsigned nsr, wcr;
1119
1120	spin_lock_irqsave(&db->lock, flags);
1121
1122	nsr = ior(db, DM9000_NSR);
1123	wcr = ior(db, DM9000_WCR);
1124
1125	dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
1126
1127	if (nsr & NSR_WAKEST) {
1128		/* clear, so we can avoid */
1129		iow(db, DM9000_NSR, NSR_WAKEST);
1130
1131		if (wcr & WCR_LINKST)
1132			dev_info(db->dev, "wake by link status change\n");
1133		if (wcr & WCR_SAMPLEST)
1134			dev_info(db->dev, "wake by sample packet\n");
1135		if (wcr & WCR_MAGICST )
1136			dev_info(db->dev, "wake by magic packet\n");
1137		if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
1138			dev_err(db->dev, "wake signalled with no reason? "
1139				"NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
1140
1141	}
1142
1143	spin_unlock_irqrestore(&db->lock, flags);
1144
1145	return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
1146}
1147
1148#ifdef CONFIG_NET_POLL_CONTROLLER
1149/*
1150 *Used by netconsole
1151 */
1152static void dm9000_poll_controller(struct net_device *dev)
1153{
1154	disable_irq(dev->irq);
1155	dm9000_interrupt(dev->irq, dev);
1156	enable_irq(dev->irq);
1157}
1158#endif
1159
1160/*
1161 *  Open the interface.
1162 *  The interface is opened whenever "ifconfig" actives it.
1163 */
1164static int
1165dm9000_open(struct net_device *dev)
1166{
1167	board_info_t *db = netdev_priv(dev);
1168	unsigned long irqflags = db->irq_res->flags & IRQF_TRIGGER_MASK;
1169
1170	if (netif_msg_ifup(db))
1171		dev_dbg(db->dev, "enabling %s\n", dev->name);
1172
1173	/* If there is no IRQ type specified, default to something that
1174	 * may work, and tell the user that this is a problem */
1175
1176	if (irqflags == IRQF_TRIGGER_NONE)
1177		dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
1178
1179	irqflags |= IRQF_SHARED;
1180
1181	/* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1182	iow(db, DM9000_GPR, 0);	/* REG_1F bit0 activate phyxcer */
1183	mdelay(1); /* delay needs by DM9000B */
1184
1185	/* Initialize DM9000 board */
1186	dm9000_reset(db);
1187	dm9000_init_dm9000(dev);
1188
1189	if (request_irq(dev->irq, dm9000_interrupt, irqflags, dev->name, dev))
1190		return -EAGAIN;
1191
1192	/* Init driver variable */
1193	db->dbug_cnt = 0;
1194
1195	mii_check_media(&db->mii, netif_msg_link(db), 1);
1196	netif_start_queue(dev);
1197
1198	dm9000_schedule_poll(db);
1199
1200	return 0;
1201}
1202
1203/*
1204 * Sleep, either by using msleep() or if we are suspending, then
1205 * use mdelay() to sleep.
1206 */
1207static void dm9000_msleep(board_info_t *db, unsigned int ms)
1208{
1209	if (db->in_suspend)
1210		mdelay(ms);
1211	else
1212		msleep(ms);
1213}
1214
1215/*
1216 *   Read a word from phyxcer
1217 */
1218static int
1219dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
1220{
1221	board_info_t *db = netdev_priv(dev);
1222	unsigned long flags;
1223	unsigned int reg_save;
1224	int ret;
1225
1226	mutex_lock(&db->addr_lock);
1227
1228	spin_lock_irqsave(&db->lock,flags);
1229
1230	/* Save previous register address */
1231	reg_save = readb(db->io_addr);
1232
1233	/* Fill the phyxcer register into REG_0C */
1234	iow(db, DM9000_EPAR, DM9000_PHY | reg);
1235
1236	iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);	/* Issue phyxcer read command */
1237
1238	writeb(reg_save, db->io_addr);
1239	spin_unlock_irqrestore(&db->lock,flags);
1240
1241	dm9000_msleep(db, 1);		/* Wait read complete */
1242
1243	spin_lock_irqsave(&db->lock,flags);
1244	reg_save = readb(db->io_addr);
1245
1246	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer read command */
1247
1248	/* The read data keeps on REG_0D & REG_0E */
1249	ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
1250
1251	/* restore the previous address */
1252	writeb(reg_save, db->io_addr);
1253	spin_unlock_irqrestore(&db->lock,flags);
1254
1255	mutex_unlock(&db->addr_lock);
1256
1257	dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
1258	return ret;
1259}
1260
1261/*
1262 *   Write a word to phyxcer
1263 */
1264static void
1265dm9000_phy_write(struct net_device *dev,
1266		 int phyaddr_unused, int reg, int value)
1267{
1268	board_info_t *db = netdev_priv(dev);
1269	unsigned long flags;
1270	unsigned long reg_save;
1271
1272	dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
1273	mutex_lock(&db->addr_lock);
1274
1275	spin_lock_irqsave(&db->lock,flags);
1276
1277	/* Save previous register address */
1278	reg_save = readb(db->io_addr);
1279
1280	/* Fill the phyxcer register into REG_0C */
1281	iow(db, DM9000_EPAR, DM9000_PHY | reg);
1282
1283	/* Fill the written data into REG_0D & REG_0E */
1284	iow(db, DM9000_EPDRL, value);
1285	iow(db, DM9000_EPDRH, value >> 8);
1286
1287	iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);	/* Issue phyxcer write command */
1288
1289	writeb(reg_save, db->io_addr);
1290	spin_unlock_irqrestore(&db->lock, flags);
1291
1292	dm9000_msleep(db, 1);		/* Wait write complete */
1293
1294	spin_lock_irqsave(&db->lock,flags);
1295	reg_save = readb(db->io_addr);
1296
1297	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer write command */
1298
1299	/* restore the previous address */
1300	writeb(reg_save, db->io_addr);
1301
1302	spin_unlock_irqrestore(&db->lock, flags);
1303	mutex_unlock(&db->addr_lock);
1304}
1305
1306static void
1307dm9000_shutdown(struct net_device *dev)
1308{
1309	board_info_t *db = netdev_priv(dev);
1310
1311	/* RESET device */
1312	dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);	/* PHY RESET */
1313	iow(db, DM9000_GPR, 0x01);	/* Power-Down PHY */
1314	iow(db, DM9000_IMR, IMR_PAR);	/* Disable all interrupt */
1315	iow(db, DM9000_RCR, 0x00);	/* Disable RX */
1316}
1317
1318/*
1319 * Stop the interface.
1320 * The interface is stopped when it is brought.
1321 */
1322static int
1323dm9000_stop(struct net_device *ndev)
1324{
1325	board_info_t *db = netdev_priv(ndev);
1326
1327	if (netif_msg_ifdown(db))
1328		dev_dbg(db->dev, "shutting down %s\n", ndev->name);
1329
1330	cancel_delayed_work_sync(&db->phy_poll);
1331
1332	netif_stop_queue(ndev);
1333	netif_carrier_off(ndev);
1334
1335	/* free interrupt */
1336	free_irq(ndev->irq, ndev);
1337
1338	dm9000_shutdown(ndev);
1339
1340	return 0;
1341}
1342
1343static const struct net_device_ops dm9000_netdev_ops = {
1344	.ndo_open		= dm9000_open,
1345	.ndo_stop		= dm9000_stop,
1346	.ndo_start_xmit		= dm9000_start_xmit,
1347	.ndo_tx_timeout		= dm9000_timeout,
1348	.ndo_set_rx_mode	= dm9000_hash_table,
1349	.ndo_do_ioctl		= dm9000_ioctl,
1350	.ndo_change_mtu		= eth_change_mtu,
1351	.ndo_set_features	= dm9000_set_features,
1352	.ndo_validate_addr	= eth_validate_addr,
1353	.ndo_set_mac_address	= eth_mac_addr,
1354#ifdef CONFIG_NET_POLL_CONTROLLER
1355	.ndo_poll_controller	= dm9000_poll_controller,
1356#endif
1357};
1358
1359/*
1360 * Search DM9000 board, allocate space and register it
1361 */
1362static int __devinit
1363dm9000_probe(struct platform_device *pdev)
1364{
1365	struct dm9000_plat_data *pdata = pdev->dev.platform_data;
1366	struct board_info *db;	/* Point a board information structure */
1367	struct net_device *ndev;
1368	const unsigned char *mac_src;
1369	int ret = 0;
1370	int iosize;
1371	int i;
1372	u32 id_val;
1373
1374	/* Init network device */
1375	ndev = alloc_etherdev(sizeof(struct board_info));
1376	if (!ndev) {
1377		dev_err(&pdev->dev, "could not allocate device.\n");
1378		return -ENOMEM;
1379	}
1380
1381	SET_NETDEV_DEV(ndev, &pdev->dev);
1382
1383	dev_dbg(&pdev->dev, "dm9000_probe()\n");
1384
1385	/* setup board info structure */
1386	db = netdev_priv(ndev);
1387
1388	db->dev = &pdev->dev;
1389	db->ndev = ndev;
1390
1391	spin_lock_init(&db->lock);
1392	mutex_init(&db->addr_lock);
1393
1394	INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
1395
1396	db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1397	db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1398	db->irq_res  = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1399
1400	if (db->addr_res == NULL || db->data_res == NULL ||
1401	    db->irq_res == NULL) {
1402		dev_err(db->dev, "insufficient resources\n");
1403		ret = -ENOENT;
1404		goto out;
1405	}
1406
1407	db->irq_wake = platform_get_irq(pdev, 1);
1408	if (db->irq_wake >= 0) {
1409		dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
1410
1411		ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
1412				  IRQF_SHARED, dev_name(db->dev), ndev);
1413		if (ret) {
1414			dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
1415		} else {
1416
1417			/* test to see if irq is really wakeup capable */
1418			ret = irq_set_irq_wake(db->irq_wake, 1);
1419			if (ret) {
1420				dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
1421					db->irq_wake, ret);
1422				ret = 0;
1423			} else {
1424				irq_set_irq_wake(db->irq_wake, 0);
1425				db->wake_supported = 1;
1426			}
1427		}
1428	}
1429
1430	iosize = resource_size(db->addr_res);
1431	db->addr_req = request_mem_region(db->addr_res->start, iosize,
1432					  pdev->name);
1433
1434	if (db->addr_req == NULL) {
1435		dev_err(db->dev, "cannot claim address reg area\n");
1436		ret = -EIO;
1437		goto out;
1438	}
1439
1440	db->io_addr = ioremap(db->addr_res->start, iosize);
1441
1442	if (db->io_addr == NULL) {
1443		dev_err(db->dev, "failed to ioremap address reg\n");
1444		ret = -EINVAL;
1445		goto out;
1446	}
1447
1448	iosize = resource_size(db->data_res);
1449	db->data_req = request_mem_region(db->data_res->start, iosize,
1450					  pdev->name);
1451
1452	if (db->data_req == NULL) {
1453		dev_err(db->dev, "cannot claim data reg area\n");
1454		ret = -EIO;
1455		goto out;
1456	}
1457
1458	db->io_data = ioremap(db->data_res->start, iosize);
1459
1460	if (db->io_data == NULL) {
1461		dev_err(db->dev, "failed to ioremap data reg\n");
1462		ret = -EINVAL;
1463		goto out;
1464	}
1465
1466	/* fill in parameters for net-dev structure */
1467	ndev->base_addr = (unsigned long)db->io_addr;
1468	ndev->irq	= db->irq_res->start;
1469
1470	/* ensure at least we have a default set of IO routines */
1471	dm9000_set_io(db, iosize);
1472
1473	/* check to see if anything is being over-ridden */
1474	if (pdata != NULL) {
1475		/* check to see if the driver wants to over-ride the
1476		 * default IO width */
1477
1478		if (pdata->flags & DM9000_PLATF_8BITONLY)
1479			dm9000_set_io(db, 1);
1480
1481		if (pdata->flags & DM9000_PLATF_16BITONLY)
1482			dm9000_set_io(db, 2);
1483
1484		if (pdata->flags & DM9000_PLATF_32BITONLY)
1485			dm9000_set_io(db, 4);
1486
1487		/* check to see if there are any IO routine
1488		 * over-rides */
1489
1490		if (pdata->inblk != NULL)
1491			db->inblk = pdata->inblk;
1492
1493		if (pdata->outblk != NULL)
1494			db->outblk = pdata->outblk;
1495
1496		if (pdata->dumpblk != NULL)
1497			db->dumpblk = pdata->dumpblk;
1498
1499		db->flags = pdata->flags;
1500	}
1501
1502#ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1503	db->flags |= DM9000_PLATF_SIMPLE_PHY;
1504#endif
1505
1506	dm9000_reset(db);
1507
1508	/* try multiple times, DM9000 sometimes gets the read wrong */
1509	for (i = 0; i < 8; i++) {
1510		id_val  = ior(db, DM9000_VIDL);
1511		id_val |= (u32)ior(db, DM9000_VIDH) << 8;
1512		id_val |= (u32)ior(db, DM9000_PIDL) << 16;
1513		id_val |= (u32)ior(db, DM9000_PIDH) << 24;
1514
1515		if (id_val == DM9000_ID)
1516			break;
1517		dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
1518	}
1519
1520	if (id_val != DM9000_ID) {
1521		dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
1522		ret = -ENODEV;
1523		goto out;
1524	}
1525
1526	/* Identify what type of DM9000 we are working on */
1527
1528	id_val = ior(db, DM9000_CHIPR);
1529	dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
1530
1531	switch (id_val) {
1532	case CHIPR_DM9000A:
1533		db->type = TYPE_DM9000A;
1534		break;
1535	case CHIPR_DM9000B:
1536		db->type = TYPE_DM9000B;
1537		break;
1538	default:
1539		dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
1540		db->type = TYPE_DM9000E;
1541	}
1542
1543	/* dm9000a/b are capable of hardware checksum offload */
1544	if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
1545		ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
1546		ndev->features |= ndev->hw_features;
1547	}
1548
1549	/* from this point we assume that we have found a DM9000 */
1550
1551	/* driver system function */
1552	ether_setup(ndev);
1553
1554	ndev->netdev_ops	= &dm9000_netdev_ops;
1555	ndev->watchdog_timeo	= msecs_to_jiffies(watchdog);
1556	ndev->ethtool_ops	= &dm9000_ethtool_ops;
1557
1558	db->msg_enable       = NETIF_MSG_LINK;
1559	db->mii.phy_id_mask  = 0x1f;
1560	db->mii.reg_num_mask = 0x1f;
1561	db->mii.force_media  = 0;
1562	db->mii.full_duplex  = 0;
1563	db->mii.dev	     = ndev;
1564	db->mii.mdio_read    = dm9000_phy_read;
1565	db->mii.mdio_write   = dm9000_phy_write;
1566
1567	mac_src = "eeprom";
1568
1569	/* try reading the node address from the attached EEPROM */
1570	for (i = 0; i < 6; i += 2)
1571		dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
1572
1573	if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
1574		mac_src = "platform data";
1575		memcpy(ndev->dev_addr, pdata->dev_addr, 6);
1576	}
1577
1578	if (!is_valid_ether_addr(ndev->dev_addr)) {
1579		/* try reading from mac */
1580
1581		mac_src = "chip";
1582		for (i = 0; i < 6; i++)
1583			ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
1584	}
1585
1586	if (!is_valid_ether_addr(ndev->dev_addr)) {
1587		dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please "
1588			 "set using ifconfig\n", ndev->name);
1589
1590		random_ether_addr(ndev->dev_addr);
1591		mac_src = "random";
1592	}
1593
1594
1595	platform_set_drvdata(pdev, ndev);
1596	ret = register_netdev(ndev);
1597
1598	if (ret == 0)
1599		printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1600		       ndev->name, dm9000_type_to_char(db->type),
1601		       db->io_addr, db->io_data, ndev->irq,
1602		       ndev->dev_addr, mac_src);
1603	return 0;
1604
1605out:
1606	dev_err(db->dev, "not found (%d).\n", ret);
1607
1608	dm9000_release_board(pdev, db);
1609	free_netdev(ndev);
1610
1611	return ret;
1612}
1613
1614static int
1615dm9000_drv_suspend(struct device *dev)
1616{
1617	struct platform_device *pdev = to_platform_device(dev);
1618	struct net_device *ndev = platform_get_drvdata(pdev);
1619	board_info_t *db;
1620
1621	if (ndev) {
1622		db = netdev_priv(ndev);
1623		db->in_suspend = 1;
1624
1625		if (!netif_running(ndev))
1626			return 0;
1627
1628		netif_device_detach(ndev);
1629
1630		/* only shutdown if not using WoL */
1631		if (!db->wake_state)
1632			dm9000_shutdown(ndev);
1633	}
1634	return 0;
1635}
1636
1637static int
1638dm9000_drv_resume(struct device *dev)
1639{
1640	struct platform_device *pdev = to_platform_device(dev);
1641	struct net_device *ndev = platform_get_drvdata(pdev);
1642	board_info_t *db = netdev_priv(ndev);
1643
1644	if (ndev) {
1645		if (netif_running(ndev)) {
1646			/* reset if we were not in wake mode to ensure if
1647			 * the device was powered off it is in a known state */
1648			if (!db->wake_state) {
1649				dm9000_reset(db);
1650				dm9000_init_dm9000(ndev);
1651			}
1652
1653			netif_device_attach(ndev);
1654		}
1655
1656		db->in_suspend = 0;
1657	}
1658	return 0;
1659}
1660
1661static const struct dev_pm_ops dm9000_drv_pm_ops = {
1662	.suspend	= dm9000_drv_suspend,
1663	.resume		= dm9000_drv_resume,
1664};
1665
1666static int __devexit
1667dm9000_drv_remove(struct platform_device *pdev)
1668{
1669	struct net_device *ndev = platform_get_drvdata(pdev);
1670
1671	platform_set_drvdata(pdev, NULL);
1672
1673	unregister_netdev(ndev);
1674	dm9000_release_board(pdev, netdev_priv(ndev));
1675	free_netdev(ndev);		/* free device structure */
1676
1677	dev_dbg(&pdev->dev, "released and freed device\n");
1678	return 0;
1679}
1680
1681static struct platform_driver dm9000_driver = {
1682	.driver	= {
1683		.name    = "dm9000",
1684		.owner	 = THIS_MODULE,
1685		.pm	 = &dm9000_drv_pm_ops,
1686	},
1687	.probe   = dm9000_probe,
1688	.remove  = __devexit_p(dm9000_drv_remove),
1689};
1690
1691static int __init
1692dm9000_init(void)
1693{
1694	printk(KERN_INFO "%s Ethernet Driver, V%s\n", CARDNAME, DRV_VERSION);
1695
1696	return platform_driver_register(&dm9000_driver);
1697}
1698
1699static void __exit
1700dm9000_cleanup(void)
1701{
1702	platform_driver_unregister(&dm9000_driver);
1703}
1704
1705module_init(dm9000_init);
1706module_exit(dm9000_cleanup);
1707
1708MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1709MODULE_DESCRIPTION("Davicom DM9000 network driver");
1710MODULE_LICENSE("GPL");
1711MODULE_ALIAS("platform:dm9000");
1712