1/*  de4x5.c: A DIGITAL DC21x4x DECchip and DE425/DE434/DE435/DE450/DE500
2             ethernet driver for Linux.
3
4    Copyright 1994, 1995 Digital Equipment Corporation.
5
6    Testing resources for this driver have been made available
7    in part by NASA Ames Research Center (mjacob@nas.nasa.gov).
8
9    The author may be reached at davies@maniac.ultranet.com.
10
11    This program is free software; you can redistribute  it and/or modify it
12    under  the terms of  the GNU General  Public License as published by the
13    Free Software Foundation;  either version 2 of the  License, or (at your
14    option) any later version.
15
16    THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR   IMPLIED
17    WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF
18    MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
19    NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT,  INDIRECT,
20    INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21    NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF
22    USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23    ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT
24    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25    THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
27    You should have received a copy of the  GNU General Public License along
28    with this program; if not, write  to the Free Software Foundation, Inc.,
29    675 Mass Ave, Cambridge, MA 02139, USA.
30
31    Originally,   this  driver  was    written  for the  Digital   Equipment
32    Corporation series of EtherWORKS ethernet cards:
33
34        DE425 TP/COAX EISA
35	DE434 TP PCI
36	DE435 TP/COAX/AUI PCI
37	DE450 TP/COAX/AUI PCI
38	DE500 10/100 PCI Fasternet
39
40    but it  will  now attempt  to  support all  cards which   conform to the
41    Digital Semiconductor   SROM   Specification.    The  driver   currently
42    recognises the following chips:
43
44        DC21040  (no SROM)
45	DC21041[A]
46	DC21140[A]
47	DC21142
48	DC21143
49
50    So far the driver is known to work with the following cards:
51
52        KINGSTON
53	Linksys
54	ZNYX342
55	SMC8432
56	SMC9332 (w/new SROM)
57	ZNYX31[45]
58	ZNYX346 10/100 4 port (can act as a 10/100 bridge!)
59
60    The driver has been tested on a relatively busy network using the DE425,
61    DE434, DE435 and DE500 cards and benchmarked with 'ttcp': it transferred
62    16M of data to a DECstation 5000/200 as follows:
63
64                TCP           UDP
65             TX     RX     TX     RX
66    DE425   1030k  997k   1170k  1128k
67    DE434   1063k  995k   1170k  1125k
68    DE435   1063k  995k   1170k  1125k
69    DE500   1063k  998k   1170k  1125k  in 10Mb/s mode
70
71    All  values are typical (in   kBytes/sec) from a  sample  of 4 for  each
72    measurement. Their error is +/-20k on a quiet (private) network and also
73    depend on what load the CPU has.
74
75    =========================================================================
76    This driver  has been written substantially  from  scratch, although its
77    inheritance of style and stack interface from 'ewrk3.c' and in turn from
78    Donald Becker's 'lance.c' should be obvious. With the module autoload of
79    every  usable DECchip board,  I  pinched Donald's 'next_module' field to
80    link my modules together.
81
82    Up to 15 EISA cards can be supported under this driver, limited primarily
83    by the available IRQ lines.  I have  checked different configurations of
84    multiple depca, EtherWORKS 3 cards and de4x5 cards and  have not found a
85    problem yet (provided you have at least depca.c v0.38) ...
86
87    PCI support has been added  to allow the driver  to work with the DE434,
88    DE435, DE450 and DE500 cards. The I/O accesses are a bit of a kludge due
89    to the differences in the EISA and PCI CSR address offsets from the base
90    address.
91
92    The ability to load this  driver as a loadable  module has been included
93    and used extensively  during the driver development  (to save those long
94    reboot sequences).  Loadable module support  under PCI and EISA has been
95    achieved by letting the driver autoprobe as if it were compiled into the
96    kernel. Do make sure  you're not sharing  interrupts with anything  that
97    cannot accommodate  interrupt  sharing!
98
99    To utilise this ability, you have to do 8 things:
100
101    0) have a copy of the loadable modules code installed on your system.
102    1) copy de4x5.c from the  /linux/drivers/net directory to your favourite
103    temporary directory.
104    2) for fixed  autoprobes (not  recommended),  edit the source code  near
105    line 5594 to reflect the I/O address  you're using, or assign these when
106    loading by:
107
108                   insmod de4x5 io=0xghh           where g = bus number
109		                                        hh = device number
110
111       NB: autoprobing for modules is now supported by default. You may just
112           use:
113
114                   insmod de4x5
115
116           to load all available boards. For a specific board, still use
117	   the 'io=?' above.
118    3) compile  de4x5.c, but include -DMODULE in  the command line to ensure
119    that the correct bits are compiled (see end of source code).
120    4) if you are wanting to add a new  card, goto 5. Otherwise, recompile a
121    kernel with the de4x5 configuration turned off and reboot.
122    5) insmod de4x5 [io=0xghh]
123    6) run the net startup bits for your new eth?? interface(s) manually
124    (usually /etc/rc.inet[12] at boot time).
125    7) enjoy!
126
127    To unload a module, turn off the associated interface(s)
128    'ifconfig eth?? down' then 'rmmod de4x5'.
129
130    Automedia detection is included so that in  principal you can disconnect
131    from, e.g.  TP, reconnect  to BNC  and  things will still work  (after a
132    pause whilst the   driver figures out   where its media went).  My tests
133    using ping showed that it appears to work....
134
135    By  default,  the driver will  now   autodetect any  DECchip based card.
136    Should you have a need to restrict the driver to DIGITAL only cards, you
137    can compile with a  DEC_ONLY define, or if  loading as a module, use the
138    'dec_only=1'  parameter.
139
140    I've changed the timing routines to  use the kernel timer and scheduling
141    functions  so that the  hangs  and other assorted problems that occurred
142    while autosensing the  media  should be gone.  A  bonus  for the DC21040
143    auto  media sense algorithm is  that it can now  use one that is more in
144    line with the  rest (the DC21040  chip doesn't  have a hardware  timer).
145    The downside is the 1 'jiffies' (10ms) resolution.
146
147    IEEE 802.3u MII interface code has  been added in anticipation that some
148    products may use it in the future.
149
150    The SMC9332 card  has a non-compliant SROM  which needs fixing -  I have
151    patched this  driver to detect it  because the SROM format used complies
152    to a previous DEC-STD format.
153
154    I have removed the buffer copies needed for receive on Intels.  I cannot
155    remove them for   Alphas since  the  Tulip hardware   only does longword
156    aligned  DMA transfers  and  the  Alphas get   alignment traps with  non
157    longword aligned data copies (which makes them really slow). No comment.
158
159    I  have added SROM decoding  routines to make this  driver work with any
160    card that  supports the Digital  Semiconductor SROM spec. This will help
161    all  cards running the dc2114x  series chips in particular.  Cards using
162    the dc2104x  chips should run correctly with  the basic  driver.  I'm in
163    debt to <mjacob@feral.com> for the  testing and feedback that helped get
164    this feature working.  So far we have  tested KINGSTON, SMC8432, SMC9332
165    (with the latest SROM complying  with the SROM spec  V3: their first was
166    broken), ZNYX342  and  LinkSys. ZYNX314 (dual  21041  MAC) and  ZNYX 315
167    (quad 21041 MAC)  cards also  appear  to work despite their  incorrectly
168    wired IRQs.
169
170    I have added a temporary fix for interrupt problems when some SCSI cards
171    share the same interrupt as the DECchip based  cards. The problem occurs
172    because  the SCSI card wants to  grab the interrupt  as a fast interrupt
173    (runs the   service routine with interrupts turned   off) vs.  this card
174    which really needs to run the service routine with interrupts turned on.
175    This driver will  now   add the interrupt service   routine  as  a  fast
176    interrupt if it   is bounced from the   slow interrupt.  THIS IS NOT   A
177    RECOMMENDED WAY TO RUN THE DRIVER  and has been done  for a limited time
178    until  people   sort  out their  compatibility    issues and the  kernel
179    interrupt  service code  is  fixed.   YOU  SHOULD SEPARATE OUT  THE FAST
180    INTERRUPT CARDS FROM THE SLOW INTERRUPT CARDS to ensure that they do not
181    run on the same interrupt. PCMCIA/CardBus is another can of worms...
182
183    Finally, I think  I have really  fixed  the module  loading problem with
184    more than one DECchip based  card.  As a  side effect, I don't mess with
185    the  device structure any  more which means that  if more than 1 card in
186    2.0.x is    installed (4  in   2.1.x),  the  user   will have   to  edit
187    linux/drivers/net/Space.c  to make room for  them. Hence, module loading
188    is  the preferred way to use   this driver, since  it  doesn't have this
189    limitation.
190
191    Where SROM media  detection is used and  full duplex is specified in the
192    SROM,  the feature is  ignored unless  lp->params.fdx  is set at compile
193    time  OR during  a   module load  (insmod  de4x5   args='eth??:fdx' [see
194    below]).  This is because there  is no way  to automatically detect full
195    duplex   links  except through   autonegotiation.    When I  include the
196    autonegotiation feature in  the SROM autoconf  code, this detection will
197    occur automatically for that case.
198
199    Command  line arguments are  now  allowed, similar  to passing arguments
200    through LILO. This will allow a per adapter board  set up of full duplex
201    and media. The only lexical constraints  are: the board name (dev->name)
202    appears in the list before its  parameters.  The list of parameters ends
203    either at the end of the parameter list or with another board name.  The
204    following parameters are allowed:
205
206            fdx        for full duplex
207	    autosense  to set the media/speed; with the following
208	               sub-parameters:
209		       TP, TP_NW, BNC, AUI, BNC_AUI, 100Mb, 10Mb, AUTO
210
211    Case sensitivity is important  for  the sub-parameters. They *must*   be
212    upper case. Examples:
213
214        insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
215
216    For a compiled in driver, at or above line 548, place e.g.
217	#define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP"
218
219    Yes,  I know full duplex isn't  permissible on BNC  or AUI; they're just
220    examples. By default, full duplex is turned off and  AUTO is the default
221    autosense setting.  In reality, I expect only  the full duplex option to
222    be used. Note the use of single quotes in the two examples above and the
223    lack of commas to separate items. ALSO, you must get the requested media
224    correct in relation to what the adapter SROM says it has. There's no way
225    to  determine this in  advance other than by  trial and error and common
226    sense, e.g. call a BNC connectored port 'BNC', not '10Mb'.
227
228    Changed the bus probing.  EISA used to be  done first,  followed by PCI.
229    Most people probably don't even know  what a de425 is today and the EISA
230    probe has messed  up some SCSI cards  in the past,  so now PCI is always
231    probed  first  followed by  EISA if  a) the architecture allows EISA and
232    either  b) there have been no PCI cards detected or  c) an EISA probe is
233    forced by  the user.  To force  a probe  include  "force_eisa"  in  your
234    insmod "args" line;  for built-in kernels either change the driver to do
235    this  automatically  or include  #define DE4X5_FORCE_EISA  on or  before
236    line 1040 in the driver.
237
238    TO DO:
239    ------
240
241    Revision History
242    ----------------
243
244    Version   Date        Description
245
246      0.1     17-Nov-94   Initial writing. ALPHA code release.
247      0.2     13-Jan-95   Added PCI support for DE435's.
248      0.21    19-Jan-95   Added auto media detection.
249      0.22    10-Feb-95   Fix interrupt handler call <chris@cosy.sbg.ac.at>.
250                          Fix recognition bug reported by <bkm@star.rl.ac.uk>.
251			  Add request/release_region code.
252			  Add loadable modules support for PCI.
253			  Clean up loadable modules support.
254      0.23    28-Feb-95   Added DC21041 and DC21140 support.
255                          Fix missed frame counter value and initialisation.
256			  Fixed EISA probe.
257      0.24    11-Apr-95   Change delay routine to use <linux/udelay>.
258                          Change TX_BUFFS_AVAIL macro.
259			  Change media autodetection to allow manual setting.
260			  Completed DE500 (DC21140) support.
261      0.241   18-Apr-95   Interim release without DE500 Autosense Algorithm.
262      0.242   10-May-95   Minor changes.
263      0.30    12-Jun-95   Timer fix for DC21140.
264                          Portability changes.
265			  Add ALPHA changes from <jestabro@ant.tay1.dec.com>.
266			  Add DE500 semi automatic autosense.
267			  Add Link Fail interrupt TP failure detection.
268			  Add timer based link change detection.
269			  Plugged a memory leak in de4x5_queue_pkt().
270      0.31    13-Jun-95   Fixed PCI stuff for 1.3.1.
271      0.32    26-Jun-95   Added verify_area() calls in de4x5_ioctl() from a
272                          suggestion by <heiko@colossus.escape.de>.
273      0.33     8-Aug-95   Add shared interrupt support (not released yet).
274      0.331   21-Aug-95   Fix de4x5_open() with fast CPUs.
275                          Fix de4x5_interrupt().
276                          Fix dc21140_autoconf() mess.
277			  No shared interrupt support.
278      0.332   11-Sep-95   Added MII management interface routines.
279      0.40     5-Mar-96   Fix setup frame timeout <maartenb@hpkuipc.cern.ch>.
280                          Add kernel timer code (h/w is too flaky).
281			  Add MII based PHY autosense.
282			  Add new multicasting code.
283			  Add new autosense algorithms for media/mode
284			  selection using kernel scheduling/timing.
285			  Re-formatted.
286			  Made changes suggested by <jeff@router.patch.net>:
287			    Change driver to detect all DECchip based cards
288			    with DEC_ONLY restriction a special case.
289			    Changed driver to autoprobe as a module. No irq
290			    checking is done now - assume BIOS is good!
291			  Added SMC9332 detection <manabe@Roy.dsl.tutics.ac.jp>
292      0.41    21-Mar-96   Don't check for get_hw_addr checksum unless DEC card
293                          only <niles@axp745gsfc.nasa.gov>
294			  Fix for multiple PCI cards reported by <jos@xos.nl>
295			  Duh, put the IRQF_SHARED flag into request_interrupt().
296			  Fix SMC ethernet address in enet_det[].
297			  Print chip name instead of "UNKNOWN" during boot.
298      0.42    26-Apr-96   Fix MII write TA bit error.
299                          Fix bug in dc21040 and dc21041 autosense code.
300			  Remove buffer copies on receive for Intels.
301			  Change sk_buff handling during media disconnects to
302			   eliminate DUP packets.
303			  Add dynamic TX thresholding.
304			  Change all chips to use perfect multicast filtering.
305			  Fix alloc_device() bug <jari@markkus2.fimr.fi>
306      0.43   21-Jun-96    Fix unconnected media TX retry bug.
307                          Add Accton to the list of broken cards.
308			  Fix TX under-run bug for non DC21140 chips.
309			  Fix boot command probe bug in alloc_device() as
310			   reported by <koen.gadeyne@barco.com> and
311			   <orava@nether.tky.hut.fi>.
312			  Add cache locks to prevent a race condition as
313			   reported by <csd@microplex.com> and
314			   <baba@beckman.uiuc.edu>.
315			  Upgraded alloc_device() code.
316      0.431  28-Jun-96    Fix potential bug in queue_pkt() from discussion
317                          with <csd@microplex.com>
318      0.44   13-Aug-96    Fix RX overflow bug in 2114[023] chips.
319                          Fix EISA probe bugs reported by <os2@kpi.kharkov.ua>
320			  and <michael@compurex.com>.
321      0.441   9-Sep-96    Change dc21041_autoconf() to probe quiet BNC media
322                           with a loopback packet.
323      0.442   9-Sep-96    Include AUI in dc21041 media printout. Bug reported
324                           by <bhat@mundook.cs.mu.OZ.AU>
325      0.45    8-Dec-96    Include endian functions for PPC use, from work
326                           by <cort@cs.nmt.edu> and <g.thomas@opengroup.org>.
327      0.451  28-Dec-96    Added fix to allow autoprobe for modules after
328                           suggestion from <mjacob@feral.com>.
329      0.5    30-Jan-97    Added SROM decoding functions.
330                          Updated debug flags.
331			  Fix sleep/wakeup calls for PCI cards, bug reported
332			   by <cross@gweep.lkg.dec.com>.
333			  Added multi-MAC, one SROM feature from discussion
334			   with <mjacob@feral.com>.
335			  Added full module autoprobe capability.
336			  Added attempt to use an SMC9332 with broken SROM.
337			  Added fix for ZYNX multi-mac cards that didn't
338			   get their IRQs wired correctly.
339      0.51   13-Feb-97    Added endian fixes for the SROM accesses from
340			   <paubert@iram.es>
341			  Fix init_connection() to remove extra device reset.
342			  Fix MAC/PHY reset ordering in dc21140m_autoconf().
343			  Fix initialisation problem with lp->timeout in
344			   typeX_infoblock() from <paubert@iram.es>.
345			  Fix MII PHY reset problem from work done by
346			   <paubert@iram.es>.
347      0.52   26-Apr-97    Some changes may not credit the right people -
348                           a disk crash meant I lost some mail.
349			  Change RX interrupt routine to drop rather than
350			   defer packets to avoid hang reported by
351			   <g.thomas@opengroup.org>.
352			  Fix srom_exec() to return for COMPACT and type 1
353			   infoblocks.
354			  Added DC21142 and DC21143 functions.
355			  Added byte counters from <phil@tazenda.demon.co.uk>
356			  Added IRQF_DISABLED temporary fix from
357			   <mjacob@feral.com>.
358      0.53   12-Nov-97    Fix the *_probe() to include 'eth??' name during
359                           module load: bug reported by
360			   <Piete.Brooks@cl.cam.ac.uk>
361			  Fix multi-MAC, one SROM, to work with 2114x chips:
362			   bug reported by <cmetz@inner.net>.
363			  Make above search independent of BIOS device scan
364			   direction.
365			  Completed DC2114[23] autosense functions.
366      0.531  21-Dec-97    Fix DE500-XA 100Mb/s bug reported by
367                           <robin@intercore.com
368			  Fix type1_infoblock() bug introduced in 0.53, from
369			   problem reports by
370			   <parmee@postecss.ncrfran.france.ncr.com> and
371			   <jo@ice.dillingen.baynet.de>.
372			  Added argument list to set up each board from either
373			   a module's command line or a compiled in #define.
374			  Added generic MII PHY functionality to deal with
375			   newer PHY chips.
376			  Fix the mess in 2.1.67.
377      0.532   5-Jan-98    Fix bug in mii_get_phy() reported by
378                           <redhat@cococo.net>.
379                          Fix bug in pci_probe() for 64 bit systems reported
380			   by <belliott@accessone.com>.
381      0.533   9-Jan-98    Fix more 64 bit bugs reported by <jal@cs.brown.edu>.
382      0.534  24-Jan-98    Fix last (?) endian bug from <geert@linux-m68k.org>
383      0.535  21-Feb-98    Fix Ethernet Address PROM reset bug for DC21040.
384      0.536  21-Mar-98    Change pci_probe() to use the pci_dev structure.
385			  **Incompatible with 2.0.x from here.**
386      0.540   5-Jul-98    Atomicize assertion of dev->interrupt for SMP
387                           from <lma@varesearch.com>
388			  Add TP, AUI and BNC cases to 21140m_autoconf() for
389			   case where a 21140 under SROM control uses, e.g. AUI
390			   from problem report by <delchini@lpnp09.in2p3.fr>
391			  Add MII parallel detection to 2114x_autoconf() for
392			   case where no autonegotiation partner exists from
393			   problem report by <mlapsley@ndirect.co.uk>.
394			  Add ability to force connection type directly even
395			   when using SROM control from problem report by
396			   <earl@exis.net>.
397			  Updated the PCI interface to conform with the latest
398			   version. I hope nothing is broken...
399          		  Add TX done interrupt modification from suggestion
400			   by <Austin.Donnelly@cl.cam.ac.uk>.
401			  Fix is_anc_capable() bug reported by
402			   <Austin.Donnelly@cl.cam.ac.uk>.
403			  Fix type[13]_infoblock() bug: during MII search, PHY
404			   lp->rst not run because lp->ibn not initialised -
405			   from report & fix by <paubert@iram.es>.
406			  Fix probe bug with EISA & PCI cards present from
407                           report by <eirik@netcom.com>.
408      0.541  24-Aug-98    Fix compiler problems associated with i386-string
409                           ops from multiple bug reports and temporary fix
410			   from <paubert@iram.es>.
411			  Fix pci_probe() to correctly emulate the old
412			   pcibios_find_class() function.
413			  Add an_exception() for old ZYNX346 and fix compile
414			   warning on PPC & SPARC, from <ecd@skynet.be>.
415			  Fix lastPCI to correctly work with compiled in
416			   kernels and modules from bug report by
417			   <Zlatko.Calusic@CARNet.hr> et al.
418      0.542  15-Sep-98    Fix dc2114x_autoconf() to stop multiple messages
419                           when media is unconnected.
420			  Change dev->interrupt to lp->interrupt to ensure
421			   alignment for Alpha's and avoid their unaligned
422			   access traps. This flag is merely for log messages:
423			   should do something more definitive though...
424      0.543  30-Dec-98    Add SMP spin locking.
425      0.544   8-May-99    Fix for buggy SROM in Motorola embedded boards using
426                           a 21143 by <mmporter@home.com>.
427			  Change PCI/EISA bus probing order.
428      0.545  28-Nov-99    Further Moto SROM bug fix from
429                           <mporter@eng.mcd.mot.com>
430                          Remove double checking for DEBUG_RX in de4x5_dbg_rx()
431			   from report by <geert@linux-m68k.org>
432      0.546  22-Feb-01    Fixes Alpha XP1000 oops.  The srom_search function
433                           was causing a page fault when initializing the
434                           variable 'pb', on a non de4x5 PCI device, in this
435                           case a PCI bridge (DEC chip 21152). The value of
436                           'pb' is now only initialized if a de4x5 chip is
437                           present.
438                           <france@handhelds.org>
439      0.547  08-Nov-01    Use library crc32 functions by <Matt_Domsch@dell.com>
440      0.548  30-Aug-03    Big 2.6 cleanup. Ported to PCI/EISA probing and
441                           generic DMA APIs. Fixed DE425 support on Alpha.
442			   <maz@wild-wind.fr.eu.org>
443    =========================================================================
444*/
445
446#include <linux/module.h>
447#include <linux/kernel.h>
448#include <linux/string.h>
449#include <linux/interrupt.h>
450#include <linux/ptrace.h>
451#include <linux/errno.h>
452#include <linux/ioport.h>
453#include <linux/pci.h>
454#include <linux/eisa.h>
455#include <linux/delay.h>
456#include <linux/init.h>
457#include <linux/spinlock.h>
458#include <linux/crc32.h>
459#include <linux/netdevice.h>
460#include <linux/etherdevice.h>
461#include <linux/skbuff.h>
462#include <linux/time.h>
463#include <linux/types.h>
464#include <linux/unistd.h>
465#include <linux/ctype.h>
466#include <linux/dma-mapping.h>
467#include <linux/moduleparam.h>
468#include <linux/bitops.h>
469#include <linux/gfp.h>
470
471#include <asm/io.h>
472#include <asm/dma.h>
473#include <asm/byteorder.h>
474#include <asm/unaligned.h>
475#include <asm/uaccess.h>
476#ifdef CONFIG_PPC_PMAC
477#include <asm/machdep.h>
478#endif /* CONFIG_PPC_PMAC */
479
480#include "de4x5.h"
481
482static const char version[] __devinitconst =
483	KERN_INFO "de4x5.c:V0.546 2001/02/22 davies@maniac.ultranet.com\n";
484
485#define c_char const char
486
487/*
488** MII Information
489*/
490struct phy_table {
491    int reset;              /* Hard reset required?                         */
492    int id;                 /* IEEE OUI                                     */
493    int ta;                 /* One cycle TA time - 802.3u is confusing here */
494    struct {                /* Non autonegotiation (parallel) speed det.    */
495	int reg;
496	int mask;
497	int value;
498    } spd;
499};
500
501struct mii_phy {
502    int reset;              /* Hard reset required?                      */
503    int id;                 /* IEEE OUI                                  */
504    int ta;                 /* One cycle TA time                         */
505    struct {                /* Non autonegotiation (parallel) speed det. */
506	int reg;
507	int mask;
508	int value;
509    } spd;
510    int addr;               /* MII address for the PHY                   */
511    u_char  *gep;           /* Start of GEP sequence block in SROM       */
512    u_char  *rst;           /* Start of reset sequence in SROM           */
513    u_int mc;               /* Media Capabilities                        */
514    u_int ana;              /* NWay Advertisement                        */
515    u_int fdx;              /* Full DupleX capabilities for each media   */
516    u_int ttm;              /* Transmit Threshold Mode for each media    */
517    u_int mci;              /* 21142 MII Connector Interrupt info        */
518};
519
520#define DE4X5_MAX_PHY 8     /* Allow up to 8 attached PHY devices per board */
521
522struct sia_phy {
523    u_char mc;              /* Media Code                                */
524    u_char ext;             /* csr13-15 valid when set                   */
525    int csr13;              /* SIA Connectivity Register                 */
526    int csr14;              /* SIA TX/RX Register                        */
527    int csr15;              /* SIA General Register                      */
528    int gepc;               /* SIA GEP Control Information               */
529    int gep;                /* SIA GEP Data                              */
530};
531
532/*
533** Define the know universe of PHY devices that can be
534** recognised by this driver.
535*/
536static struct phy_table phy_info[] = {
537    {0, NATIONAL_TX, 1, {0x19, 0x40, 0x00}},       /* National TX      */
538    {1, BROADCOM_T4, 1, {0x10, 0x02, 0x02}},       /* Broadcom T4      */
539    {0, SEEQ_T4    , 1, {0x12, 0x10, 0x10}},       /* SEEQ T4          */
540    {0, CYPRESS_T4 , 1, {0x05, 0x20, 0x20}},       /* Cypress T4       */
541    {0, 0x7810     , 1, {0x14, 0x0800, 0x0800}}    /* Level One LTX970 */
542};
543
544/*
545** These GENERIC values assumes that the PHY devices follow 802.3u and
546** allow parallel detection to set the link partner ability register.
547** Detection of 100Base-TX [H/F Duplex] and 100Base-T4 is supported.
548*/
549#define GENERIC_REG   0x05      /* Autoneg. Link Partner Advertisement Reg. */
550#define GENERIC_MASK  MII_ANLPA_100M /* All 100Mb/s Technologies            */
551#define GENERIC_VALUE MII_ANLPA_100M /* 100B-TX, 100B-TX FDX, 100B-T4       */
552
553/*
554** Define special SROM detection cases
555*/
556static c_char enet_det[][ETH_ALEN] = {
557    {0x00, 0x00, 0xc0, 0x00, 0x00, 0x00},
558    {0x00, 0x00, 0xe8, 0x00, 0x00, 0x00}
559};
560
561#define SMC    1
562#define ACCTON 2
563
564/*
565** SROM Repair definitions. If a broken SROM is detected a card may
566** use this information to help figure out what to do. This is a
567** "stab in the dark" and so far for SMC9332's only.
568*/
569static c_char srom_repair_info[][100] = {
570    {0x00,0x1e,0x00,0x00,0x00,0x08,             /* SMC9332 */
571     0x1f,0x01,0x8f,0x01,0x00,0x01,0x00,0x02,
572     0x01,0x00,0x00,0x78,0xe0,0x01,0x00,0x50,
573     0x00,0x18,}
574};
575
576
577#ifdef DE4X5_DEBUG
578static int de4x5_debug = DE4X5_DEBUG;
579#else
580/*static int de4x5_debug = (DEBUG_MII | DEBUG_SROM | DEBUG_PCICFG | DEBUG_MEDIA | DEBUG_VERSION);*/
581static int de4x5_debug = (DEBUG_MEDIA | DEBUG_VERSION);
582#endif
583
584/*
585** Allow per adapter set up. For modules this is simply a command line
586** parameter, e.g.:
587** insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
588**
589** For a compiled in driver, place e.g.
590**     #define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP"
591** here
592*/
593#ifdef DE4X5_PARM
594static char *args = DE4X5_PARM;
595#else
596static char *args;
597#endif
598
599struct parameters {
600    bool fdx;
601    int autosense;
602};
603
604#define DE4X5_AUTOSENSE_MS 250      /* msec autosense tick (DE500) */
605
606#define DE4X5_NDA 0xffe0            /* No Device (I/O) Address */
607
608/*
609** Ethernet PROM defines
610*/
611#define PROBE_LENGTH    32
612#define ETH_PROM_SIG    0xAA5500FFUL
613
614/*
615** Ethernet Info
616*/
617#define PKT_BUF_SZ	1536            /* Buffer size for each Tx/Rx buffer */
618#define IEEE802_3_SZ    1518            /* Packet + CRC */
619#define MAX_PKT_SZ   	1514            /* Maximum ethernet packet length */
620#define MAX_DAT_SZ   	1500            /* Maximum ethernet data length */
621#define MIN_DAT_SZ   	1               /* Minimum ethernet data length */
622#define PKT_HDR_LEN     14              /* Addresses and data length info */
623#define FAKE_FRAME_LEN  (MAX_PKT_SZ + 1)
624#define QUEUE_PKT_TIMEOUT (3*HZ)        /* 3 second timeout */
625
626
627/*
628** EISA bus defines
629*/
630#define DE4X5_EISA_IO_PORTS   0x0c00    /* I/O port base address, slot 0 */
631#define DE4X5_EISA_TOTAL_SIZE 0x100     /* I/O address extent */
632
633#define EISA_ALLOWED_IRQ_LIST  {5, 9, 10, 11}
634
635#define DE4X5_SIGNATURE {"DE425","DE434","DE435","DE450","DE500"}
636#define DE4X5_NAME_LENGTH 8
637
638static c_char *de4x5_signatures[] = DE4X5_SIGNATURE;
639
640/*
641** Ethernet PROM defines for DC21040
642*/
643#define PROBE_LENGTH    32
644#define ETH_PROM_SIG    0xAA5500FFUL
645
646/*
647** PCI Bus defines
648*/
649#define PCI_MAX_BUS_NUM      8
650#define DE4X5_PCI_TOTAL_SIZE 0x80       /* I/O address extent */
651#define DE4X5_CLASS_CODE     0x00020000 /* Network controller, Ethernet */
652
653/*
654** Memory Alignment. Each descriptor is 4 longwords long. To force a
655** particular alignment on the TX descriptor, adjust DESC_SKIP_LEN and
656** DESC_ALIGN. ALIGN aligns the start address of the private memory area
657** and hence the RX descriptor ring's first entry.
658*/
659#define DE4X5_ALIGN4      ((u_long)4 - 1)     /* 1 longword align */
660#define DE4X5_ALIGN8      ((u_long)8 - 1)     /* 2 longword align */
661#define DE4X5_ALIGN16     ((u_long)16 - 1)    /* 4 longword align */
662#define DE4X5_ALIGN32     ((u_long)32 - 1)    /* 8 longword align */
663#define DE4X5_ALIGN64     ((u_long)64 - 1)    /* 16 longword align */
664#define DE4X5_ALIGN128    ((u_long)128 - 1)   /* 32 longword align */
665
666#define DE4X5_ALIGN         DE4X5_ALIGN32           /* Keep the DC21040 happy... */
667#define DE4X5_CACHE_ALIGN   CAL_16LONG
668#define DESC_SKIP_LEN DSL_0             /* Must agree with DESC_ALIGN */
669/*#define DESC_ALIGN    u32 dummy[4];  / * Must agree with DESC_SKIP_LEN */
670#define DESC_ALIGN
671
672#ifndef DEC_ONLY                        /* See README.de4x5 for using this */
673static int dec_only;
674#else
675static int dec_only = 1;
676#endif
677
678/*
679** DE4X5 IRQ ENABLE/DISABLE
680*/
681#define ENABLE_IRQs { \
682    imr |= lp->irq_en;\
683    outl(imr, DE4X5_IMR);               /* Enable the IRQs */\
684}
685
686#define DISABLE_IRQs {\
687    imr = inl(DE4X5_IMR);\
688    imr &= ~lp->irq_en;\
689    outl(imr, DE4X5_IMR);               /* Disable the IRQs */\
690}
691
692#define UNMASK_IRQs {\
693    imr |= lp->irq_mask;\
694    outl(imr, DE4X5_IMR);               /* Unmask the IRQs */\
695}
696
697#define MASK_IRQs {\
698    imr = inl(DE4X5_IMR);\
699    imr &= ~lp->irq_mask;\
700    outl(imr, DE4X5_IMR);               /* Mask the IRQs */\
701}
702
703/*
704** DE4X5 START/STOP
705*/
706#define START_DE4X5 {\
707    omr = inl(DE4X5_OMR);\
708    omr |= OMR_ST | OMR_SR;\
709    outl(omr, DE4X5_OMR);               /* Enable the TX and/or RX */\
710}
711
712#define STOP_DE4X5 {\
713    omr = inl(DE4X5_OMR);\
714    omr &= ~(OMR_ST|OMR_SR);\
715    outl(omr, DE4X5_OMR);               /* Disable the TX and/or RX */ \
716}
717
718/*
719** DE4X5 SIA RESET
720*/
721#define RESET_SIA outl(0, DE4X5_SICR);  /* Reset SIA connectivity regs */
722
723/*
724** DE500 AUTOSENSE TIMER INTERVAL (MILLISECS)
725*/
726#define DE4X5_AUTOSENSE_MS  250
727
728/*
729** SROM Structure
730*/
731struct de4x5_srom {
732    char sub_vendor_id[2];
733    char sub_system_id[2];
734    char reserved[12];
735    char id_block_crc;
736    char reserved2;
737    char version;
738    char num_controllers;
739    char ieee_addr[6];
740    char info[100];
741    short chksum;
742};
743#define SUB_VENDOR_ID 0x500a
744
745/*
746** DE4X5 Descriptors. Make sure that all the RX buffers are contiguous
747** and have sizes of both a power of 2 and a multiple of 4.
748** A size of 256 bytes for each buffer could be chosen because over 90% of
749** all packets in our network are <256 bytes long and 64 longword alignment
750** is possible. 1536 showed better 'ttcp' performance. Take your pick. 32 TX
751** descriptors are needed for machines with an ALPHA CPU.
752*/
753#define NUM_RX_DESC 8                   /* Number of RX descriptors   */
754#define NUM_TX_DESC 32                  /* Number of TX descriptors   */
755#define RX_BUFF_SZ  1536                /* Power of 2 for kmalloc and */
756                                        /* Multiple of 4 for DC21040  */
757                                        /* Allows 512 byte alignment  */
758struct de4x5_desc {
759    volatile __le32 status;
760    __le32 des1;
761    __le32 buf;
762    __le32 next;
763    DESC_ALIGN
764};
765
766/*
767** The DE4X5 private structure
768*/
769#define DE4X5_PKT_STAT_SZ 16
770#define DE4X5_PKT_BIN_SZ  128            /* Should be >=100 unless you
771                                            increase DE4X5_PKT_STAT_SZ */
772
773struct pkt_stats {
774	u_int bins[DE4X5_PKT_STAT_SZ];      /* Private stats counters       */
775	u_int unicast;
776	u_int multicast;
777	u_int broadcast;
778	u_int excessive_collisions;
779	u_int tx_underruns;
780	u_int excessive_underruns;
781	u_int rx_runt_frames;
782	u_int rx_collision;
783	u_int rx_dribble;
784	u_int rx_overflow;
785};
786
787struct de4x5_private {
788    char adapter_name[80];                  /* Adapter name                 */
789    u_long interrupt;                       /* Aligned ISR flag             */
790    struct de4x5_desc *rx_ring;		    /* RX descriptor ring           */
791    struct de4x5_desc *tx_ring;		    /* TX descriptor ring           */
792    struct sk_buff *tx_skb[NUM_TX_DESC];    /* TX skb for freeing when sent */
793    struct sk_buff *rx_skb[NUM_RX_DESC];    /* RX skb's                     */
794    int rx_new, rx_old;                     /* RX descriptor ring pointers  */
795    int tx_new, tx_old;                     /* TX descriptor ring pointers  */
796    char setup_frame[SETUP_FRAME_LEN];      /* Holds MCA and PA info.       */
797    char frame[64];                         /* Min sized packet for loopback*/
798    spinlock_t lock;                        /* Adapter specific spinlock    */
799    struct net_device_stats stats;          /* Public stats                 */
800    struct pkt_stats pktStats;	            /* Private stats counters	    */
801    char rxRingSize;
802    char txRingSize;
803    int  bus;                               /* EISA or PCI                  */
804    int  bus_num;                           /* PCI Bus number               */
805    int  device;                            /* Device number on PCI bus     */
806    int  state;                             /* Adapter OPENED or CLOSED     */
807    int  chipset;                           /* DC21040, DC21041 or DC21140  */
808    s32  irq_mask;                          /* Interrupt Mask (Enable) bits */
809    s32  irq_en;                            /* Summary interrupt bits       */
810    int  media;                             /* Media (eg TP), mode (eg 100B)*/
811    int  c_media;                           /* Remember the last media conn */
812    bool fdx;                               /* media full duplex flag       */
813    int  linkOK;                            /* Link is OK                   */
814    int  autosense;                         /* Allow/disallow autosensing   */
815    bool tx_enable;                         /* Enable descriptor polling    */
816    int  setup_f;                           /* Setup frame filtering type   */
817    int  local_state;                       /* State within a 'media' state */
818    struct mii_phy phy[DE4X5_MAX_PHY];      /* List of attached PHY devices */
819    struct sia_phy sia;                     /* SIA PHY Information          */
820    int  active;                            /* Index to active PHY device   */
821    int  mii_cnt;                           /* Number of attached PHY's     */
822    int  timeout;                           /* Scheduling counter           */
823    struct timer_list timer;                /* Timer info for kernel        */
824    int tmp;                                /* Temporary global per card    */
825    struct {
826	u_long lock;                        /* Lock the cache accesses      */
827	s32 csr0;                           /* Saved Bus Mode Register      */
828	s32 csr6;                           /* Saved Operating Mode Reg.    */
829	s32 csr7;                           /* Saved IRQ Mask Register      */
830	s32 gep;                            /* Saved General Purpose Reg.   */
831	s32 gepc;                           /* Control info for GEP         */
832	s32 csr13;                          /* Saved SIA Connectivity Reg.  */
833	s32 csr14;                          /* Saved SIA TX/RX Register     */
834	s32 csr15;                          /* Saved SIA General Register   */
835	int save_cnt;                       /* Flag if state already saved  */
836	struct sk_buff_head queue;          /* Save the (re-ordered) skb's  */
837    } cache;
838    struct de4x5_srom srom;                 /* A copy of the SROM           */
839    int cfrv;				    /* Card CFRV copy */
840    int rx_ovf;                             /* Check for 'RX overflow' tag  */
841    bool useSROM;                           /* For non-DEC card use SROM    */
842    bool useMII;                            /* Infoblock using the MII      */
843    int asBitValid;                         /* Autosense bits in GEP?       */
844    int asPolarity;                         /* 0 => asserted high           */
845    int asBit;                              /* Autosense bit number in GEP  */
846    int defMedium;                          /* SROM default medium          */
847    int tcount;                             /* Last infoblock number        */
848    int infoblock_init;                     /* Initialised this infoblock?  */
849    int infoleaf_offset;                    /* SROM infoleaf for controller */
850    s32 infoblock_csr6;                     /* csr6 value in SROM infoblock */
851    int infoblock_media;                    /* infoblock media              */
852    int (*infoleaf_fn)(struct net_device *);    /* Pointer to infoleaf function */
853    u_char *rst;                            /* Pointer to Type 5 reset info */
854    u_char  ibn;                            /* Infoblock number             */
855    struct parameters params;               /* Command line/ #defined params */
856    struct device *gendev;	            /* Generic device */
857    dma_addr_t dma_rings;		    /* DMA handle for rings	    */
858    int dma_size;			    /* Size of the DMA area	    */
859    char *rx_bufs;			    /* rx bufs on alpha, sparc, ... */
860};
861
862/*
863** To get around certain poxy cards that don't provide an SROM
864** for the second and more DECchip, I have to key off the first
865** chip's address. I'll assume there's not a bad SROM iff:
866**
867**      o the chipset is the same
868**      o the bus number is the same and > 0
869**      o the sum of all the returned hw address bytes is 0 or 0x5fa
870**
871** Also have to save the irq for those cards whose hardware designers
872** can't follow the PCI to PCI Bridge Architecture spec.
873*/
874static struct {
875    int chipset;
876    int bus;
877    int irq;
878    u_char addr[ETH_ALEN];
879} last = {0,};
880
881/*
882** The transmit ring full condition is described by the tx_old and tx_new
883** pointers by:
884**    tx_old            = tx_new    Empty ring
885**    tx_old            = tx_new+1  Full ring
886**    tx_old+txRingSize = tx_new+1  Full ring  (wrapped condition)
887*/
888#define TX_BUFFS_AVAIL ((lp->tx_old<=lp->tx_new)?\
889			lp->tx_old+lp->txRingSize-lp->tx_new-1:\
890			lp->tx_old               -lp->tx_new-1)
891
892#define TX_PKT_PENDING (lp->tx_old != lp->tx_new)
893
894/*
895** Public Functions
896*/
897static int     de4x5_open(struct net_device *dev);
898static netdev_tx_t de4x5_queue_pkt(struct sk_buff *skb,
899					 struct net_device *dev);
900static irqreturn_t de4x5_interrupt(int irq, void *dev_id);
901static int     de4x5_close(struct net_device *dev);
902static struct  net_device_stats *de4x5_get_stats(struct net_device *dev);
903static void    de4x5_local_stats(struct net_device *dev, char *buf, int pkt_len);
904static void    set_multicast_list(struct net_device *dev);
905static int     de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
906
907/*
908** Private functions
909*/
910static int     de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev);
911static int     de4x5_init(struct net_device *dev);
912static int     de4x5_sw_reset(struct net_device *dev);
913static int     de4x5_rx(struct net_device *dev);
914static int     de4x5_tx(struct net_device *dev);
915static void    de4x5_ast(struct net_device *dev);
916static int     de4x5_txur(struct net_device *dev);
917static int     de4x5_rx_ovfc(struct net_device *dev);
918
919static int     autoconf_media(struct net_device *dev);
920static void    create_packet(struct net_device *dev, char *frame, int len);
921static void    load_packet(struct net_device *dev, char *buf, u32 flags, struct sk_buff *skb);
922static int     dc21040_autoconf(struct net_device *dev);
923static int     dc21041_autoconf(struct net_device *dev);
924static int     dc21140m_autoconf(struct net_device *dev);
925static int     dc2114x_autoconf(struct net_device *dev);
926static int     srom_autoconf(struct net_device *dev);
927static int     de4x5_suspect_state(struct net_device *dev, int timeout, int prev_state, int (*fn)(struct net_device *, int), int (*asfn)(struct net_device *));
928static int     dc21040_state(struct net_device *dev, int csr13, int csr14, int csr15, int timeout, int next_state, int suspect_state, int (*fn)(struct net_device *, int));
929static int     test_media(struct net_device *dev, s32 irqs, s32 irq_mask, s32 csr13, s32 csr14, s32 csr15, s32 msec);
930static int     test_for_100Mb(struct net_device *dev, int msec);
931static int     wait_for_link(struct net_device *dev);
932static int     test_mii_reg(struct net_device *dev, int reg, int mask, bool pol, long msec);
933static int     is_spd_100(struct net_device *dev);
934static int     is_100_up(struct net_device *dev);
935static int     is_10_up(struct net_device *dev);
936static int     is_anc_capable(struct net_device *dev);
937static int     ping_media(struct net_device *dev, int msec);
938static struct sk_buff *de4x5_alloc_rx_buff(struct net_device *dev, int index, int len);
939static void    de4x5_free_rx_buffs(struct net_device *dev);
940static void    de4x5_free_tx_buffs(struct net_device *dev);
941static void    de4x5_save_skbs(struct net_device *dev);
942static void    de4x5_rst_desc_ring(struct net_device *dev);
943static void    de4x5_cache_state(struct net_device *dev, int flag);
944static void    de4x5_put_cache(struct net_device *dev, struct sk_buff *skb);
945static void    de4x5_putb_cache(struct net_device *dev, struct sk_buff *skb);
946static struct  sk_buff *de4x5_get_cache(struct net_device *dev);
947static void    de4x5_setup_intr(struct net_device *dev);
948static void    de4x5_init_connection(struct net_device *dev);
949static int     de4x5_reset_phy(struct net_device *dev);
950static void    reset_init_sia(struct net_device *dev, s32 sicr, s32 strr, s32 sigr);
951static int     test_ans(struct net_device *dev, s32 irqs, s32 irq_mask, s32 msec);
952static int     test_tp(struct net_device *dev, s32 msec);
953static int     EISA_signature(char *name, struct device *device);
954static int     PCI_signature(char *name, struct de4x5_private *lp);
955static void    DevicePresent(struct net_device *dev, u_long iobase);
956static void    enet_addr_rst(u_long aprom_addr);
957static int     de4x5_bad_srom(struct de4x5_private *lp);
958static short   srom_rd(u_long address, u_char offset);
959static void    srom_latch(u_int command, u_long address);
960static void    srom_command(u_int command, u_long address);
961static void    srom_address(u_int command, u_long address, u_char offset);
962static short   srom_data(u_int command, u_long address);
963/*static void    srom_busy(u_int command, u_long address);*/
964static void    sendto_srom(u_int command, u_long addr);
965static int     getfrom_srom(u_long addr);
966static int     srom_map_media(struct net_device *dev);
967static int     srom_infoleaf_info(struct net_device *dev);
968static void    srom_init(struct net_device *dev);
969static void    srom_exec(struct net_device *dev, u_char *p);
970static int     mii_rd(u_char phyreg, u_char phyaddr, u_long ioaddr);
971static void    mii_wr(int data, u_char phyreg, u_char phyaddr, u_long ioaddr);
972static int     mii_rdata(u_long ioaddr);
973static void    mii_wdata(int data, int len, u_long ioaddr);
974static void    mii_ta(u_long rw, u_long ioaddr);
975static int     mii_swap(int data, int len);
976static void    mii_address(u_char addr, u_long ioaddr);
977static void    sendto_mii(u32 command, int data, u_long ioaddr);
978static int     getfrom_mii(u32 command, u_long ioaddr);
979static int     mii_get_oui(u_char phyaddr, u_long ioaddr);
980static int     mii_get_phy(struct net_device *dev);
981static void    SetMulticastFilter(struct net_device *dev);
982static int     get_hw_addr(struct net_device *dev);
983static void    srom_repair(struct net_device *dev, int card);
984static int     test_bad_enet(struct net_device *dev, int status);
985static int     an_exception(struct de4x5_private *lp);
986static char    *build_setup_frame(struct net_device *dev, int mode);
987static void    disable_ast(struct net_device *dev);
988static long    de4x5_switch_mac_port(struct net_device *dev);
989static int     gep_rd(struct net_device *dev);
990static void    gep_wr(s32 data, struct net_device *dev);
991static void    yawn(struct net_device *dev, int state);
992static void    de4x5_parse_params(struct net_device *dev);
993static void    de4x5_dbg_open(struct net_device *dev);
994static void    de4x5_dbg_mii(struct net_device *dev, int k);
995static void    de4x5_dbg_media(struct net_device *dev);
996static void    de4x5_dbg_srom(struct de4x5_srom *p);
997static void    de4x5_dbg_rx(struct sk_buff *skb, int len);
998static int     de4x5_strncmp(char *a, char *b, int n);
999static int     dc21041_infoleaf(struct net_device *dev);
1000static int     dc21140_infoleaf(struct net_device *dev);
1001static int     dc21142_infoleaf(struct net_device *dev);
1002static int     dc21143_infoleaf(struct net_device *dev);
1003static int     type0_infoblock(struct net_device *dev, u_char count, u_char *p);
1004static int     type1_infoblock(struct net_device *dev, u_char count, u_char *p);
1005static int     type2_infoblock(struct net_device *dev, u_char count, u_char *p);
1006static int     type3_infoblock(struct net_device *dev, u_char count, u_char *p);
1007static int     type4_infoblock(struct net_device *dev, u_char count, u_char *p);
1008static int     type5_infoblock(struct net_device *dev, u_char count, u_char *p);
1009static int     compact_infoblock(struct net_device *dev, u_char count, u_char *p);
1010
1011/*
1012** Note now that module autoprobing is allowed under EISA and PCI. The
1013** IRQ lines will not be auto-detected; instead I'll rely on the BIOSes
1014** to "do the right thing".
1015*/
1016
1017static int io=0x0;/* EDIT THIS LINE FOR YOUR CONFIGURATION IF NEEDED        */
1018
1019module_param(io, int, 0);
1020module_param(de4x5_debug, int, 0);
1021module_param(dec_only, int, 0);
1022module_param(args, charp, 0);
1023
1024MODULE_PARM_DESC(io, "de4x5 I/O base address");
1025MODULE_PARM_DESC(de4x5_debug, "de4x5 debug mask");
1026MODULE_PARM_DESC(dec_only, "de4x5 probe only for Digital boards (0-1)");
1027MODULE_PARM_DESC(args, "de4x5 full duplex and media type settings; see de4x5.c for details");
1028MODULE_LICENSE("GPL");
1029
1030/*
1031** List the SROM infoleaf functions and chipsets
1032*/
1033struct InfoLeaf {
1034    int chipset;
1035    int (*fn)(struct net_device *);
1036};
1037static struct InfoLeaf infoleaf_array[] = {
1038    {DC21041, dc21041_infoleaf},
1039    {DC21140, dc21140_infoleaf},
1040    {DC21142, dc21142_infoleaf},
1041    {DC21143, dc21143_infoleaf}
1042};
1043#define INFOLEAF_SIZE ARRAY_SIZE(infoleaf_array)
1044
1045/*
1046** List the SROM info block functions
1047*/
1048static int (*dc_infoblock[])(struct net_device *dev, u_char, u_char *) = {
1049    type0_infoblock,
1050    type1_infoblock,
1051    type2_infoblock,
1052    type3_infoblock,
1053    type4_infoblock,
1054    type5_infoblock,
1055    compact_infoblock
1056};
1057
1058#define COMPACT (ARRAY_SIZE(dc_infoblock) - 1)
1059
1060/*
1061** Miscellaneous defines...
1062*/
1063#define RESET_DE4X5 {\
1064    int i;\
1065    i=inl(DE4X5_BMR);\
1066    mdelay(1);\
1067    outl(i | BMR_SWR, DE4X5_BMR);\
1068    mdelay(1);\
1069    outl(i, DE4X5_BMR);\
1070    mdelay(1);\
1071    for (i=0;i<5;i++) {inl(DE4X5_BMR); mdelay(1);}\
1072    mdelay(1);\
1073}
1074
1075#define PHY_HARD_RESET {\
1076    outl(GEP_HRST, DE4X5_GEP);           /* Hard RESET the PHY dev. */\
1077    mdelay(1);                           /* Assert for 1ms */\
1078    outl(0x00, DE4X5_GEP);\
1079    mdelay(2);                           /* Wait for 2ms */\
1080}
1081
1082static const struct net_device_ops de4x5_netdev_ops = {
1083    .ndo_open		= de4x5_open,
1084    .ndo_stop		= de4x5_close,
1085    .ndo_start_xmit	= de4x5_queue_pkt,
1086    .ndo_get_stats	= de4x5_get_stats,
1087    .ndo_set_rx_mode	= set_multicast_list,
1088    .ndo_do_ioctl	= de4x5_ioctl,
1089    .ndo_change_mtu	= eth_change_mtu,
1090    .ndo_set_mac_address= eth_mac_addr,
1091    .ndo_validate_addr	= eth_validate_addr,
1092};
1093
1094
1095static int __devinit
1096de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev)
1097{
1098    char name[DE4X5_NAME_LENGTH + 1];
1099    struct de4x5_private *lp = netdev_priv(dev);
1100    struct pci_dev *pdev = NULL;
1101    int i, status=0;
1102
1103    dev_set_drvdata(gendev, dev);
1104
1105    /* Ensure we're not sleeping */
1106    if (lp->bus == EISA) {
1107	outb(WAKEUP, PCI_CFPM);
1108    } else {
1109	pdev = to_pci_dev (gendev);
1110	pci_write_config_byte(pdev, PCI_CFDA_PSM, WAKEUP);
1111    }
1112    mdelay(10);
1113
1114    RESET_DE4X5;
1115
1116    if ((inl(DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
1117	return -ENXIO;                       /* Hardware could not reset */
1118    }
1119
1120    /*
1121    ** Now find out what kind of DC21040/DC21041/DC21140 board we have.
1122    */
1123    lp->useSROM = false;
1124    if (lp->bus == PCI) {
1125	PCI_signature(name, lp);
1126    } else {
1127	EISA_signature(name, gendev);
1128    }
1129
1130    if (*name == '\0') {                     /* Not found a board signature */
1131	return -ENXIO;
1132    }
1133
1134    dev->base_addr = iobase;
1135    printk ("%s: %s at 0x%04lx", dev_name(gendev), name, iobase);
1136
1137    status = get_hw_addr(dev);
1138    printk(", h/w address %pM\n", dev->dev_addr);
1139
1140    if (status != 0) {
1141	printk("      which has an Ethernet PROM CRC error.\n");
1142	return -ENXIO;
1143    } else {
1144	skb_queue_head_init(&lp->cache.queue);
1145	lp->cache.gepc = GEP_INIT;
1146	lp->asBit = GEP_SLNK;
1147	lp->asPolarity = GEP_SLNK;
1148	lp->asBitValid = ~0;
1149	lp->timeout = -1;
1150	lp->gendev = gendev;
1151	spin_lock_init(&lp->lock);
1152	init_timer(&lp->timer);
1153	lp->timer.function = (void (*)(unsigned long))de4x5_ast;
1154	lp->timer.data = (unsigned long)dev;
1155	de4x5_parse_params(dev);
1156
1157	/*
1158	** Choose correct autosensing in case someone messed up
1159	*/
1160        lp->autosense = lp->params.autosense;
1161        if (lp->chipset != DC21140) {
1162            if ((lp->chipset==DC21040) && (lp->params.autosense&TP_NW)) {
1163                lp->params.autosense = TP;
1164            }
1165            if ((lp->chipset==DC21041) && (lp->params.autosense&BNC_AUI)) {
1166                lp->params.autosense = BNC;
1167            }
1168        }
1169	lp->fdx = lp->params.fdx;
1170	sprintf(lp->adapter_name,"%s (%s)", name, dev_name(gendev));
1171
1172	lp->dma_size = (NUM_RX_DESC + NUM_TX_DESC) * sizeof(struct de4x5_desc);
1173#if defined(__alpha__) || defined(__powerpc__) || defined(CONFIG_SPARC) || defined(DE4X5_DO_MEMCPY)
1174	lp->dma_size += RX_BUFF_SZ * NUM_RX_DESC + DE4X5_ALIGN;
1175#endif
1176	lp->rx_ring = dma_alloc_coherent(gendev, lp->dma_size,
1177					 &lp->dma_rings, GFP_ATOMIC);
1178	if (lp->rx_ring == NULL) {
1179	    return -ENOMEM;
1180	}
1181
1182	lp->tx_ring = lp->rx_ring + NUM_RX_DESC;
1183
1184	/*
1185	** Set up the RX descriptor ring (Intels)
1186	** Allocate contiguous receive buffers, long word aligned (Alphas)
1187	*/
1188#if !defined(__alpha__) && !defined(__powerpc__) && !defined(CONFIG_SPARC) && !defined(DE4X5_DO_MEMCPY)
1189	for (i=0; i<NUM_RX_DESC; i++) {
1190	    lp->rx_ring[i].status = 0;
1191	    lp->rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
1192	    lp->rx_ring[i].buf = 0;
1193	    lp->rx_ring[i].next = 0;
1194	    lp->rx_skb[i] = (struct sk_buff *) 1;     /* Dummy entry */
1195	}
1196
1197#else
1198	{
1199		dma_addr_t dma_rx_bufs;
1200
1201		dma_rx_bufs = lp->dma_rings + (NUM_RX_DESC + NUM_TX_DESC)
1202		      	* sizeof(struct de4x5_desc);
1203		dma_rx_bufs = (dma_rx_bufs + DE4X5_ALIGN) & ~DE4X5_ALIGN;
1204		lp->rx_bufs = (char *)(((long)(lp->rx_ring + NUM_RX_DESC
1205		      	+ NUM_TX_DESC) + DE4X5_ALIGN) & ~DE4X5_ALIGN);
1206		for (i=0; i<NUM_RX_DESC; i++) {
1207	    		lp->rx_ring[i].status = 0;
1208	    		lp->rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
1209	    		lp->rx_ring[i].buf =
1210				cpu_to_le32(dma_rx_bufs+i*RX_BUFF_SZ);
1211	    		lp->rx_ring[i].next = 0;
1212	    		lp->rx_skb[i] = (struct sk_buff *) 1; /* Dummy entry */
1213		}
1214
1215	}
1216#endif
1217
1218	barrier();
1219
1220	lp->rxRingSize = NUM_RX_DESC;
1221	lp->txRingSize = NUM_TX_DESC;
1222
1223	/* Write the end of list marker to the descriptor lists */
1224	lp->rx_ring[lp->rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
1225	lp->tx_ring[lp->txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
1226
1227	/* Tell the adapter where the TX/RX rings are located. */
1228	outl(lp->dma_rings, DE4X5_RRBA);
1229	outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
1230	     DE4X5_TRBA);
1231
1232	/* Initialise the IRQ mask and Enable/Disable */
1233	lp->irq_mask = IMR_RIM | IMR_TIM | IMR_TUM | IMR_UNM;
1234	lp->irq_en   = IMR_NIM | IMR_AIM;
1235
1236	/* Create a loopback packet frame for later media probing */
1237	create_packet(dev, lp->frame, sizeof(lp->frame));
1238
1239	/* Check if the RX overflow bug needs testing for */
1240	i = lp->cfrv & 0x000000fe;
1241	if ((lp->chipset == DC21140) && (i == 0x20)) {
1242	    lp->rx_ovf = 1;
1243	}
1244
1245	/* Initialise the SROM pointers if possible */
1246	if (lp->useSROM) {
1247	    lp->state = INITIALISED;
1248	    if (srom_infoleaf_info(dev)) {
1249	        dma_free_coherent (gendev, lp->dma_size,
1250			       lp->rx_ring, lp->dma_rings);
1251		return -ENXIO;
1252	    }
1253	    srom_init(dev);
1254	}
1255
1256	lp->state = CLOSED;
1257
1258	/*
1259	** Check for an MII interface
1260	*/
1261	if ((lp->chipset != DC21040) && (lp->chipset != DC21041)) {
1262	    mii_get_phy(dev);
1263	}
1264
1265	printk("      and requires IRQ%d (provided by %s).\n", dev->irq,
1266	       ((lp->bus == PCI) ? "PCI BIOS" : "EISA CNFG"));
1267    }
1268
1269    if (de4x5_debug & DEBUG_VERSION) {
1270	printk(version);
1271    }
1272
1273    /* The DE4X5-specific entries in the device structure. */
1274    SET_NETDEV_DEV(dev, gendev);
1275    dev->netdev_ops = &de4x5_netdev_ops;
1276    dev->mem_start = 0;
1277
1278    /* Fill in the generic fields of the device structure. */
1279    if ((status = register_netdev (dev))) {
1280	    dma_free_coherent (gendev, lp->dma_size,
1281			       lp->rx_ring, lp->dma_rings);
1282	    return status;
1283    }
1284
1285    /* Let the adapter sleep to save power */
1286    yawn(dev, SLEEP);
1287
1288    return status;
1289}
1290
1291
1292static int
1293de4x5_open(struct net_device *dev)
1294{
1295    struct de4x5_private *lp = netdev_priv(dev);
1296    u_long iobase = dev->base_addr;
1297    int i, status = 0;
1298    s32 omr;
1299
1300    /* Allocate the RX buffers */
1301    for (i=0; i<lp->rxRingSize; i++) {
1302	if (de4x5_alloc_rx_buff(dev, i, 0) == NULL) {
1303	    de4x5_free_rx_buffs(dev);
1304	    return -EAGAIN;
1305	}
1306    }
1307
1308    /*
1309    ** Wake up the adapter
1310    */
1311    yawn(dev, WAKEUP);
1312
1313    /*
1314    ** Re-initialize the DE4X5...
1315    */
1316    status = de4x5_init(dev);
1317    spin_lock_init(&lp->lock);
1318    lp->state = OPEN;
1319    de4x5_dbg_open(dev);
1320
1321    if (request_irq(dev->irq, de4x5_interrupt, IRQF_SHARED,
1322		                                     lp->adapter_name, dev)) {
1323	printk("de4x5_open(): Requested IRQ%d is busy - attemping FAST/SHARE...", dev->irq);
1324	if (request_irq(dev->irq, de4x5_interrupt, IRQF_DISABLED | IRQF_SHARED,
1325			                             lp->adapter_name, dev)) {
1326	    printk("\n              Cannot get IRQ- reconfigure your hardware.\n");
1327	    disable_ast(dev);
1328	    de4x5_free_rx_buffs(dev);
1329	    de4x5_free_tx_buffs(dev);
1330	    yawn(dev, SLEEP);
1331	    lp->state = CLOSED;
1332	    return -EAGAIN;
1333	} else {
1334	    printk("\n              Succeeded, but you should reconfigure your hardware to avoid this.\n");
1335	    printk("WARNING: there may be IRQ related problems in heavily loaded systems.\n");
1336	}
1337    }
1338
1339    lp->interrupt = UNMASK_INTERRUPTS;
1340    dev->trans_start = jiffies; /* prevent tx timeout */
1341
1342    START_DE4X5;
1343
1344    de4x5_setup_intr(dev);
1345
1346    if (de4x5_debug & DEBUG_OPEN) {
1347	printk("\tsts:  0x%08x\n", inl(DE4X5_STS));
1348	printk("\tbmr:  0x%08x\n", inl(DE4X5_BMR));
1349	printk("\timr:  0x%08x\n", inl(DE4X5_IMR));
1350	printk("\tomr:  0x%08x\n", inl(DE4X5_OMR));
1351	printk("\tsisr: 0x%08x\n", inl(DE4X5_SISR));
1352	printk("\tsicr: 0x%08x\n", inl(DE4X5_SICR));
1353	printk("\tstrr: 0x%08x\n", inl(DE4X5_STRR));
1354	printk("\tsigr: 0x%08x\n", inl(DE4X5_SIGR));
1355    }
1356
1357    return status;
1358}
1359
1360/*
1361** Initialize the DE4X5 operating conditions. NB: a chip problem with the
1362** DC21140 requires using perfect filtering mode for that chip. Since I can't
1363** see why I'd want > 14 multicast addresses, I have changed all chips to use
1364** the perfect filtering mode. Keep the DMA burst length at 8: there seems
1365** to be data corruption problems if it is larger (UDP errors seen from a
1366** ttcp source).
1367*/
1368static int
1369de4x5_init(struct net_device *dev)
1370{
1371    /* Lock out other processes whilst setting up the hardware */
1372    netif_stop_queue(dev);
1373
1374    de4x5_sw_reset(dev);
1375
1376    /* Autoconfigure the connected port */
1377    autoconf_media(dev);
1378
1379    return 0;
1380}
1381
1382static int
1383de4x5_sw_reset(struct net_device *dev)
1384{
1385    struct de4x5_private *lp = netdev_priv(dev);
1386    u_long iobase = dev->base_addr;
1387    int i, j, status = 0;
1388    s32 bmr, omr;
1389
1390    /* Select the MII or SRL port now and RESET the MAC */
1391    if (!lp->useSROM) {
1392	if (lp->phy[lp->active].id != 0) {
1393	    lp->infoblock_csr6 = OMR_SDP | OMR_PS | OMR_HBD;
1394	} else {
1395	    lp->infoblock_csr6 = OMR_SDP | OMR_TTM;
1396	}
1397	de4x5_switch_mac_port(dev);
1398    }
1399
1400    /*
1401    ** Set the programmable burst length to 8 longwords for all the DC21140
1402    ** Fasternet chips and 4 longwords for all others: DMA errors result
1403    ** without these values. Cache align 16 long.
1404    */
1405    bmr = (lp->chipset==DC21140 ? PBL_8 : PBL_4) | DESC_SKIP_LEN | DE4X5_CACHE_ALIGN;
1406    bmr |= ((lp->chipset & ~0x00ff)==DC2114x ? BMR_RML : 0);
1407    outl(bmr, DE4X5_BMR);
1408
1409    omr = inl(DE4X5_OMR) & ~OMR_PR;             /* Turn off promiscuous mode */
1410    if (lp->chipset == DC21140) {
1411	omr |= (OMR_SDP | OMR_SB);
1412    }
1413    lp->setup_f = PERFECT;
1414    outl(lp->dma_rings, DE4X5_RRBA);
1415    outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
1416	 DE4X5_TRBA);
1417
1418    lp->rx_new = lp->rx_old = 0;
1419    lp->tx_new = lp->tx_old = 0;
1420
1421    for (i = 0; i < lp->rxRingSize; i++) {
1422	lp->rx_ring[i].status = cpu_to_le32(R_OWN);
1423    }
1424
1425    for (i = 0; i < lp->txRingSize; i++) {
1426	lp->tx_ring[i].status = cpu_to_le32(0);
1427    }
1428
1429    barrier();
1430
1431    /* Build the setup frame depending on filtering mode */
1432    SetMulticastFilter(dev);
1433
1434    load_packet(dev, lp->setup_frame, PERFECT_F|TD_SET|SETUP_FRAME_LEN, (struct sk_buff *)1);
1435    outl(omr|OMR_ST, DE4X5_OMR);
1436
1437    /* Poll for setup frame completion (adapter interrupts are disabled now) */
1438
1439    for (j=0, i=0;(i<500) && (j==0);i++) {       /* Up to 500ms delay */
1440	mdelay(1);
1441	if ((s32)le32_to_cpu(lp->tx_ring[lp->tx_new].status) >= 0) j=1;
1442    }
1443    outl(omr, DE4X5_OMR);                        /* Stop everything! */
1444
1445    if (j == 0) {
1446	printk("%s: Setup frame timed out, status %08x\n", dev->name,
1447	       inl(DE4X5_STS));
1448	status = -EIO;
1449    }
1450
1451    lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
1452    lp->tx_old = lp->tx_new;
1453
1454    return status;
1455}
1456
1457/*
1458** Writes a socket buffer address to the next available transmit descriptor.
1459*/
1460static netdev_tx_t
1461de4x5_queue_pkt(struct sk_buff *skb, struct net_device *dev)
1462{
1463    struct de4x5_private *lp = netdev_priv(dev);
1464    u_long iobase = dev->base_addr;
1465    u_long flags = 0;
1466
1467    netif_stop_queue(dev);
1468    if (!lp->tx_enable)                   /* Cannot send for now */
1469	return NETDEV_TX_LOCKED;
1470
1471    /*
1472    ** Clean out the TX ring asynchronously to interrupts - sometimes the
1473    ** interrupts are lost by delayed descriptor status updates relative to
1474    ** the irq assertion, especially with a busy PCI bus.
1475    */
1476    spin_lock_irqsave(&lp->lock, flags);
1477    de4x5_tx(dev);
1478    spin_unlock_irqrestore(&lp->lock, flags);
1479
1480    /* Test if cache is already locked - requeue skb if so */
1481    if (test_and_set_bit(0, (void *)&lp->cache.lock) && !lp->interrupt)
1482	return NETDEV_TX_LOCKED;
1483
1484    /* Transmit descriptor ring full or stale skb */
1485    if (netif_queue_stopped(dev) || (u_long) lp->tx_skb[lp->tx_new] > 1) {
1486	if (lp->interrupt) {
1487	    de4x5_putb_cache(dev, skb);          /* Requeue the buffer */
1488	} else {
1489	    de4x5_put_cache(dev, skb);
1490	}
1491	if (de4x5_debug & DEBUG_TX) {
1492	    printk("%s: transmit busy, lost media or stale skb found:\n  STS:%08x\n  tbusy:%d\n  IMR:%08x\n  OMR:%08x\n Stale skb: %s\n",dev->name, inl(DE4X5_STS), netif_queue_stopped(dev), inl(DE4X5_IMR), inl(DE4X5_OMR), ((u_long) lp->tx_skb[lp->tx_new] > 1) ? "YES" : "NO");
1493	}
1494    } else if (skb->len > 0) {
1495	/* If we already have stuff queued locally, use that first */
1496	if (!skb_queue_empty(&lp->cache.queue) && !lp->interrupt) {
1497	    de4x5_put_cache(dev, skb);
1498	    skb = de4x5_get_cache(dev);
1499	}
1500
1501	while (skb && !netif_queue_stopped(dev) &&
1502	       (u_long) lp->tx_skb[lp->tx_new] <= 1) {
1503	    spin_lock_irqsave(&lp->lock, flags);
1504	    netif_stop_queue(dev);
1505	    load_packet(dev, skb->data, TD_IC | TD_LS | TD_FS | skb->len, skb);
1506 	    lp->stats.tx_bytes += skb->len;
1507	    outl(POLL_DEMAND, DE4X5_TPD);/* Start the TX */
1508
1509	    lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
1510
1511	    if (TX_BUFFS_AVAIL) {
1512		netif_start_queue(dev);         /* Another pkt may be queued */
1513	    }
1514	    skb = de4x5_get_cache(dev);
1515	    spin_unlock_irqrestore(&lp->lock, flags);
1516	}
1517	if (skb) de4x5_putb_cache(dev, skb);
1518    }
1519
1520    lp->cache.lock = 0;
1521
1522    return NETDEV_TX_OK;
1523}
1524
1525/*
1526** The DE4X5 interrupt handler.
1527**
1528** I/O Read/Writes through intermediate PCI bridges are never 'posted',
1529** so that the asserted interrupt always has some real data to work with -
1530** if these I/O accesses are ever changed to memory accesses, ensure the
1531** STS write is read immediately to complete the transaction if the adapter
1532** is not on bus 0. Lost interrupts can still occur when the PCI bus load
1533** is high and descriptor status bits cannot be set before the associated
1534** interrupt is asserted and this routine entered.
1535*/
1536static irqreturn_t
1537de4x5_interrupt(int irq, void *dev_id)
1538{
1539    struct net_device *dev = dev_id;
1540    struct de4x5_private *lp;
1541    s32 imr, omr, sts, limit;
1542    u_long iobase;
1543    unsigned int handled = 0;
1544
1545    lp = netdev_priv(dev);
1546    spin_lock(&lp->lock);
1547    iobase = dev->base_addr;
1548
1549    DISABLE_IRQs;                        /* Ensure non re-entrancy */
1550
1551    if (test_and_set_bit(MASK_INTERRUPTS, (void*) &lp->interrupt))
1552	printk("%s: Re-entering the interrupt handler.\n", dev->name);
1553
1554    synchronize_irq(dev->irq);
1555
1556    for (limit=0; limit<8; limit++) {
1557	sts = inl(DE4X5_STS);            /* Read IRQ status */
1558	outl(sts, DE4X5_STS);            /* Reset the board interrupts */
1559
1560	if (!(sts & lp->irq_mask)) break;/* All done */
1561	handled = 1;
1562
1563	if (sts & (STS_RI | STS_RU))     /* Rx interrupt (packet[s] arrived) */
1564	  de4x5_rx(dev);
1565
1566	if (sts & (STS_TI | STS_TU))     /* Tx interrupt (packet sent) */
1567	  de4x5_tx(dev);
1568
1569	if (sts & STS_LNF) {             /* TP Link has failed */
1570	    lp->irq_mask &= ~IMR_LFM;
1571	}
1572
1573	if (sts & STS_UNF) {             /* Transmit underrun */
1574	    de4x5_txur(dev);
1575	}
1576
1577	if (sts & STS_SE) {              /* Bus Error */
1578	    STOP_DE4X5;
1579	    printk("%s: Fatal bus error occurred, sts=%#8x, device stopped.\n",
1580		   dev->name, sts);
1581	    spin_unlock(&lp->lock);
1582	    return IRQ_HANDLED;
1583	}
1584    }
1585
1586    /* Load the TX ring with any locally stored packets */
1587    if (!test_and_set_bit(0, (void *)&lp->cache.lock)) {
1588	while (!skb_queue_empty(&lp->cache.queue) && !netif_queue_stopped(dev) && lp->tx_enable) {
1589	    de4x5_queue_pkt(de4x5_get_cache(dev), dev);
1590	}
1591	lp->cache.lock = 0;
1592    }
1593
1594    lp->interrupt = UNMASK_INTERRUPTS;
1595    ENABLE_IRQs;
1596    spin_unlock(&lp->lock);
1597
1598    return IRQ_RETVAL(handled);
1599}
1600
1601static int
1602de4x5_rx(struct net_device *dev)
1603{
1604    struct de4x5_private *lp = netdev_priv(dev);
1605    u_long iobase = dev->base_addr;
1606    int entry;
1607    s32 status;
1608
1609    for (entry=lp->rx_new; (s32)le32_to_cpu(lp->rx_ring[entry].status)>=0;
1610	                                                    entry=lp->rx_new) {
1611	status = (s32)le32_to_cpu(lp->rx_ring[entry].status);
1612
1613	if (lp->rx_ovf) {
1614	    if (inl(DE4X5_MFC) & MFC_FOCM) {
1615		de4x5_rx_ovfc(dev);
1616		break;
1617	    }
1618	}
1619
1620	if (status & RD_FS) {                 /* Remember the start of frame */
1621	    lp->rx_old = entry;
1622	}
1623
1624	if (status & RD_LS) {                 /* Valid frame status */
1625	    if (lp->tx_enable) lp->linkOK++;
1626	    if (status & RD_ES) {	      /* There was an error. */
1627		lp->stats.rx_errors++;        /* Update the error stats. */
1628		if (status & (RD_RF | RD_TL)) lp->stats.rx_frame_errors++;
1629		if (status & RD_CE)           lp->stats.rx_crc_errors++;
1630		if (status & RD_OF)           lp->stats.rx_fifo_errors++;
1631		if (status & RD_TL)           lp->stats.rx_length_errors++;
1632		if (status & RD_RF)           lp->pktStats.rx_runt_frames++;
1633		if (status & RD_CS)           lp->pktStats.rx_collision++;
1634		if (status & RD_DB)           lp->pktStats.rx_dribble++;
1635		if (status & RD_OF)           lp->pktStats.rx_overflow++;
1636	    } else {                          /* A valid frame received */
1637		struct sk_buff *skb;
1638		short pkt_len = (short)(le32_to_cpu(lp->rx_ring[entry].status)
1639					                            >> 16) - 4;
1640
1641		if ((skb = de4x5_alloc_rx_buff(dev, entry, pkt_len)) == NULL) {
1642		    printk("%s: Insufficient memory; nuking packet.\n",
1643			                                            dev->name);
1644		    lp->stats.rx_dropped++;
1645		} else {
1646		    de4x5_dbg_rx(skb, pkt_len);
1647
1648		    /* Push up the protocol stack */
1649		    skb->protocol=eth_type_trans(skb,dev);
1650		    de4x5_local_stats(dev, skb->data, pkt_len);
1651		    netif_rx(skb);
1652
1653		    /* Update stats */
1654		    lp->stats.rx_packets++;
1655 		    lp->stats.rx_bytes += pkt_len;
1656		}
1657	    }
1658
1659	    /* Change buffer ownership for this frame, back to the adapter */
1660	    for (;lp->rx_old!=entry;lp->rx_old=(lp->rx_old + 1)%lp->rxRingSize) {
1661		lp->rx_ring[lp->rx_old].status = cpu_to_le32(R_OWN);
1662		barrier();
1663	    }
1664	    lp->rx_ring[entry].status = cpu_to_le32(R_OWN);
1665	    barrier();
1666	}
1667
1668	/*
1669	** Update entry information
1670	*/
1671	lp->rx_new = (lp->rx_new + 1) % lp->rxRingSize;
1672    }
1673
1674    return 0;
1675}
1676
1677static inline void
1678de4x5_free_tx_buff(struct de4x5_private *lp, int entry)
1679{
1680    dma_unmap_single(lp->gendev, le32_to_cpu(lp->tx_ring[entry].buf),
1681		     le32_to_cpu(lp->tx_ring[entry].des1) & TD_TBS1,
1682		     DMA_TO_DEVICE);
1683    if ((u_long) lp->tx_skb[entry] > 1)
1684	dev_kfree_skb_irq(lp->tx_skb[entry]);
1685    lp->tx_skb[entry] = NULL;
1686}
1687
1688/*
1689** Buffer sent - check for TX buffer errors.
1690*/
1691static int
1692de4x5_tx(struct net_device *dev)
1693{
1694    struct de4x5_private *lp = netdev_priv(dev);
1695    u_long iobase = dev->base_addr;
1696    int entry;
1697    s32 status;
1698
1699    for (entry = lp->tx_old; entry != lp->tx_new; entry = lp->tx_old) {
1700	status = (s32)le32_to_cpu(lp->tx_ring[entry].status);
1701	if (status < 0) {                     /* Buffer not sent yet */
1702	    break;
1703	} else if (status != 0x7fffffff) {    /* Not setup frame */
1704	    if (status & TD_ES) {             /* An error happened */
1705		lp->stats.tx_errors++;
1706		if (status & TD_NC) lp->stats.tx_carrier_errors++;
1707		if (status & TD_LC) lp->stats.tx_window_errors++;
1708		if (status & TD_UF) lp->stats.tx_fifo_errors++;
1709		if (status & TD_EC) lp->pktStats.excessive_collisions++;
1710		if (status & TD_DE) lp->stats.tx_aborted_errors++;
1711
1712		if (TX_PKT_PENDING) {
1713		    outl(POLL_DEMAND, DE4X5_TPD);/* Restart a stalled TX */
1714		}
1715	    } else {                      /* Packet sent */
1716		lp->stats.tx_packets++;
1717		if (lp->tx_enable) lp->linkOK++;
1718	    }
1719	    /* Update the collision counter */
1720	    lp->stats.collisions += ((status & TD_EC) ? 16 :
1721				                      ((status & TD_CC) >> 3));
1722
1723	    /* Free the buffer. */
1724	    if (lp->tx_skb[entry] != NULL)
1725	    	de4x5_free_tx_buff(lp, entry);
1726	}
1727
1728	/* Update all the pointers */
1729	lp->tx_old = (lp->tx_old + 1) % lp->txRingSize;
1730    }
1731
1732    /* Any resources available? */
1733    if (TX_BUFFS_AVAIL && netif_queue_stopped(dev)) {
1734	if (lp->interrupt)
1735	    netif_wake_queue(dev);
1736	else
1737	    netif_start_queue(dev);
1738    }
1739
1740    return 0;
1741}
1742
1743static void
1744de4x5_ast(struct net_device *dev)
1745{
1746	struct de4x5_private *lp = netdev_priv(dev);
1747	int next_tick = DE4X5_AUTOSENSE_MS;
1748	int dt;
1749
1750	if (lp->useSROM)
1751		next_tick = srom_autoconf(dev);
1752	else if (lp->chipset == DC21140)
1753		next_tick = dc21140m_autoconf(dev);
1754	else if (lp->chipset == DC21041)
1755		next_tick = dc21041_autoconf(dev);
1756	else if (lp->chipset == DC21040)
1757		next_tick = dc21040_autoconf(dev);
1758	lp->linkOK = 0;
1759
1760	dt = (next_tick * HZ) / 1000;
1761
1762	if (!dt)
1763		dt = 1;
1764
1765	mod_timer(&lp->timer, jiffies + dt);
1766}
1767
1768static int
1769de4x5_txur(struct net_device *dev)
1770{
1771    struct de4x5_private *lp = netdev_priv(dev);
1772    u_long iobase = dev->base_addr;
1773    int omr;
1774
1775    omr = inl(DE4X5_OMR);
1776    if (!(omr & OMR_SF) || (lp->chipset==DC21041) || (lp->chipset==DC21040)) {
1777	omr &= ~(OMR_ST|OMR_SR);
1778	outl(omr, DE4X5_OMR);
1779	while (inl(DE4X5_STS) & STS_TS);
1780	if ((omr & OMR_TR) < OMR_TR) {
1781	    omr += 0x4000;
1782	} else {
1783	    omr |= OMR_SF;
1784	}
1785	outl(omr | OMR_ST | OMR_SR, DE4X5_OMR);
1786    }
1787
1788    return 0;
1789}
1790
1791static int
1792de4x5_rx_ovfc(struct net_device *dev)
1793{
1794    struct de4x5_private *lp = netdev_priv(dev);
1795    u_long iobase = dev->base_addr;
1796    int omr;
1797
1798    omr = inl(DE4X5_OMR);
1799    outl(omr & ~OMR_SR, DE4X5_OMR);
1800    while (inl(DE4X5_STS) & STS_RS);
1801
1802    for (; (s32)le32_to_cpu(lp->rx_ring[lp->rx_new].status)>=0;) {
1803	lp->rx_ring[lp->rx_new].status = cpu_to_le32(R_OWN);
1804	lp->rx_new = (lp->rx_new + 1) % lp->rxRingSize;
1805    }
1806
1807    outl(omr, DE4X5_OMR);
1808
1809    return 0;
1810}
1811
1812static int
1813de4x5_close(struct net_device *dev)
1814{
1815    struct de4x5_private *lp = netdev_priv(dev);
1816    u_long iobase = dev->base_addr;
1817    s32 imr, omr;
1818
1819    disable_ast(dev);
1820
1821    netif_stop_queue(dev);
1822
1823    if (de4x5_debug & DEBUG_CLOSE) {
1824	printk("%s: Shutting down ethercard, status was %8.8x.\n",
1825	       dev->name, inl(DE4X5_STS));
1826    }
1827
1828    /*
1829    ** We stop the DE4X5 here... mask interrupts and stop TX & RX
1830    */
1831    DISABLE_IRQs;
1832    STOP_DE4X5;
1833
1834    /* Free the associated irq */
1835    free_irq(dev->irq, dev);
1836    lp->state = CLOSED;
1837
1838    /* Free any socket buffers */
1839    de4x5_free_rx_buffs(dev);
1840    de4x5_free_tx_buffs(dev);
1841
1842    /* Put the adapter to sleep to save power */
1843    yawn(dev, SLEEP);
1844
1845    return 0;
1846}
1847
1848static struct net_device_stats *
1849de4x5_get_stats(struct net_device *dev)
1850{
1851    struct de4x5_private *lp = netdev_priv(dev);
1852    u_long iobase = dev->base_addr;
1853
1854    lp->stats.rx_missed_errors = (int)(inl(DE4X5_MFC) & (MFC_OVFL | MFC_CNTR));
1855
1856    return &lp->stats;
1857}
1858
1859static void
1860de4x5_local_stats(struct net_device *dev, char *buf, int pkt_len)
1861{
1862    struct de4x5_private *lp = netdev_priv(dev);
1863    int i;
1864
1865    for (i=1; i<DE4X5_PKT_STAT_SZ-1; i++) {
1866        if (pkt_len < (i*DE4X5_PKT_BIN_SZ)) {
1867	    lp->pktStats.bins[i]++;
1868	    i = DE4X5_PKT_STAT_SZ;
1869	}
1870    }
1871    if (is_multicast_ether_addr(buf)) {
1872        if (is_broadcast_ether_addr(buf)) {
1873	    lp->pktStats.broadcast++;
1874	} else {
1875	    lp->pktStats.multicast++;
1876	}
1877    } else if (compare_ether_addr(buf, dev->dev_addr) == 0) {
1878        lp->pktStats.unicast++;
1879    }
1880
1881    lp->pktStats.bins[0]++;       /* Duplicates stats.rx_packets */
1882    if (lp->pktStats.bins[0] == 0) { /* Reset counters */
1883        memset((char *)&lp->pktStats, 0, sizeof(lp->pktStats));
1884    }
1885}
1886
1887/*
1888** Removes the TD_IC flag from previous descriptor to improve TX performance.
1889** If the flag is changed on a descriptor that is being read by the hardware,
1890** I assume PCI transaction ordering will mean you are either successful or
1891** just miss asserting the change to the hardware. Anyway you're messing with
1892** a descriptor you don't own, but this shouldn't kill the chip provided
1893** the descriptor register is read only to the hardware.
1894*/
1895static void
1896load_packet(struct net_device *dev, char *buf, u32 flags, struct sk_buff *skb)
1897{
1898    struct de4x5_private *lp = netdev_priv(dev);
1899    int entry = (lp->tx_new ? lp->tx_new-1 : lp->txRingSize-1);
1900    dma_addr_t buf_dma = dma_map_single(lp->gendev, buf, flags & TD_TBS1, DMA_TO_DEVICE);
1901
1902    lp->tx_ring[lp->tx_new].buf = cpu_to_le32(buf_dma);
1903    lp->tx_ring[lp->tx_new].des1 &= cpu_to_le32(TD_TER);
1904    lp->tx_ring[lp->tx_new].des1 |= cpu_to_le32(flags);
1905    lp->tx_skb[lp->tx_new] = skb;
1906    lp->tx_ring[entry].des1 &= cpu_to_le32(~TD_IC);
1907    barrier();
1908
1909    lp->tx_ring[lp->tx_new].status = cpu_to_le32(T_OWN);
1910    barrier();
1911}
1912
1913/*
1914** Set or clear the multicast filter for this adaptor.
1915*/
1916static void
1917set_multicast_list(struct net_device *dev)
1918{
1919    struct de4x5_private *lp = netdev_priv(dev);
1920    u_long iobase = dev->base_addr;
1921
1922    /* First, double check that the adapter is open */
1923    if (lp->state == OPEN) {
1924	if (dev->flags & IFF_PROMISC) {         /* set promiscuous mode */
1925	    u32 omr;
1926	    omr = inl(DE4X5_OMR);
1927	    omr |= OMR_PR;
1928	    outl(omr, DE4X5_OMR);
1929	} else {
1930	    SetMulticastFilter(dev);
1931	    load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
1932			                                SETUP_FRAME_LEN, (struct sk_buff *)1);
1933
1934	    lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
1935	    outl(POLL_DEMAND, DE4X5_TPD);       /* Start the TX */
1936	    dev->trans_start = jiffies; /* prevent tx timeout */
1937	}
1938    }
1939}
1940
1941/*
1942** Calculate the hash code and update the logical address filter
1943** from a list of ethernet multicast addresses.
1944** Little endian crc one liner from Matt Thomas, DEC.
1945*/
1946static void
1947SetMulticastFilter(struct net_device *dev)
1948{
1949    struct de4x5_private *lp = netdev_priv(dev);
1950    struct netdev_hw_addr *ha;
1951    u_long iobase = dev->base_addr;
1952    int i, bit, byte;
1953    u16 hashcode;
1954    u32 omr, crc;
1955    char *pa;
1956    unsigned char *addrs;
1957
1958    omr = inl(DE4X5_OMR);
1959    omr &= ~(OMR_PR | OMR_PM);
1960    pa = build_setup_frame(dev, ALL);        /* Build the basic frame */
1961
1962    if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 14)) {
1963	omr |= OMR_PM;                       /* Pass all multicasts */
1964    } else if (lp->setup_f == HASH_PERF) {   /* Hash Filtering */
1965	netdev_for_each_mc_addr(ha, dev) {
1966		crc = ether_crc_le(ETH_ALEN, ha->addr);
1967		hashcode = crc & HASH_BITS;  /* hashcode is 9 LSb of CRC */
1968
1969		byte = hashcode >> 3;        /* bit[3-8] -> byte in filter */
1970		bit = 1 << (hashcode & 0x07);/* bit[0-2] -> bit in byte */
1971
1972		byte <<= 1;                  /* calc offset into setup frame */
1973		if (byte & 0x02) {
1974		    byte -= 1;
1975		}
1976		lp->setup_frame[byte] |= bit;
1977	}
1978    } else {                                 /* Perfect filtering */
1979	netdev_for_each_mc_addr(ha, dev) {
1980	    addrs = ha->addr;
1981	    for (i=0; i<ETH_ALEN; i++) {
1982		*(pa + (i&1)) = *addrs++;
1983		if (i & 0x01) pa += 4;
1984	    }
1985	}
1986    }
1987    outl(omr, DE4X5_OMR);
1988}
1989
1990#ifdef CONFIG_EISA
1991
1992static u_char de4x5_irq[] = EISA_ALLOWED_IRQ_LIST;
1993
1994static int __init de4x5_eisa_probe (struct device *gendev)
1995{
1996	struct eisa_device *edev;
1997	u_long iobase;
1998	u_char irq, regval;
1999	u_short vendor;
2000	u32 cfid;
2001	int status, device;
2002	struct net_device *dev;
2003	struct de4x5_private *lp;
2004
2005	edev = to_eisa_device (gendev);
2006	iobase = edev->base_addr;
2007
2008	if (!request_region (iobase, DE4X5_EISA_TOTAL_SIZE, "de4x5"))
2009		return -EBUSY;
2010
2011	if (!request_region (iobase + DE4X5_EISA_IO_PORTS,
2012			     DE4X5_EISA_TOTAL_SIZE, "de4x5")) {
2013		status = -EBUSY;
2014		goto release_reg_1;
2015	}
2016
2017	if (!(dev = alloc_etherdev (sizeof (struct de4x5_private)))) {
2018		status = -ENOMEM;
2019		goto release_reg_2;
2020	}
2021	lp = netdev_priv(dev);
2022
2023	cfid = (u32) inl(PCI_CFID);
2024	lp->cfrv = (u_short) inl(PCI_CFRV);
2025	device = (cfid >> 8) & 0x00ffff00;
2026	vendor = (u_short) cfid;
2027
2028	/* Read the EISA Configuration Registers */
2029	regval = inb(EISA_REG0) & (ER0_INTL | ER0_INTT);
2030#ifdef CONFIG_ALPHA
2031	/* Looks like the Jensen firmware (rev 2.2) doesn't really
2032	 * care about the EISA configuration, and thus doesn't
2033	 * configure the PLX bridge properly. Oh well... Simply mimic
2034	 * the EISA config file to sort it out. */
2035
2036	/* EISA REG1: Assert DecChip 21040 HW Reset */
2037	outb (ER1_IAM | 1, EISA_REG1);
2038	mdelay (1);
2039
2040        /* EISA REG1: Deassert DecChip 21040 HW Reset */
2041	outb (ER1_IAM, EISA_REG1);
2042	mdelay (1);
2043
2044	/* EISA REG3: R/W Burst Transfer Enable */
2045	outb (ER3_BWE | ER3_BRE, EISA_REG3);
2046
2047	/* 32_bit slave/master, Preempt Time=23 bclks, Unlatched Interrupt */
2048	outb (ER0_BSW | ER0_BMW | ER0_EPT | regval, EISA_REG0);
2049#endif
2050	irq = de4x5_irq[(regval >> 1) & 0x03];
2051
2052	if (is_DC2114x) {
2053	    device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
2054	}
2055	lp->chipset = device;
2056	lp->bus = EISA;
2057
2058	/* Write the PCI Configuration Registers */
2059	outl(PCI_COMMAND_IO | PCI_COMMAND_MASTER, PCI_CFCS);
2060	outl(0x00006000, PCI_CFLT);
2061	outl(iobase, PCI_CBIO);
2062
2063	DevicePresent(dev, EISA_APROM);
2064
2065	dev->irq = irq;
2066
2067	if (!(status = de4x5_hw_init (dev, iobase, gendev))) {
2068		return 0;
2069	}
2070
2071	free_netdev (dev);
2072 release_reg_2:
2073	release_region (iobase + DE4X5_EISA_IO_PORTS, DE4X5_EISA_TOTAL_SIZE);
2074 release_reg_1:
2075	release_region (iobase, DE4X5_EISA_TOTAL_SIZE);
2076
2077	return status;
2078}
2079
2080static int __devexit de4x5_eisa_remove (struct device *device)
2081{
2082	struct net_device *dev;
2083	u_long iobase;
2084
2085	dev = dev_get_drvdata(device);
2086	iobase = dev->base_addr;
2087
2088	unregister_netdev (dev);
2089	free_netdev (dev);
2090	release_region (iobase + DE4X5_EISA_IO_PORTS, DE4X5_EISA_TOTAL_SIZE);
2091	release_region (iobase, DE4X5_EISA_TOTAL_SIZE);
2092
2093	return 0;
2094}
2095
2096static struct eisa_device_id de4x5_eisa_ids[] = {
2097        { "DEC4250", 0 },	/* 0 is the board name index... */
2098        { "" }
2099};
2100MODULE_DEVICE_TABLE(eisa, de4x5_eisa_ids);
2101
2102static struct eisa_driver de4x5_eisa_driver = {
2103        .id_table = de4x5_eisa_ids,
2104        .driver   = {
2105                .name    = "de4x5",
2106                .probe   = de4x5_eisa_probe,
2107                .remove  = __devexit_p (de4x5_eisa_remove),
2108        }
2109};
2110MODULE_DEVICE_TABLE(eisa, de4x5_eisa_ids);
2111#endif
2112
2113#ifdef CONFIG_PCI
2114
2115/*
2116** This function searches the current bus (which is >0) for a DECchip with an
2117** SROM, so that in multiport cards that have one SROM shared between multiple
2118** DECchips, we can find the base SROM irrespective of the BIOS scan direction.
2119** For single port cards this is a time waster...
2120*/
2121static void __devinit
2122srom_search(struct net_device *dev, struct pci_dev *pdev)
2123{
2124    u_char pb;
2125    u_short vendor, status;
2126    u_int irq = 0, device;
2127    u_long iobase = 0;                     /* Clear upper 32 bits in Alphas */
2128    int i, j;
2129    struct de4x5_private *lp = netdev_priv(dev);
2130    struct pci_dev *this_dev;
2131
2132    list_for_each_entry(this_dev, &pdev->bus->devices, bus_list) {
2133	vendor = this_dev->vendor;
2134	device = this_dev->device << 8;
2135	if (!(is_DC21040 || is_DC21041 || is_DC21140 || is_DC2114x)) continue;
2136
2137	/* Get the chip configuration revision register */
2138	pb = this_dev->bus->number;
2139
2140	/* Set the device number information */
2141	lp->device = PCI_SLOT(this_dev->devfn);
2142	lp->bus_num = pb;
2143
2144	/* Set the chipset information */
2145	if (is_DC2114x) {
2146	    device = ((this_dev->revision & CFRV_RN) < DC2114x_BRK
2147		      ? DC21142 : DC21143);
2148	}
2149	lp->chipset = device;
2150
2151	/* Get the board I/O address (64 bits on sparc64) */
2152	iobase = pci_resource_start(this_dev, 0);
2153
2154	/* Fetch the IRQ to be used */
2155	irq = this_dev->irq;
2156	if ((irq == 0) || (irq == 0xff) || ((int)irq == -1)) continue;
2157
2158	/* Check if I/O accesses are enabled */
2159	pci_read_config_word(this_dev, PCI_COMMAND, &status);
2160	if (!(status & PCI_COMMAND_IO)) continue;
2161
2162	/* Search for a valid SROM attached to this DECchip */
2163	DevicePresent(dev, DE4X5_APROM);
2164	for (j=0, i=0; i<ETH_ALEN; i++) {
2165	    j += (u_char) *((u_char *)&lp->srom + SROM_HWADD + i);
2166	}
2167	if (j != 0 && j != 6 * 0xff) {
2168	    last.chipset = device;
2169	    last.bus = pb;
2170	    last.irq = irq;
2171	    for (i=0; i<ETH_ALEN; i++) {
2172		last.addr[i] = (u_char)*((u_char *)&lp->srom + SROM_HWADD + i);
2173	    }
2174	    return;
2175	}
2176    }
2177}
2178
2179/*
2180** PCI bus I/O device probe
2181** NB: PCI I/O accesses and Bus Mastering are enabled by the PCI BIOS, not
2182** the driver. Some PCI BIOS's, pre V2.1, need the slot + features to be
2183** enabled by the user first in the set up utility. Hence we just check for
2184** enabled features and silently ignore the card if they're not.
2185**
2186** STOP PRESS: Some BIOS's __require__ the driver to enable the bus mastering
2187** bit. Here, check for I/O accesses and then set BM. If you put the card in
2188** a non BM slot, you're on your own (and complain to the PC vendor that your
2189** PC doesn't conform to the PCI standard)!
2190**
2191** This function is only compatible with the *latest* 2.1.x kernels. For 2.0.x
2192** kernels use the V0.535[n] drivers.
2193*/
2194
2195static int __devinit de4x5_pci_probe (struct pci_dev *pdev,
2196				   const struct pci_device_id *ent)
2197{
2198	u_char pb, pbus = 0, dev_num, dnum = 0, timer;
2199	u_short vendor, status;
2200	u_int irq = 0, device;
2201	u_long iobase = 0;	/* Clear upper 32 bits in Alphas */
2202	int error;
2203	struct net_device *dev;
2204	struct de4x5_private *lp;
2205
2206	dev_num = PCI_SLOT(pdev->devfn);
2207	pb = pdev->bus->number;
2208
2209	if (io) { /* probe a single PCI device */
2210		pbus = (u_short)(io >> 8);
2211		dnum = (u_short)(io & 0xff);
2212		if ((pbus != pb) || (dnum != dev_num))
2213			return -ENODEV;
2214	}
2215
2216	vendor = pdev->vendor;
2217	device = pdev->device << 8;
2218	if (!(is_DC21040 || is_DC21041 || is_DC21140 || is_DC2114x))
2219		return -ENODEV;
2220
2221	/* Ok, the device seems to be for us. */
2222	if ((error = pci_enable_device (pdev)))
2223		return error;
2224
2225	if (!(dev = alloc_etherdev (sizeof (struct de4x5_private)))) {
2226		error = -ENOMEM;
2227		goto disable_dev;
2228	}
2229
2230	lp = netdev_priv(dev);
2231	lp->bus = PCI;
2232	lp->bus_num = 0;
2233
2234	/* Search for an SROM on this bus */
2235	if (lp->bus_num != pb) {
2236	    lp->bus_num = pb;
2237	    srom_search(dev, pdev);
2238	}
2239
2240	/* Get the chip configuration revision register */
2241	lp->cfrv = pdev->revision;
2242
2243	/* Set the device number information */
2244	lp->device = dev_num;
2245	lp->bus_num = pb;
2246
2247	/* Set the chipset information */
2248	if (is_DC2114x) {
2249	    device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
2250	}
2251	lp->chipset = device;
2252
2253	/* Get the board I/O address (64 bits on sparc64) */
2254	iobase = pci_resource_start(pdev, 0);
2255
2256	/* Fetch the IRQ to be used */
2257	irq = pdev->irq;
2258	if ((irq == 0) || (irq == 0xff) || ((int)irq == -1)) {
2259		error = -ENODEV;
2260		goto free_dev;
2261	}
2262
2263	/* Check if I/O accesses and Bus Mastering are enabled */
2264	pci_read_config_word(pdev, PCI_COMMAND, &status);
2265#ifdef __powerpc__
2266	if (!(status & PCI_COMMAND_IO)) {
2267	    status |= PCI_COMMAND_IO;
2268	    pci_write_config_word(pdev, PCI_COMMAND, status);
2269	    pci_read_config_word(pdev, PCI_COMMAND, &status);
2270	}
2271#endif /* __powerpc__ */
2272	if (!(status & PCI_COMMAND_IO)) {
2273		error = -ENODEV;
2274		goto free_dev;
2275	}
2276
2277	if (!(status & PCI_COMMAND_MASTER)) {
2278	    status |= PCI_COMMAND_MASTER;
2279	    pci_write_config_word(pdev, PCI_COMMAND, status);
2280	    pci_read_config_word(pdev, PCI_COMMAND, &status);
2281	}
2282	if (!(status & PCI_COMMAND_MASTER)) {
2283		error = -ENODEV;
2284		goto free_dev;
2285	}
2286
2287	/* Check the latency timer for values >= 0x60 */
2288	pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &timer);
2289	if (timer < 0x60) {
2290	    pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x60);
2291	}
2292
2293	DevicePresent(dev, DE4X5_APROM);
2294
2295	if (!request_region (iobase, DE4X5_PCI_TOTAL_SIZE, "de4x5")) {
2296		error = -EBUSY;
2297		goto free_dev;
2298	}
2299
2300	dev->irq = irq;
2301
2302	if ((error = de4x5_hw_init(dev, iobase, &pdev->dev))) {
2303		goto release;
2304	}
2305
2306	return 0;
2307
2308 release:
2309	release_region (iobase, DE4X5_PCI_TOTAL_SIZE);
2310 free_dev:
2311	free_netdev (dev);
2312 disable_dev:
2313	pci_disable_device (pdev);
2314	return error;
2315}
2316
2317static void __devexit de4x5_pci_remove (struct pci_dev *pdev)
2318{
2319	struct net_device *dev;
2320	u_long iobase;
2321
2322	dev = dev_get_drvdata(&pdev->dev);
2323	iobase = dev->base_addr;
2324
2325	unregister_netdev (dev);
2326	free_netdev (dev);
2327	release_region (iobase, DE4X5_PCI_TOTAL_SIZE);
2328	pci_disable_device (pdev);
2329}
2330
2331static struct pci_device_id de4x5_pci_tbl[] = {
2332        { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP,
2333          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
2334        { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_PLUS,
2335          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
2336        { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST,
2337	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2 },
2338        { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142,
2339	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 3 },
2340        { },
2341};
2342
2343static struct pci_driver de4x5_pci_driver = {
2344        .name           = "de4x5",
2345        .id_table       = de4x5_pci_tbl,
2346        .probe          = de4x5_pci_probe,
2347	.remove         = __devexit_p (de4x5_pci_remove),
2348};
2349
2350#endif
2351
2352/*
2353** Auto configure the media here rather than setting the port at compile
2354** time. This routine is called by de4x5_init() and when a loss of media is
2355** detected (excessive collisions, loss of carrier, no carrier or link fail
2356** [TP] or no recent receive activity) to check whether the user has been
2357** sneaky and changed the port on us.
2358*/
2359static int
2360autoconf_media(struct net_device *dev)
2361{
2362	struct de4x5_private *lp = netdev_priv(dev);
2363	u_long iobase = dev->base_addr;
2364
2365	disable_ast(dev);
2366
2367	lp->c_media = AUTO;                     /* Bogus last media */
2368	inl(DE4X5_MFC);                         /* Zero the lost frames counter */
2369	lp->media = INIT;
2370	lp->tcount = 0;
2371
2372	de4x5_ast(dev);
2373
2374	return lp->media;
2375}
2376
2377/*
2378** Autoconfigure the media when using the DC21040. AUI cannot be distinguished
2379** from BNC as the port has a jumper to set thick or thin wire. When set for
2380** BNC, the BNC port will indicate activity if it's not terminated correctly.
2381** The only way to test for that is to place a loopback packet onto the
2382** network and watch for errors. Since we're messing with the interrupt mask
2383** register, disable the board interrupts and do not allow any more packets to
2384** be queued to the hardware. Re-enable everything only when the media is
2385** found.
2386** I may have to "age out" locally queued packets so that the higher layer
2387** timeouts don't effectively duplicate packets on the network.
2388*/
2389static int
2390dc21040_autoconf(struct net_device *dev)
2391{
2392    struct de4x5_private *lp = netdev_priv(dev);
2393    u_long iobase = dev->base_addr;
2394    int next_tick = DE4X5_AUTOSENSE_MS;
2395    s32 imr;
2396
2397    switch (lp->media) {
2398    case INIT:
2399	DISABLE_IRQs;
2400	lp->tx_enable = false;
2401	lp->timeout = -1;
2402	de4x5_save_skbs(dev);
2403	if ((lp->autosense == AUTO) || (lp->autosense == TP)) {
2404	    lp->media = TP;
2405	} else if ((lp->autosense == BNC) || (lp->autosense == AUI) || (lp->autosense == BNC_AUI)) {
2406	    lp->media = BNC_AUI;
2407	} else if (lp->autosense == EXT_SIA) {
2408	    lp->media = EXT_SIA;
2409	} else {
2410	    lp->media = NC;
2411	}
2412	lp->local_state = 0;
2413	next_tick = dc21040_autoconf(dev);
2414	break;
2415
2416    case TP:
2417	next_tick = dc21040_state(dev, 0x8f01, 0xffff, 0x0000, 3000, BNC_AUI,
2418		                                         TP_SUSPECT, test_tp);
2419	break;
2420
2421    case TP_SUSPECT:
2422	next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21040_autoconf);
2423	break;
2424
2425    case BNC:
2426    case AUI:
2427    case BNC_AUI:
2428	next_tick = dc21040_state(dev, 0x8f09, 0x0705, 0x0006, 3000, EXT_SIA,
2429		                                  BNC_AUI_SUSPECT, ping_media);
2430	break;
2431
2432    case BNC_AUI_SUSPECT:
2433	next_tick = de4x5_suspect_state(dev, 1000, BNC_AUI, ping_media, dc21040_autoconf);
2434	break;
2435
2436    case EXT_SIA:
2437	next_tick = dc21040_state(dev, 0x3041, 0x0000, 0x0006, 3000,
2438		                              NC, EXT_SIA_SUSPECT, ping_media);
2439	break;
2440
2441    case EXT_SIA_SUSPECT:
2442	next_tick = de4x5_suspect_state(dev, 1000, EXT_SIA, ping_media, dc21040_autoconf);
2443	break;
2444
2445    case NC:
2446	/* default to TP for all */
2447	reset_init_sia(dev, 0x8f01, 0xffff, 0x0000);
2448	if (lp->media != lp->c_media) {
2449	    de4x5_dbg_media(dev);
2450	    lp->c_media = lp->media;
2451	}
2452	lp->media = INIT;
2453	lp->tx_enable = false;
2454	break;
2455    }
2456
2457    return next_tick;
2458}
2459
2460static int
2461dc21040_state(struct net_device *dev, int csr13, int csr14, int csr15, int timeout,
2462	      int next_state, int suspect_state,
2463	      int (*fn)(struct net_device *, int))
2464{
2465    struct de4x5_private *lp = netdev_priv(dev);
2466    int next_tick = DE4X5_AUTOSENSE_MS;
2467    int linkBad;
2468
2469    switch (lp->local_state) {
2470    case 0:
2471	reset_init_sia(dev, csr13, csr14, csr15);
2472	lp->local_state++;
2473	next_tick = 500;
2474	break;
2475
2476    case 1:
2477	if (!lp->tx_enable) {
2478	    linkBad = fn(dev, timeout);
2479	    if (linkBad < 0) {
2480		next_tick = linkBad & ~TIMER_CB;
2481	    } else {
2482		if (linkBad && (lp->autosense == AUTO)) {
2483		    lp->local_state = 0;
2484		    lp->media = next_state;
2485		} else {
2486		    de4x5_init_connection(dev);
2487		}
2488	    }
2489	} else if (!lp->linkOK && (lp->autosense == AUTO)) {
2490	    lp->media = suspect_state;
2491	    next_tick = 3000;
2492	}
2493	break;
2494    }
2495
2496    return next_tick;
2497}
2498
2499static int
2500de4x5_suspect_state(struct net_device *dev, int timeout, int prev_state,
2501		      int (*fn)(struct net_device *, int),
2502		      int (*asfn)(struct net_device *))
2503{
2504    struct de4x5_private *lp = netdev_priv(dev);
2505    int next_tick = DE4X5_AUTOSENSE_MS;
2506    int linkBad;
2507
2508    switch (lp->local_state) {
2509    case 1:
2510	if (lp->linkOK) {
2511	    lp->media = prev_state;
2512	} else {
2513	    lp->local_state++;
2514	    next_tick = asfn(dev);
2515	}
2516	break;
2517
2518    case 2:
2519	linkBad = fn(dev, timeout);
2520	if (linkBad < 0) {
2521	    next_tick = linkBad & ~TIMER_CB;
2522	} else if (!linkBad) {
2523	    lp->local_state--;
2524	    lp->media = prev_state;
2525	} else {
2526	    lp->media = INIT;
2527	    lp->tcount++;
2528	}
2529    }
2530
2531    return next_tick;
2532}
2533
2534/*
2535** Autoconfigure the media when using the DC21041. AUI needs to be tested
2536** before BNC, because the BNC port will indicate activity if it's not
2537** terminated correctly. The only way to test for that is to place a loopback
2538** packet onto the network and watch for errors. Since we're messing with
2539** the interrupt mask register, disable the board interrupts and do not allow
2540** any more packets to be queued to the hardware. Re-enable everything only
2541** when the media is found.
2542*/
2543static int
2544dc21041_autoconf(struct net_device *dev)
2545{
2546    struct de4x5_private *lp = netdev_priv(dev);
2547    u_long iobase = dev->base_addr;
2548    s32 sts, irqs, irq_mask, imr, omr;
2549    int next_tick = DE4X5_AUTOSENSE_MS;
2550
2551    switch (lp->media) {
2552    case INIT:
2553	DISABLE_IRQs;
2554	lp->tx_enable = false;
2555	lp->timeout = -1;
2556	de4x5_save_skbs(dev);          /* Save non transmitted skb's */
2557	if ((lp->autosense == AUTO) || (lp->autosense == TP_NW)) {
2558	    lp->media = TP;            /* On chip auto negotiation is broken */
2559	} else if (lp->autosense == TP) {
2560	    lp->media = TP;
2561	} else if (lp->autosense == BNC) {
2562	    lp->media = BNC;
2563	} else if (lp->autosense == AUI) {
2564	    lp->media = AUI;
2565	} else {
2566	    lp->media = NC;
2567	}
2568	lp->local_state = 0;
2569	next_tick = dc21041_autoconf(dev);
2570	break;
2571
2572    case TP_NW:
2573	if (lp->timeout < 0) {
2574	    omr = inl(DE4X5_OMR);/* Set up full duplex for the autonegotiate */
2575	    outl(omr | OMR_FDX, DE4X5_OMR);
2576	}
2577	irqs = STS_LNF | STS_LNP;
2578	irq_mask = IMR_LFM | IMR_LPM;
2579	sts = test_media(dev, irqs, irq_mask, 0xef01, 0xffff, 0x0008, 2400);
2580	if (sts < 0) {
2581	    next_tick = sts & ~TIMER_CB;
2582	} else {
2583	    if (sts & STS_LNP) {
2584		lp->media = ANS;
2585	    } else {
2586		lp->media = AUI;
2587	    }
2588	    next_tick = dc21041_autoconf(dev);
2589	}
2590	break;
2591
2592    case ANS:
2593	if (!lp->tx_enable) {
2594	    irqs = STS_LNP;
2595	    irq_mask = IMR_LPM;
2596	    sts = test_ans(dev, irqs, irq_mask, 3000);
2597	    if (sts < 0) {
2598		next_tick = sts & ~TIMER_CB;
2599	    } else {
2600		if (!(sts & STS_LNP) && (lp->autosense == AUTO)) {
2601		    lp->media = TP;
2602		    next_tick = dc21041_autoconf(dev);
2603		} else {
2604		    lp->local_state = 1;
2605		    de4x5_init_connection(dev);
2606		}
2607	    }
2608	} else if (!lp->linkOK && (lp->autosense == AUTO)) {
2609	    lp->media = ANS_SUSPECT;
2610	    next_tick = 3000;
2611	}
2612	break;
2613
2614    case ANS_SUSPECT:
2615	next_tick = de4x5_suspect_state(dev, 1000, ANS, test_tp, dc21041_autoconf);
2616	break;
2617
2618    case TP:
2619	if (!lp->tx_enable) {
2620	    if (lp->timeout < 0) {
2621		omr = inl(DE4X5_OMR);          /* Set up half duplex for TP */
2622		outl(omr & ~OMR_FDX, DE4X5_OMR);
2623	    }
2624	    irqs = STS_LNF | STS_LNP;
2625	    irq_mask = IMR_LFM | IMR_LPM;
2626	    sts = test_media(dev,irqs, irq_mask, 0xef01, 0xff3f, 0x0008, 2400);
2627	    if (sts < 0) {
2628		next_tick = sts & ~TIMER_CB;
2629	    } else {
2630		if (!(sts & STS_LNP) && (lp->autosense == AUTO)) {
2631		    if (inl(DE4X5_SISR) & SISR_NRA) {
2632			lp->media = AUI;       /* Non selected port activity */
2633		    } else {
2634			lp->media = BNC;
2635		    }
2636		    next_tick = dc21041_autoconf(dev);
2637		} else {
2638		    lp->local_state = 1;
2639		    de4x5_init_connection(dev);
2640		}
2641	    }
2642	} else if (!lp->linkOK && (lp->autosense == AUTO)) {
2643	    lp->media = TP_SUSPECT;
2644	    next_tick = 3000;
2645	}
2646	break;
2647
2648    case TP_SUSPECT:
2649	next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21041_autoconf);
2650	break;
2651
2652    case AUI:
2653	if (!lp->tx_enable) {
2654	    if (lp->timeout < 0) {
2655		omr = inl(DE4X5_OMR);          /* Set up half duplex for AUI */
2656		outl(omr & ~OMR_FDX, DE4X5_OMR);
2657	    }
2658	    irqs = 0;
2659	    irq_mask = 0;
2660	    sts = test_media(dev,irqs, irq_mask, 0xef09, 0xf73d, 0x000e, 1000);
2661	    if (sts < 0) {
2662		next_tick = sts & ~TIMER_CB;
2663	    } else {
2664		if (!(inl(DE4X5_SISR) & SISR_SRA) && (lp->autosense == AUTO)) {
2665		    lp->media = BNC;
2666		    next_tick = dc21041_autoconf(dev);
2667		} else {
2668		    lp->local_state = 1;
2669		    de4x5_init_connection(dev);
2670		}
2671	    }
2672	} else if (!lp->linkOK && (lp->autosense == AUTO)) {
2673	    lp->media = AUI_SUSPECT;
2674	    next_tick = 3000;
2675	}
2676	break;
2677
2678    case AUI_SUSPECT:
2679	next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc21041_autoconf);
2680	break;
2681
2682    case BNC:
2683	switch (lp->local_state) {
2684	case 0:
2685	    if (lp->timeout < 0) {
2686		omr = inl(DE4X5_OMR);          /* Set up half duplex for BNC */
2687		outl(omr & ~OMR_FDX, DE4X5_OMR);
2688	    }
2689	    irqs = 0;
2690	    irq_mask = 0;
2691	    sts = test_media(dev,irqs, irq_mask, 0xef09, 0xf73d, 0x0006, 1000);
2692	    if (sts < 0) {
2693		next_tick = sts & ~TIMER_CB;
2694	    } else {
2695		lp->local_state++;             /* Ensure media connected */
2696		next_tick = dc21041_autoconf(dev);
2697	    }
2698	    break;
2699
2700	case 1:
2701	    if (!lp->tx_enable) {
2702		if ((sts = ping_media(dev, 3000)) < 0) {
2703		    next_tick = sts & ~TIMER_CB;
2704		} else {
2705		    if (sts) {
2706			lp->local_state = 0;
2707			lp->media = NC;
2708		    } else {
2709			de4x5_init_connection(dev);
2710		    }
2711		}
2712	    } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2713		lp->media = BNC_SUSPECT;
2714		next_tick = 3000;
2715	    }
2716	    break;
2717	}
2718	break;
2719
2720    case BNC_SUSPECT:
2721	next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc21041_autoconf);
2722	break;
2723
2724    case NC:
2725	omr = inl(DE4X5_OMR);    /* Set up full duplex for the autonegotiate */
2726	outl(omr | OMR_FDX, DE4X5_OMR);
2727	reset_init_sia(dev, 0xef01, 0xffff, 0x0008);/* Initialise the SIA */
2728	if (lp->media != lp->c_media) {
2729	    de4x5_dbg_media(dev);
2730	    lp->c_media = lp->media;
2731	}
2732	lp->media = INIT;
2733	lp->tx_enable = false;
2734	break;
2735    }
2736
2737    return next_tick;
2738}
2739
2740/*
2741** Some autonegotiation chips are broken in that they do not return the
2742** acknowledge bit (anlpa & MII_ANLPA_ACK) in the link partner advertisement
2743** register, except at the first power up negotiation.
2744*/
2745static int
2746dc21140m_autoconf(struct net_device *dev)
2747{
2748    struct de4x5_private *lp = netdev_priv(dev);
2749    int ana, anlpa, cap, cr, slnk, sr;
2750    int next_tick = DE4X5_AUTOSENSE_MS;
2751    u_long imr, omr, iobase = dev->base_addr;
2752
2753    switch(lp->media) {
2754    case INIT:
2755        if (lp->timeout < 0) {
2756	    DISABLE_IRQs;
2757	    lp->tx_enable = false;
2758	    lp->linkOK = 0;
2759	    de4x5_save_skbs(dev);          /* Save non transmitted skb's */
2760	}
2761	if ((next_tick = de4x5_reset_phy(dev)) < 0) {
2762	    next_tick &= ~TIMER_CB;
2763	} else {
2764	    if (lp->useSROM) {
2765		if (srom_map_media(dev) < 0) {
2766		    lp->tcount++;
2767		    return next_tick;
2768		}
2769		srom_exec(dev, lp->phy[lp->active].gep);
2770		if (lp->infoblock_media == ANS) {
2771		    ana = lp->phy[lp->active].ana | MII_ANA_CSMA;
2772		    mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2773		}
2774	    } else {
2775		lp->tmp = MII_SR_ASSC;     /* Fake out the MII speed set */
2776		SET_10Mb;
2777		if (lp->autosense == _100Mb) {
2778		    lp->media = _100Mb;
2779		} else if (lp->autosense == _10Mb) {
2780		    lp->media = _10Mb;
2781		} else if ((lp->autosense == AUTO) &&
2782			            ((sr=is_anc_capable(dev)) & MII_SR_ANC)) {
2783		    ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA);
2784		    ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM);
2785		    mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2786		    lp->media = ANS;
2787		} else if (lp->autosense == AUTO) {
2788		    lp->media = SPD_DET;
2789		} else if (is_spd_100(dev) && is_100_up(dev)) {
2790		    lp->media = _100Mb;
2791		} else {
2792		    lp->media = NC;
2793		}
2794	    }
2795	    lp->local_state = 0;
2796	    next_tick = dc21140m_autoconf(dev);
2797	}
2798	break;
2799
2800    case ANS:
2801	switch (lp->local_state) {
2802	case 0:
2803	    if (lp->timeout < 0) {
2804		mii_wr(MII_CR_ASSE | MII_CR_RAN, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
2805	    }
2806	    cr = test_mii_reg(dev, MII_CR, MII_CR_RAN, false, 500);
2807	    if (cr < 0) {
2808		next_tick = cr & ~TIMER_CB;
2809	    } else {
2810		if (cr) {
2811		    lp->local_state = 0;
2812		    lp->media = SPD_DET;
2813		} else {
2814		    lp->local_state++;
2815		}
2816		next_tick = dc21140m_autoconf(dev);
2817	    }
2818	    break;
2819
2820	case 1:
2821	    if ((sr=test_mii_reg(dev, MII_SR, MII_SR_ASSC, true, 2000)) < 0) {
2822		next_tick = sr & ~TIMER_CB;
2823	    } else {
2824		lp->media = SPD_DET;
2825		lp->local_state = 0;
2826		if (sr) {                         /* Success! */
2827		    lp->tmp = MII_SR_ASSC;
2828		    anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII);
2829		    ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2830		    if (!(anlpa & MII_ANLPA_RF) &&
2831			 (cap = anlpa & MII_ANLPA_TAF & ana)) {
2832			if (cap & MII_ANA_100M) {
2833			    lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) != 0;
2834			    lp->media = _100Mb;
2835			} else if (cap & MII_ANA_10M) {
2836			    lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_10M) != 0;
2837
2838			    lp->media = _10Mb;
2839			}
2840		    }
2841		}                       /* Auto Negotiation failed to finish */
2842		next_tick = dc21140m_autoconf(dev);
2843	    }                           /* Auto Negotiation failed to start */
2844	    break;
2845	}
2846	break;
2847
2848    case SPD_DET:                              /* Choose 10Mb/s or 100Mb/s */
2849        if (lp->timeout < 0) {
2850	    lp->tmp = (lp->phy[lp->active].id ? MII_SR_LKS :
2851		                                  (~gep_rd(dev) & GEP_LNP));
2852	    SET_100Mb_PDET;
2853	}
2854        if ((slnk = test_for_100Mb(dev, 6500)) < 0) {
2855	    next_tick = slnk & ~TIMER_CB;
2856	} else {
2857	    if (is_spd_100(dev) && is_100_up(dev)) {
2858		lp->media = _100Mb;
2859	    } else if ((!is_spd_100(dev) && (is_10_up(dev) & lp->tmp))) {
2860		lp->media = _10Mb;
2861	    } else {
2862		lp->media = NC;
2863	    }
2864	    next_tick = dc21140m_autoconf(dev);
2865	}
2866	break;
2867
2868    case _100Mb:                               /* Set 100Mb/s */
2869        next_tick = 3000;
2870	if (!lp->tx_enable) {
2871	    SET_100Mb;
2872	    de4x5_init_connection(dev);
2873	} else {
2874	    if (!lp->linkOK && (lp->autosense == AUTO)) {
2875		if (!is_100_up(dev) || (!lp->useSROM && !is_spd_100(dev))) {
2876		    lp->media = INIT;
2877		    lp->tcount++;
2878		    next_tick = DE4X5_AUTOSENSE_MS;
2879		}
2880	    }
2881	}
2882	break;
2883
2884    case BNC:
2885    case AUI:
2886    case _10Mb:                                /* Set 10Mb/s */
2887        next_tick = 3000;
2888	if (!lp->tx_enable) {
2889	    SET_10Mb;
2890	    de4x5_init_connection(dev);
2891	} else {
2892	    if (!lp->linkOK && (lp->autosense == AUTO)) {
2893		if (!is_10_up(dev) || (!lp->useSROM && is_spd_100(dev))) {
2894		    lp->media = INIT;
2895		    lp->tcount++;
2896		    next_tick = DE4X5_AUTOSENSE_MS;
2897		}
2898	    }
2899	}
2900	break;
2901
2902    case NC:
2903        if (lp->media != lp->c_media) {
2904	    de4x5_dbg_media(dev);
2905	    lp->c_media = lp->media;
2906	}
2907	lp->media = INIT;
2908	lp->tx_enable = false;
2909	break;
2910    }
2911
2912    return next_tick;
2913}
2914
2915/*
2916** This routine may be merged into dc21140m_autoconf() sometime as I'm
2917** changing how I figure out the media - but trying to keep it backwards
2918** compatible with the de500-xa and de500-aa.
2919** Whether it's BNC, AUI, SYM or MII is sorted out in the infoblock
2920** functions and set during de4x5_mac_port() and/or de4x5_reset_phy().
2921** This routine just has to figure out whether 10Mb/s or 100Mb/s is
2922** active.
2923** When autonegotiation is working, the ANS part searches the SROM for
2924** the highest common speed (TP) link that both can run and if that can
2925** be full duplex. That infoblock is executed and then the link speed set.
2926**
2927** Only _10Mb and _100Mb are tested here.
2928*/
2929static int
2930dc2114x_autoconf(struct net_device *dev)
2931{
2932    struct de4x5_private *lp = netdev_priv(dev);
2933    u_long iobase = dev->base_addr;
2934    s32 cr, anlpa, ana, cap, irqs, irq_mask, imr, omr, slnk, sr, sts;
2935    int next_tick = DE4X5_AUTOSENSE_MS;
2936
2937    switch (lp->media) {
2938    case INIT:
2939        if (lp->timeout < 0) {
2940	    DISABLE_IRQs;
2941	    lp->tx_enable = false;
2942	    lp->linkOK = 0;
2943            lp->timeout = -1;
2944	    de4x5_save_skbs(dev);            /* Save non transmitted skb's */
2945	    if (lp->params.autosense & ~AUTO) {
2946		srom_map_media(dev);         /* Fixed media requested      */
2947		if (lp->media != lp->params.autosense) {
2948		    lp->tcount++;
2949		    lp->media = INIT;
2950		    return next_tick;
2951		}
2952		lp->media = INIT;
2953	    }
2954	}
2955	if ((next_tick = de4x5_reset_phy(dev)) < 0) {
2956	    next_tick &= ~TIMER_CB;
2957	} else {
2958	    if (lp->autosense == _100Mb) {
2959		lp->media = _100Mb;
2960	    } else if (lp->autosense == _10Mb) {
2961		lp->media = _10Mb;
2962	    } else if (lp->autosense == TP) {
2963		lp->media = TP;
2964	    } else if (lp->autosense == BNC) {
2965		lp->media = BNC;
2966	    } else if (lp->autosense == AUI) {
2967		lp->media = AUI;
2968	    } else {
2969		lp->media = SPD_DET;
2970		if ((lp->infoblock_media == ANS) &&
2971		                    ((sr=is_anc_capable(dev)) & MII_SR_ANC)) {
2972		    ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA);
2973		    ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM);
2974		    mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2975		    lp->media = ANS;
2976		}
2977	    }
2978	    lp->local_state = 0;
2979	    next_tick = dc2114x_autoconf(dev);
2980        }
2981	break;
2982
2983    case ANS:
2984	switch (lp->local_state) {
2985	case 0:
2986	    if (lp->timeout < 0) {
2987		mii_wr(MII_CR_ASSE | MII_CR_RAN, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
2988	    }
2989	    cr = test_mii_reg(dev, MII_CR, MII_CR_RAN, false, 500);
2990	    if (cr < 0) {
2991		next_tick = cr & ~TIMER_CB;
2992	    } else {
2993		if (cr) {
2994		    lp->local_state = 0;
2995		    lp->media = SPD_DET;
2996		} else {
2997		    lp->local_state++;
2998		}
2999		next_tick = dc2114x_autoconf(dev);
3000	    }
3001	    break;
3002
3003	case 1:
3004	    sr = test_mii_reg(dev, MII_SR, MII_SR_ASSC, true, 2000);
3005	    if (sr < 0) {
3006		next_tick = sr & ~TIMER_CB;
3007	    } else {
3008		lp->media = SPD_DET;
3009		lp->local_state = 0;
3010		if (sr) {                         /* Success! */
3011		    lp->tmp = MII_SR_ASSC;
3012		    anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII);
3013		    ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
3014		    if (!(anlpa & MII_ANLPA_RF) &&
3015			 (cap = anlpa & MII_ANLPA_TAF & ana)) {
3016			if (cap & MII_ANA_100M) {
3017			    lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) != 0;
3018			    lp->media = _100Mb;
3019			} else if (cap & MII_ANA_10M) {
3020			    lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_10M) != 0;
3021			    lp->media = _10Mb;
3022			}
3023		    }
3024		}                       /* Auto Negotiation failed to finish */
3025		next_tick = dc2114x_autoconf(dev);
3026	    }                           /* Auto Negotiation failed to start  */
3027	    break;
3028	}
3029	break;
3030
3031    case AUI:
3032	if (!lp->tx_enable) {
3033	    if (lp->timeout < 0) {
3034		omr = inl(DE4X5_OMR);   /* Set up half duplex for AUI        */
3035		outl(omr & ~OMR_FDX, DE4X5_OMR);
3036	    }
3037	    irqs = 0;
3038	    irq_mask = 0;
3039	    sts = test_media(dev,irqs, irq_mask, 0, 0, 0, 1000);
3040	    if (sts < 0) {
3041		next_tick = sts & ~TIMER_CB;
3042	    } else {
3043		if (!(inl(DE4X5_SISR) & SISR_SRA) && (lp->autosense == AUTO)) {
3044		    lp->media = BNC;
3045		    next_tick = dc2114x_autoconf(dev);
3046		} else {
3047		    lp->local_state = 1;
3048		    de4x5_init_connection(dev);
3049		}
3050	    }
3051	} else if (!lp->linkOK && (lp->autosense == AUTO)) {
3052	    lp->media = AUI_SUSPECT;
3053	    next_tick = 3000;
3054	}
3055	break;
3056
3057    case AUI_SUSPECT:
3058	next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc2114x_autoconf);
3059	break;
3060
3061    case BNC:
3062	switch (lp->local_state) {
3063	case 0:
3064	    if (lp->timeout < 0) {
3065		omr = inl(DE4X5_OMR);          /* Set up half duplex for BNC */
3066		outl(omr & ~OMR_FDX, DE4X5_OMR);
3067	    }
3068	    irqs = 0;
3069	    irq_mask = 0;
3070	    sts = test_media(dev,irqs, irq_mask, 0, 0, 0, 1000);
3071	    if (sts < 0) {
3072		next_tick = sts & ~TIMER_CB;
3073	    } else {
3074		lp->local_state++;             /* Ensure media connected */
3075		next_tick = dc2114x_autoconf(dev);
3076	    }
3077	    break;
3078
3079	case 1:
3080	    if (!lp->tx_enable) {
3081		if ((sts = ping_media(dev, 3000)) < 0) {
3082		    next_tick = sts & ~TIMER_CB;
3083		} else {
3084		    if (sts) {
3085			lp->local_state = 0;
3086			lp->tcount++;
3087			lp->media = INIT;
3088		    } else {
3089			de4x5_init_connection(dev);
3090		    }
3091		}
3092	    } else if (!lp->linkOK && (lp->autosense == AUTO)) {
3093		lp->media = BNC_SUSPECT;
3094		next_tick = 3000;
3095	    }
3096	    break;
3097	}
3098	break;
3099
3100    case BNC_SUSPECT:
3101	next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc2114x_autoconf);
3102	break;
3103
3104    case SPD_DET:                              /* Choose 10Mb/s or 100Mb/s */
3105	  if (srom_map_media(dev) < 0) {
3106	      lp->tcount++;
3107	      lp->media = INIT;
3108	      return next_tick;
3109	  }
3110	  if (lp->media == _100Mb) {
3111	      if ((slnk = test_for_100Mb(dev, 6500)) < 0) {
3112		  lp->media = SPD_DET;
3113		  return slnk & ~TIMER_CB;
3114	      }
3115	  } else {
3116	      if (wait_for_link(dev) < 0) {
3117		  lp->media = SPD_DET;
3118		  return PDET_LINK_WAIT;
3119	      }
3120	  }
3121	  if (lp->media == ANS) {           /* Do MII parallel detection */
3122	      if (is_spd_100(dev)) {
3123		  lp->media = _100Mb;
3124	      } else {
3125		  lp->media = _10Mb;
3126	      }
3127	      next_tick = dc2114x_autoconf(dev);
3128	  } else if (((lp->media == _100Mb) && is_100_up(dev)) ||
3129		     (((lp->media == _10Mb) || (lp->media == TP) ||
3130		       (lp->media == BNC)   || (lp->media == AUI)) &&
3131		      is_10_up(dev))) {
3132	      next_tick = dc2114x_autoconf(dev);
3133	  } else {
3134	      lp->tcount++;
3135	      lp->media = INIT;
3136	  }
3137	  break;
3138
3139    case _10Mb:
3140        next_tick = 3000;
3141	if (!lp->tx_enable) {
3142	    SET_10Mb;
3143	    de4x5_init_connection(dev);
3144	} else {
3145	    if (!lp->linkOK && (lp->autosense == AUTO)) {
3146		if (!is_10_up(dev) || (!lp->useSROM && is_spd_100(dev))) {
3147		    lp->media = INIT;
3148		    lp->tcount++;
3149		    next_tick = DE4X5_AUTOSENSE_MS;
3150		}
3151	    }
3152	}
3153	break;
3154
3155    case _100Mb:
3156        next_tick = 3000;
3157	if (!lp->tx_enable) {
3158	    SET_100Mb;
3159	    de4x5_init_connection(dev);
3160	} else {
3161	    if (!lp->linkOK && (lp->autosense == AUTO)) {
3162		if (!is_100_up(dev) || (!lp->useSROM && !is_spd_100(dev))) {
3163		    lp->media = INIT;
3164		    lp->tcount++;
3165		    next_tick = DE4X5_AUTOSENSE_MS;
3166		}
3167	    }
3168	}
3169	break;
3170
3171    default:
3172	lp->tcount++;
3173printk("Huh?: media:%02x\n", lp->media);
3174	lp->media = INIT;
3175	break;
3176    }
3177
3178    return next_tick;
3179}
3180
3181static int
3182srom_autoconf(struct net_device *dev)
3183{
3184    struct de4x5_private *lp = netdev_priv(dev);
3185
3186    return lp->infoleaf_fn(dev);
3187}
3188
3189/*
3190** This mapping keeps the original media codes and FDX flag unchanged.
3191** While it isn't strictly necessary, it helps me for the moment...
3192** The early return avoids a media state / SROM media space clash.
3193*/
3194static int
3195srom_map_media(struct net_device *dev)
3196{
3197    struct de4x5_private *lp = netdev_priv(dev);
3198
3199    lp->fdx = false;
3200    if (lp->infoblock_media == lp->media)
3201      return 0;
3202
3203    switch(lp->infoblock_media) {
3204      case SROM_10BASETF:
3205	if (!lp->params.fdx) return -1;
3206	lp->fdx = true;
3207      case SROM_10BASET:
3208	if (lp->params.fdx && !lp->fdx) return -1;
3209	if ((lp->chipset == DC21140) || ((lp->chipset & ~0x00ff) == DC2114x)) {
3210	    lp->media = _10Mb;
3211	} else {
3212	    lp->media = TP;
3213	}
3214	break;
3215
3216      case SROM_10BASE2:
3217	lp->media = BNC;
3218	break;
3219
3220      case SROM_10BASE5:
3221	lp->media = AUI;
3222	break;
3223
3224      case SROM_100BASETF:
3225        if (!lp->params.fdx) return -1;
3226	lp->fdx = true;
3227      case SROM_100BASET:
3228	if (lp->params.fdx && !lp->fdx) return -1;
3229	lp->media = _100Mb;
3230	break;
3231
3232      case SROM_100BASET4:
3233	lp->media = _100Mb;
3234	break;
3235
3236      case SROM_100BASEFF:
3237	if (!lp->params.fdx) return -1;
3238	lp->fdx = true;
3239      case SROM_100BASEF:
3240	if (lp->params.fdx && !lp->fdx) return -1;
3241	lp->media = _100Mb;
3242	break;
3243
3244      case ANS:
3245	lp->media = ANS;
3246	lp->fdx = lp->params.fdx;
3247	break;
3248
3249      default:
3250	printk("%s: Bad media code [%d] detected in SROM!\n", dev->name,
3251	                                                  lp->infoblock_media);
3252	return -1;
3253	break;
3254    }
3255
3256    return 0;
3257}
3258
3259static void
3260de4x5_init_connection(struct net_device *dev)
3261{
3262    struct de4x5_private *lp = netdev_priv(dev);
3263    u_long iobase = dev->base_addr;
3264    u_long flags = 0;
3265
3266    if (lp->media != lp->c_media) {
3267        de4x5_dbg_media(dev);
3268	lp->c_media = lp->media;          /* Stop scrolling media messages */
3269    }
3270
3271    spin_lock_irqsave(&lp->lock, flags);
3272    de4x5_rst_desc_ring(dev);
3273    de4x5_setup_intr(dev);
3274    lp->tx_enable = true;
3275    spin_unlock_irqrestore(&lp->lock, flags);
3276    outl(POLL_DEMAND, DE4X5_TPD);
3277
3278    netif_wake_queue(dev);
3279}
3280
3281/*
3282** General PHY reset function. Some MII devices don't reset correctly
3283** since their MII address pins can float at voltages that are dependent
3284** on the signal pin use. Do a double reset to ensure a reset.
3285*/
3286static int
3287de4x5_reset_phy(struct net_device *dev)
3288{
3289    struct de4x5_private *lp = netdev_priv(dev);
3290    u_long iobase = dev->base_addr;
3291    int next_tick = 0;
3292
3293    if ((lp->useSROM) || (lp->phy[lp->active].id)) {
3294	if (lp->timeout < 0) {
3295	    if (lp->useSROM) {
3296		if (lp->phy[lp->active].rst) {
3297		    srom_exec(dev, lp->phy[lp->active].rst);
3298		    srom_exec(dev, lp->phy[lp->active].rst);
3299		} else if (lp->rst) {          /* Type 5 infoblock reset */
3300		    srom_exec(dev, lp->rst);
3301		    srom_exec(dev, lp->rst);
3302		}
3303	    } else {
3304		PHY_HARD_RESET;
3305	    }
3306	    if (lp->useMII) {
3307	        mii_wr(MII_CR_RST, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
3308            }
3309        }
3310	if (lp->useMII) {
3311	    next_tick = test_mii_reg(dev, MII_CR, MII_CR_RST, false, 500);
3312	}
3313    } else if (lp->chipset == DC21140) {
3314	PHY_HARD_RESET;
3315    }
3316
3317    return next_tick;
3318}
3319
3320static int
3321test_media(struct net_device *dev, s32 irqs, s32 irq_mask, s32 csr13, s32 csr14, s32 csr15, s32 msec)
3322{
3323    struct de4x5_private *lp = netdev_priv(dev);
3324    u_long iobase = dev->base_addr;
3325    s32 sts, csr12;
3326
3327    if (lp->timeout < 0) {
3328	lp->timeout = msec/100;
3329	if (!lp->useSROM) {      /* Already done if by SROM, else dc2104[01] */
3330	    reset_init_sia(dev, csr13, csr14, csr15);
3331	}
3332
3333	/* set up the interrupt mask */
3334	outl(irq_mask, DE4X5_IMR);
3335
3336	/* clear all pending interrupts */
3337	sts = inl(DE4X5_STS);
3338	outl(sts, DE4X5_STS);
3339
3340	/* clear csr12 NRA and SRA bits */
3341	if ((lp->chipset == DC21041) || lp->useSROM) {
3342	    csr12 = inl(DE4X5_SISR);
3343	    outl(csr12, DE4X5_SISR);
3344	}
3345    }
3346
3347    sts = inl(DE4X5_STS) & ~TIMER_CB;
3348
3349    if (!(sts & irqs) && --lp->timeout) {
3350	sts = 100 | TIMER_CB;
3351    } else {
3352	lp->timeout = -1;
3353    }
3354
3355    return sts;
3356}
3357
3358static int
3359test_tp(struct net_device *dev, s32 msec)
3360{
3361    struct de4x5_private *lp = netdev_priv(dev);
3362    u_long iobase = dev->base_addr;
3363    int sisr;
3364
3365    if (lp->timeout < 0) {
3366	lp->timeout = msec/100;
3367    }
3368
3369    sisr = (inl(DE4X5_SISR) & ~TIMER_CB) & (SISR_LKF | SISR_NCR);
3370
3371    if (sisr && --lp->timeout) {
3372	sisr = 100 | TIMER_CB;
3373    } else {
3374	lp->timeout = -1;
3375    }
3376
3377    return sisr;
3378}
3379
3380/*
3381** Samples the 100Mb Link State Signal. The sample interval is important
3382** because too fast a rate can give erroneous results and confuse the
3383** speed sense algorithm.
3384*/
3385#define SAMPLE_INTERVAL 500  /* ms */
3386#define SAMPLE_DELAY    2000 /* ms */
3387static int
3388test_for_100Mb(struct net_device *dev, int msec)
3389{
3390    struct de4x5_private *lp = netdev_priv(dev);
3391    int gep = 0, ret = ((lp->chipset & ~0x00ff)==DC2114x? -1 :GEP_SLNK);
3392
3393    if (lp->timeout < 0) {
3394	if ((msec/SAMPLE_INTERVAL) <= 0) return 0;
3395	if (msec > SAMPLE_DELAY) {
3396	    lp->timeout = (msec - SAMPLE_DELAY)/SAMPLE_INTERVAL;
3397	    gep = SAMPLE_DELAY | TIMER_CB;
3398	    return gep;
3399	} else {
3400	    lp->timeout = msec/SAMPLE_INTERVAL;
3401	}
3402    }
3403
3404    if (lp->phy[lp->active].id || lp->useSROM) {
3405	gep = is_100_up(dev) | is_spd_100(dev);
3406    } else {
3407	gep = (~gep_rd(dev) & (GEP_SLNK | GEP_LNP));
3408    }
3409    if (!(gep & ret) && --lp->timeout) {
3410	gep = SAMPLE_INTERVAL | TIMER_CB;
3411    } else {
3412	lp->timeout = -1;
3413    }
3414
3415    return gep;
3416}
3417
3418static int
3419wait_for_link(struct net_device *dev)
3420{
3421    struct de4x5_private *lp = netdev_priv(dev);
3422
3423    if (lp->timeout < 0) {
3424	lp->timeout = 1;
3425    }
3426
3427    if (lp->timeout--) {
3428	return TIMER_CB;
3429    } else {
3430	lp->timeout = -1;
3431    }
3432
3433    return 0;
3434}
3435
3436/*
3437**
3438**
3439*/
3440static int
3441test_mii_reg(struct net_device *dev, int reg, int mask, bool pol, long msec)
3442{
3443    struct de4x5_private *lp = netdev_priv(dev);
3444    int test;
3445    u_long iobase = dev->base_addr;
3446
3447    if (lp->timeout < 0) {
3448	lp->timeout = msec/100;
3449    }
3450
3451    reg = mii_rd((u_char)reg, lp->phy[lp->active].addr, DE4X5_MII) & mask;
3452    test = (reg ^ (pol ? ~0 : 0)) & mask;
3453
3454    if (test && --lp->timeout) {
3455	reg = 100 | TIMER_CB;
3456    } else {
3457	lp->timeout = -1;
3458    }
3459
3460    return reg;
3461}
3462
3463static int
3464is_spd_100(struct net_device *dev)
3465{
3466    struct de4x5_private *lp = netdev_priv(dev);
3467    u_long iobase = dev->base_addr;
3468    int spd;
3469
3470    if (lp->useMII) {
3471	spd = mii_rd(lp->phy[lp->active].spd.reg, lp->phy[lp->active].addr, DE4X5_MII);
3472	spd = ~(spd ^ lp->phy[lp->active].spd.value);
3473	spd &= lp->phy[lp->active].spd.mask;
3474    } else if (!lp->useSROM) {                      /* de500-xa */
3475	spd = ((~gep_rd(dev)) & GEP_SLNK);
3476    } else {
3477	if ((lp->ibn == 2) || !lp->asBitValid)
3478	    return (lp->chipset == DC21143) ? (~inl(DE4X5_SISR)&SISR_LS100) : 0;
3479
3480	spd = (lp->asBitValid & (lp->asPolarity ^ (gep_rd(dev) & lp->asBit))) |
3481	          (lp->linkOK & ~lp->asBitValid);
3482    }
3483
3484    return spd;
3485}
3486
3487static int
3488is_100_up(struct net_device *dev)
3489{
3490    struct de4x5_private *lp = netdev_priv(dev);
3491    u_long iobase = dev->base_addr;
3492
3493    if (lp->useMII) {
3494	/* Double read for sticky bits & temporary drops */
3495	mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3496	return mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII) & MII_SR_LKS;
3497    } else if (!lp->useSROM) {                       /* de500-xa */
3498	return (~gep_rd(dev)) & GEP_SLNK;
3499    } else {
3500	if ((lp->ibn == 2) || !lp->asBitValid)
3501	    return (lp->chipset == DC21143) ? (~inl(DE4X5_SISR)&SISR_LS100) : 0;
3502
3503        return (lp->asBitValid&(lp->asPolarity^(gep_rd(dev)&lp->asBit))) |
3504		(lp->linkOK & ~lp->asBitValid);
3505    }
3506}
3507
3508static int
3509is_10_up(struct net_device *dev)
3510{
3511    struct de4x5_private *lp = netdev_priv(dev);
3512    u_long iobase = dev->base_addr;
3513
3514    if (lp->useMII) {
3515	/* Double read for sticky bits & temporary drops */
3516	mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3517	return mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII) & MII_SR_LKS;
3518    } else if (!lp->useSROM) {                       /* de500-xa */
3519	return (~gep_rd(dev)) & GEP_LNP;
3520    } else {
3521	if ((lp->ibn == 2) || !lp->asBitValid)
3522	    return ((lp->chipset & ~0x00ff) == DC2114x) ?
3523		    (~inl(DE4X5_SISR)&SISR_LS10):
3524		    0;
3525
3526	return	(lp->asBitValid&(lp->asPolarity^(gep_rd(dev)&lp->asBit))) |
3527		(lp->linkOK & ~lp->asBitValid);
3528    }
3529}
3530
3531static int
3532is_anc_capable(struct net_device *dev)
3533{
3534    struct de4x5_private *lp = netdev_priv(dev);
3535    u_long iobase = dev->base_addr;
3536
3537    if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
3538	return mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3539    } else if ((lp->chipset & ~0x00ff) == DC2114x) {
3540	return (inl(DE4X5_SISR) & SISR_LPN) >> 12;
3541    } else {
3542	return 0;
3543    }
3544}
3545
3546/*
3547** Send a packet onto the media and watch for send errors that indicate the
3548** media is bad or unconnected.
3549*/
3550static int
3551ping_media(struct net_device *dev, int msec)
3552{
3553    struct de4x5_private *lp = netdev_priv(dev);
3554    u_long iobase = dev->base_addr;
3555    int sisr;
3556
3557    if (lp->timeout < 0) {
3558	lp->timeout = msec/100;
3559
3560	lp->tmp = lp->tx_new;                /* Remember the ring position */
3561	load_packet(dev, lp->frame, TD_LS | TD_FS | sizeof(lp->frame), (struct sk_buff *)1);
3562	lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
3563	outl(POLL_DEMAND, DE4X5_TPD);
3564    }
3565
3566    sisr = inl(DE4X5_SISR);
3567
3568    if ((!(sisr & SISR_NCR)) &&
3569	((s32)le32_to_cpu(lp->tx_ring[lp->tmp].status) < 0) &&
3570	 (--lp->timeout)) {
3571	sisr = 100 | TIMER_CB;
3572    } else {
3573	if ((!(sisr & SISR_NCR)) &&
3574	    !(le32_to_cpu(lp->tx_ring[lp->tmp].status) & (T_OWN | TD_ES)) &&
3575	    lp->timeout) {
3576	    sisr = 0;
3577	} else {
3578	    sisr = 1;
3579	}
3580	lp->timeout = -1;
3581    }
3582
3583    return sisr;
3584}
3585
3586/*
3587** This function does 2 things: on Intels it kmalloc's another buffer to
3588** replace the one about to be passed up. On Alpha's it kmallocs a buffer
3589** into which the packet is copied.
3590*/
3591static struct sk_buff *
3592de4x5_alloc_rx_buff(struct net_device *dev, int index, int len)
3593{
3594    struct de4x5_private *lp = netdev_priv(dev);
3595    struct sk_buff *p;
3596
3597#if !defined(__alpha__) && !defined(__powerpc__) && !defined(CONFIG_SPARC) && !defined(DE4X5_DO_MEMCPY)
3598    struct sk_buff *ret;
3599    u_long i=0, tmp;
3600
3601    p = dev_alloc_skb(IEEE802_3_SZ + DE4X5_ALIGN + 2);
3602    if (!p) return NULL;
3603
3604    tmp = virt_to_bus(p->data);
3605    i = ((tmp + DE4X5_ALIGN) & ~DE4X5_ALIGN) - tmp;
3606    skb_reserve(p, i);
3607    lp->rx_ring[index].buf = cpu_to_le32(tmp + i);
3608
3609    ret = lp->rx_skb[index];
3610    lp->rx_skb[index] = p;
3611
3612    if ((u_long) ret > 1) {
3613	skb_put(ret, len);
3614    }
3615
3616    return ret;
3617
3618#else
3619    if (lp->state != OPEN) return (struct sk_buff *)1; /* Fake out the open */
3620
3621    p = dev_alloc_skb(len + 2);
3622    if (!p) return NULL;
3623
3624    skb_reserve(p, 2);	                               /* Align */
3625    if (index < lp->rx_old) {                          /* Wrapped buffer */
3626	short tlen = (lp->rxRingSize - lp->rx_old) * RX_BUFF_SZ;
3627	memcpy(skb_put(p,tlen),lp->rx_bufs + lp->rx_old * RX_BUFF_SZ,tlen);
3628	memcpy(skb_put(p,len-tlen),lp->rx_bufs,len-tlen);
3629    } else {                                           /* Linear buffer */
3630	memcpy(skb_put(p,len),lp->rx_bufs + lp->rx_old * RX_BUFF_SZ,len);
3631    }
3632
3633    return p;
3634#endif
3635}
3636
3637static void
3638de4x5_free_rx_buffs(struct net_device *dev)
3639{
3640    struct de4x5_private *lp = netdev_priv(dev);
3641    int i;
3642
3643    for (i=0; i<lp->rxRingSize; i++) {
3644	if ((u_long) lp->rx_skb[i] > 1) {
3645	    dev_kfree_skb(lp->rx_skb[i]);
3646	}
3647	lp->rx_ring[i].status = 0;
3648	lp->rx_skb[i] = (struct sk_buff *)1;    /* Dummy entry */
3649    }
3650}
3651
3652static void
3653de4x5_free_tx_buffs(struct net_device *dev)
3654{
3655    struct de4x5_private *lp = netdev_priv(dev);
3656    int i;
3657
3658    for (i=0; i<lp->txRingSize; i++) {
3659	if (lp->tx_skb[i])
3660	    de4x5_free_tx_buff(lp, i);
3661	lp->tx_ring[i].status = 0;
3662    }
3663
3664    /* Unload the locally queued packets */
3665    __skb_queue_purge(&lp->cache.queue);
3666}
3667
3668/*
3669** When a user pulls a connection, the DECchip can end up in a
3670** 'running - waiting for end of transmission' state. This means that we
3671** have to perform a chip soft reset to ensure that we can synchronize
3672** the hardware and software and make any media probes using a loopback
3673** packet meaningful.
3674*/
3675static void
3676de4x5_save_skbs(struct net_device *dev)
3677{
3678    struct de4x5_private *lp = netdev_priv(dev);
3679    u_long iobase = dev->base_addr;
3680    s32 omr;
3681
3682    if (!lp->cache.save_cnt) {
3683	STOP_DE4X5;
3684	de4x5_tx(dev);                          /* Flush any sent skb's */
3685	de4x5_free_tx_buffs(dev);
3686	de4x5_cache_state(dev, DE4X5_SAVE_STATE);
3687	de4x5_sw_reset(dev);
3688	de4x5_cache_state(dev, DE4X5_RESTORE_STATE);
3689	lp->cache.save_cnt++;
3690	START_DE4X5;
3691    }
3692}
3693
3694static void
3695de4x5_rst_desc_ring(struct net_device *dev)
3696{
3697    struct de4x5_private *lp = netdev_priv(dev);
3698    u_long iobase = dev->base_addr;
3699    int i;
3700    s32 omr;
3701
3702    if (lp->cache.save_cnt) {
3703	STOP_DE4X5;
3704	outl(lp->dma_rings, DE4X5_RRBA);
3705	outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
3706	     DE4X5_TRBA);
3707
3708	lp->rx_new = lp->rx_old = 0;
3709	lp->tx_new = lp->tx_old = 0;
3710
3711	for (i = 0; i < lp->rxRingSize; i++) {
3712	    lp->rx_ring[i].status = cpu_to_le32(R_OWN);
3713	}
3714
3715	for (i = 0; i < lp->txRingSize; i++) {
3716	    lp->tx_ring[i].status = cpu_to_le32(0);
3717	}
3718
3719	barrier();
3720	lp->cache.save_cnt--;
3721	START_DE4X5;
3722    }
3723}
3724
3725static void
3726de4x5_cache_state(struct net_device *dev, int flag)
3727{
3728    struct de4x5_private *lp = netdev_priv(dev);
3729    u_long iobase = dev->base_addr;
3730
3731    switch(flag) {
3732      case DE4X5_SAVE_STATE:
3733	lp->cache.csr0 = inl(DE4X5_BMR);
3734	lp->cache.csr6 = (inl(DE4X5_OMR) & ~(OMR_ST | OMR_SR));
3735	lp->cache.csr7 = inl(DE4X5_IMR);
3736	break;
3737
3738      case DE4X5_RESTORE_STATE:
3739	outl(lp->cache.csr0, DE4X5_BMR);
3740	outl(lp->cache.csr6, DE4X5_OMR);
3741	outl(lp->cache.csr7, DE4X5_IMR);
3742	if (lp->chipset == DC21140) {
3743	    gep_wr(lp->cache.gepc, dev);
3744	    gep_wr(lp->cache.gep, dev);
3745	} else {
3746	    reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14,
3747			                                      lp->cache.csr15);
3748	}
3749	break;
3750    }
3751}
3752
3753static void
3754de4x5_put_cache(struct net_device *dev, struct sk_buff *skb)
3755{
3756    struct de4x5_private *lp = netdev_priv(dev);
3757
3758    __skb_queue_tail(&lp->cache.queue, skb);
3759}
3760
3761static void
3762de4x5_putb_cache(struct net_device *dev, struct sk_buff *skb)
3763{
3764    struct de4x5_private *lp = netdev_priv(dev);
3765
3766    __skb_queue_head(&lp->cache.queue, skb);
3767}
3768
3769static struct sk_buff *
3770de4x5_get_cache(struct net_device *dev)
3771{
3772    struct de4x5_private *lp = netdev_priv(dev);
3773
3774    return __skb_dequeue(&lp->cache.queue);
3775}
3776
3777/*
3778** Check the Auto Negotiation State. Return OK when a link pass interrupt
3779** is received and the auto-negotiation status is NWAY OK.
3780*/
3781static int
3782test_ans(struct net_device *dev, s32 irqs, s32 irq_mask, s32 msec)
3783{
3784    struct de4x5_private *lp = netdev_priv(dev);
3785    u_long iobase = dev->base_addr;
3786    s32 sts, ans;
3787
3788    if (lp->timeout < 0) {
3789	lp->timeout = msec/100;
3790	outl(irq_mask, DE4X5_IMR);
3791
3792	/* clear all pending interrupts */
3793	sts = inl(DE4X5_STS);
3794	outl(sts, DE4X5_STS);
3795    }
3796
3797    ans = inl(DE4X5_SISR) & SISR_ANS;
3798    sts = inl(DE4X5_STS) & ~TIMER_CB;
3799
3800    if (!(sts & irqs) && (ans ^ ANS_NWOK) && --lp->timeout) {
3801	sts = 100 | TIMER_CB;
3802    } else {
3803	lp->timeout = -1;
3804    }
3805
3806    return sts;
3807}
3808
3809static void
3810de4x5_setup_intr(struct net_device *dev)
3811{
3812    struct de4x5_private *lp = netdev_priv(dev);
3813    u_long iobase = dev->base_addr;
3814    s32 imr, sts;
3815
3816    if (inl(DE4X5_OMR) & OMR_SR) {   /* Only unmask if TX/RX is enabled */
3817	imr = 0;
3818	UNMASK_IRQs;
3819	sts = inl(DE4X5_STS);        /* Reset any pending (stale) interrupts */
3820	outl(sts, DE4X5_STS);
3821	ENABLE_IRQs;
3822    }
3823}
3824
3825/*
3826**
3827*/
3828static void
3829reset_init_sia(struct net_device *dev, s32 csr13, s32 csr14, s32 csr15)
3830{
3831    struct de4x5_private *lp = netdev_priv(dev);
3832    u_long iobase = dev->base_addr;
3833
3834    RESET_SIA;
3835    if (lp->useSROM) {
3836	if (lp->ibn == 3) {
3837	    srom_exec(dev, lp->phy[lp->active].rst);
3838	    srom_exec(dev, lp->phy[lp->active].gep);
3839	    outl(1, DE4X5_SICR);
3840	    return;
3841	} else {
3842	    csr15 = lp->cache.csr15;
3843	    csr14 = lp->cache.csr14;
3844	    csr13 = lp->cache.csr13;
3845	    outl(csr15 | lp->cache.gepc, DE4X5_SIGR);
3846	    outl(csr15 | lp->cache.gep, DE4X5_SIGR);
3847	}
3848    } else {
3849	outl(csr15, DE4X5_SIGR);
3850    }
3851    outl(csr14, DE4X5_STRR);
3852    outl(csr13, DE4X5_SICR);
3853
3854    mdelay(10);
3855}
3856
3857/*
3858** Create a loopback ethernet packet
3859*/
3860static void
3861create_packet(struct net_device *dev, char *frame, int len)
3862{
3863    int i;
3864    char *buf = frame;
3865
3866    for (i=0; i<ETH_ALEN; i++) {             /* Use this source address */
3867	*buf++ = dev->dev_addr[i];
3868    }
3869    for (i=0; i<ETH_ALEN; i++) {             /* Use this destination address */
3870	*buf++ = dev->dev_addr[i];
3871    }
3872
3873    *buf++ = 0;                              /* Packet length (2 bytes) */
3874    *buf++ = 1;
3875}
3876
3877/*
3878** Look for a particular board name in the EISA configuration space
3879*/
3880static int
3881EISA_signature(char *name, struct device *device)
3882{
3883    int i, status = 0, siglen = ARRAY_SIZE(de4x5_signatures);
3884    struct eisa_device *edev;
3885
3886    *name = '\0';
3887    edev = to_eisa_device (device);
3888    i = edev->id.driver_data;
3889
3890    if (i >= 0 && i < siglen) {
3891	    strcpy (name, de4x5_signatures[i]);
3892	    status = 1;
3893    }
3894
3895    return status;                         /* return the device name string */
3896}
3897
3898/*
3899** Look for a particular board name in the PCI configuration space
3900*/
3901static int
3902PCI_signature(char *name, struct de4x5_private *lp)
3903{
3904    int i, status = 0, siglen = ARRAY_SIZE(de4x5_signatures);
3905
3906    if (lp->chipset == DC21040) {
3907	strcpy(name, "DE434/5");
3908	return status;
3909    } else {                           /* Search for a DEC name in the SROM */
3910	int tmp = *((char *)&lp->srom + 19) * 3;
3911	strncpy(name, (char *)&lp->srom + 26 + tmp, 8);
3912    }
3913    name[8] = '\0';
3914    for (i=0; i<siglen; i++) {
3915	if (strstr(name,de4x5_signatures[i])!=NULL) break;
3916    }
3917    if (i == siglen) {
3918	if (dec_only) {
3919	    *name = '\0';
3920	} else {                        /* Use chip name to avoid confusion */
3921	    strcpy(name, (((lp->chipset == DC21040) ? "DC21040" :
3922			   ((lp->chipset == DC21041) ? "DC21041" :
3923			    ((lp->chipset == DC21140) ? "DC21140" :
3924			     ((lp->chipset == DC21142) ? "DC21142" :
3925			      ((lp->chipset == DC21143) ? "DC21143" : "UNKNOWN"
3926			     )))))));
3927	}
3928	if (lp->chipset != DC21041) {
3929	    lp->useSROM = true;             /* card is not recognisably DEC */
3930	}
3931    } else if ((lp->chipset & ~0x00ff) == DC2114x) {
3932	lp->useSROM = true;
3933    }
3934
3935    return status;
3936}
3937
3938/*
3939** Set up the Ethernet PROM counter to the start of the Ethernet address on
3940** the DC21040, else  read the SROM for the other chips.
3941** The SROM may not be present in a multi-MAC card, so first read the
3942** MAC address and check for a bad address. If there is a bad one then exit
3943** immediately with the prior srom contents intact (the h/w address will
3944** be fixed up later).
3945*/
3946static void
3947DevicePresent(struct net_device *dev, u_long aprom_addr)
3948{
3949    int i, j=0;
3950    struct de4x5_private *lp = netdev_priv(dev);
3951
3952    if (lp->chipset == DC21040) {
3953	if (lp->bus == EISA) {
3954	    enet_addr_rst(aprom_addr); /* Reset Ethernet Address ROM Pointer */
3955	} else {
3956	    outl(0, aprom_addr);       /* Reset Ethernet Address ROM Pointer */
3957	}
3958    } else {                           /* Read new srom */
3959	u_short tmp;
3960	__le16 *p = (__le16 *)((char *)&lp->srom + SROM_HWADD);
3961	for (i=0; i<(ETH_ALEN>>1); i++) {
3962	    tmp = srom_rd(aprom_addr, (SROM_HWADD>>1) + i);
3963	    j += tmp;	/* for check for 0:0:0:0:0:0 or ff:ff:ff:ff:ff:ff */
3964	    *p = cpu_to_le16(tmp);
3965	}
3966	if (j == 0 || j == 3 * 0xffff) {
3967		/* could get 0 only from all-0 and 3 * 0xffff only from all-1 */
3968		return;
3969	}
3970
3971	p = (__le16 *)&lp->srom;
3972	for (i=0; i<(sizeof(struct de4x5_srom)>>1); i++) {
3973	    tmp = srom_rd(aprom_addr, i);
3974	    *p++ = cpu_to_le16(tmp);
3975	}
3976	de4x5_dbg_srom((struct de4x5_srom *)&lp->srom);
3977    }
3978}
3979
3980/*
3981** Since the write on the Enet PROM register doesn't seem to reset the PROM
3982** pointer correctly (at least on my DE425 EISA card), this routine should do
3983** it...from depca.c.
3984*/
3985static void
3986enet_addr_rst(u_long aprom_addr)
3987{
3988    union {
3989	struct {
3990	    u32 a;
3991	    u32 b;
3992	} llsig;
3993	char Sig[sizeof(u32) << 1];
3994    } dev;
3995    short sigLength=0;
3996    s8 data;
3997    int i, j;
3998
3999    dev.llsig.a = ETH_PROM_SIG;
4000    dev.llsig.b = ETH_PROM_SIG;
4001    sigLength = sizeof(u32) << 1;
4002
4003    for (i=0,j=0;j<sigLength && i<PROBE_LENGTH+sigLength-1;i++) {
4004	data = inb(aprom_addr);
4005	if (dev.Sig[j] == data) {    /* track signature */
4006	    j++;
4007	} else {                     /* lost signature; begin search again */
4008	    if (data == dev.Sig[0]) {  /* rare case.... */
4009		j=1;
4010	    } else {
4011		j=0;
4012	    }
4013	}
4014    }
4015}
4016
4017/*
4018** For the bad status case and no SROM, then add one to the previous
4019** address. However, need to add one backwards in case we have 0xff
4020** as one or more of the bytes. Only the last 3 bytes should be checked
4021** as the first three are invariant - assigned to an organisation.
4022*/
4023static int
4024get_hw_addr(struct net_device *dev)
4025{
4026    u_long iobase = dev->base_addr;
4027    int broken, i, k, tmp, status = 0;
4028    u_short j,chksum;
4029    struct de4x5_private *lp = netdev_priv(dev);
4030
4031    broken = de4x5_bad_srom(lp);
4032
4033    for (i=0,k=0,j=0;j<3;j++) {
4034	k <<= 1;
4035	if (k > 0xffff) k-=0xffff;
4036
4037	if (lp->bus == PCI) {
4038	    if (lp->chipset == DC21040) {
4039		while ((tmp = inl(DE4X5_APROM)) < 0);
4040		k += (u_char) tmp;
4041		dev->dev_addr[i++] = (u_char) tmp;
4042		while ((tmp = inl(DE4X5_APROM)) < 0);
4043		k += (u_short) (tmp << 8);
4044		dev->dev_addr[i++] = (u_char) tmp;
4045	    } else if (!broken) {
4046		dev->dev_addr[i] = (u_char) lp->srom.ieee_addr[i]; i++;
4047		dev->dev_addr[i] = (u_char) lp->srom.ieee_addr[i]; i++;
4048	    } else if ((broken == SMC) || (broken == ACCTON)) {
4049		dev->dev_addr[i] = *((u_char *)&lp->srom + i); i++;
4050		dev->dev_addr[i] = *((u_char *)&lp->srom + i); i++;
4051	    }
4052	} else {
4053	    k += (u_char) (tmp = inb(EISA_APROM));
4054	    dev->dev_addr[i++] = (u_char) tmp;
4055	    k += (u_short) ((tmp = inb(EISA_APROM)) << 8);
4056	    dev->dev_addr[i++] = (u_char) tmp;
4057	}
4058
4059	if (k > 0xffff) k-=0xffff;
4060    }
4061    if (k == 0xffff) k=0;
4062
4063    if (lp->bus == PCI) {
4064	if (lp->chipset == DC21040) {
4065	    while ((tmp = inl(DE4X5_APROM)) < 0);
4066	    chksum = (u_char) tmp;
4067	    while ((tmp = inl(DE4X5_APROM)) < 0);
4068	    chksum |= (u_short) (tmp << 8);
4069	    if ((k != chksum) && (dec_only)) status = -1;
4070	}
4071    } else {
4072	chksum = (u_char) inb(EISA_APROM);
4073	chksum |= (u_short) (inb(EISA_APROM) << 8);
4074	if ((k != chksum) && (dec_only)) status = -1;
4075    }
4076
4077    /* If possible, try to fix a broken card - SMC only so far */
4078    srom_repair(dev, broken);
4079
4080#ifdef CONFIG_PPC_PMAC
4081    /*
4082    ** If the address starts with 00 a0, we have to bit-reverse
4083    ** each byte of the address.
4084    */
4085    if ( machine_is(powermac) &&
4086	 (dev->dev_addr[0] == 0) &&
4087	 (dev->dev_addr[1] == 0xa0) )
4088    {
4089	    for (i = 0; i < ETH_ALEN; ++i)
4090	    {
4091		    int x = dev->dev_addr[i];
4092		    x = ((x & 0xf) << 4) + ((x & 0xf0) >> 4);
4093		    x = ((x & 0x33) << 2) + ((x & 0xcc) >> 2);
4094		    dev->dev_addr[i] = ((x & 0x55) << 1) + ((x & 0xaa) >> 1);
4095	    }
4096    }
4097#endif /* CONFIG_PPC_PMAC */
4098
4099    /* Test for a bad enet address */
4100    status = test_bad_enet(dev, status);
4101
4102    return status;
4103}
4104
4105/*
4106** Test for enet addresses in the first 32 bytes. The built-in strncmp
4107** didn't seem to work here...?
4108*/
4109static int
4110de4x5_bad_srom(struct de4x5_private *lp)
4111{
4112    int i, status = 0;
4113
4114    for (i = 0; i < ARRAY_SIZE(enet_det); i++) {
4115	if (!de4x5_strncmp((char *)&lp->srom, (char *)&enet_det[i], 3) &&
4116	    !de4x5_strncmp((char *)&lp->srom+0x10, (char *)&enet_det[i], 3)) {
4117	    if (i == 0) {
4118		status = SMC;
4119	    } else if (i == 1) {
4120		status = ACCTON;
4121	    }
4122	    break;
4123	}
4124    }
4125
4126    return status;
4127}
4128
4129static int
4130de4x5_strncmp(char *a, char *b, int n)
4131{
4132    int ret=0;
4133
4134    for (;n && !ret; n--) {
4135	ret = *a++ - *b++;
4136    }
4137
4138    return ret;
4139}
4140
4141static void
4142srom_repair(struct net_device *dev, int card)
4143{
4144    struct de4x5_private *lp = netdev_priv(dev);
4145
4146    switch(card) {
4147      case SMC:
4148	memset((char *)&lp->srom, 0, sizeof(struct de4x5_srom));
4149	memcpy(lp->srom.ieee_addr, (char *)dev->dev_addr, ETH_ALEN);
4150	memcpy(lp->srom.info, (char *)&srom_repair_info[SMC-1], 100);
4151	lp->useSROM = true;
4152	break;
4153    }
4154}
4155
4156/*
4157** Assume that the irq's do not follow the PCI spec - this is seems
4158** to be true so far (2 for 2).
4159*/
4160static int
4161test_bad_enet(struct net_device *dev, int status)
4162{
4163    struct de4x5_private *lp = netdev_priv(dev);
4164    int i, tmp;
4165
4166    for (tmp=0,i=0; i<ETH_ALEN; i++) tmp += (u_char)dev->dev_addr[i];
4167    if ((tmp == 0) || (tmp == 0x5fa)) {
4168	if ((lp->chipset == last.chipset) &&
4169	    (lp->bus_num == last.bus) && (lp->bus_num > 0)) {
4170	    for (i=0; i<ETH_ALEN; i++) dev->dev_addr[i] = last.addr[i];
4171	    for (i=ETH_ALEN-1; i>2; --i) {
4172		dev->dev_addr[i] += 1;
4173		if (dev->dev_addr[i] != 0) break;
4174	    }
4175	    for (i=0; i<ETH_ALEN; i++) last.addr[i] = dev->dev_addr[i];
4176	    if (!an_exception(lp)) {
4177		dev->irq = last.irq;
4178	    }
4179
4180	    status = 0;
4181	}
4182    } else if (!status) {
4183	last.chipset = lp->chipset;
4184	last.bus = lp->bus_num;
4185	last.irq = dev->irq;
4186	for (i=0; i<ETH_ALEN; i++) last.addr[i] = dev->dev_addr[i];
4187    }
4188
4189    return status;
4190}
4191
4192/*
4193** List of board exceptions with correctly wired IRQs
4194*/
4195static int
4196an_exception(struct de4x5_private *lp)
4197{
4198    if ((*(u_short *)lp->srom.sub_vendor_id == 0x00c0) &&
4199	(*(u_short *)lp->srom.sub_system_id == 0x95e0)) {
4200	return -1;
4201    }
4202
4203    return 0;
4204}
4205
4206/*
4207** SROM Read
4208*/
4209static short
4210srom_rd(u_long addr, u_char offset)
4211{
4212    sendto_srom(SROM_RD | SROM_SR, addr);
4213
4214    srom_latch(SROM_RD | SROM_SR | DT_CS, addr);
4215    srom_command(SROM_RD | SROM_SR | DT_IN | DT_CS, addr);
4216    srom_address(SROM_RD | SROM_SR | DT_CS, addr, offset);
4217
4218    return srom_data(SROM_RD | SROM_SR | DT_CS, addr);
4219}
4220
4221static void
4222srom_latch(u_int command, u_long addr)
4223{
4224    sendto_srom(command, addr);
4225    sendto_srom(command | DT_CLK, addr);
4226    sendto_srom(command, addr);
4227}
4228
4229static void
4230srom_command(u_int command, u_long addr)
4231{
4232    srom_latch(command, addr);
4233    srom_latch(command, addr);
4234    srom_latch((command & 0x0000ff00) | DT_CS, addr);
4235}
4236
4237static void
4238srom_address(u_int command, u_long addr, u_char offset)
4239{
4240    int i, a;
4241
4242    a = offset << 2;
4243    for (i=0; i<6; i++, a <<= 1) {
4244	srom_latch(command | ((a & 0x80) ? DT_IN : 0), addr);
4245    }
4246    udelay(1);
4247
4248    i = (getfrom_srom(addr) >> 3) & 0x01;
4249}
4250
4251static short
4252srom_data(u_int command, u_long addr)
4253{
4254    int i;
4255    short word = 0;
4256    s32 tmp;
4257
4258    for (i=0; i<16; i++) {
4259	sendto_srom(command  | DT_CLK, addr);
4260	tmp = getfrom_srom(addr);
4261	sendto_srom(command, addr);
4262
4263	word = (word << 1) | ((tmp >> 3) & 0x01);
4264    }
4265
4266    sendto_srom(command & 0x0000ff00, addr);
4267
4268    return word;
4269}
4270
4271/*
4272static void
4273srom_busy(u_int command, u_long addr)
4274{
4275   sendto_srom((command & 0x0000ff00) | DT_CS, addr);
4276
4277   while (!((getfrom_srom(addr) >> 3) & 0x01)) {
4278       mdelay(1);
4279   }
4280
4281   sendto_srom(command & 0x0000ff00, addr);
4282}
4283*/
4284
4285static void
4286sendto_srom(u_int command, u_long addr)
4287{
4288    outl(command, addr);
4289    udelay(1);
4290}
4291
4292static int
4293getfrom_srom(u_long addr)
4294{
4295    s32 tmp;
4296
4297    tmp = inl(addr);
4298    udelay(1);
4299
4300    return tmp;
4301}
4302
4303static int
4304srom_infoleaf_info(struct net_device *dev)
4305{
4306    struct de4x5_private *lp = netdev_priv(dev);
4307    int i, count;
4308    u_char *p;
4309
4310    /* Find the infoleaf decoder function that matches this chipset */
4311    for (i=0; i<INFOLEAF_SIZE; i++) {
4312	if (lp->chipset == infoleaf_array[i].chipset) break;
4313    }
4314    if (i == INFOLEAF_SIZE) {
4315	lp->useSROM = false;
4316	printk("%s: Cannot find correct chipset for SROM decoding!\n",
4317	                                                          dev->name);
4318	return -ENXIO;
4319    }
4320
4321    lp->infoleaf_fn = infoleaf_array[i].fn;
4322
4323    /* Find the information offset that this function should use */
4324    count = *((u_char *)&lp->srom + 19);
4325    p  = (u_char *)&lp->srom + 26;
4326
4327    if (count > 1) {
4328	for (i=count; i; --i, p+=3) {
4329	    if (lp->device == *p) break;
4330	}
4331	if (i == 0) {
4332	    lp->useSROM = false;
4333	    printk("%s: Cannot find correct PCI device [%d] for SROM decoding!\n",
4334	                                               dev->name, lp->device);
4335	    return -ENXIO;
4336	}
4337    }
4338
4339	lp->infoleaf_offset = get_unaligned_le16(p + 1);
4340
4341    return 0;
4342}
4343
4344/*
4345** This routine loads any type 1 or 3 MII info into the mii device
4346** struct and executes any type 5 code to reset PHY devices for this
4347** controller.
4348** The info for the MII devices will be valid since the index used
4349** will follow the discovery process from MII address 1-31 then 0.
4350*/
4351static void
4352srom_init(struct net_device *dev)
4353{
4354    struct de4x5_private *lp = netdev_priv(dev);
4355    u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4356    u_char count;
4357
4358    p+=2;
4359    if (lp->chipset == DC21140) {
4360	lp->cache.gepc = (*p++ | GEP_CTRL);
4361	gep_wr(lp->cache.gepc, dev);
4362    }
4363
4364    /* Block count */
4365    count = *p++;
4366
4367    /* Jump the infoblocks to find types */
4368    for (;count; --count) {
4369	if (*p < 128) {
4370	    p += COMPACT_LEN;
4371	} else if (*(p+1) == 5) {
4372	    type5_infoblock(dev, 1, p);
4373	    p += ((*p & BLOCK_LEN) + 1);
4374	} else if (*(p+1) == 4) {
4375	    p += ((*p & BLOCK_LEN) + 1);
4376	} else if (*(p+1) == 3) {
4377	    type3_infoblock(dev, 1, p);
4378	    p += ((*p & BLOCK_LEN) + 1);
4379	} else if (*(p+1) == 2) {
4380	    p += ((*p & BLOCK_LEN) + 1);
4381	} else if (*(p+1) == 1) {
4382	    type1_infoblock(dev, 1, p);
4383	    p += ((*p & BLOCK_LEN) + 1);
4384	} else {
4385	    p += ((*p & BLOCK_LEN) + 1);
4386	}
4387    }
4388}
4389
4390/*
4391** A generic routine that writes GEP control, data and reset information
4392** to the GEP register (21140) or csr15 GEP portion (2114[23]).
4393*/
4394static void
4395srom_exec(struct net_device *dev, u_char *p)
4396{
4397    struct de4x5_private *lp = netdev_priv(dev);
4398    u_long iobase = dev->base_addr;
4399    u_char count = (p ? *p++ : 0);
4400    u_short *w = (u_short *)p;
4401
4402    if (((lp->ibn != 1) && (lp->ibn != 3) && (lp->ibn != 5)) || !count) return;
4403
4404    if (lp->chipset != DC21140) RESET_SIA;
4405
4406    while (count--) {
4407	gep_wr(((lp->chipset==DC21140) && (lp->ibn!=5) ?
4408		                                   *p++ : get_unaligned_le16(w++)), dev);
4409	mdelay(2);                          /* 2ms per action */
4410    }
4411
4412    if (lp->chipset != DC21140) {
4413	outl(lp->cache.csr14, DE4X5_STRR);
4414	outl(lp->cache.csr13, DE4X5_SICR);
4415    }
4416}
4417
4418/*
4419** Basically this function is a NOP since it will never be called,
4420** unless I implement the DC21041 SROM functions. There's no need
4421** since the existing code will be satisfactory for all boards.
4422*/
4423static int
4424dc21041_infoleaf(struct net_device *dev)
4425{
4426    return DE4X5_AUTOSENSE_MS;
4427}
4428
4429static int
4430dc21140_infoleaf(struct net_device *dev)
4431{
4432    struct de4x5_private *lp = netdev_priv(dev);
4433    u_char count = 0;
4434    u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4435    int next_tick = DE4X5_AUTOSENSE_MS;
4436
4437    /* Read the connection type */
4438    p+=2;
4439
4440    /* GEP control */
4441    lp->cache.gepc = (*p++ | GEP_CTRL);
4442
4443    /* Block count */
4444    count = *p++;
4445
4446    /* Recursively figure out the info blocks */
4447    if (*p < 128) {
4448	next_tick = dc_infoblock[COMPACT](dev, count, p);
4449    } else {
4450	next_tick = dc_infoblock[*(p+1)](dev, count, p);
4451    }
4452
4453    if (lp->tcount == count) {
4454	lp->media = NC;
4455        if (lp->media != lp->c_media) {
4456	    de4x5_dbg_media(dev);
4457	    lp->c_media = lp->media;
4458	}
4459	lp->media = INIT;
4460	lp->tcount = 0;
4461	lp->tx_enable = false;
4462    }
4463
4464    return next_tick & ~TIMER_CB;
4465}
4466
4467static int
4468dc21142_infoleaf(struct net_device *dev)
4469{
4470    struct de4x5_private *lp = netdev_priv(dev);
4471    u_char count = 0;
4472    u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4473    int next_tick = DE4X5_AUTOSENSE_MS;
4474
4475    /* Read the connection type */
4476    p+=2;
4477
4478    /* Block count */
4479    count = *p++;
4480
4481    /* Recursively figure out the info blocks */
4482    if (*p < 128) {
4483	next_tick = dc_infoblock[COMPACT](dev, count, p);
4484    } else {
4485	next_tick = dc_infoblock[*(p+1)](dev, count, p);
4486    }
4487
4488    if (lp->tcount == count) {
4489	lp->media = NC;
4490        if (lp->media != lp->c_media) {
4491	    de4x5_dbg_media(dev);
4492	    lp->c_media = lp->media;
4493	}
4494	lp->media = INIT;
4495	lp->tcount = 0;
4496	lp->tx_enable = false;
4497    }
4498
4499    return next_tick & ~TIMER_CB;
4500}
4501
4502static int
4503dc21143_infoleaf(struct net_device *dev)
4504{
4505    struct de4x5_private *lp = netdev_priv(dev);
4506    u_char count = 0;
4507    u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4508    int next_tick = DE4X5_AUTOSENSE_MS;
4509
4510    /* Read the connection type */
4511    p+=2;
4512
4513    /* Block count */
4514    count = *p++;
4515
4516    /* Recursively figure out the info blocks */
4517    if (*p < 128) {
4518	next_tick = dc_infoblock[COMPACT](dev, count, p);
4519    } else {
4520	next_tick = dc_infoblock[*(p+1)](dev, count, p);
4521    }
4522    if (lp->tcount == count) {
4523	lp->media = NC;
4524        if (lp->media != lp->c_media) {
4525	    de4x5_dbg_media(dev);
4526	    lp->c_media = lp->media;
4527	}
4528	lp->media = INIT;
4529	lp->tcount = 0;
4530	lp->tx_enable = false;
4531    }
4532
4533    return next_tick & ~TIMER_CB;
4534}
4535
4536/*
4537** The compact infoblock is only designed for DC21140[A] chips, so
4538** we'll reuse the dc21140m_autoconf function. Non MII media only.
4539*/
4540static int
4541compact_infoblock(struct net_device *dev, u_char count, u_char *p)
4542{
4543    struct de4x5_private *lp = netdev_priv(dev);
4544    u_char flags, csr6;
4545
4546    /* Recursively figure out the info blocks */
4547    if (--count > lp->tcount) {
4548	if (*(p+COMPACT_LEN) < 128) {
4549	    return dc_infoblock[COMPACT](dev, count, p+COMPACT_LEN);
4550	} else {
4551	    return dc_infoblock[*(p+COMPACT_LEN+1)](dev, count, p+COMPACT_LEN);
4552	}
4553    }
4554
4555    if ((lp->media == INIT) && (lp->timeout < 0)) {
4556        lp->ibn = COMPACT;
4557        lp->active = 0;
4558	gep_wr(lp->cache.gepc, dev);
4559	lp->infoblock_media = (*p++) & COMPACT_MC;
4560	lp->cache.gep = *p++;
4561	csr6 = *p++;
4562	flags = *p++;
4563
4564	lp->asBitValid = (flags & 0x80) ? 0 : -1;
4565	lp->defMedium = (flags & 0x40) ? -1 : 0;
4566	lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4567	lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4568	lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4569	lp->useMII = false;
4570
4571	de4x5_switch_mac_port(dev);
4572    }
4573
4574    return dc21140m_autoconf(dev);
4575}
4576
4577/*
4578** This block describes non MII media for the DC21140[A] only.
4579*/
4580static int
4581type0_infoblock(struct net_device *dev, u_char count, u_char *p)
4582{
4583    struct de4x5_private *lp = netdev_priv(dev);
4584    u_char flags, csr6, len = (*p & BLOCK_LEN)+1;
4585
4586    /* Recursively figure out the info blocks */
4587    if (--count > lp->tcount) {
4588	if (*(p+len) < 128) {
4589	    return dc_infoblock[COMPACT](dev, count, p+len);
4590	} else {
4591	    return dc_infoblock[*(p+len+1)](dev, count, p+len);
4592	}
4593    }
4594
4595    if ((lp->media == INIT) && (lp->timeout < 0)) {
4596        lp->ibn = 0;
4597        lp->active = 0;
4598        gep_wr(lp->cache.gepc, dev);
4599	p+=2;
4600	lp->infoblock_media = (*p++) & BLOCK0_MC;
4601	lp->cache.gep = *p++;
4602	csr6 = *p++;
4603	flags = *p++;
4604
4605	lp->asBitValid = (flags & 0x80) ? 0 : -1;
4606	lp->defMedium = (flags & 0x40) ? -1 : 0;
4607	lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4608	lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4609	lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4610	lp->useMII = false;
4611
4612	de4x5_switch_mac_port(dev);
4613    }
4614
4615    return dc21140m_autoconf(dev);
4616}
4617
4618/* These functions are under construction! */
4619
4620static int
4621type1_infoblock(struct net_device *dev, u_char count, u_char *p)
4622{
4623    struct de4x5_private *lp = netdev_priv(dev);
4624    u_char len = (*p & BLOCK_LEN)+1;
4625
4626    /* Recursively figure out the info blocks */
4627    if (--count > lp->tcount) {
4628	if (*(p+len) < 128) {
4629	    return dc_infoblock[COMPACT](dev, count, p+len);
4630	} else {
4631	    return dc_infoblock[*(p+len+1)](dev, count, p+len);
4632	}
4633    }
4634
4635    p += 2;
4636    if (lp->state == INITIALISED) {
4637        lp->ibn = 1;
4638	lp->active = *p++;
4639	lp->phy[lp->active].gep = (*p ? p : NULL); p += (*p + 1);
4640	lp->phy[lp->active].rst = (*p ? p : NULL); p += (*p + 1);
4641	lp->phy[lp->active].mc  = get_unaligned_le16(p); p += 2;
4642	lp->phy[lp->active].ana = get_unaligned_le16(p); p += 2;
4643	lp->phy[lp->active].fdx = get_unaligned_le16(p); p += 2;
4644	lp->phy[lp->active].ttm = get_unaligned_le16(p);
4645	return 0;
4646    } else if ((lp->media == INIT) && (lp->timeout < 0)) {
4647        lp->ibn = 1;
4648        lp->active = *p;
4649	lp->infoblock_csr6 = OMR_MII_100;
4650	lp->useMII = true;
4651	lp->infoblock_media = ANS;
4652
4653	de4x5_switch_mac_port(dev);
4654    }
4655
4656    return dc21140m_autoconf(dev);
4657}
4658
4659static int
4660type2_infoblock(struct net_device *dev, u_char count, u_char *p)
4661{
4662    struct de4x5_private *lp = netdev_priv(dev);
4663    u_char len = (*p & BLOCK_LEN)+1;
4664
4665    /* Recursively figure out the info blocks */
4666    if (--count > lp->tcount) {
4667	if (*(p+len) < 128) {
4668	    return dc_infoblock[COMPACT](dev, count, p+len);
4669	} else {
4670	    return dc_infoblock[*(p+len+1)](dev, count, p+len);
4671	}
4672    }
4673
4674    if ((lp->media == INIT) && (lp->timeout < 0)) {
4675        lp->ibn = 2;
4676        lp->active = 0;
4677	p += 2;
4678	lp->infoblock_media = (*p) & MEDIA_CODE;
4679
4680        if ((*p++) & EXT_FIELD) {
4681	    lp->cache.csr13 = get_unaligned_le16(p); p += 2;
4682	    lp->cache.csr14 = get_unaligned_le16(p); p += 2;
4683	    lp->cache.csr15 = get_unaligned_le16(p); p += 2;
4684	} else {
4685	    lp->cache.csr13 = CSR13;
4686	    lp->cache.csr14 = CSR14;
4687	    lp->cache.csr15 = CSR15;
4688	}
4689        lp->cache.gepc = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4690        lp->cache.gep  = ((s32)(get_unaligned_le16(p)) << 16);
4691	lp->infoblock_csr6 = OMR_SIA;
4692	lp->useMII = false;
4693
4694	de4x5_switch_mac_port(dev);
4695    }
4696
4697    return dc2114x_autoconf(dev);
4698}
4699
4700static int
4701type3_infoblock(struct net_device *dev, u_char count, u_char *p)
4702{
4703    struct de4x5_private *lp = netdev_priv(dev);
4704    u_char len = (*p & BLOCK_LEN)+1;
4705
4706    /* Recursively figure out the info blocks */
4707    if (--count > lp->tcount) {
4708	if (*(p+len) < 128) {
4709	    return dc_infoblock[COMPACT](dev, count, p+len);
4710	} else {
4711	    return dc_infoblock[*(p+len+1)](dev, count, p+len);
4712	}
4713    }
4714
4715    p += 2;
4716    if (lp->state == INITIALISED) {
4717        lp->ibn = 3;
4718        lp->active = *p++;
4719	if (MOTO_SROM_BUG) lp->active = 0;
4720	lp->phy[lp->active].gep = (*p ? p : NULL); p += (2 * (*p) + 1);
4721	lp->phy[lp->active].rst = (*p ? p : NULL); p += (2 * (*p) + 1);
4722	lp->phy[lp->active].mc  = get_unaligned_le16(p); p += 2;
4723	lp->phy[lp->active].ana = get_unaligned_le16(p); p += 2;
4724	lp->phy[lp->active].fdx = get_unaligned_le16(p); p += 2;
4725	lp->phy[lp->active].ttm = get_unaligned_le16(p); p += 2;
4726	lp->phy[lp->active].mci = *p;
4727	return 0;
4728    } else if ((lp->media == INIT) && (lp->timeout < 0)) {
4729        lp->ibn = 3;
4730	lp->active = *p;
4731	if (MOTO_SROM_BUG) lp->active = 0;
4732	lp->infoblock_csr6 = OMR_MII_100;
4733	lp->useMII = true;
4734	lp->infoblock_media = ANS;
4735
4736	de4x5_switch_mac_port(dev);
4737    }
4738
4739    return dc2114x_autoconf(dev);
4740}
4741
4742static int
4743type4_infoblock(struct net_device *dev, u_char count, u_char *p)
4744{
4745    struct de4x5_private *lp = netdev_priv(dev);
4746    u_char flags, csr6, len = (*p & BLOCK_LEN)+1;
4747
4748    /* Recursively figure out the info blocks */
4749    if (--count > lp->tcount) {
4750	if (*(p+len) < 128) {
4751	    return dc_infoblock[COMPACT](dev, count, p+len);
4752	} else {
4753	    return dc_infoblock[*(p+len+1)](dev, count, p+len);
4754	}
4755    }
4756
4757    if ((lp->media == INIT) && (lp->timeout < 0)) {
4758        lp->ibn = 4;
4759        lp->active = 0;
4760	p+=2;
4761	lp->infoblock_media = (*p++) & MEDIA_CODE;
4762        lp->cache.csr13 = CSR13;              /* Hard coded defaults */
4763	lp->cache.csr14 = CSR14;
4764	lp->cache.csr15 = CSR15;
4765        lp->cache.gepc = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4766        lp->cache.gep  = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4767	csr6 = *p++;
4768	flags = *p++;
4769
4770	lp->asBitValid = (flags & 0x80) ? 0 : -1;
4771	lp->defMedium = (flags & 0x40) ? -1 : 0;
4772	lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4773	lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4774	lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4775	lp->useMII = false;
4776
4777	de4x5_switch_mac_port(dev);
4778    }
4779
4780    return dc2114x_autoconf(dev);
4781}
4782
4783/*
4784** This block type provides information for resetting external devices
4785** (chips) through the General Purpose Register.
4786*/
4787static int
4788type5_infoblock(struct net_device *dev, u_char count, u_char *p)
4789{
4790    struct de4x5_private *lp = netdev_priv(dev);
4791    u_char len = (*p & BLOCK_LEN)+1;
4792
4793    /* Recursively figure out the info blocks */
4794    if (--count > lp->tcount) {
4795	if (*(p+len) < 128) {
4796	    return dc_infoblock[COMPACT](dev, count, p+len);
4797	} else {
4798	    return dc_infoblock[*(p+len+1)](dev, count, p+len);
4799	}
4800    }
4801
4802    /* Must be initializing to run this code */
4803    if ((lp->state == INITIALISED) || (lp->media == INIT)) {
4804	p+=2;
4805        lp->rst = p;
4806        srom_exec(dev, lp->rst);
4807    }
4808
4809    return DE4X5_AUTOSENSE_MS;
4810}
4811
4812/*
4813** MII Read/Write
4814*/
4815
4816static int
4817mii_rd(u_char phyreg, u_char phyaddr, u_long ioaddr)
4818{
4819    mii_wdata(MII_PREAMBLE,  2, ioaddr);   /* Start of 34 bit preamble...    */
4820    mii_wdata(MII_PREAMBLE, 32, ioaddr);   /* ...continued                   */
4821    mii_wdata(MII_STRD, 4, ioaddr);        /* SFD and Read operation         */
4822    mii_address(phyaddr, ioaddr);          /* PHY address to be accessed     */
4823    mii_address(phyreg, ioaddr);           /* PHY Register to read           */
4824    mii_ta(MII_STRD, ioaddr);              /* Turn around time - 2 MDC       */
4825
4826    return mii_rdata(ioaddr);              /* Read data                      */
4827}
4828
4829static void
4830mii_wr(int data, u_char phyreg, u_char phyaddr, u_long ioaddr)
4831{
4832    mii_wdata(MII_PREAMBLE,  2, ioaddr);   /* Start of 34 bit preamble...    */
4833    mii_wdata(MII_PREAMBLE, 32, ioaddr);   /* ...continued                   */
4834    mii_wdata(MII_STWR, 4, ioaddr);        /* SFD and Write operation        */
4835    mii_address(phyaddr, ioaddr);          /* PHY address to be accessed     */
4836    mii_address(phyreg, ioaddr);           /* PHY Register to write          */
4837    mii_ta(MII_STWR, ioaddr);              /* Turn around time - 2 MDC       */
4838    data = mii_swap(data, 16);             /* Swap data bit ordering         */
4839    mii_wdata(data, 16, ioaddr);           /* Write data                     */
4840}
4841
4842static int
4843mii_rdata(u_long ioaddr)
4844{
4845    int i;
4846    s32 tmp = 0;
4847
4848    for (i=0; i<16; i++) {
4849	tmp <<= 1;
4850	tmp |= getfrom_mii(MII_MRD | MII_RD, ioaddr);
4851    }
4852
4853    return tmp;
4854}
4855
4856static void
4857mii_wdata(int data, int len, u_long ioaddr)
4858{
4859    int i;
4860
4861    for (i=0; i<len; i++) {
4862	sendto_mii(MII_MWR | MII_WR, data, ioaddr);
4863	data >>= 1;
4864    }
4865}
4866
4867static void
4868mii_address(u_char addr, u_long ioaddr)
4869{
4870    int i;
4871
4872    addr = mii_swap(addr, 5);
4873    for (i=0; i<5; i++) {
4874	sendto_mii(MII_MWR | MII_WR, addr, ioaddr);
4875	addr >>= 1;
4876    }
4877}
4878
4879static void
4880mii_ta(u_long rw, u_long ioaddr)
4881{
4882    if (rw == MII_STWR) {
4883	sendto_mii(MII_MWR | MII_WR, 1, ioaddr);
4884	sendto_mii(MII_MWR | MII_WR, 0, ioaddr);
4885    } else {
4886	getfrom_mii(MII_MRD | MII_RD, ioaddr);        /* Tri-state MDIO */
4887    }
4888}
4889
4890static int
4891mii_swap(int data, int len)
4892{
4893    int i, tmp = 0;
4894
4895    for (i=0; i<len; i++) {
4896	tmp <<= 1;
4897	tmp |= (data & 1);
4898	data >>= 1;
4899    }
4900
4901    return tmp;
4902}
4903
4904static void
4905sendto_mii(u32 command, int data, u_long ioaddr)
4906{
4907    u32 j;
4908
4909    j = (data & 1) << 17;
4910    outl(command | j, ioaddr);
4911    udelay(1);
4912    outl(command | MII_MDC | j, ioaddr);
4913    udelay(1);
4914}
4915
4916static int
4917getfrom_mii(u32 command, u_long ioaddr)
4918{
4919    outl(command, ioaddr);
4920    udelay(1);
4921    outl(command | MII_MDC, ioaddr);
4922    udelay(1);
4923
4924    return (inl(ioaddr) >> 19) & 1;
4925}
4926
4927/*
4928** Here's 3 ways to calculate the OUI from the ID registers.
4929*/
4930static int
4931mii_get_oui(u_char phyaddr, u_long ioaddr)
4932{
4933/*
4934    union {
4935	u_short reg;
4936	u_char breg[2];
4937    } a;
4938    int i, r2, r3, ret=0;*/
4939    int r2, r3;
4940
4941    /* Read r2 and r3 */
4942    r2 = mii_rd(MII_ID0, phyaddr, ioaddr);
4943    r3 = mii_rd(MII_ID1, phyaddr, ioaddr);
4944                                                /* SEEQ and Cypress way * /
4945    / * Shuffle r2 and r3 * /
4946    a.reg=0;
4947    r3 = ((r3>>10)|(r2<<6))&0x0ff;
4948    r2 = ((r2>>2)&0x3fff);
4949
4950    / * Bit reverse r3 * /
4951    for (i=0;i<8;i++) {
4952	ret<<=1;
4953	ret |= (r3&1);
4954	r3>>=1;
4955    }
4956
4957    / * Bit reverse r2 * /
4958    for (i=0;i<16;i++) {
4959	a.reg<<=1;
4960	a.reg |= (r2&1);
4961	r2>>=1;
4962    }
4963
4964    / * Swap r2 bytes * /
4965    i=a.breg[0];
4966    a.breg[0]=a.breg[1];
4967    a.breg[1]=i;
4968
4969    return (a.reg<<8)|ret; */                 /* SEEQ and Cypress way */
4970/*    return (r2<<6)|(u_int)(r3>>10); */      /* NATIONAL and BROADCOM way */
4971    return r2;                                  /* (I did it) My way */
4972}
4973
4974/*
4975** The SROM spec forces us to search addresses [1-31 0]. Bummer.
4976*/
4977static int
4978mii_get_phy(struct net_device *dev)
4979{
4980    struct de4x5_private *lp = netdev_priv(dev);
4981    u_long iobase = dev->base_addr;
4982    int i, j, k, n, limit=ARRAY_SIZE(phy_info);
4983    int id;
4984
4985    lp->active = 0;
4986    lp->useMII = true;
4987
4988    /* Search the MII address space for possible PHY devices */
4989    for (n=0, lp->mii_cnt=0, i=1; !((i==1) && (n==1)); i=(i+1)%DE4X5_MAX_MII) {
4990	lp->phy[lp->active].addr = i;
4991	if (i==0) n++;                             /* Count cycles */
4992	while (de4x5_reset_phy(dev)<0) udelay(100);/* Wait for reset */
4993	id = mii_get_oui(i, DE4X5_MII);
4994	if ((id == 0) || (id == 65535)) continue;  /* Valid ID? */
4995	for (j=0; j<limit; j++) {                  /* Search PHY table */
4996	    if (id != phy_info[j].id) continue;    /* ID match? */
4997	    for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++);
4998	    if (k < DE4X5_MAX_PHY) {
4999		memcpy((char *)&lp->phy[k],
5000		       (char *)&phy_info[j], sizeof(struct phy_table));
5001		lp->phy[k].addr = i;
5002		lp->mii_cnt++;
5003		lp->active++;
5004	    } else {
5005		goto purgatory;                    /* Stop the search */
5006	    }
5007	    break;
5008	}
5009	if ((j == limit) && (i < DE4X5_MAX_MII)) {
5010	    for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++);
5011	    lp->phy[k].addr = i;
5012	    lp->phy[k].id = id;
5013	    lp->phy[k].spd.reg = GENERIC_REG;      /* ANLPA register         */
5014	    lp->phy[k].spd.mask = GENERIC_MASK;    /* 100Mb/s technologies   */
5015	    lp->phy[k].spd.value = GENERIC_VALUE;  /* TX & T4, H/F Duplex    */
5016	    lp->mii_cnt++;
5017	    lp->active++;
5018	    printk("%s: Using generic MII device control. If the board doesn't operate,\nplease mail the following dump to the author:\n", dev->name);
5019	    j = de4x5_debug;
5020	    de4x5_debug |= DEBUG_MII;
5021	    de4x5_dbg_mii(dev, k);
5022	    de4x5_debug = j;
5023	    printk("\n");
5024	}
5025    }
5026  purgatory:
5027    lp->active = 0;
5028    if (lp->phy[0].id) {                           /* Reset the PHY devices */
5029	for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++) { /*For each PHY*/
5030	    mii_wr(MII_CR_RST, MII_CR, lp->phy[k].addr, DE4X5_MII);
5031	    while (mii_rd(MII_CR, lp->phy[k].addr, DE4X5_MII) & MII_CR_RST);
5032
5033	    de4x5_dbg_mii(dev, k);
5034	}
5035    }
5036    if (!lp->mii_cnt) lp->useMII = false;
5037
5038    return lp->mii_cnt;
5039}
5040
5041static char *
5042build_setup_frame(struct net_device *dev, int mode)
5043{
5044    struct de4x5_private *lp = netdev_priv(dev);
5045    int i;
5046    char *pa = lp->setup_frame;
5047
5048    /* Initialise the setup frame */
5049    if (mode == ALL) {
5050	memset(lp->setup_frame, 0, SETUP_FRAME_LEN);
5051    }
5052
5053    if (lp->setup_f == HASH_PERF) {
5054	for (pa=lp->setup_frame+IMPERF_PA_OFFSET, i=0; i<ETH_ALEN; i++) {
5055	    *(pa + i) = dev->dev_addr[i];                 /* Host address */
5056	    if (i & 0x01) pa += 2;
5057	}
5058	*(lp->setup_frame + (HASH_TABLE_LEN >> 3) - 3) = 0x80;
5059    } else {
5060	for (i=0; i<ETH_ALEN; i++) { /* Host address */
5061	    *(pa + (i&1)) = dev->dev_addr[i];
5062	    if (i & 0x01) pa += 4;
5063	}
5064	for (i=0; i<ETH_ALEN; i++) { /* Broadcast address */
5065	    *(pa + (i&1)) = (char) 0xff;
5066	    if (i & 0x01) pa += 4;
5067	}
5068    }
5069
5070    return pa;                     /* Points to the next entry */
5071}
5072
5073static void
5074disable_ast(struct net_device *dev)
5075{
5076	struct de4x5_private *lp = netdev_priv(dev);
5077	del_timer_sync(&lp->timer);
5078}
5079
5080static long
5081de4x5_switch_mac_port(struct net_device *dev)
5082{
5083    struct de4x5_private *lp = netdev_priv(dev);
5084    u_long iobase = dev->base_addr;
5085    s32 omr;
5086
5087    STOP_DE4X5;
5088
5089    /* Assert the OMR_PS bit in CSR6 */
5090    omr = (inl(DE4X5_OMR) & ~(OMR_PS | OMR_HBD | OMR_TTM | OMR_PCS | OMR_SCR |
5091			                                             OMR_FDX));
5092    omr |= lp->infoblock_csr6;
5093    if (omr & OMR_PS) omr |= OMR_HBD;
5094    outl(omr, DE4X5_OMR);
5095
5096    /* Soft Reset */
5097    RESET_DE4X5;
5098
5099    /* Restore the GEP - especially for COMPACT and Type 0 Infoblocks */
5100    if (lp->chipset == DC21140) {
5101	gep_wr(lp->cache.gepc, dev);
5102	gep_wr(lp->cache.gep, dev);
5103    } else if ((lp->chipset & ~0x0ff) == DC2114x) {
5104	reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14, lp->cache.csr15);
5105    }
5106
5107    /* Restore CSR6 */
5108    outl(omr, DE4X5_OMR);
5109
5110    /* Reset CSR8 */
5111    inl(DE4X5_MFC);
5112
5113    return omr;
5114}
5115
5116static void
5117gep_wr(s32 data, struct net_device *dev)
5118{
5119    struct de4x5_private *lp = netdev_priv(dev);
5120    u_long iobase = dev->base_addr;
5121
5122    if (lp->chipset == DC21140) {
5123	outl(data, DE4X5_GEP);
5124    } else if ((lp->chipset & ~0x00ff) == DC2114x) {
5125	outl((data<<16) | lp->cache.csr15, DE4X5_SIGR);
5126    }
5127}
5128
5129static int
5130gep_rd(struct net_device *dev)
5131{
5132    struct de4x5_private *lp = netdev_priv(dev);
5133    u_long iobase = dev->base_addr;
5134
5135    if (lp->chipset == DC21140) {
5136	return inl(DE4X5_GEP);
5137    } else if ((lp->chipset & ~0x00ff) == DC2114x) {
5138	return inl(DE4X5_SIGR) & 0x000fffff;
5139    }
5140
5141    return 0;
5142}
5143
5144static void
5145yawn(struct net_device *dev, int state)
5146{
5147    struct de4x5_private *lp = netdev_priv(dev);
5148    u_long iobase = dev->base_addr;
5149
5150    if ((lp->chipset == DC21040) || (lp->chipset == DC21140)) return;
5151
5152    if(lp->bus == EISA) {
5153	switch(state) {
5154	  case WAKEUP:
5155	    outb(WAKEUP, PCI_CFPM);
5156	    mdelay(10);
5157	    break;
5158
5159	  case SNOOZE:
5160	    outb(SNOOZE, PCI_CFPM);
5161	    break;
5162
5163	  case SLEEP:
5164	    outl(0, DE4X5_SICR);
5165	    outb(SLEEP, PCI_CFPM);
5166	    break;
5167	}
5168    } else {
5169	struct pci_dev *pdev = to_pci_dev (lp->gendev);
5170	switch(state) {
5171	  case WAKEUP:
5172	    pci_write_config_byte(pdev, PCI_CFDA_PSM, WAKEUP);
5173	    mdelay(10);
5174	    break;
5175
5176	  case SNOOZE:
5177	    pci_write_config_byte(pdev, PCI_CFDA_PSM, SNOOZE);
5178	    break;
5179
5180	  case SLEEP:
5181	    outl(0, DE4X5_SICR);
5182	    pci_write_config_byte(pdev, PCI_CFDA_PSM, SLEEP);
5183	    break;
5184	}
5185    }
5186}
5187
5188static void
5189de4x5_parse_params(struct net_device *dev)
5190{
5191    struct de4x5_private *lp = netdev_priv(dev);
5192    char *p, *q, t;
5193
5194    lp->params.fdx = false;
5195    lp->params.autosense = AUTO;
5196
5197    if (args == NULL) return;
5198
5199    if ((p = strstr(args, dev->name))) {
5200	if (!(q = strstr(p+strlen(dev->name), "eth"))) q = p + strlen(p);
5201	t = *q;
5202	*q = '\0';
5203
5204	if (strstr(p, "fdx") || strstr(p, "FDX")) lp->params.fdx = true;
5205
5206	if (strstr(p, "autosense") || strstr(p, "AUTOSENSE")) {
5207	    if (strstr(p, "TP")) {
5208		lp->params.autosense = TP;
5209	    } else if (strstr(p, "TP_NW")) {
5210		lp->params.autosense = TP_NW;
5211	    } else if (strstr(p, "BNC")) {
5212		lp->params.autosense = BNC;
5213	    } else if (strstr(p, "AUI")) {
5214		lp->params.autosense = AUI;
5215	    } else if (strstr(p, "BNC_AUI")) {
5216		lp->params.autosense = BNC;
5217	    } else if (strstr(p, "10Mb")) {
5218		lp->params.autosense = _10Mb;
5219	    } else if (strstr(p, "100Mb")) {
5220		lp->params.autosense = _100Mb;
5221	    } else if (strstr(p, "AUTO")) {
5222		lp->params.autosense = AUTO;
5223	    }
5224	}
5225	*q = t;
5226    }
5227}
5228
5229static void
5230de4x5_dbg_open(struct net_device *dev)
5231{
5232    struct de4x5_private *lp = netdev_priv(dev);
5233    int i;
5234
5235    if (de4x5_debug & DEBUG_OPEN) {
5236	printk("%s: de4x5 opening with irq %d\n",dev->name,dev->irq);
5237	printk("\tphysical address: ");
5238	for (i=0;i<6;i++) {
5239	    printk("%2.2x:",(short)dev->dev_addr[i]);
5240	}
5241	printk("\n");
5242	printk("Descriptor head addresses:\n");
5243	printk("\t0x%8.8lx  0x%8.8lx\n",(u_long)lp->rx_ring,(u_long)lp->tx_ring);
5244	printk("Descriptor addresses:\nRX: ");
5245	for (i=0;i<lp->rxRingSize-1;i++){
5246	    if (i < 3) {
5247		printk("0x%8.8lx  ",(u_long)&lp->rx_ring[i].status);
5248	    }
5249	}
5250	printk("...0x%8.8lx\n",(u_long)&lp->rx_ring[i].status);
5251	printk("TX: ");
5252	for (i=0;i<lp->txRingSize-1;i++){
5253	    if (i < 3) {
5254		printk("0x%8.8lx  ", (u_long)&lp->tx_ring[i].status);
5255	    }
5256	}
5257	printk("...0x%8.8lx\n", (u_long)&lp->tx_ring[i].status);
5258	printk("Descriptor buffers:\nRX: ");
5259	for (i=0;i<lp->rxRingSize-1;i++){
5260	    if (i < 3) {
5261		printk("0x%8.8x  ",le32_to_cpu(lp->rx_ring[i].buf));
5262	    }
5263	}
5264	printk("...0x%8.8x\n",le32_to_cpu(lp->rx_ring[i].buf));
5265	printk("TX: ");
5266	for (i=0;i<lp->txRingSize-1;i++){
5267	    if (i < 3) {
5268		printk("0x%8.8x  ", le32_to_cpu(lp->tx_ring[i].buf));
5269	    }
5270	}
5271	printk("...0x%8.8x\n", le32_to_cpu(lp->tx_ring[i].buf));
5272	printk("Ring size:\nRX: %d\nTX: %d\n",
5273	       (short)lp->rxRingSize,
5274	       (short)lp->txRingSize);
5275    }
5276}
5277
5278static void
5279de4x5_dbg_mii(struct net_device *dev, int k)
5280{
5281    struct de4x5_private *lp = netdev_priv(dev);
5282    u_long iobase = dev->base_addr;
5283
5284    if (de4x5_debug & DEBUG_MII) {
5285	printk("\nMII device address: %d\n", lp->phy[k].addr);
5286	printk("MII CR:  %x\n",mii_rd(MII_CR,lp->phy[k].addr,DE4X5_MII));
5287	printk("MII SR:  %x\n",mii_rd(MII_SR,lp->phy[k].addr,DE4X5_MII));
5288	printk("MII ID0: %x\n",mii_rd(MII_ID0,lp->phy[k].addr,DE4X5_MII));
5289	printk("MII ID1: %x\n",mii_rd(MII_ID1,lp->phy[k].addr,DE4X5_MII));
5290	if (lp->phy[k].id != BROADCOM_T4) {
5291	    printk("MII ANA: %x\n",mii_rd(0x04,lp->phy[k].addr,DE4X5_MII));
5292	    printk("MII ANC: %x\n",mii_rd(0x05,lp->phy[k].addr,DE4X5_MII));
5293	}
5294	printk("MII 16:  %x\n",mii_rd(0x10,lp->phy[k].addr,DE4X5_MII));
5295	if (lp->phy[k].id != BROADCOM_T4) {
5296	    printk("MII 17:  %x\n",mii_rd(0x11,lp->phy[k].addr,DE4X5_MII));
5297	    printk("MII 18:  %x\n",mii_rd(0x12,lp->phy[k].addr,DE4X5_MII));
5298	} else {
5299	    printk("MII 20:  %x\n",mii_rd(0x14,lp->phy[k].addr,DE4X5_MII));
5300	}
5301    }
5302}
5303
5304static void
5305de4x5_dbg_media(struct net_device *dev)
5306{
5307    struct de4x5_private *lp = netdev_priv(dev);
5308
5309    if (lp->media != lp->c_media) {
5310	if (de4x5_debug & DEBUG_MEDIA) {
5311	    printk("%s: media is %s%s\n", dev->name,
5312		   (lp->media == NC  ? "unconnected, link down or incompatible connection" :
5313		    (lp->media == TP  ? "TP" :
5314		     (lp->media == ANS ? "TP/Nway" :
5315		      (lp->media == BNC ? "BNC" :
5316		       (lp->media == AUI ? "AUI" :
5317			(lp->media == BNC_AUI ? "BNC/AUI" :
5318			 (lp->media == EXT_SIA ? "EXT SIA" :
5319			  (lp->media == _100Mb  ? "100Mb/s" :
5320			   (lp->media == _10Mb   ? "10Mb/s" :
5321			    "???"
5322			    ))))))))), (lp->fdx?" full duplex.":"."));
5323	}
5324	lp->c_media = lp->media;
5325    }
5326}
5327
5328static void
5329de4x5_dbg_srom(struct de4x5_srom *p)
5330{
5331    int i;
5332
5333    if (de4x5_debug & DEBUG_SROM) {
5334	printk("Sub-system Vendor ID: %04x\n", *((u_short *)p->sub_vendor_id));
5335	printk("Sub-system ID:        %04x\n", *((u_short *)p->sub_system_id));
5336	printk("ID Block CRC:         %02x\n", (u_char)(p->id_block_crc));
5337	printk("SROM version:         %02x\n", (u_char)(p->version));
5338	printk("# controllers:        %02x\n", (u_char)(p->num_controllers));
5339
5340	printk("Hardware Address:     %pM\n", p->ieee_addr);
5341	printk("CRC checksum:         %04x\n", (u_short)(p->chksum));
5342	for (i=0; i<64; i++) {
5343	    printk("%3d %04x\n", i<<1, (u_short)*((u_short *)p+i));
5344	}
5345    }
5346}
5347
5348static void
5349de4x5_dbg_rx(struct sk_buff *skb, int len)
5350{
5351    int i, j;
5352
5353    if (de4x5_debug & DEBUG_RX) {
5354	printk("R: %pM <- %pM len/SAP:%02x%02x [%d]\n",
5355	       skb->data, &skb->data[6],
5356	       (u_char)skb->data[12],
5357	       (u_char)skb->data[13],
5358	       len);
5359	for (j=0; len>0;j+=16, len-=16) {
5360	  printk("    %03x: ",j);
5361	  for (i=0; i<16 && i<len; i++) {
5362	    printk("%02x ",(u_char)skb->data[i+j]);
5363	  }
5364	  printk("\n");
5365	}
5366    }
5367}
5368
5369/*
5370** Perform IOCTL call functions here. Some are privileged operations and the
5371** effective uid is checked in those cases. In the normal course of events
5372** this function is only used for my testing.
5373*/
5374static int
5375de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5376{
5377    struct de4x5_private *lp = netdev_priv(dev);
5378    struct de4x5_ioctl *ioc = (struct de4x5_ioctl *) &rq->ifr_ifru;
5379    u_long iobase = dev->base_addr;
5380    int i, j, status = 0;
5381    s32 omr;
5382    union {
5383	u8  addr[144];
5384	u16 sval[72];
5385	u32 lval[36];
5386    } tmp;
5387    u_long flags = 0;
5388
5389    switch(ioc->cmd) {
5390    case DE4X5_GET_HWADDR:           /* Get the hardware address */
5391	ioc->len = ETH_ALEN;
5392	for (i=0; i<ETH_ALEN; i++) {
5393	    tmp.addr[i] = dev->dev_addr[i];
5394	}
5395	if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5396	break;
5397
5398    case DE4X5_SET_HWADDR:           /* Set the hardware address */
5399	if (!capable(CAP_NET_ADMIN)) return -EPERM;
5400	if (copy_from_user(tmp.addr, ioc->data, ETH_ALEN)) return -EFAULT;
5401	if (netif_queue_stopped(dev))
5402		return -EBUSY;
5403	netif_stop_queue(dev);
5404	for (i=0; i<ETH_ALEN; i++) {
5405	    dev->dev_addr[i] = tmp.addr[i];
5406	}
5407	build_setup_frame(dev, PHYS_ADDR_ONLY);
5408	/* Set up the descriptor and give ownership to the card */
5409	load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
5410		                                       SETUP_FRAME_LEN, (struct sk_buff *)1);
5411	lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
5412	outl(POLL_DEMAND, DE4X5_TPD);                /* Start the TX */
5413	netif_wake_queue(dev);                      /* Unlock the TX ring */
5414	break;
5415
5416    case DE4X5_SAY_BOO:              /* Say "Boo!" to the kernel log file */
5417	if (!capable(CAP_NET_ADMIN)) return -EPERM;
5418	printk("%s: Boo!\n", dev->name);
5419	break;
5420
5421    case DE4X5_MCA_EN:               /* Enable pass all multicast addressing */
5422	if (!capable(CAP_NET_ADMIN)) return -EPERM;
5423	omr = inl(DE4X5_OMR);
5424	omr |= OMR_PM;
5425	outl(omr, DE4X5_OMR);
5426	break;
5427
5428    case DE4X5_GET_STATS:            /* Get the driver statistics */
5429    {
5430        struct pkt_stats statbuf;
5431	ioc->len = sizeof(statbuf);
5432	spin_lock_irqsave(&lp->lock, flags);
5433	memcpy(&statbuf, &lp->pktStats, ioc->len);
5434	spin_unlock_irqrestore(&lp->lock, flags);
5435	if (copy_to_user(ioc->data, &statbuf, ioc->len))
5436		return -EFAULT;
5437	break;
5438    }
5439    case DE4X5_CLR_STATS:            /* Zero out the driver statistics */
5440	if (!capable(CAP_NET_ADMIN)) return -EPERM;
5441	spin_lock_irqsave(&lp->lock, flags);
5442	memset(&lp->pktStats, 0, sizeof(lp->pktStats));
5443	spin_unlock_irqrestore(&lp->lock, flags);
5444	break;
5445
5446    case DE4X5_GET_OMR:              /* Get the OMR Register contents */
5447	tmp.addr[0] = inl(DE4X5_OMR);
5448	if (copy_to_user(ioc->data, tmp.addr, 1)) return -EFAULT;
5449	break;
5450
5451    case DE4X5_SET_OMR:              /* Set the OMR Register contents */
5452	if (!capable(CAP_NET_ADMIN)) return -EPERM;
5453	if (copy_from_user(tmp.addr, ioc->data, 1)) return -EFAULT;
5454	outl(tmp.addr[0], DE4X5_OMR);
5455	break;
5456
5457    case DE4X5_GET_REG:              /* Get the DE4X5 Registers */
5458	j = 0;
5459	tmp.lval[0] = inl(DE4X5_STS); j+=4;
5460	tmp.lval[1] = inl(DE4X5_BMR); j+=4;
5461	tmp.lval[2] = inl(DE4X5_IMR); j+=4;
5462	tmp.lval[3] = inl(DE4X5_OMR); j+=4;
5463	tmp.lval[4] = inl(DE4X5_SISR); j+=4;
5464	tmp.lval[5] = inl(DE4X5_SICR); j+=4;
5465	tmp.lval[6] = inl(DE4X5_STRR); j+=4;
5466	tmp.lval[7] = inl(DE4X5_SIGR); j+=4;
5467	ioc->len = j;
5468	if (copy_to_user(ioc->data, tmp.lval, ioc->len))
5469		return -EFAULT;
5470	break;
5471
5472#define DE4X5_DUMP              0x0f /* Dump the DE4X5 Status */
5473/*
5474      case DE4X5_DUMP:
5475	j = 0;
5476	tmp.addr[j++] = dev->irq;
5477	for (i=0; i<ETH_ALEN; i++) {
5478	    tmp.addr[j++] = dev->dev_addr[i];
5479	}
5480	tmp.addr[j++] = lp->rxRingSize;
5481	tmp.lval[j>>2] = (long)lp->rx_ring; j+=4;
5482	tmp.lval[j>>2] = (long)lp->tx_ring; j+=4;
5483
5484	for (i=0;i<lp->rxRingSize-1;i++){
5485	    if (i < 3) {
5486		tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
5487	    }
5488	}
5489	tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
5490	for (i=0;i<lp->txRingSize-1;i++){
5491	    if (i < 3) {
5492		tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
5493	    }
5494	}
5495	tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
5496
5497	for (i=0;i<lp->rxRingSize-1;i++){
5498	    if (i < 3) {
5499		tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
5500	    }
5501	}
5502	tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
5503	for (i=0;i<lp->txRingSize-1;i++){
5504	    if (i < 3) {
5505		tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
5506	    }
5507	}
5508	tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
5509
5510	for (i=0;i<lp->rxRingSize;i++){
5511	    tmp.lval[j>>2] = le32_to_cpu(lp->rx_ring[i].status); j+=4;
5512	}
5513	for (i=0;i<lp->txRingSize;i++){
5514	    tmp.lval[j>>2] = le32_to_cpu(lp->tx_ring[i].status); j+=4;
5515	}
5516
5517	tmp.lval[j>>2] = inl(DE4X5_BMR);  j+=4;
5518	tmp.lval[j>>2] = inl(DE4X5_TPD);  j+=4;
5519	tmp.lval[j>>2] = inl(DE4X5_RPD);  j+=4;
5520	tmp.lval[j>>2] = inl(DE4X5_RRBA); j+=4;
5521	tmp.lval[j>>2] = inl(DE4X5_TRBA); j+=4;
5522	tmp.lval[j>>2] = inl(DE4X5_STS);  j+=4;
5523	tmp.lval[j>>2] = inl(DE4X5_OMR);  j+=4;
5524	tmp.lval[j>>2] = inl(DE4X5_IMR);  j+=4;
5525	tmp.lval[j>>2] = lp->chipset; j+=4;
5526	if (lp->chipset == DC21140) {
5527	    tmp.lval[j>>2] = gep_rd(dev);  j+=4;
5528	} else {
5529	    tmp.lval[j>>2] = inl(DE4X5_SISR); j+=4;
5530	    tmp.lval[j>>2] = inl(DE4X5_SICR); j+=4;
5531	    tmp.lval[j>>2] = inl(DE4X5_STRR); j+=4;
5532	    tmp.lval[j>>2] = inl(DE4X5_SIGR); j+=4;
5533	}
5534	tmp.lval[j>>2] = lp->phy[lp->active].id; j+=4;
5535	if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
5536	    tmp.lval[j>>2] = lp->active; j+=4;
5537	    tmp.lval[j>>2]=mii_rd(MII_CR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5538	    tmp.lval[j>>2]=mii_rd(MII_SR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5539	    tmp.lval[j>>2]=mii_rd(MII_ID0,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5540	    tmp.lval[j>>2]=mii_rd(MII_ID1,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5541	    if (lp->phy[lp->active].id != BROADCOM_T4) {
5542		tmp.lval[j>>2]=mii_rd(MII_ANA,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5543		tmp.lval[j>>2]=mii_rd(MII_ANLPA,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5544	    }
5545	    tmp.lval[j>>2]=mii_rd(0x10,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5546	    if (lp->phy[lp->active].id != BROADCOM_T4) {
5547		tmp.lval[j>>2]=mii_rd(0x11,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5548		tmp.lval[j>>2]=mii_rd(0x12,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5549	    } else {
5550		tmp.lval[j>>2]=mii_rd(0x14,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5551	    }
5552	}
5553
5554	tmp.addr[j++] = lp->txRingSize;
5555	tmp.addr[j++] = netif_queue_stopped(dev);
5556
5557	ioc->len = j;
5558	if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5559	break;
5560
5561*/
5562    default:
5563	return -EOPNOTSUPP;
5564    }
5565
5566    return status;
5567}
5568
5569static int __init de4x5_module_init (void)
5570{
5571	int err = 0;
5572
5573#ifdef CONFIG_PCI
5574	err = pci_register_driver(&de4x5_pci_driver);
5575#endif
5576#ifdef CONFIG_EISA
5577	err |= eisa_driver_register (&de4x5_eisa_driver);
5578#endif
5579
5580	return err;
5581}
5582
5583static void __exit de4x5_module_exit (void)
5584{
5585#ifdef CONFIG_PCI
5586	pci_unregister_driver (&de4x5_pci_driver);
5587#endif
5588#ifdef CONFIG_EISA
5589	eisa_driver_unregister (&de4x5_eisa_driver);
5590#endif
5591}
5592
5593module_init (de4x5_module_init);
5594module_exit (de4x5_module_exit);
5595