1/*******************************************************************************
2
3  Intel(R) 82576 Virtual Function Linux driver
4  Copyright(c) 2009 - 2012 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30#include <linux/module.h>
31#include <linux/types.h>
32#include <linux/init.h>
33#include <linux/pci.h>
34#include <linux/vmalloc.h>
35#include <linux/pagemap.h>
36#include <linux/delay.h>
37#include <linux/netdevice.h>
38#include <linux/tcp.h>
39#include <linux/ipv6.h>
40#include <linux/slab.h>
41#include <net/checksum.h>
42#include <net/ip6_checksum.h>
43#include <linux/mii.h>
44#include <linux/ethtool.h>
45#include <linux/if_vlan.h>
46#include <linux/prefetch.h>
47
48#include "igbvf.h"
49
50#define DRV_VERSION "2.0.1-k"
51char igbvf_driver_name[] = "igbvf";
52const char igbvf_driver_version[] = DRV_VERSION;
53static const char igbvf_driver_string[] =
54		  "Intel(R) Gigabit Virtual Function Network Driver";
55static const char igbvf_copyright[] =
56		  "Copyright (c) 2009 - 2012 Intel Corporation.";
57
58static int igbvf_poll(struct napi_struct *napi, int budget);
59static void igbvf_reset(struct igbvf_adapter *);
60static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
61static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
62
63static struct igbvf_info igbvf_vf_info = {
64	.mac                    = e1000_vfadapt,
65	.flags                  = 0,
66	.pba                    = 10,
67	.init_ops               = e1000_init_function_pointers_vf,
68};
69
70static struct igbvf_info igbvf_i350_vf_info = {
71	.mac			= e1000_vfadapt_i350,
72	.flags			= 0,
73	.pba			= 10,
74	.init_ops		= e1000_init_function_pointers_vf,
75};
76
77static const struct igbvf_info *igbvf_info_tbl[] = {
78	[board_vf]              = &igbvf_vf_info,
79	[board_i350_vf]		= &igbvf_i350_vf_info,
80};
81
82/**
83 * igbvf_desc_unused - calculate if we have unused descriptors
84 **/
85static int igbvf_desc_unused(struct igbvf_ring *ring)
86{
87	if (ring->next_to_clean > ring->next_to_use)
88		return ring->next_to_clean - ring->next_to_use - 1;
89
90	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
91}
92
93/**
94 * igbvf_receive_skb - helper function to handle Rx indications
95 * @adapter: board private structure
96 * @status: descriptor status field as written by hardware
97 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
98 * @skb: pointer to sk_buff to be indicated to stack
99 **/
100static void igbvf_receive_skb(struct igbvf_adapter *adapter,
101                              struct net_device *netdev,
102                              struct sk_buff *skb,
103                              u32 status, u16 vlan)
104{
105	if (status & E1000_RXD_STAT_VP) {
106		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
107		if (test_bit(vid, adapter->active_vlans))
108			__vlan_hwaccel_put_tag(skb, vid);
109	}
110	netif_receive_skb(skb);
111}
112
113static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
114                                         u32 status_err, struct sk_buff *skb)
115{
116	skb_checksum_none_assert(skb);
117
118	/* Ignore Checksum bit is set or checksum is disabled through ethtool */
119	if ((status_err & E1000_RXD_STAT_IXSM) ||
120	    (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
121		return;
122
123	/* TCP/UDP checksum error bit is set */
124	if (status_err &
125	    (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
126		/* let the stack verify checksum errors */
127		adapter->hw_csum_err++;
128		return;
129	}
130
131	/* It must be a TCP or UDP packet with a valid checksum */
132	if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
133		skb->ip_summed = CHECKSUM_UNNECESSARY;
134
135	adapter->hw_csum_good++;
136}
137
138/**
139 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
140 * @rx_ring: address of ring structure to repopulate
141 * @cleaned_count: number of buffers to repopulate
142 **/
143static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
144                                   int cleaned_count)
145{
146	struct igbvf_adapter *adapter = rx_ring->adapter;
147	struct net_device *netdev = adapter->netdev;
148	struct pci_dev *pdev = adapter->pdev;
149	union e1000_adv_rx_desc *rx_desc;
150	struct igbvf_buffer *buffer_info;
151	struct sk_buff *skb;
152	unsigned int i;
153	int bufsz;
154
155	i = rx_ring->next_to_use;
156	buffer_info = &rx_ring->buffer_info[i];
157
158	if (adapter->rx_ps_hdr_size)
159		bufsz = adapter->rx_ps_hdr_size;
160	else
161		bufsz = adapter->rx_buffer_len;
162
163	while (cleaned_count--) {
164		rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
165
166		if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
167			if (!buffer_info->page) {
168				buffer_info->page = alloc_page(GFP_ATOMIC);
169				if (!buffer_info->page) {
170					adapter->alloc_rx_buff_failed++;
171					goto no_buffers;
172				}
173				buffer_info->page_offset = 0;
174			} else {
175				buffer_info->page_offset ^= PAGE_SIZE / 2;
176			}
177			buffer_info->page_dma =
178				dma_map_page(&pdev->dev, buffer_info->page,
179				             buffer_info->page_offset,
180				             PAGE_SIZE / 2,
181					     DMA_FROM_DEVICE);
182		}
183
184		if (!buffer_info->skb) {
185			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
186			if (!skb) {
187				adapter->alloc_rx_buff_failed++;
188				goto no_buffers;
189			}
190
191			buffer_info->skb = skb;
192			buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
193			                                  bufsz,
194							  DMA_FROM_DEVICE);
195		}
196		/* Refresh the desc even if buffer_addrs didn't change because
197		 * each write-back erases this info. */
198		if (adapter->rx_ps_hdr_size) {
199			rx_desc->read.pkt_addr =
200			     cpu_to_le64(buffer_info->page_dma);
201			rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
202		} else {
203			rx_desc->read.pkt_addr =
204			     cpu_to_le64(buffer_info->dma);
205			rx_desc->read.hdr_addr = 0;
206		}
207
208		i++;
209		if (i == rx_ring->count)
210			i = 0;
211		buffer_info = &rx_ring->buffer_info[i];
212	}
213
214no_buffers:
215	if (rx_ring->next_to_use != i) {
216		rx_ring->next_to_use = i;
217		if (i == 0)
218			i = (rx_ring->count - 1);
219		else
220			i--;
221
222		/* Force memory writes to complete before letting h/w
223		 * know there are new descriptors to fetch.  (Only
224		 * applicable for weak-ordered memory model archs,
225		 * such as IA-64). */
226		wmb();
227		writel(i, adapter->hw.hw_addr + rx_ring->tail);
228	}
229}
230
231/**
232 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
233 * @adapter: board private structure
234 *
235 * the return value indicates whether actual cleaning was done, there
236 * is no guarantee that everything was cleaned
237 **/
238static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
239                               int *work_done, int work_to_do)
240{
241	struct igbvf_ring *rx_ring = adapter->rx_ring;
242	struct net_device *netdev = adapter->netdev;
243	struct pci_dev *pdev = adapter->pdev;
244	union e1000_adv_rx_desc *rx_desc, *next_rxd;
245	struct igbvf_buffer *buffer_info, *next_buffer;
246	struct sk_buff *skb;
247	bool cleaned = false;
248	int cleaned_count = 0;
249	unsigned int total_bytes = 0, total_packets = 0;
250	unsigned int i;
251	u32 length, hlen, staterr;
252
253	i = rx_ring->next_to_clean;
254	rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
255	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
256
257	while (staterr & E1000_RXD_STAT_DD) {
258		if (*work_done >= work_to_do)
259			break;
260		(*work_done)++;
261		rmb(); /* read descriptor and rx_buffer_info after status DD */
262
263		buffer_info = &rx_ring->buffer_info[i];
264
265		/* HW will not DMA in data larger than the given buffer, even
266		 * if it parses the (NFS, of course) header to be larger.  In
267		 * that case, it fills the header buffer and spills the rest
268		 * into the page.
269		 */
270		hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
271		  E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
272		if (hlen > adapter->rx_ps_hdr_size)
273			hlen = adapter->rx_ps_hdr_size;
274
275		length = le16_to_cpu(rx_desc->wb.upper.length);
276		cleaned = true;
277		cleaned_count++;
278
279		skb = buffer_info->skb;
280		prefetch(skb->data - NET_IP_ALIGN);
281		buffer_info->skb = NULL;
282		if (!adapter->rx_ps_hdr_size) {
283			dma_unmap_single(&pdev->dev, buffer_info->dma,
284			                 adapter->rx_buffer_len,
285					 DMA_FROM_DEVICE);
286			buffer_info->dma = 0;
287			skb_put(skb, length);
288			goto send_up;
289		}
290
291		if (!skb_shinfo(skb)->nr_frags) {
292			dma_unmap_single(&pdev->dev, buffer_info->dma,
293			                 adapter->rx_ps_hdr_size,
294					 DMA_FROM_DEVICE);
295			skb_put(skb, hlen);
296		}
297
298		if (length) {
299			dma_unmap_page(&pdev->dev, buffer_info->page_dma,
300			               PAGE_SIZE / 2,
301				       DMA_FROM_DEVICE);
302			buffer_info->page_dma = 0;
303
304			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
305			                   buffer_info->page,
306			                   buffer_info->page_offset,
307			                   length);
308
309			if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
310			    (page_count(buffer_info->page) != 1))
311				buffer_info->page = NULL;
312			else
313				get_page(buffer_info->page);
314
315			skb->len += length;
316			skb->data_len += length;
317			skb->truesize += PAGE_SIZE / 2;
318		}
319send_up:
320		i++;
321		if (i == rx_ring->count)
322			i = 0;
323		next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
324		prefetch(next_rxd);
325		next_buffer = &rx_ring->buffer_info[i];
326
327		if (!(staterr & E1000_RXD_STAT_EOP)) {
328			buffer_info->skb = next_buffer->skb;
329			buffer_info->dma = next_buffer->dma;
330			next_buffer->skb = skb;
331			next_buffer->dma = 0;
332			goto next_desc;
333		}
334
335		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
336			dev_kfree_skb_irq(skb);
337			goto next_desc;
338		}
339
340		total_bytes += skb->len;
341		total_packets++;
342
343		igbvf_rx_checksum_adv(adapter, staterr, skb);
344
345		skb->protocol = eth_type_trans(skb, netdev);
346
347		igbvf_receive_skb(adapter, netdev, skb, staterr,
348		                  rx_desc->wb.upper.vlan);
349
350next_desc:
351		rx_desc->wb.upper.status_error = 0;
352
353		/* return some buffers to hardware, one at a time is too slow */
354		if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
355			igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
356			cleaned_count = 0;
357		}
358
359		/* use prefetched values */
360		rx_desc = next_rxd;
361		buffer_info = next_buffer;
362
363		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
364	}
365
366	rx_ring->next_to_clean = i;
367	cleaned_count = igbvf_desc_unused(rx_ring);
368
369	if (cleaned_count)
370		igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
371
372	adapter->total_rx_packets += total_packets;
373	adapter->total_rx_bytes += total_bytes;
374	adapter->net_stats.rx_bytes += total_bytes;
375	adapter->net_stats.rx_packets += total_packets;
376	return cleaned;
377}
378
379static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
380                            struct igbvf_buffer *buffer_info)
381{
382	if (buffer_info->dma) {
383		if (buffer_info->mapped_as_page)
384			dma_unmap_page(&adapter->pdev->dev,
385				       buffer_info->dma,
386				       buffer_info->length,
387				       DMA_TO_DEVICE);
388		else
389			dma_unmap_single(&adapter->pdev->dev,
390					 buffer_info->dma,
391					 buffer_info->length,
392					 DMA_TO_DEVICE);
393		buffer_info->dma = 0;
394	}
395	if (buffer_info->skb) {
396		dev_kfree_skb_any(buffer_info->skb);
397		buffer_info->skb = NULL;
398	}
399	buffer_info->time_stamp = 0;
400}
401
402/**
403 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
404 * @adapter: board private structure
405 *
406 * Return 0 on success, negative on failure
407 **/
408int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
409                             struct igbvf_ring *tx_ring)
410{
411	struct pci_dev *pdev = adapter->pdev;
412	int size;
413
414	size = sizeof(struct igbvf_buffer) * tx_ring->count;
415	tx_ring->buffer_info = vzalloc(size);
416	if (!tx_ring->buffer_info)
417		goto err;
418
419	/* round up to nearest 4K */
420	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
421	tx_ring->size = ALIGN(tx_ring->size, 4096);
422
423	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
424					   &tx_ring->dma, GFP_KERNEL);
425
426	if (!tx_ring->desc)
427		goto err;
428
429	tx_ring->adapter = adapter;
430	tx_ring->next_to_use = 0;
431	tx_ring->next_to_clean = 0;
432
433	return 0;
434err:
435	vfree(tx_ring->buffer_info);
436	dev_err(&adapter->pdev->dev,
437	        "Unable to allocate memory for the transmit descriptor ring\n");
438	return -ENOMEM;
439}
440
441/**
442 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
443 * @adapter: board private structure
444 *
445 * Returns 0 on success, negative on failure
446 **/
447int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
448			     struct igbvf_ring *rx_ring)
449{
450	struct pci_dev *pdev = adapter->pdev;
451	int size, desc_len;
452
453	size = sizeof(struct igbvf_buffer) * rx_ring->count;
454	rx_ring->buffer_info = vzalloc(size);
455	if (!rx_ring->buffer_info)
456		goto err;
457
458	desc_len = sizeof(union e1000_adv_rx_desc);
459
460	/* Round up to nearest 4K */
461	rx_ring->size = rx_ring->count * desc_len;
462	rx_ring->size = ALIGN(rx_ring->size, 4096);
463
464	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
465					   &rx_ring->dma, GFP_KERNEL);
466
467	if (!rx_ring->desc)
468		goto err;
469
470	rx_ring->next_to_clean = 0;
471	rx_ring->next_to_use = 0;
472
473	rx_ring->adapter = adapter;
474
475	return 0;
476
477err:
478	vfree(rx_ring->buffer_info);
479	rx_ring->buffer_info = NULL;
480	dev_err(&adapter->pdev->dev,
481	        "Unable to allocate memory for the receive descriptor ring\n");
482	return -ENOMEM;
483}
484
485/**
486 * igbvf_clean_tx_ring - Free Tx Buffers
487 * @tx_ring: ring to be cleaned
488 **/
489static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
490{
491	struct igbvf_adapter *adapter = tx_ring->adapter;
492	struct igbvf_buffer *buffer_info;
493	unsigned long size;
494	unsigned int i;
495
496	if (!tx_ring->buffer_info)
497		return;
498
499	/* Free all the Tx ring sk_buffs */
500	for (i = 0; i < tx_ring->count; i++) {
501		buffer_info = &tx_ring->buffer_info[i];
502		igbvf_put_txbuf(adapter, buffer_info);
503	}
504
505	size = sizeof(struct igbvf_buffer) * tx_ring->count;
506	memset(tx_ring->buffer_info, 0, size);
507
508	/* Zero out the descriptor ring */
509	memset(tx_ring->desc, 0, tx_ring->size);
510
511	tx_ring->next_to_use = 0;
512	tx_ring->next_to_clean = 0;
513
514	writel(0, adapter->hw.hw_addr + tx_ring->head);
515	writel(0, adapter->hw.hw_addr + tx_ring->tail);
516}
517
518/**
519 * igbvf_free_tx_resources - Free Tx Resources per Queue
520 * @tx_ring: ring to free resources from
521 *
522 * Free all transmit software resources
523 **/
524void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
525{
526	struct pci_dev *pdev = tx_ring->adapter->pdev;
527
528	igbvf_clean_tx_ring(tx_ring);
529
530	vfree(tx_ring->buffer_info);
531	tx_ring->buffer_info = NULL;
532
533	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
534			  tx_ring->dma);
535
536	tx_ring->desc = NULL;
537}
538
539/**
540 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
541 * @adapter: board private structure
542 **/
543static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
544{
545	struct igbvf_adapter *adapter = rx_ring->adapter;
546	struct igbvf_buffer *buffer_info;
547	struct pci_dev *pdev = adapter->pdev;
548	unsigned long size;
549	unsigned int i;
550
551	if (!rx_ring->buffer_info)
552		return;
553
554	/* Free all the Rx ring sk_buffs */
555	for (i = 0; i < rx_ring->count; i++) {
556		buffer_info = &rx_ring->buffer_info[i];
557		if (buffer_info->dma) {
558			if (adapter->rx_ps_hdr_size){
559				dma_unmap_single(&pdev->dev, buffer_info->dma,
560				                 adapter->rx_ps_hdr_size,
561						 DMA_FROM_DEVICE);
562			} else {
563				dma_unmap_single(&pdev->dev, buffer_info->dma,
564				                 adapter->rx_buffer_len,
565						 DMA_FROM_DEVICE);
566			}
567			buffer_info->dma = 0;
568		}
569
570		if (buffer_info->skb) {
571			dev_kfree_skb(buffer_info->skb);
572			buffer_info->skb = NULL;
573		}
574
575		if (buffer_info->page) {
576			if (buffer_info->page_dma)
577				dma_unmap_page(&pdev->dev,
578					       buffer_info->page_dma,
579				               PAGE_SIZE / 2,
580					       DMA_FROM_DEVICE);
581			put_page(buffer_info->page);
582			buffer_info->page = NULL;
583			buffer_info->page_dma = 0;
584			buffer_info->page_offset = 0;
585		}
586	}
587
588	size = sizeof(struct igbvf_buffer) * rx_ring->count;
589	memset(rx_ring->buffer_info, 0, size);
590
591	/* Zero out the descriptor ring */
592	memset(rx_ring->desc, 0, rx_ring->size);
593
594	rx_ring->next_to_clean = 0;
595	rx_ring->next_to_use = 0;
596
597	writel(0, adapter->hw.hw_addr + rx_ring->head);
598	writel(0, adapter->hw.hw_addr + rx_ring->tail);
599}
600
601/**
602 * igbvf_free_rx_resources - Free Rx Resources
603 * @rx_ring: ring to clean the resources from
604 *
605 * Free all receive software resources
606 **/
607
608void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
609{
610	struct pci_dev *pdev = rx_ring->adapter->pdev;
611
612	igbvf_clean_rx_ring(rx_ring);
613
614	vfree(rx_ring->buffer_info);
615	rx_ring->buffer_info = NULL;
616
617	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
618	                  rx_ring->dma);
619	rx_ring->desc = NULL;
620}
621
622/**
623 * igbvf_update_itr - update the dynamic ITR value based on statistics
624 * @adapter: pointer to adapter
625 * @itr_setting: current adapter->itr
626 * @packets: the number of packets during this measurement interval
627 * @bytes: the number of bytes during this measurement interval
628 *
629 *      Stores a new ITR value based on packets and byte
630 *      counts during the last interrupt.  The advantage of per interrupt
631 *      computation is faster updates and more accurate ITR for the current
632 *      traffic pattern.  Constants in this function were computed
633 *      based on theoretical maximum wire speed and thresholds were set based
634 *      on testing data as well as attempting to minimize response time
635 *      while increasing bulk throughput.  This functionality is controlled
636 *      by the InterruptThrottleRate module parameter.
637 **/
638static unsigned int igbvf_update_itr(struct igbvf_adapter *adapter,
639                                     u16 itr_setting, int packets,
640                                     int bytes)
641{
642	unsigned int retval = itr_setting;
643
644	if (packets == 0)
645		goto update_itr_done;
646
647	switch (itr_setting) {
648	case lowest_latency:
649		/* handle TSO and jumbo frames */
650		if (bytes/packets > 8000)
651			retval = bulk_latency;
652		else if ((packets < 5) && (bytes > 512))
653			retval = low_latency;
654		break;
655	case low_latency:  /* 50 usec aka 20000 ints/s */
656		if (bytes > 10000) {
657			/* this if handles the TSO accounting */
658			if (bytes/packets > 8000)
659				retval = bulk_latency;
660			else if ((packets < 10) || ((bytes/packets) > 1200))
661				retval = bulk_latency;
662			else if ((packets > 35))
663				retval = lowest_latency;
664		} else if (bytes/packets > 2000) {
665			retval = bulk_latency;
666		} else if (packets <= 2 && bytes < 512) {
667			retval = lowest_latency;
668		}
669		break;
670	case bulk_latency: /* 250 usec aka 4000 ints/s */
671		if (bytes > 25000) {
672			if (packets > 35)
673				retval = low_latency;
674		} else if (bytes < 6000) {
675			retval = low_latency;
676		}
677		break;
678	}
679
680update_itr_done:
681	return retval;
682}
683
684static void igbvf_set_itr(struct igbvf_adapter *adapter)
685{
686	struct e1000_hw *hw = &adapter->hw;
687	u16 current_itr;
688	u32 new_itr = adapter->itr;
689
690	adapter->tx_itr = igbvf_update_itr(adapter, adapter->tx_itr,
691	                                   adapter->total_tx_packets,
692	                                   adapter->total_tx_bytes);
693	/* conservative mode (itr 3) eliminates the lowest_latency setting */
694	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
695		adapter->tx_itr = low_latency;
696
697	adapter->rx_itr = igbvf_update_itr(adapter, adapter->rx_itr,
698	                                   adapter->total_rx_packets,
699	                                   adapter->total_rx_bytes);
700	/* conservative mode (itr 3) eliminates the lowest_latency setting */
701	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
702		adapter->rx_itr = low_latency;
703
704	current_itr = max(adapter->rx_itr, adapter->tx_itr);
705
706	switch (current_itr) {
707	/* counts and packets in update_itr are dependent on these numbers */
708	case lowest_latency:
709		new_itr = 70000;
710		break;
711	case low_latency:
712		new_itr = 20000; /* aka hwitr = ~200 */
713		break;
714	case bulk_latency:
715		new_itr = 4000;
716		break;
717	default:
718		break;
719	}
720
721	if (new_itr != adapter->itr) {
722		/*
723		 * this attempts to bias the interrupt rate towards Bulk
724		 * by adding intermediate steps when interrupt rate is
725		 * increasing
726		 */
727		new_itr = new_itr > adapter->itr ?
728		             min(adapter->itr + (new_itr >> 2), new_itr) :
729		             new_itr;
730		adapter->itr = new_itr;
731		adapter->rx_ring->itr_val = 1952;
732
733		if (adapter->msix_entries)
734			adapter->rx_ring->set_itr = 1;
735		else
736			ew32(ITR, 1952);
737	}
738}
739
740/**
741 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
742 * @adapter: board private structure
743 * returns true if ring is completely cleaned
744 **/
745static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
746{
747	struct igbvf_adapter *adapter = tx_ring->adapter;
748	struct net_device *netdev = adapter->netdev;
749	struct igbvf_buffer *buffer_info;
750	struct sk_buff *skb;
751	union e1000_adv_tx_desc *tx_desc, *eop_desc;
752	unsigned int total_bytes = 0, total_packets = 0;
753	unsigned int i, eop, count = 0;
754	bool cleaned = false;
755
756	i = tx_ring->next_to_clean;
757	eop = tx_ring->buffer_info[i].next_to_watch;
758	eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
759
760	while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
761	       (count < tx_ring->count)) {
762		rmb();	/* read buffer_info after eop_desc status */
763		for (cleaned = false; !cleaned; count++) {
764			tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
765			buffer_info = &tx_ring->buffer_info[i];
766			cleaned = (i == eop);
767			skb = buffer_info->skb;
768
769			if (skb) {
770				unsigned int segs, bytecount;
771
772				/* gso_segs is currently only valid for tcp */
773				segs = skb_shinfo(skb)->gso_segs ?: 1;
774				/* multiply data chunks by size of headers */
775				bytecount = ((segs - 1) * skb_headlen(skb)) +
776				            skb->len;
777				total_packets += segs;
778				total_bytes += bytecount;
779			}
780
781			igbvf_put_txbuf(adapter, buffer_info);
782			tx_desc->wb.status = 0;
783
784			i++;
785			if (i == tx_ring->count)
786				i = 0;
787		}
788		eop = tx_ring->buffer_info[i].next_to_watch;
789		eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
790	}
791
792	tx_ring->next_to_clean = i;
793
794	if (unlikely(count &&
795	             netif_carrier_ok(netdev) &&
796	             igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
797		/* Make sure that anybody stopping the queue after this
798		 * sees the new next_to_clean.
799		 */
800		smp_mb();
801		if (netif_queue_stopped(netdev) &&
802		    !(test_bit(__IGBVF_DOWN, &adapter->state))) {
803			netif_wake_queue(netdev);
804			++adapter->restart_queue;
805		}
806	}
807
808	adapter->net_stats.tx_bytes += total_bytes;
809	adapter->net_stats.tx_packets += total_packets;
810	return count < tx_ring->count;
811}
812
813static irqreturn_t igbvf_msix_other(int irq, void *data)
814{
815	struct net_device *netdev = data;
816	struct igbvf_adapter *adapter = netdev_priv(netdev);
817	struct e1000_hw *hw = &adapter->hw;
818
819	adapter->int_counter1++;
820
821	netif_carrier_off(netdev);
822	hw->mac.get_link_status = 1;
823	if (!test_bit(__IGBVF_DOWN, &adapter->state))
824		mod_timer(&adapter->watchdog_timer, jiffies + 1);
825
826	ew32(EIMS, adapter->eims_other);
827
828	return IRQ_HANDLED;
829}
830
831static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
832{
833	struct net_device *netdev = data;
834	struct igbvf_adapter *adapter = netdev_priv(netdev);
835	struct e1000_hw *hw = &adapter->hw;
836	struct igbvf_ring *tx_ring = adapter->tx_ring;
837
838
839	adapter->total_tx_bytes = 0;
840	adapter->total_tx_packets = 0;
841
842	/* auto mask will automatically reenable the interrupt when we write
843	 * EICS */
844	if (!igbvf_clean_tx_irq(tx_ring))
845		/* Ring was not completely cleaned, so fire another interrupt */
846		ew32(EICS, tx_ring->eims_value);
847	else
848		ew32(EIMS, tx_ring->eims_value);
849
850	return IRQ_HANDLED;
851}
852
853static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
854{
855	struct net_device *netdev = data;
856	struct igbvf_adapter *adapter = netdev_priv(netdev);
857
858	adapter->int_counter0++;
859
860	/* Write the ITR value calculated at the end of the
861	 * previous interrupt.
862	 */
863	if (adapter->rx_ring->set_itr) {
864		writel(adapter->rx_ring->itr_val,
865		       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
866		adapter->rx_ring->set_itr = 0;
867	}
868
869	if (napi_schedule_prep(&adapter->rx_ring->napi)) {
870		adapter->total_rx_bytes = 0;
871		adapter->total_rx_packets = 0;
872		__napi_schedule(&adapter->rx_ring->napi);
873	}
874
875	return IRQ_HANDLED;
876}
877
878#define IGBVF_NO_QUEUE -1
879
880static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
881                                int tx_queue, int msix_vector)
882{
883	struct e1000_hw *hw = &adapter->hw;
884	u32 ivar, index;
885
886	/* 82576 uses a table-based method for assigning vectors.
887	   Each queue has a single entry in the table to which we write
888	   a vector number along with a "valid" bit.  Sadly, the layout
889	   of the table is somewhat counterintuitive. */
890	if (rx_queue > IGBVF_NO_QUEUE) {
891		index = (rx_queue >> 1);
892		ivar = array_er32(IVAR0, index);
893		if (rx_queue & 0x1) {
894			/* vector goes into third byte of register */
895			ivar = ivar & 0xFF00FFFF;
896			ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
897		} else {
898			/* vector goes into low byte of register */
899			ivar = ivar & 0xFFFFFF00;
900			ivar |= msix_vector | E1000_IVAR_VALID;
901		}
902		adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
903		array_ew32(IVAR0, index, ivar);
904	}
905	if (tx_queue > IGBVF_NO_QUEUE) {
906		index = (tx_queue >> 1);
907		ivar = array_er32(IVAR0, index);
908		if (tx_queue & 0x1) {
909			/* vector goes into high byte of register */
910			ivar = ivar & 0x00FFFFFF;
911			ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
912		} else {
913			/* vector goes into second byte of register */
914			ivar = ivar & 0xFFFF00FF;
915			ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
916		}
917		adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
918		array_ew32(IVAR0, index, ivar);
919	}
920}
921
922/**
923 * igbvf_configure_msix - Configure MSI-X hardware
924 *
925 * igbvf_configure_msix sets up the hardware to properly
926 * generate MSI-X interrupts.
927 **/
928static void igbvf_configure_msix(struct igbvf_adapter *adapter)
929{
930	u32 tmp;
931	struct e1000_hw *hw = &adapter->hw;
932	struct igbvf_ring *tx_ring = adapter->tx_ring;
933	struct igbvf_ring *rx_ring = adapter->rx_ring;
934	int vector = 0;
935
936	adapter->eims_enable_mask = 0;
937
938	igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
939	adapter->eims_enable_mask |= tx_ring->eims_value;
940	if (tx_ring->itr_val)
941		writel(tx_ring->itr_val,
942		       hw->hw_addr + tx_ring->itr_register);
943	else
944		writel(1952, hw->hw_addr + tx_ring->itr_register);
945
946	igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
947	adapter->eims_enable_mask |= rx_ring->eims_value;
948	if (rx_ring->itr_val)
949		writel(rx_ring->itr_val,
950		       hw->hw_addr + rx_ring->itr_register);
951	else
952		writel(1952, hw->hw_addr + rx_ring->itr_register);
953
954	/* set vector for other causes, i.e. link changes */
955
956	tmp = (vector++ | E1000_IVAR_VALID);
957
958	ew32(IVAR_MISC, tmp);
959
960	adapter->eims_enable_mask = (1 << (vector)) - 1;
961	adapter->eims_other = 1 << (vector - 1);
962	e1e_flush();
963}
964
965static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
966{
967	if (adapter->msix_entries) {
968		pci_disable_msix(adapter->pdev);
969		kfree(adapter->msix_entries);
970		adapter->msix_entries = NULL;
971	}
972}
973
974/**
975 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
976 *
977 * Attempt to configure interrupts using the best available
978 * capabilities of the hardware and kernel.
979 **/
980static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
981{
982	int err = -ENOMEM;
983	int i;
984
985	/* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
986	adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
987	                                GFP_KERNEL);
988	if (adapter->msix_entries) {
989		for (i = 0; i < 3; i++)
990			adapter->msix_entries[i].entry = i;
991
992		err = pci_enable_msix(adapter->pdev,
993		                      adapter->msix_entries, 3);
994	}
995
996	if (err) {
997		/* MSI-X failed */
998		dev_err(&adapter->pdev->dev,
999		        "Failed to initialize MSI-X interrupts.\n");
1000		igbvf_reset_interrupt_capability(adapter);
1001	}
1002}
1003
1004/**
1005 * igbvf_request_msix - Initialize MSI-X interrupts
1006 *
1007 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1008 * kernel.
1009 **/
1010static int igbvf_request_msix(struct igbvf_adapter *adapter)
1011{
1012	struct net_device *netdev = adapter->netdev;
1013	int err = 0, vector = 0;
1014
1015	if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1016		sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1017		sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1018	} else {
1019		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1020		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1021	}
1022
1023	err = request_irq(adapter->msix_entries[vector].vector,
1024	                  igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1025	                  netdev);
1026	if (err)
1027		goto out;
1028
1029	adapter->tx_ring->itr_register = E1000_EITR(vector);
1030	adapter->tx_ring->itr_val = 1952;
1031	vector++;
1032
1033	err = request_irq(adapter->msix_entries[vector].vector,
1034	                  igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1035	                  netdev);
1036	if (err)
1037		goto out;
1038
1039	adapter->rx_ring->itr_register = E1000_EITR(vector);
1040	adapter->rx_ring->itr_val = 1952;
1041	vector++;
1042
1043	err = request_irq(adapter->msix_entries[vector].vector,
1044	                  igbvf_msix_other, 0, netdev->name, netdev);
1045	if (err)
1046		goto out;
1047
1048	igbvf_configure_msix(adapter);
1049	return 0;
1050out:
1051	return err;
1052}
1053
1054/**
1055 * igbvf_alloc_queues - Allocate memory for all rings
1056 * @adapter: board private structure to initialize
1057 **/
1058static int __devinit igbvf_alloc_queues(struct igbvf_adapter *adapter)
1059{
1060	struct net_device *netdev = adapter->netdev;
1061
1062	adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1063	if (!adapter->tx_ring)
1064		return -ENOMEM;
1065
1066	adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1067	if (!adapter->rx_ring) {
1068		kfree(adapter->tx_ring);
1069		return -ENOMEM;
1070	}
1071
1072	netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1073
1074	return 0;
1075}
1076
1077/**
1078 * igbvf_request_irq - initialize interrupts
1079 *
1080 * Attempts to configure interrupts using the best available
1081 * capabilities of the hardware and kernel.
1082 **/
1083static int igbvf_request_irq(struct igbvf_adapter *adapter)
1084{
1085	int err = -1;
1086
1087	/* igbvf supports msi-x only */
1088	if (adapter->msix_entries)
1089		err = igbvf_request_msix(adapter);
1090
1091	if (!err)
1092		return err;
1093
1094	dev_err(&adapter->pdev->dev,
1095	        "Unable to allocate interrupt, Error: %d\n", err);
1096
1097	return err;
1098}
1099
1100static void igbvf_free_irq(struct igbvf_adapter *adapter)
1101{
1102	struct net_device *netdev = adapter->netdev;
1103	int vector;
1104
1105	if (adapter->msix_entries) {
1106		for (vector = 0; vector < 3; vector++)
1107			free_irq(adapter->msix_entries[vector].vector, netdev);
1108	}
1109}
1110
1111/**
1112 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1113 **/
1114static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1115{
1116	struct e1000_hw *hw = &adapter->hw;
1117
1118	ew32(EIMC, ~0);
1119
1120	if (adapter->msix_entries)
1121		ew32(EIAC, 0);
1122}
1123
1124/**
1125 * igbvf_irq_enable - Enable default interrupt generation settings
1126 **/
1127static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1128{
1129	struct e1000_hw *hw = &adapter->hw;
1130
1131	ew32(EIAC, adapter->eims_enable_mask);
1132	ew32(EIAM, adapter->eims_enable_mask);
1133	ew32(EIMS, adapter->eims_enable_mask);
1134}
1135
1136/**
1137 * igbvf_poll - NAPI Rx polling callback
1138 * @napi: struct associated with this polling callback
1139 * @budget: amount of packets driver is allowed to process this poll
1140 **/
1141static int igbvf_poll(struct napi_struct *napi, int budget)
1142{
1143	struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1144	struct igbvf_adapter *adapter = rx_ring->adapter;
1145	struct e1000_hw *hw = &adapter->hw;
1146	int work_done = 0;
1147
1148	igbvf_clean_rx_irq(adapter, &work_done, budget);
1149
1150	/* If not enough Rx work done, exit the polling mode */
1151	if (work_done < budget) {
1152		napi_complete(napi);
1153
1154		if (adapter->itr_setting & 3)
1155			igbvf_set_itr(adapter);
1156
1157		if (!test_bit(__IGBVF_DOWN, &adapter->state))
1158			ew32(EIMS, adapter->rx_ring->eims_value);
1159	}
1160
1161	return work_done;
1162}
1163
1164/**
1165 * igbvf_set_rlpml - set receive large packet maximum length
1166 * @adapter: board private structure
1167 *
1168 * Configure the maximum size of packets that will be received
1169 */
1170static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1171{
1172	int max_frame_size;
1173	struct e1000_hw *hw = &adapter->hw;
1174
1175	max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1176	e1000_rlpml_set_vf(hw, max_frame_size);
1177}
1178
1179static int igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1180{
1181	struct igbvf_adapter *adapter = netdev_priv(netdev);
1182	struct e1000_hw *hw = &adapter->hw;
1183
1184	if (hw->mac.ops.set_vfta(hw, vid, true)) {
1185		dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1186		return -EINVAL;
1187	}
1188	set_bit(vid, adapter->active_vlans);
1189	return 0;
1190}
1191
1192static int igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1193{
1194	struct igbvf_adapter *adapter = netdev_priv(netdev);
1195	struct e1000_hw *hw = &adapter->hw;
1196
1197	if (hw->mac.ops.set_vfta(hw, vid, false)) {
1198		dev_err(&adapter->pdev->dev,
1199		        "Failed to remove vlan id %d\n", vid);
1200		return -EINVAL;
1201	}
1202	clear_bit(vid, adapter->active_vlans);
1203	return 0;
1204}
1205
1206static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1207{
1208	u16 vid;
1209
1210	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1211		igbvf_vlan_rx_add_vid(adapter->netdev, vid);
1212}
1213
1214/**
1215 * igbvf_configure_tx - Configure Transmit Unit after Reset
1216 * @adapter: board private structure
1217 *
1218 * Configure the Tx unit of the MAC after a reset.
1219 **/
1220static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1221{
1222	struct e1000_hw *hw = &adapter->hw;
1223	struct igbvf_ring *tx_ring = adapter->tx_ring;
1224	u64 tdba;
1225	u32 txdctl, dca_txctrl;
1226
1227	/* disable transmits */
1228	txdctl = er32(TXDCTL(0));
1229	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1230	e1e_flush();
1231	msleep(10);
1232
1233	/* Setup the HW Tx Head and Tail descriptor pointers */
1234	ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1235	tdba = tx_ring->dma;
1236	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1237	ew32(TDBAH(0), (tdba >> 32));
1238	ew32(TDH(0), 0);
1239	ew32(TDT(0), 0);
1240	tx_ring->head = E1000_TDH(0);
1241	tx_ring->tail = E1000_TDT(0);
1242
1243	/* Turn off Relaxed Ordering on head write-backs.  The writebacks
1244	 * MUST be delivered in order or it will completely screw up
1245	 * our bookeeping.
1246	 */
1247	dca_txctrl = er32(DCA_TXCTRL(0));
1248	dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1249	ew32(DCA_TXCTRL(0), dca_txctrl);
1250
1251	/* enable transmits */
1252	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1253	ew32(TXDCTL(0), txdctl);
1254
1255	/* Setup Transmit Descriptor Settings for eop descriptor */
1256	adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1257
1258	/* enable Report Status bit */
1259	adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1260}
1261
1262/**
1263 * igbvf_setup_srrctl - configure the receive control registers
1264 * @adapter: Board private structure
1265 **/
1266static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1267{
1268	struct e1000_hw *hw = &adapter->hw;
1269	u32 srrctl = 0;
1270
1271	srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1272	            E1000_SRRCTL_BSIZEHDR_MASK |
1273	            E1000_SRRCTL_BSIZEPKT_MASK);
1274
1275	/* Enable queue drop to avoid head of line blocking */
1276	srrctl |= E1000_SRRCTL_DROP_EN;
1277
1278	/* Setup buffer sizes */
1279	srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1280	          E1000_SRRCTL_BSIZEPKT_SHIFT;
1281
1282	if (adapter->rx_buffer_len < 2048) {
1283		adapter->rx_ps_hdr_size = 0;
1284		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1285	} else {
1286		adapter->rx_ps_hdr_size = 128;
1287		srrctl |= adapter->rx_ps_hdr_size <<
1288		          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1289		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1290	}
1291
1292	ew32(SRRCTL(0), srrctl);
1293}
1294
1295/**
1296 * igbvf_configure_rx - Configure Receive Unit after Reset
1297 * @adapter: board private structure
1298 *
1299 * Configure the Rx unit of the MAC after a reset.
1300 **/
1301static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1302{
1303	struct e1000_hw *hw = &adapter->hw;
1304	struct igbvf_ring *rx_ring = adapter->rx_ring;
1305	u64 rdba;
1306	u32 rdlen, rxdctl;
1307
1308	/* disable receives */
1309	rxdctl = er32(RXDCTL(0));
1310	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1311	e1e_flush();
1312	msleep(10);
1313
1314	rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1315
1316	/*
1317	 * Setup the HW Rx Head and Tail Descriptor Pointers and
1318	 * the Base and Length of the Rx Descriptor Ring
1319	 */
1320	rdba = rx_ring->dma;
1321	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1322	ew32(RDBAH(0), (rdba >> 32));
1323	ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1324	rx_ring->head = E1000_RDH(0);
1325	rx_ring->tail = E1000_RDT(0);
1326	ew32(RDH(0), 0);
1327	ew32(RDT(0), 0);
1328
1329	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1330	rxdctl &= 0xFFF00000;
1331	rxdctl |= IGBVF_RX_PTHRESH;
1332	rxdctl |= IGBVF_RX_HTHRESH << 8;
1333	rxdctl |= IGBVF_RX_WTHRESH << 16;
1334
1335	igbvf_set_rlpml(adapter);
1336
1337	/* enable receives */
1338	ew32(RXDCTL(0), rxdctl);
1339}
1340
1341/**
1342 * igbvf_set_multi - Multicast and Promiscuous mode set
1343 * @netdev: network interface device structure
1344 *
1345 * The set_multi entry point is called whenever the multicast address
1346 * list or the network interface flags are updated.  This routine is
1347 * responsible for configuring the hardware for proper multicast,
1348 * promiscuous mode, and all-multi behavior.
1349 **/
1350static void igbvf_set_multi(struct net_device *netdev)
1351{
1352	struct igbvf_adapter *adapter = netdev_priv(netdev);
1353	struct e1000_hw *hw = &adapter->hw;
1354	struct netdev_hw_addr *ha;
1355	u8  *mta_list = NULL;
1356	int i;
1357
1358	if (!netdev_mc_empty(netdev)) {
1359		mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
1360		if (!mta_list) {
1361			dev_err(&adapter->pdev->dev,
1362			        "failed to allocate multicast filter list\n");
1363			return;
1364		}
1365	}
1366
1367	/* prepare a packed array of only addresses. */
1368	i = 0;
1369	netdev_for_each_mc_addr(ha, netdev)
1370		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1371
1372	hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1373	kfree(mta_list);
1374}
1375
1376/**
1377 * igbvf_configure - configure the hardware for Rx and Tx
1378 * @adapter: private board structure
1379 **/
1380static void igbvf_configure(struct igbvf_adapter *adapter)
1381{
1382	igbvf_set_multi(adapter->netdev);
1383
1384	igbvf_restore_vlan(adapter);
1385
1386	igbvf_configure_tx(adapter);
1387	igbvf_setup_srrctl(adapter);
1388	igbvf_configure_rx(adapter);
1389	igbvf_alloc_rx_buffers(adapter->rx_ring,
1390	                       igbvf_desc_unused(adapter->rx_ring));
1391}
1392
1393/* igbvf_reset - bring the hardware into a known good state
1394 *
1395 * This function boots the hardware and enables some settings that
1396 * require a configuration cycle of the hardware - those cannot be
1397 * set/changed during runtime. After reset the device needs to be
1398 * properly configured for Rx, Tx etc.
1399 */
1400static void igbvf_reset(struct igbvf_adapter *adapter)
1401{
1402	struct e1000_mac_info *mac = &adapter->hw.mac;
1403	struct net_device *netdev = adapter->netdev;
1404	struct e1000_hw *hw = &adapter->hw;
1405
1406	/* Allow time for pending master requests to run */
1407	if (mac->ops.reset_hw(hw))
1408		dev_err(&adapter->pdev->dev, "PF still resetting\n");
1409
1410	mac->ops.init_hw(hw);
1411
1412	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1413		memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1414		       netdev->addr_len);
1415		memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1416		       netdev->addr_len);
1417	}
1418
1419	adapter->last_reset = jiffies;
1420}
1421
1422int igbvf_up(struct igbvf_adapter *adapter)
1423{
1424	struct e1000_hw *hw = &adapter->hw;
1425
1426	/* hardware has been reset, we need to reload some things */
1427	igbvf_configure(adapter);
1428
1429	clear_bit(__IGBVF_DOWN, &adapter->state);
1430
1431	napi_enable(&adapter->rx_ring->napi);
1432	if (adapter->msix_entries)
1433		igbvf_configure_msix(adapter);
1434
1435	/* Clear any pending interrupts. */
1436	er32(EICR);
1437	igbvf_irq_enable(adapter);
1438
1439	/* start the watchdog */
1440	hw->mac.get_link_status = 1;
1441	mod_timer(&adapter->watchdog_timer, jiffies + 1);
1442
1443
1444	return 0;
1445}
1446
1447void igbvf_down(struct igbvf_adapter *adapter)
1448{
1449	struct net_device *netdev = adapter->netdev;
1450	struct e1000_hw *hw = &adapter->hw;
1451	u32 rxdctl, txdctl;
1452
1453	/*
1454	 * signal that we're down so the interrupt handler does not
1455	 * reschedule our watchdog timer
1456	 */
1457	set_bit(__IGBVF_DOWN, &adapter->state);
1458
1459	/* disable receives in the hardware */
1460	rxdctl = er32(RXDCTL(0));
1461	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1462
1463	netif_stop_queue(netdev);
1464
1465	/* disable transmits in the hardware */
1466	txdctl = er32(TXDCTL(0));
1467	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1468
1469	/* flush both disables and wait for them to finish */
1470	e1e_flush();
1471	msleep(10);
1472
1473	napi_disable(&adapter->rx_ring->napi);
1474
1475	igbvf_irq_disable(adapter);
1476
1477	del_timer_sync(&adapter->watchdog_timer);
1478
1479	netif_carrier_off(netdev);
1480
1481	/* record the stats before reset*/
1482	igbvf_update_stats(adapter);
1483
1484	adapter->link_speed = 0;
1485	adapter->link_duplex = 0;
1486
1487	igbvf_reset(adapter);
1488	igbvf_clean_tx_ring(adapter->tx_ring);
1489	igbvf_clean_rx_ring(adapter->rx_ring);
1490}
1491
1492void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1493{
1494	might_sleep();
1495	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1496		msleep(1);
1497	igbvf_down(adapter);
1498	igbvf_up(adapter);
1499	clear_bit(__IGBVF_RESETTING, &adapter->state);
1500}
1501
1502/**
1503 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1504 * @adapter: board private structure to initialize
1505 *
1506 * igbvf_sw_init initializes the Adapter private data structure.
1507 * Fields are initialized based on PCI device information and
1508 * OS network device settings (MTU size).
1509 **/
1510static int __devinit igbvf_sw_init(struct igbvf_adapter *adapter)
1511{
1512	struct net_device *netdev = adapter->netdev;
1513	s32 rc;
1514
1515	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1516	adapter->rx_ps_hdr_size = 0;
1517	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1518	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1519
1520	adapter->tx_int_delay = 8;
1521	adapter->tx_abs_int_delay = 32;
1522	adapter->rx_int_delay = 0;
1523	adapter->rx_abs_int_delay = 8;
1524	adapter->itr_setting = 3;
1525	adapter->itr = 20000;
1526
1527	/* Set various function pointers */
1528	adapter->ei->init_ops(&adapter->hw);
1529
1530	rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1531	if (rc)
1532		return rc;
1533
1534	rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1535	if (rc)
1536		return rc;
1537
1538	igbvf_set_interrupt_capability(adapter);
1539
1540	if (igbvf_alloc_queues(adapter))
1541		return -ENOMEM;
1542
1543	spin_lock_init(&adapter->tx_queue_lock);
1544
1545	/* Explicitly disable IRQ since the NIC can be in any state. */
1546	igbvf_irq_disable(adapter);
1547
1548	spin_lock_init(&adapter->stats_lock);
1549
1550	set_bit(__IGBVF_DOWN, &adapter->state);
1551	return 0;
1552}
1553
1554static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1555{
1556	struct e1000_hw *hw = &adapter->hw;
1557
1558	adapter->stats.last_gprc = er32(VFGPRC);
1559	adapter->stats.last_gorc = er32(VFGORC);
1560	adapter->stats.last_gptc = er32(VFGPTC);
1561	adapter->stats.last_gotc = er32(VFGOTC);
1562	adapter->stats.last_mprc = er32(VFMPRC);
1563	adapter->stats.last_gotlbc = er32(VFGOTLBC);
1564	adapter->stats.last_gptlbc = er32(VFGPTLBC);
1565	adapter->stats.last_gorlbc = er32(VFGORLBC);
1566	adapter->stats.last_gprlbc = er32(VFGPRLBC);
1567
1568	adapter->stats.base_gprc = er32(VFGPRC);
1569	adapter->stats.base_gorc = er32(VFGORC);
1570	adapter->stats.base_gptc = er32(VFGPTC);
1571	adapter->stats.base_gotc = er32(VFGOTC);
1572	adapter->stats.base_mprc = er32(VFMPRC);
1573	adapter->stats.base_gotlbc = er32(VFGOTLBC);
1574	adapter->stats.base_gptlbc = er32(VFGPTLBC);
1575	adapter->stats.base_gorlbc = er32(VFGORLBC);
1576	adapter->stats.base_gprlbc = er32(VFGPRLBC);
1577}
1578
1579/**
1580 * igbvf_open - Called when a network interface is made active
1581 * @netdev: network interface device structure
1582 *
1583 * Returns 0 on success, negative value on failure
1584 *
1585 * The open entry point is called when a network interface is made
1586 * active by the system (IFF_UP).  At this point all resources needed
1587 * for transmit and receive operations are allocated, the interrupt
1588 * handler is registered with the OS, the watchdog timer is started,
1589 * and the stack is notified that the interface is ready.
1590 **/
1591static int igbvf_open(struct net_device *netdev)
1592{
1593	struct igbvf_adapter *adapter = netdev_priv(netdev);
1594	struct e1000_hw *hw = &adapter->hw;
1595	int err;
1596
1597	/* disallow open during test */
1598	if (test_bit(__IGBVF_TESTING, &adapter->state))
1599		return -EBUSY;
1600
1601	/* allocate transmit descriptors */
1602	err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1603	if (err)
1604		goto err_setup_tx;
1605
1606	/* allocate receive descriptors */
1607	err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1608	if (err)
1609		goto err_setup_rx;
1610
1611	/*
1612	 * before we allocate an interrupt, we must be ready to handle it.
1613	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1614	 * as soon as we call pci_request_irq, so we have to setup our
1615	 * clean_rx handler before we do so.
1616	 */
1617	igbvf_configure(adapter);
1618
1619	err = igbvf_request_irq(adapter);
1620	if (err)
1621		goto err_req_irq;
1622
1623	/* From here on the code is the same as igbvf_up() */
1624	clear_bit(__IGBVF_DOWN, &adapter->state);
1625
1626	napi_enable(&adapter->rx_ring->napi);
1627
1628	/* clear any pending interrupts */
1629	er32(EICR);
1630
1631	igbvf_irq_enable(adapter);
1632
1633	/* start the watchdog */
1634	hw->mac.get_link_status = 1;
1635	mod_timer(&adapter->watchdog_timer, jiffies + 1);
1636
1637	return 0;
1638
1639err_req_irq:
1640	igbvf_free_rx_resources(adapter->rx_ring);
1641err_setup_rx:
1642	igbvf_free_tx_resources(adapter->tx_ring);
1643err_setup_tx:
1644	igbvf_reset(adapter);
1645
1646	return err;
1647}
1648
1649/**
1650 * igbvf_close - Disables a network interface
1651 * @netdev: network interface device structure
1652 *
1653 * Returns 0, this is not allowed to fail
1654 *
1655 * The close entry point is called when an interface is de-activated
1656 * by the OS.  The hardware is still under the drivers control, but
1657 * needs to be disabled.  A global MAC reset is issued to stop the
1658 * hardware, and all transmit and receive resources are freed.
1659 **/
1660static int igbvf_close(struct net_device *netdev)
1661{
1662	struct igbvf_adapter *adapter = netdev_priv(netdev);
1663
1664	WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1665	igbvf_down(adapter);
1666
1667	igbvf_free_irq(adapter);
1668
1669	igbvf_free_tx_resources(adapter->tx_ring);
1670	igbvf_free_rx_resources(adapter->rx_ring);
1671
1672	return 0;
1673}
1674/**
1675 * igbvf_set_mac - Change the Ethernet Address of the NIC
1676 * @netdev: network interface device structure
1677 * @p: pointer to an address structure
1678 *
1679 * Returns 0 on success, negative on failure
1680 **/
1681static int igbvf_set_mac(struct net_device *netdev, void *p)
1682{
1683	struct igbvf_adapter *adapter = netdev_priv(netdev);
1684	struct e1000_hw *hw = &adapter->hw;
1685	struct sockaddr *addr = p;
1686
1687	if (!is_valid_ether_addr(addr->sa_data))
1688		return -EADDRNOTAVAIL;
1689
1690	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1691
1692	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1693
1694	if (memcmp(addr->sa_data, hw->mac.addr, 6))
1695		return -EADDRNOTAVAIL;
1696
1697	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1698
1699	return 0;
1700}
1701
1702#define UPDATE_VF_COUNTER(reg, name)                                    \
1703	{                                                               \
1704		u32 current_counter = er32(reg);                        \
1705		if (current_counter < adapter->stats.last_##name)       \
1706			adapter->stats.name += 0x100000000LL;           \
1707		adapter->stats.last_##name = current_counter;           \
1708		adapter->stats.name &= 0xFFFFFFFF00000000LL;            \
1709		adapter->stats.name |= current_counter;                 \
1710	}
1711
1712/**
1713 * igbvf_update_stats - Update the board statistics counters
1714 * @adapter: board private structure
1715**/
1716void igbvf_update_stats(struct igbvf_adapter *adapter)
1717{
1718	struct e1000_hw *hw = &adapter->hw;
1719	struct pci_dev *pdev = adapter->pdev;
1720
1721	/*
1722	 * Prevent stats update while adapter is being reset, link is down
1723	 * or if the pci connection is down.
1724	 */
1725	if (adapter->link_speed == 0)
1726		return;
1727
1728	if (test_bit(__IGBVF_RESETTING, &adapter->state))
1729		return;
1730
1731	if (pci_channel_offline(pdev))
1732		return;
1733
1734	UPDATE_VF_COUNTER(VFGPRC, gprc);
1735	UPDATE_VF_COUNTER(VFGORC, gorc);
1736	UPDATE_VF_COUNTER(VFGPTC, gptc);
1737	UPDATE_VF_COUNTER(VFGOTC, gotc);
1738	UPDATE_VF_COUNTER(VFMPRC, mprc);
1739	UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1740	UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1741	UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1742	UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1743
1744	/* Fill out the OS statistics structure */
1745	adapter->net_stats.multicast = adapter->stats.mprc;
1746}
1747
1748static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1749{
1750	dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1751		 adapter->link_speed,
1752		 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1753}
1754
1755static bool igbvf_has_link(struct igbvf_adapter *adapter)
1756{
1757	struct e1000_hw *hw = &adapter->hw;
1758	s32 ret_val = E1000_SUCCESS;
1759	bool link_active;
1760
1761	/* If interface is down, stay link down */
1762	if (test_bit(__IGBVF_DOWN, &adapter->state))
1763		return false;
1764
1765	ret_val = hw->mac.ops.check_for_link(hw);
1766	link_active = !hw->mac.get_link_status;
1767
1768	/* if check for link returns error we will need to reset */
1769	if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1770		schedule_work(&adapter->reset_task);
1771
1772	return link_active;
1773}
1774
1775/**
1776 * igbvf_watchdog - Timer Call-back
1777 * @data: pointer to adapter cast into an unsigned long
1778 **/
1779static void igbvf_watchdog(unsigned long data)
1780{
1781	struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1782
1783	/* Do the rest outside of interrupt context */
1784	schedule_work(&adapter->watchdog_task);
1785}
1786
1787static void igbvf_watchdog_task(struct work_struct *work)
1788{
1789	struct igbvf_adapter *adapter = container_of(work,
1790	                                             struct igbvf_adapter,
1791	                                             watchdog_task);
1792	struct net_device *netdev = adapter->netdev;
1793	struct e1000_mac_info *mac = &adapter->hw.mac;
1794	struct igbvf_ring *tx_ring = adapter->tx_ring;
1795	struct e1000_hw *hw = &adapter->hw;
1796	u32 link;
1797	int tx_pending = 0;
1798
1799	link = igbvf_has_link(adapter);
1800
1801	if (link) {
1802		if (!netif_carrier_ok(netdev)) {
1803			mac->ops.get_link_up_info(&adapter->hw,
1804			                          &adapter->link_speed,
1805			                          &adapter->link_duplex);
1806			igbvf_print_link_info(adapter);
1807
1808			netif_carrier_on(netdev);
1809			netif_wake_queue(netdev);
1810		}
1811	} else {
1812		if (netif_carrier_ok(netdev)) {
1813			adapter->link_speed = 0;
1814			adapter->link_duplex = 0;
1815			dev_info(&adapter->pdev->dev, "Link is Down\n");
1816			netif_carrier_off(netdev);
1817			netif_stop_queue(netdev);
1818		}
1819	}
1820
1821	if (netif_carrier_ok(netdev)) {
1822		igbvf_update_stats(adapter);
1823	} else {
1824		tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1825		              tx_ring->count);
1826		if (tx_pending) {
1827			/*
1828			 * We've lost link, so the controller stops DMA,
1829			 * but we've got queued Tx work that's never going
1830			 * to get done, so reset controller to flush Tx.
1831			 * (Do the reset outside of interrupt context).
1832			 */
1833			adapter->tx_timeout_count++;
1834			schedule_work(&adapter->reset_task);
1835		}
1836	}
1837
1838	/* Cause software interrupt to ensure Rx ring is cleaned */
1839	ew32(EICS, adapter->rx_ring->eims_value);
1840
1841	/* Reset the timer */
1842	if (!test_bit(__IGBVF_DOWN, &adapter->state))
1843		mod_timer(&adapter->watchdog_timer,
1844			  round_jiffies(jiffies + (2 * HZ)));
1845}
1846
1847#define IGBVF_TX_FLAGS_CSUM             0x00000001
1848#define IGBVF_TX_FLAGS_VLAN             0x00000002
1849#define IGBVF_TX_FLAGS_TSO              0x00000004
1850#define IGBVF_TX_FLAGS_IPV4             0x00000008
1851#define IGBVF_TX_FLAGS_VLAN_MASK        0xffff0000
1852#define IGBVF_TX_FLAGS_VLAN_SHIFT       16
1853
1854static int igbvf_tso(struct igbvf_adapter *adapter,
1855                     struct igbvf_ring *tx_ring,
1856                     struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1857{
1858	struct e1000_adv_tx_context_desc *context_desc;
1859	unsigned int i;
1860	int err;
1861	struct igbvf_buffer *buffer_info;
1862	u32 info = 0, tu_cmd = 0;
1863	u32 mss_l4len_idx, l4len;
1864	*hdr_len = 0;
1865
1866	if (skb_header_cloned(skb)) {
1867		err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1868		if (err) {
1869			dev_err(&adapter->pdev->dev,
1870			        "igbvf_tso returning an error\n");
1871			return err;
1872		}
1873	}
1874
1875	l4len = tcp_hdrlen(skb);
1876	*hdr_len += l4len;
1877
1878	if (skb->protocol == htons(ETH_P_IP)) {
1879		struct iphdr *iph = ip_hdr(skb);
1880		iph->tot_len = 0;
1881		iph->check = 0;
1882		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1883		                                         iph->daddr, 0,
1884		                                         IPPROTO_TCP,
1885		                                         0);
1886	} else if (skb_is_gso_v6(skb)) {
1887		ipv6_hdr(skb)->payload_len = 0;
1888		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1889		                                       &ipv6_hdr(skb)->daddr,
1890		                                       0, IPPROTO_TCP, 0);
1891	}
1892
1893	i = tx_ring->next_to_use;
1894
1895	buffer_info = &tx_ring->buffer_info[i];
1896	context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1897	/* VLAN MACLEN IPLEN */
1898	if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1899		info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1900	info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1901	*hdr_len += skb_network_offset(skb);
1902	info |= (skb_transport_header(skb) - skb_network_header(skb));
1903	*hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1904	context_desc->vlan_macip_lens = cpu_to_le32(info);
1905
1906	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1907	tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1908
1909	if (skb->protocol == htons(ETH_P_IP))
1910		tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1911	tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1912
1913	context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1914
1915	/* MSS L4LEN IDX */
1916	mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1917	mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1918
1919	context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1920	context_desc->seqnum_seed = 0;
1921
1922	buffer_info->time_stamp = jiffies;
1923	buffer_info->next_to_watch = i;
1924	buffer_info->dma = 0;
1925	i++;
1926	if (i == tx_ring->count)
1927		i = 0;
1928
1929	tx_ring->next_to_use = i;
1930
1931	return true;
1932}
1933
1934static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
1935                                 struct igbvf_ring *tx_ring,
1936                                 struct sk_buff *skb, u32 tx_flags)
1937{
1938	struct e1000_adv_tx_context_desc *context_desc;
1939	unsigned int i;
1940	struct igbvf_buffer *buffer_info;
1941	u32 info = 0, tu_cmd = 0;
1942
1943	if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
1944	    (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
1945		i = tx_ring->next_to_use;
1946		buffer_info = &tx_ring->buffer_info[i];
1947		context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1948
1949		if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1950			info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1951
1952		info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1953		if (skb->ip_summed == CHECKSUM_PARTIAL)
1954			info |= (skb_transport_header(skb) -
1955			         skb_network_header(skb));
1956
1957
1958		context_desc->vlan_macip_lens = cpu_to_le32(info);
1959
1960		tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1961
1962		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1963			switch (skb->protocol) {
1964			case __constant_htons(ETH_P_IP):
1965				tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1966				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
1967					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1968				break;
1969			case __constant_htons(ETH_P_IPV6):
1970				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
1971					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1972				break;
1973			default:
1974				break;
1975			}
1976		}
1977
1978		context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1979		context_desc->seqnum_seed = 0;
1980		context_desc->mss_l4len_idx = 0;
1981
1982		buffer_info->time_stamp = jiffies;
1983		buffer_info->next_to_watch = i;
1984		buffer_info->dma = 0;
1985		i++;
1986		if (i == tx_ring->count)
1987			i = 0;
1988		tx_ring->next_to_use = i;
1989
1990		return true;
1991	}
1992
1993	return false;
1994}
1995
1996static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
1997{
1998	struct igbvf_adapter *adapter = netdev_priv(netdev);
1999
2000	/* there is enough descriptors then we don't need to worry  */
2001	if (igbvf_desc_unused(adapter->tx_ring) >= size)
2002		return 0;
2003
2004	netif_stop_queue(netdev);
2005
2006	smp_mb();
2007
2008	/* We need to check again just in case room has been made available */
2009	if (igbvf_desc_unused(adapter->tx_ring) < size)
2010		return -EBUSY;
2011
2012	netif_wake_queue(netdev);
2013
2014	++adapter->restart_queue;
2015	return 0;
2016}
2017
2018#define IGBVF_MAX_TXD_PWR       16
2019#define IGBVF_MAX_DATA_PER_TXD  (1 << IGBVF_MAX_TXD_PWR)
2020
2021static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2022                                   struct igbvf_ring *tx_ring,
2023                                   struct sk_buff *skb,
2024                                   unsigned int first)
2025{
2026	struct igbvf_buffer *buffer_info;
2027	struct pci_dev *pdev = adapter->pdev;
2028	unsigned int len = skb_headlen(skb);
2029	unsigned int count = 0, i;
2030	unsigned int f;
2031
2032	i = tx_ring->next_to_use;
2033
2034	buffer_info = &tx_ring->buffer_info[i];
2035	BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2036	buffer_info->length = len;
2037	/* set time_stamp *before* dma to help avoid a possible race */
2038	buffer_info->time_stamp = jiffies;
2039	buffer_info->next_to_watch = i;
2040	buffer_info->mapped_as_page = false;
2041	buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2042					  DMA_TO_DEVICE);
2043	if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2044		goto dma_error;
2045
2046
2047	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2048		const struct skb_frag_struct *frag;
2049
2050		count++;
2051		i++;
2052		if (i == tx_ring->count)
2053			i = 0;
2054
2055		frag = &skb_shinfo(skb)->frags[f];
2056		len = skb_frag_size(frag);
2057
2058		buffer_info = &tx_ring->buffer_info[i];
2059		BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2060		buffer_info->length = len;
2061		buffer_info->time_stamp = jiffies;
2062		buffer_info->next_to_watch = i;
2063		buffer_info->mapped_as_page = true;
2064		buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2065						DMA_TO_DEVICE);
2066		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2067			goto dma_error;
2068	}
2069
2070	tx_ring->buffer_info[i].skb = skb;
2071	tx_ring->buffer_info[first].next_to_watch = i;
2072
2073	return ++count;
2074
2075dma_error:
2076	dev_err(&pdev->dev, "TX DMA map failed\n");
2077
2078	/* clear timestamp and dma mappings for failed buffer_info mapping */
2079	buffer_info->dma = 0;
2080	buffer_info->time_stamp = 0;
2081	buffer_info->length = 0;
2082	buffer_info->next_to_watch = 0;
2083	buffer_info->mapped_as_page = false;
2084	if (count)
2085		count--;
2086
2087	/* clear timestamp and dma mappings for remaining portion of packet */
2088	while (count--) {
2089		if (i==0)
2090			i += tx_ring->count;
2091		i--;
2092		buffer_info = &tx_ring->buffer_info[i];
2093		igbvf_put_txbuf(adapter, buffer_info);
2094	}
2095
2096	return 0;
2097}
2098
2099static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2100                                      struct igbvf_ring *tx_ring,
2101                                      int tx_flags, int count, u32 paylen,
2102                                      u8 hdr_len)
2103{
2104	union e1000_adv_tx_desc *tx_desc = NULL;
2105	struct igbvf_buffer *buffer_info;
2106	u32 olinfo_status = 0, cmd_type_len;
2107	unsigned int i;
2108
2109	cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2110	                E1000_ADVTXD_DCMD_DEXT);
2111
2112	if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2113		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2114
2115	if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2116		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2117
2118		/* insert tcp checksum */
2119		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2120
2121		/* insert ip checksum */
2122		if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2123			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2124
2125	} else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2126		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2127	}
2128
2129	olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2130
2131	i = tx_ring->next_to_use;
2132	while (count--) {
2133		buffer_info = &tx_ring->buffer_info[i];
2134		tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2135		tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2136		tx_desc->read.cmd_type_len =
2137		         cpu_to_le32(cmd_type_len | buffer_info->length);
2138		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2139		i++;
2140		if (i == tx_ring->count)
2141			i = 0;
2142	}
2143
2144	tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2145	/* Force memory writes to complete before letting h/w
2146	 * know there are new descriptors to fetch.  (Only
2147	 * applicable for weak-ordered memory model archs,
2148	 * such as IA-64). */
2149	wmb();
2150
2151	tx_ring->next_to_use = i;
2152	writel(i, adapter->hw.hw_addr + tx_ring->tail);
2153	/* we need this if more than one processor can write to our tail
2154	 * at a time, it syncronizes IO on IA64/Altix systems */
2155	mmiowb();
2156}
2157
2158static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2159					     struct net_device *netdev,
2160					     struct igbvf_ring *tx_ring)
2161{
2162	struct igbvf_adapter *adapter = netdev_priv(netdev);
2163	unsigned int first, tx_flags = 0;
2164	u8 hdr_len = 0;
2165	int count = 0;
2166	int tso = 0;
2167
2168	if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2169		dev_kfree_skb_any(skb);
2170		return NETDEV_TX_OK;
2171	}
2172
2173	if (skb->len <= 0) {
2174		dev_kfree_skb_any(skb);
2175		return NETDEV_TX_OK;
2176	}
2177
2178	/*
2179	 * need: count + 4 desc gap to keep tail from touching
2180         *       + 2 desc gap to keep tail from touching head,
2181         *       + 1 desc for skb->data,
2182         *       + 1 desc for context descriptor,
2183	 * head, otherwise try next time
2184	 */
2185	if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2186		/* this is a hard error */
2187		return NETDEV_TX_BUSY;
2188	}
2189
2190	if (vlan_tx_tag_present(skb)) {
2191		tx_flags |= IGBVF_TX_FLAGS_VLAN;
2192		tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT);
2193	}
2194
2195	if (skb->protocol == htons(ETH_P_IP))
2196		tx_flags |= IGBVF_TX_FLAGS_IPV4;
2197
2198	first = tx_ring->next_to_use;
2199
2200	tso = skb_is_gso(skb) ?
2201		igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0;
2202	if (unlikely(tso < 0)) {
2203		dev_kfree_skb_any(skb);
2204		return NETDEV_TX_OK;
2205	}
2206
2207	if (tso)
2208		tx_flags |= IGBVF_TX_FLAGS_TSO;
2209	else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
2210	         (skb->ip_summed == CHECKSUM_PARTIAL))
2211		tx_flags |= IGBVF_TX_FLAGS_CSUM;
2212
2213	/*
2214	 * count reflects descriptors mapped, if 0 then mapping error
2215	 * has occurred and we need to rewind the descriptor queue
2216	 */
2217	count = igbvf_tx_map_adv(adapter, tx_ring, skb, first);
2218
2219	if (count) {
2220		igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2221		                   skb->len, hdr_len);
2222		/* Make sure there is space in the ring for the next send. */
2223		igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2224	} else {
2225		dev_kfree_skb_any(skb);
2226		tx_ring->buffer_info[first].time_stamp = 0;
2227		tx_ring->next_to_use = first;
2228	}
2229
2230	return NETDEV_TX_OK;
2231}
2232
2233static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2234				    struct net_device *netdev)
2235{
2236	struct igbvf_adapter *adapter = netdev_priv(netdev);
2237	struct igbvf_ring *tx_ring;
2238
2239	if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2240		dev_kfree_skb_any(skb);
2241		return NETDEV_TX_OK;
2242	}
2243
2244	tx_ring = &adapter->tx_ring[0];
2245
2246	return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2247}
2248
2249/**
2250 * igbvf_tx_timeout - Respond to a Tx Hang
2251 * @netdev: network interface device structure
2252 **/
2253static void igbvf_tx_timeout(struct net_device *netdev)
2254{
2255	struct igbvf_adapter *adapter = netdev_priv(netdev);
2256
2257	/* Do the reset outside of interrupt context */
2258	adapter->tx_timeout_count++;
2259	schedule_work(&adapter->reset_task);
2260}
2261
2262static void igbvf_reset_task(struct work_struct *work)
2263{
2264	struct igbvf_adapter *adapter;
2265	adapter = container_of(work, struct igbvf_adapter, reset_task);
2266
2267	igbvf_reinit_locked(adapter);
2268}
2269
2270/**
2271 * igbvf_get_stats - Get System Network Statistics
2272 * @netdev: network interface device structure
2273 *
2274 * Returns the address of the device statistics structure.
2275 * The statistics are actually updated from the timer callback.
2276 **/
2277static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2278{
2279	struct igbvf_adapter *adapter = netdev_priv(netdev);
2280
2281	/* only return the current stats */
2282	return &adapter->net_stats;
2283}
2284
2285/**
2286 * igbvf_change_mtu - Change the Maximum Transfer Unit
2287 * @netdev: network interface device structure
2288 * @new_mtu: new value for maximum frame size
2289 *
2290 * Returns 0 on success, negative on failure
2291 **/
2292static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2293{
2294	struct igbvf_adapter *adapter = netdev_priv(netdev);
2295	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2296
2297	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2298		dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2299		return -EINVAL;
2300	}
2301
2302#define MAX_STD_JUMBO_FRAME_SIZE 9234
2303	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2304		dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2305		return -EINVAL;
2306	}
2307
2308	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2309		msleep(1);
2310	/* igbvf_down has a dependency on max_frame_size */
2311	adapter->max_frame_size = max_frame;
2312	if (netif_running(netdev))
2313		igbvf_down(adapter);
2314
2315	/*
2316	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2317	 * means we reserve 2 more, this pushes us to allocate from the next
2318	 * larger slab size.
2319	 * i.e. RXBUFFER_2048 --> size-4096 slab
2320	 * However with the new *_jumbo_rx* routines, jumbo receives will use
2321	 * fragmented skbs
2322	 */
2323
2324	if (max_frame <= 1024)
2325		adapter->rx_buffer_len = 1024;
2326	else if (max_frame <= 2048)
2327		adapter->rx_buffer_len = 2048;
2328	else
2329#if (PAGE_SIZE / 2) > 16384
2330		adapter->rx_buffer_len = 16384;
2331#else
2332		adapter->rx_buffer_len = PAGE_SIZE / 2;
2333#endif
2334
2335
2336	/* adjust allocation if LPE protects us, and we aren't using SBP */
2337	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2338	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2339		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2340		                         ETH_FCS_LEN;
2341
2342	dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2343	         netdev->mtu, new_mtu);
2344	netdev->mtu = new_mtu;
2345
2346	if (netif_running(netdev))
2347		igbvf_up(adapter);
2348	else
2349		igbvf_reset(adapter);
2350
2351	clear_bit(__IGBVF_RESETTING, &adapter->state);
2352
2353	return 0;
2354}
2355
2356static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2357{
2358	switch (cmd) {
2359	default:
2360		return -EOPNOTSUPP;
2361	}
2362}
2363
2364static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2365{
2366	struct net_device *netdev = pci_get_drvdata(pdev);
2367	struct igbvf_adapter *adapter = netdev_priv(netdev);
2368#ifdef CONFIG_PM
2369	int retval = 0;
2370#endif
2371
2372	netif_device_detach(netdev);
2373
2374	if (netif_running(netdev)) {
2375		WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2376		igbvf_down(adapter);
2377		igbvf_free_irq(adapter);
2378	}
2379
2380#ifdef CONFIG_PM
2381	retval = pci_save_state(pdev);
2382	if (retval)
2383		return retval;
2384#endif
2385
2386	pci_disable_device(pdev);
2387
2388	return 0;
2389}
2390
2391#ifdef CONFIG_PM
2392static int igbvf_resume(struct pci_dev *pdev)
2393{
2394	struct net_device *netdev = pci_get_drvdata(pdev);
2395	struct igbvf_adapter *adapter = netdev_priv(netdev);
2396	u32 err;
2397
2398	pci_restore_state(pdev);
2399	err = pci_enable_device_mem(pdev);
2400	if (err) {
2401		dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2402		return err;
2403	}
2404
2405	pci_set_master(pdev);
2406
2407	if (netif_running(netdev)) {
2408		err = igbvf_request_irq(adapter);
2409		if (err)
2410			return err;
2411	}
2412
2413	igbvf_reset(adapter);
2414
2415	if (netif_running(netdev))
2416		igbvf_up(adapter);
2417
2418	netif_device_attach(netdev);
2419
2420	return 0;
2421}
2422#endif
2423
2424static void igbvf_shutdown(struct pci_dev *pdev)
2425{
2426	igbvf_suspend(pdev, PMSG_SUSPEND);
2427}
2428
2429#ifdef CONFIG_NET_POLL_CONTROLLER
2430/*
2431 * Polling 'interrupt' - used by things like netconsole to send skbs
2432 * without having to re-enable interrupts. It's not called while
2433 * the interrupt routine is executing.
2434 */
2435static void igbvf_netpoll(struct net_device *netdev)
2436{
2437	struct igbvf_adapter *adapter = netdev_priv(netdev);
2438
2439	disable_irq(adapter->pdev->irq);
2440
2441	igbvf_clean_tx_irq(adapter->tx_ring);
2442
2443	enable_irq(adapter->pdev->irq);
2444}
2445#endif
2446
2447/**
2448 * igbvf_io_error_detected - called when PCI error is detected
2449 * @pdev: Pointer to PCI device
2450 * @state: The current pci connection state
2451 *
2452 * This function is called after a PCI bus error affecting
2453 * this device has been detected.
2454 */
2455static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2456                                                pci_channel_state_t state)
2457{
2458	struct net_device *netdev = pci_get_drvdata(pdev);
2459	struct igbvf_adapter *adapter = netdev_priv(netdev);
2460
2461	netif_device_detach(netdev);
2462
2463	if (state == pci_channel_io_perm_failure)
2464		return PCI_ERS_RESULT_DISCONNECT;
2465
2466	if (netif_running(netdev))
2467		igbvf_down(adapter);
2468	pci_disable_device(pdev);
2469
2470	/* Request a slot slot reset. */
2471	return PCI_ERS_RESULT_NEED_RESET;
2472}
2473
2474/**
2475 * igbvf_io_slot_reset - called after the pci bus has been reset.
2476 * @pdev: Pointer to PCI device
2477 *
2478 * Restart the card from scratch, as if from a cold-boot. Implementation
2479 * resembles the first-half of the igbvf_resume routine.
2480 */
2481static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2482{
2483	struct net_device *netdev = pci_get_drvdata(pdev);
2484	struct igbvf_adapter *adapter = netdev_priv(netdev);
2485
2486	if (pci_enable_device_mem(pdev)) {
2487		dev_err(&pdev->dev,
2488			"Cannot re-enable PCI device after reset.\n");
2489		return PCI_ERS_RESULT_DISCONNECT;
2490	}
2491	pci_set_master(pdev);
2492
2493	igbvf_reset(adapter);
2494
2495	return PCI_ERS_RESULT_RECOVERED;
2496}
2497
2498/**
2499 * igbvf_io_resume - called when traffic can start flowing again.
2500 * @pdev: Pointer to PCI device
2501 *
2502 * This callback is called when the error recovery driver tells us that
2503 * its OK to resume normal operation. Implementation resembles the
2504 * second-half of the igbvf_resume routine.
2505 */
2506static void igbvf_io_resume(struct pci_dev *pdev)
2507{
2508	struct net_device *netdev = pci_get_drvdata(pdev);
2509	struct igbvf_adapter *adapter = netdev_priv(netdev);
2510
2511	if (netif_running(netdev)) {
2512		if (igbvf_up(adapter)) {
2513			dev_err(&pdev->dev,
2514				"can't bring device back up after reset\n");
2515			return;
2516		}
2517	}
2518
2519	netif_device_attach(netdev);
2520}
2521
2522static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2523{
2524	struct e1000_hw *hw = &adapter->hw;
2525	struct net_device *netdev = adapter->netdev;
2526	struct pci_dev *pdev = adapter->pdev;
2527
2528	if (hw->mac.type == e1000_vfadapt_i350)
2529		dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2530	else
2531		dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2532	dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2533}
2534
2535static int igbvf_set_features(struct net_device *netdev,
2536	netdev_features_t features)
2537{
2538	struct igbvf_adapter *adapter = netdev_priv(netdev);
2539
2540	if (features & NETIF_F_RXCSUM)
2541		adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2542	else
2543		adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2544
2545	return 0;
2546}
2547
2548static const struct net_device_ops igbvf_netdev_ops = {
2549	.ndo_open                       = igbvf_open,
2550	.ndo_stop                       = igbvf_close,
2551	.ndo_start_xmit                 = igbvf_xmit_frame,
2552	.ndo_get_stats                  = igbvf_get_stats,
2553	.ndo_set_rx_mode		= igbvf_set_multi,
2554	.ndo_set_mac_address            = igbvf_set_mac,
2555	.ndo_change_mtu                 = igbvf_change_mtu,
2556	.ndo_do_ioctl                   = igbvf_ioctl,
2557	.ndo_tx_timeout                 = igbvf_tx_timeout,
2558	.ndo_vlan_rx_add_vid            = igbvf_vlan_rx_add_vid,
2559	.ndo_vlan_rx_kill_vid           = igbvf_vlan_rx_kill_vid,
2560#ifdef CONFIG_NET_POLL_CONTROLLER
2561	.ndo_poll_controller            = igbvf_netpoll,
2562#endif
2563	.ndo_set_features               = igbvf_set_features,
2564};
2565
2566/**
2567 * igbvf_probe - Device Initialization Routine
2568 * @pdev: PCI device information struct
2569 * @ent: entry in igbvf_pci_tbl
2570 *
2571 * Returns 0 on success, negative on failure
2572 *
2573 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2574 * The OS initialization, configuring of the adapter private structure,
2575 * and a hardware reset occur.
2576 **/
2577static int __devinit igbvf_probe(struct pci_dev *pdev,
2578                                 const struct pci_device_id *ent)
2579{
2580	struct net_device *netdev;
2581	struct igbvf_adapter *adapter;
2582	struct e1000_hw *hw;
2583	const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2584
2585	static int cards_found;
2586	int err, pci_using_dac;
2587
2588	err = pci_enable_device_mem(pdev);
2589	if (err)
2590		return err;
2591
2592	pci_using_dac = 0;
2593	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2594	if (!err) {
2595		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2596		if (!err)
2597			pci_using_dac = 1;
2598	} else {
2599		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2600		if (err) {
2601			err = dma_set_coherent_mask(&pdev->dev,
2602						    DMA_BIT_MASK(32));
2603			if (err) {
2604				dev_err(&pdev->dev, "No usable DMA "
2605				        "configuration, aborting\n");
2606				goto err_dma;
2607			}
2608		}
2609	}
2610
2611	err = pci_request_regions(pdev, igbvf_driver_name);
2612	if (err)
2613		goto err_pci_reg;
2614
2615	pci_set_master(pdev);
2616
2617	err = -ENOMEM;
2618	netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2619	if (!netdev)
2620		goto err_alloc_etherdev;
2621
2622	SET_NETDEV_DEV(netdev, &pdev->dev);
2623
2624	pci_set_drvdata(pdev, netdev);
2625	adapter = netdev_priv(netdev);
2626	hw = &adapter->hw;
2627	adapter->netdev = netdev;
2628	adapter->pdev = pdev;
2629	adapter->ei = ei;
2630	adapter->pba = ei->pba;
2631	adapter->flags = ei->flags;
2632	adapter->hw.back = adapter;
2633	adapter->hw.mac.type = ei->mac;
2634	adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
2635
2636	/* PCI config space info */
2637
2638	hw->vendor_id = pdev->vendor;
2639	hw->device_id = pdev->device;
2640	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2641	hw->subsystem_device_id = pdev->subsystem_device;
2642	hw->revision_id = pdev->revision;
2643
2644	err = -EIO;
2645	adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2646	                              pci_resource_len(pdev, 0));
2647
2648	if (!adapter->hw.hw_addr)
2649		goto err_ioremap;
2650
2651	if (ei->get_variants) {
2652		err = ei->get_variants(adapter);
2653		if (err)
2654			goto err_ioremap;
2655	}
2656
2657	/* setup adapter struct */
2658	err = igbvf_sw_init(adapter);
2659	if (err)
2660		goto err_sw_init;
2661
2662	/* construct the net_device struct */
2663	netdev->netdev_ops = &igbvf_netdev_ops;
2664
2665	igbvf_set_ethtool_ops(netdev);
2666	netdev->watchdog_timeo = 5 * HZ;
2667	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2668
2669	adapter->bd_number = cards_found++;
2670
2671	netdev->hw_features = NETIF_F_SG |
2672	                   NETIF_F_IP_CSUM |
2673			   NETIF_F_IPV6_CSUM |
2674			   NETIF_F_TSO |
2675			   NETIF_F_TSO6 |
2676			   NETIF_F_RXCSUM;
2677
2678	netdev->features = netdev->hw_features |
2679	                   NETIF_F_HW_VLAN_TX |
2680	                   NETIF_F_HW_VLAN_RX |
2681	                   NETIF_F_HW_VLAN_FILTER;
2682
2683	if (pci_using_dac)
2684		netdev->features |= NETIF_F_HIGHDMA;
2685
2686	netdev->vlan_features |= NETIF_F_TSO;
2687	netdev->vlan_features |= NETIF_F_TSO6;
2688	netdev->vlan_features |= NETIF_F_IP_CSUM;
2689	netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2690	netdev->vlan_features |= NETIF_F_SG;
2691
2692	/*reset the controller to put the device in a known good state */
2693	err = hw->mac.ops.reset_hw(hw);
2694	if (err) {
2695		dev_info(&pdev->dev,
2696			 "PF still in reset state, assigning new address."
2697			 " Is the PF interface up?\n");
2698		dev_hw_addr_random(adapter->netdev, hw->mac.addr);
2699	} else {
2700		err = hw->mac.ops.read_mac_addr(hw);
2701		if (err) {
2702			dev_err(&pdev->dev, "Error reading MAC address\n");
2703			goto err_hw_init;
2704		}
2705	}
2706
2707	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
2708	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
2709
2710	if (!is_valid_ether_addr(netdev->perm_addr)) {
2711		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
2712		        netdev->dev_addr);
2713		err = -EIO;
2714		goto err_hw_init;
2715	}
2716
2717	setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2718	            (unsigned long) adapter);
2719
2720	INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2721	INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2722
2723	/* ring size defaults */
2724	adapter->rx_ring->count = 1024;
2725	adapter->tx_ring->count = 1024;
2726
2727	/* reset the hardware with the new settings */
2728	igbvf_reset(adapter);
2729
2730	strcpy(netdev->name, "eth%d");
2731	err = register_netdev(netdev);
2732	if (err)
2733		goto err_hw_init;
2734
2735	/* tell the stack to leave us alone until igbvf_open() is called */
2736	netif_carrier_off(netdev);
2737	netif_stop_queue(netdev);
2738
2739	igbvf_print_device_info(adapter);
2740
2741	igbvf_initialize_last_counter_stats(adapter);
2742
2743	return 0;
2744
2745err_hw_init:
2746	kfree(adapter->tx_ring);
2747	kfree(adapter->rx_ring);
2748err_sw_init:
2749	igbvf_reset_interrupt_capability(adapter);
2750	iounmap(adapter->hw.hw_addr);
2751err_ioremap:
2752	free_netdev(netdev);
2753err_alloc_etherdev:
2754	pci_release_regions(pdev);
2755err_pci_reg:
2756err_dma:
2757	pci_disable_device(pdev);
2758	return err;
2759}
2760
2761/**
2762 * igbvf_remove - Device Removal Routine
2763 * @pdev: PCI device information struct
2764 *
2765 * igbvf_remove is called by the PCI subsystem to alert the driver
2766 * that it should release a PCI device.  The could be caused by a
2767 * Hot-Plug event, or because the driver is going to be removed from
2768 * memory.
2769 **/
2770static void __devexit igbvf_remove(struct pci_dev *pdev)
2771{
2772	struct net_device *netdev = pci_get_drvdata(pdev);
2773	struct igbvf_adapter *adapter = netdev_priv(netdev);
2774	struct e1000_hw *hw = &adapter->hw;
2775
2776	/*
2777	 * The watchdog timer may be rescheduled, so explicitly
2778	 * disable it from being rescheduled.
2779	 */
2780	set_bit(__IGBVF_DOWN, &adapter->state);
2781	del_timer_sync(&adapter->watchdog_timer);
2782
2783	cancel_work_sync(&adapter->reset_task);
2784	cancel_work_sync(&adapter->watchdog_task);
2785
2786	unregister_netdev(netdev);
2787
2788	igbvf_reset_interrupt_capability(adapter);
2789
2790	/*
2791	 * it is important to delete the napi struct prior to freeing the
2792	 * rx ring so that you do not end up with null pointer refs
2793	 */
2794	netif_napi_del(&adapter->rx_ring->napi);
2795	kfree(adapter->tx_ring);
2796	kfree(adapter->rx_ring);
2797
2798	iounmap(hw->hw_addr);
2799	if (hw->flash_address)
2800		iounmap(hw->flash_address);
2801	pci_release_regions(pdev);
2802
2803	free_netdev(netdev);
2804
2805	pci_disable_device(pdev);
2806}
2807
2808/* PCI Error Recovery (ERS) */
2809static struct pci_error_handlers igbvf_err_handler = {
2810	.error_detected = igbvf_io_error_detected,
2811	.slot_reset = igbvf_io_slot_reset,
2812	.resume = igbvf_io_resume,
2813};
2814
2815static DEFINE_PCI_DEVICE_TABLE(igbvf_pci_tbl) = {
2816	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2817	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2818	{ } /* terminate list */
2819};
2820MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2821
2822/* PCI Device API Driver */
2823static struct pci_driver igbvf_driver = {
2824	.name     = igbvf_driver_name,
2825	.id_table = igbvf_pci_tbl,
2826	.probe    = igbvf_probe,
2827	.remove   = __devexit_p(igbvf_remove),
2828#ifdef CONFIG_PM
2829	/* Power Management Hooks */
2830	.suspend  = igbvf_suspend,
2831	.resume   = igbvf_resume,
2832#endif
2833	.shutdown = igbvf_shutdown,
2834	.err_handler = &igbvf_err_handler
2835};
2836
2837/**
2838 * igbvf_init_module - Driver Registration Routine
2839 *
2840 * igbvf_init_module is the first routine called when the driver is
2841 * loaded. All it does is register with the PCI subsystem.
2842 **/
2843static int __init igbvf_init_module(void)
2844{
2845	int ret;
2846	pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
2847	pr_info("%s\n", igbvf_copyright);
2848
2849	ret = pci_register_driver(&igbvf_driver);
2850
2851	return ret;
2852}
2853module_init(igbvf_init_module);
2854
2855/**
2856 * igbvf_exit_module - Driver Exit Cleanup Routine
2857 *
2858 * igbvf_exit_module is called just before the driver is removed
2859 * from memory.
2860 **/
2861static void __exit igbvf_exit_module(void)
2862{
2863	pci_unregister_driver(&igbvf_driver);
2864}
2865module_exit(igbvf_exit_module);
2866
2867
2868MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2869MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2870MODULE_LICENSE("GPL");
2871MODULE_VERSION(DRV_VERSION);
2872
2873/* netdev.c */
2874