1/*******************************************************************************
2
3  Intel 82599 Virtual Function driver
4  Copyright(c) 1999 - 2012 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28
29/******************************************************************************
30 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
31******************************************************************************/
32
33#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35#include <linux/types.h>
36#include <linux/bitops.h>
37#include <linux/module.h>
38#include <linux/pci.h>
39#include <linux/netdevice.h>
40#include <linux/vmalloc.h>
41#include <linux/string.h>
42#include <linux/in.h>
43#include <linux/ip.h>
44#include <linux/tcp.h>
45#include <linux/ipv6.h>
46#include <linux/slab.h>
47#include <net/checksum.h>
48#include <net/ip6_checksum.h>
49#include <linux/ethtool.h>
50#include <linux/if.h>
51#include <linux/if_vlan.h>
52#include <linux/prefetch.h>
53
54#include "ixgbevf.h"
55
56const char ixgbevf_driver_name[] = "ixgbevf";
57static const char ixgbevf_driver_string[] =
58	"Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
59
60#define DRV_VERSION "2.2.0-k"
61const char ixgbevf_driver_version[] = DRV_VERSION;
62static char ixgbevf_copyright[] =
63	"Copyright (c) 2009 - 2012 Intel Corporation.";
64
65static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
66	[board_82599_vf] = &ixgbevf_82599_vf_info,
67	[board_X540_vf]  = &ixgbevf_X540_vf_info,
68};
69
70/* ixgbevf_pci_tbl - PCI Device ID Table
71 *
72 * Wildcard entries (PCI_ANY_ID) should come last
73 * Last entry must be all 0s
74 *
75 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
76 *   Class, Class Mask, private data (not used) }
77 */
78static struct pci_device_id ixgbevf_pci_tbl[] = {
79	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF),
80	board_82599_vf},
81	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF),
82	board_X540_vf},
83
84	/* required last entry */
85	{0, }
86};
87MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
88
89MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
90MODULE_DESCRIPTION("Intel(R) 82599 Virtual Function Driver");
91MODULE_LICENSE("GPL");
92MODULE_VERSION(DRV_VERSION);
93
94#define DEFAULT_DEBUG_LEVEL_SHIFT 3
95
96/* forward decls */
97static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector);
98static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
99			       u32 itr_reg);
100
101static inline void ixgbevf_release_rx_desc(struct ixgbe_hw *hw,
102					   struct ixgbevf_ring *rx_ring,
103					   u32 val)
104{
105	/*
106	 * Force memory writes to complete before letting h/w
107	 * know there are new descriptors to fetch.  (Only
108	 * applicable for weak-ordered memory model archs,
109	 * such as IA-64).
110	 */
111	wmb();
112	IXGBE_WRITE_REG(hw, IXGBE_VFRDT(rx_ring->reg_idx), val);
113}
114
115/*
116 * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
117 * @adapter: pointer to adapter struct
118 * @direction: 0 for Rx, 1 for Tx, -1 for other causes
119 * @queue: queue to map the corresponding interrupt to
120 * @msix_vector: the vector to map to the corresponding queue
121 *
122 */
123static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
124			     u8 queue, u8 msix_vector)
125{
126	u32 ivar, index;
127	struct ixgbe_hw *hw = &adapter->hw;
128	if (direction == -1) {
129		/* other causes */
130		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
131		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
132		ivar &= ~0xFF;
133		ivar |= msix_vector;
134		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
135	} else {
136		/* tx or rx causes */
137		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
138		index = ((16 * (queue & 1)) + (8 * direction));
139		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
140		ivar &= ~(0xFF << index);
141		ivar |= (msix_vector << index);
142		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
143	}
144}
145
146static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_adapter *adapter,
147					       struct ixgbevf_tx_buffer
148					       *tx_buffer_info)
149{
150	if (tx_buffer_info->dma) {
151		if (tx_buffer_info->mapped_as_page)
152			dma_unmap_page(&adapter->pdev->dev,
153				       tx_buffer_info->dma,
154				       tx_buffer_info->length,
155				       DMA_TO_DEVICE);
156		else
157			dma_unmap_single(&adapter->pdev->dev,
158					 tx_buffer_info->dma,
159					 tx_buffer_info->length,
160					 DMA_TO_DEVICE);
161		tx_buffer_info->dma = 0;
162	}
163	if (tx_buffer_info->skb) {
164		dev_kfree_skb_any(tx_buffer_info->skb);
165		tx_buffer_info->skb = NULL;
166	}
167	tx_buffer_info->time_stamp = 0;
168	/* tx_buffer_info must be completely set up in the transmit path */
169}
170
171#define IXGBE_MAX_TXD_PWR	14
172#define IXGBE_MAX_DATA_PER_TXD	(1 << IXGBE_MAX_TXD_PWR)
173
174/* Tx Descriptors needed, worst case */
175#define TXD_USE_COUNT(S) (((S) >> IXGBE_MAX_TXD_PWR) + \
176			 (((S) & (IXGBE_MAX_DATA_PER_TXD - 1)) ? 1 : 0))
177#ifdef MAX_SKB_FRAGS
178#define DESC_NEEDED (TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD) /* skb->data */ + \
179	MAX_SKB_FRAGS * TXD_USE_COUNT(PAGE_SIZE) + 1)      /* for context */
180#else
181#define DESC_NEEDED TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD)
182#endif
183
184static void ixgbevf_tx_timeout(struct net_device *netdev);
185
186/**
187 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
188 * @adapter: board private structure
189 * @tx_ring: tx ring to clean
190 **/
191static bool ixgbevf_clean_tx_irq(struct ixgbevf_adapter *adapter,
192				 struct ixgbevf_ring *tx_ring)
193{
194	struct net_device *netdev = adapter->netdev;
195	struct ixgbe_hw *hw = &adapter->hw;
196	union ixgbe_adv_tx_desc *tx_desc, *eop_desc;
197	struct ixgbevf_tx_buffer *tx_buffer_info;
198	unsigned int i, eop, count = 0;
199	unsigned int total_bytes = 0, total_packets = 0;
200
201	i = tx_ring->next_to_clean;
202	eop = tx_ring->tx_buffer_info[i].next_to_watch;
203	eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
204
205	while ((eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)) &&
206	       (count < tx_ring->work_limit)) {
207		bool cleaned = false;
208		rmb(); /* read buffer_info after eop_desc */
209		/* eop could change between read and DD-check */
210		if (unlikely(eop != tx_ring->tx_buffer_info[i].next_to_watch))
211			goto cont_loop;
212		for ( ; !cleaned; count++) {
213			struct sk_buff *skb;
214			tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
215			tx_buffer_info = &tx_ring->tx_buffer_info[i];
216			cleaned = (i == eop);
217			skb = tx_buffer_info->skb;
218
219			if (cleaned && skb) {
220				unsigned int segs, bytecount;
221
222				/* gso_segs is currently only valid for tcp */
223				segs = skb_shinfo(skb)->gso_segs ?: 1;
224				/* multiply data chunks by size of headers */
225				bytecount = ((segs - 1) * skb_headlen(skb)) +
226					    skb->len;
227				total_packets += segs;
228				total_bytes += bytecount;
229			}
230
231			ixgbevf_unmap_and_free_tx_resource(adapter,
232							   tx_buffer_info);
233
234			tx_desc->wb.status = 0;
235
236			i++;
237			if (i == tx_ring->count)
238				i = 0;
239		}
240
241cont_loop:
242		eop = tx_ring->tx_buffer_info[i].next_to_watch;
243		eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
244	}
245
246	tx_ring->next_to_clean = i;
247
248#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
249	if (unlikely(count && netif_carrier_ok(netdev) &&
250		     (IXGBE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
251		/* Make sure that anybody stopping the queue after this
252		 * sees the new next_to_clean.
253		 */
254		smp_mb();
255#ifdef HAVE_TX_MQ
256		if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
257		    !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
258			netif_wake_subqueue(netdev, tx_ring->queue_index);
259			++adapter->restart_queue;
260		}
261#else
262		if (netif_queue_stopped(netdev) &&
263		    !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
264			netif_wake_queue(netdev);
265			++adapter->restart_queue;
266		}
267#endif
268	}
269
270	/* re-arm the interrupt */
271	if ((count >= tx_ring->work_limit) &&
272	    (!test_bit(__IXGBEVF_DOWN, &adapter->state))) {
273		IXGBE_WRITE_REG(hw, IXGBE_VTEICS, tx_ring->v_idx);
274	}
275
276	u64_stats_update_begin(&tx_ring->syncp);
277	tx_ring->total_bytes += total_bytes;
278	tx_ring->total_packets += total_packets;
279	u64_stats_update_end(&tx_ring->syncp);
280
281	return count < tx_ring->work_limit;
282}
283
284/**
285 * ixgbevf_receive_skb - Send a completed packet up the stack
286 * @q_vector: structure containing interrupt and ring information
287 * @skb: packet to send up
288 * @status: hardware indication of status of receive
289 * @rx_ring: rx descriptor ring (for a specific queue) to setup
290 * @rx_desc: rx descriptor
291 **/
292static void ixgbevf_receive_skb(struct ixgbevf_q_vector *q_vector,
293				struct sk_buff *skb, u8 status,
294				struct ixgbevf_ring *ring,
295				union ixgbe_adv_rx_desc *rx_desc)
296{
297	struct ixgbevf_adapter *adapter = q_vector->adapter;
298	bool is_vlan = (status & IXGBE_RXD_STAT_VP);
299	u16 tag = le16_to_cpu(rx_desc->wb.upper.vlan);
300
301	if (is_vlan && test_bit(tag, adapter->active_vlans))
302		__vlan_hwaccel_put_tag(skb, tag);
303
304	if (!(adapter->flags & IXGBE_FLAG_IN_NETPOLL))
305			napi_gro_receive(&q_vector->napi, skb);
306	else
307			netif_rx(skb);
308}
309
310/**
311 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
312 * @adapter: address of board private structure
313 * @status_err: hardware indication of status of receive
314 * @skb: skb currently being received and modified
315 **/
316static inline void ixgbevf_rx_checksum(struct ixgbevf_adapter *adapter,
317				       u32 status_err, struct sk_buff *skb)
318{
319	skb_checksum_none_assert(skb);
320
321	/* Rx csum disabled */
322	if (!(adapter->flags & IXGBE_FLAG_RX_CSUM_ENABLED))
323		return;
324
325	/* if IP and error */
326	if ((status_err & IXGBE_RXD_STAT_IPCS) &&
327	    (status_err & IXGBE_RXDADV_ERR_IPE)) {
328		adapter->hw_csum_rx_error++;
329		return;
330	}
331
332	if (!(status_err & IXGBE_RXD_STAT_L4CS))
333		return;
334
335	if (status_err & IXGBE_RXDADV_ERR_TCPE) {
336		adapter->hw_csum_rx_error++;
337		return;
338	}
339
340	/* It must be a TCP or UDP packet with a valid checksum */
341	skb->ip_summed = CHECKSUM_UNNECESSARY;
342	adapter->hw_csum_rx_good++;
343}
344
345/**
346 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
347 * @adapter: address of board private structure
348 **/
349static void ixgbevf_alloc_rx_buffers(struct ixgbevf_adapter *adapter,
350				     struct ixgbevf_ring *rx_ring,
351				     int cleaned_count)
352{
353	struct pci_dev *pdev = adapter->pdev;
354	union ixgbe_adv_rx_desc *rx_desc;
355	struct ixgbevf_rx_buffer *bi;
356	struct sk_buff *skb;
357	unsigned int i;
358	unsigned int bufsz = rx_ring->rx_buf_len + NET_IP_ALIGN;
359
360	i = rx_ring->next_to_use;
361	bi = &rx_ring->rx_buffer_info[i];
362
363	while (cleaned_count--) {
364		rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
365
366		if (!bi->page_dma &&
367		    (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED)) {
368			if (!bi->page) {
369				bi->page = alloc_page(GFP_ATOMIC | __GFP_COLD);
370				if (!bi->page) {
371					adapter->alloc_rx_page_failed++;
372					goto no_buffers;
373				}
374				bi->page_offset = 0;
375			} else {
376				/* use a half page if we're re-using */
377				bi->page_offset ^= (PAGE_SIZE / 2);
378			}
379
380			bi->page_dma = dma_map_page(&pdev->dev, bi->page,
381						    bi->page_offset,
382						    (PAGE_SIZE / 2),
383						    DMA_FROM_DEVICE);
384		}
385
386		skb = bi->skb;
387		if (!skb) {
388			skb = netdev_alloc_skb(adapter->netdev,
389							       bufsz);
390
391			if (!skb) {
392				adapter->alloc_rx_buff_failed++;
393				goto no_buffers;
394			}
395
396			/*
397			 * Make buffer alignment 2 beyond a 16 byte boundary
398			 * this will result in a 16 byte aligned IP header after
399			 * the 14 byte MAC header is removed
400			 */
401			skb_reserve(skb, NET_IP_ALIGN);
402
403			bi->skb = skb;
404		}
405		if (!bi->dma) {
406			bi->dma = dma_map_single(&pdev->dev, skb->data,
407						 rx_ring->rx_buf_len,
408						 DMA_FROM_DEVICE);
409		}
410		/* Refresh the desc even if buffer_addrs didn't change because
411		 * each write-back erases this info. */
412		if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
413			rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
414			rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
415		} else {
416			rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
417		}
418
419		i++;
420		if (i == rx_ring->count)
421			i = 0;
422		bi = &rx_ring->rx_buffer_info[i];
423	}
424
425no_buffers:
426	if (rx_ring->next_to_use != i) {
427		rx_ring->next_to_use = i;
428		if (i-- == 0)
429			i = (rx_ring->count - 1);
430
431		ixgbevf_release_rx_desc(&adapter->hw, rx_ring, i);
432	}
433}
434
435static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
436					     u64 qmask)
437{
438	u32 mask;
439	struct ixgbe_hw *hw = &adapter->hw;
440
441	mask = (qmask & 0xFFFFFFFF);
442	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
443}
444
445static inline u16 ixgbevf_get_hdr_info(union ixgbe_adv_rx_desc *rx_desc)
446{
447	return rx_desc->wb.lower.lo_dword.hs_rss.hdr_info;
448}
449
450static inline u16 ixgbevf_get_pkt_info(union ixgbe_adv_rx_desc *rx_desc)
451{
452	return rx_desc->wb.lower.lo_dword.hs_rss.pkt_info;
453}
454
455static bool ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
456				 struct ixgbevf_ring *rx_ring,
457				 int *work_done, int work_to_do)
458{
459	struct ixgbevf_adapter *adapter = q_vector->adapter;
460	struct pci_dev *pdev = adapter->pdev;
461	union ixgbe_adv_rx_desc *rx_desc, *next_rxd;
462	struct ixgbevf_rx_buffer *rx_buffer_info, *next_buffer;
463	struct sk_buff *skb;
464	unsigned int i;
465	u32 len, staterr;
466	u16 hdr_info;
467	bool cleaned = false;
468	int cleaned_count = 0;
469	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
470
471	i = rx_ring->next_to_clean;
472	rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
473	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
474	rx_buffer_info = &rx_ring->rx_buffer_info[i];
475
476	while (staterr & IXGBE_RXD_STAT_DD) {
477		u32 upper_len = 0;
478		if (*work_done >= work_to_do)
479			break;
480		(*work_done)++;
481
482		rmb(); /* read descriptor and rx_buffer_info after status DD */
483		if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
484			hdr_info = le16_to_cpu(ixgbevf_get_hdr_info(rx_desc));
485			len = (hdr_info & IXGBE_RXDADV_HDRBUFLEN_MASK) >>
486			       IXGBE_RXDADV_HDRBUFLEN_SHIFT;
487			if (hdr_info & IXGBE_RXDADV_SPH)
488				adapter->rx_hdr_split++;
489			if (len > IXGBEVF_RX_HDR_SIZE)
490				len = IXGBEVF_RX_HDR_SIZE;
491			upper_len = le16_to_cpu(rx_desc->wb.upper.length);
492		} else {
493			len = le16_to_cpu(rx_desc->wb.upper.length);
494		}
495		cleaned = true;
496		skb = rx_buffer_info->skb;
497		prefetch(skb->data - NET_IP_ALIGN);
498		rx_buffer_info->skb = NULL;
499
500		if (rx_buffer_info->dma) {
501			dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
502					 rx_ring->rx_buf_len,
503					 DMA_FROM_DEVICE);
504			rx_buffer_info->dma = 0;
505			skb_put(skb, len);
506		}
507
508		if (upper_len) {
509			dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
510				       PAGE_SIZE / 2, DMA_FROM_DEVICE);
511			rx_buffer_info->page_dma = 0;
512			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
513					   rx_buffer_info->page,
514					   rx_buffer_info->page_offset,
515					   upper_len);
516
517			if ((rx_ring->rx_buf_len > (PAGE_SIZE / 2)) ||
518			    (page_count(rx_buffer_info->page) != 1))
519				rx_buffer_info->page = NULL;
520			else
521				get_page(rx_buffer_info->page);
522
523			skb->len += upper_len;
524			skb->data_len += upper_len;
525			skb->truesize += upper_len;
526		}
527
528		i++;
529		if (i == rx_ring->count)
530			i = 0;
531
532		next_rxd = IXGBE_RX_DESC_ADV(*rx_ring, i);
533		prefetch(next_rxd);
534		cleaned_count++;
535
536		next_buffer = &rx_ring->rx_buffer_info[i];
537
538		if (!(staterr & IXGBE_RXD_STAT_EOP)) {
539			if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
540				rx_buffer_info->skb = next_buffer->skb;
541				rx_buffer_info->dma = next_buffer->dma;
542				next_buffer->skb = skb;
543				next_buffer->dma = 0;
544			} else {
545				skb->next = next_buffer->skb;
546				skb->next->prev = skb;
547			}
548			adapter->non_eop_descs++;
549			goto next_desc;
550		}
551
552		/* ERR_MASK will only have valid bits if EOP set */
553		if (unlikely(staterr & IXGBE_RXDADV_ERR_FRAME_ERR_MASK)) {
554			dev_kfree_skb_irq(skb);
555			goto next_desc;
556		}
557
558		ixgbevf_rx_checksum(adapter, staterr, skb);
559
560		/* probably a little skewed due to removing CRC */
561		total_rx_bytes += skb->len;
562		total_rx_packets++;
563
564		/*
565		 * Work around issue of some types of VM to VM loop back
566		 * packets not getting split correctly
567		 */
568		if (staterr & IXGBE_RXD_STAT_LB) {
569			u32 header_fixup_len = skb_headlen(skb);
570			if (header_fixup_len < 14)
571				skb_push(skb, header_fixup_len);
572		}
573		skb->protocol = eth_type_trans(skb, adapter->netdev);
574
575		ixgbevf_receive_skb(q_vector, skb, staterr, rx_ring, rx_desc);
576
577next_desc:
578		rx_desc->wb.upper.status_error = 0;
579
580		/* return some buffers to hardware, one at a time is too slow */
581		if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
582			ixgbevf_alloc_rx_buffers(adapter, rx_ring,
583						 cleaned_count);
584			cleaned_count = 0;
585		}
586
587		/* use prefetched values */
588		rx_desc = next_rxd;
589		rx_buffer_info = &rx_ring->rx_buffer_info[i];
590
591		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
592	}
593
594	rx_ring->next_to_clean = i;
595	cleaned_count = IXGBE_DESC_UNUSED(rx_ring);
596
597	if (cleaned_count)
598		ixgbevf_alloc_rx_buffers(adapter, rx_ring, cleaned_count);
599
600	u64_stats_update_begin(&rx_ring->syncp);
601	rx_ring->total_packets += total_rx_packets;
602	rx_ring->total_bytes += total_rx_bytes;
603	u64_stats_update_end(&rx_ring->syncp);
604
605	return cleaned;
606}
607
608/**
609 * ixgbevf_clean_rxonly - msix (aka one shot) rx clean routine
610 * @napi: napi struct with our devices info in it
611 * @budget: amount of work driver is allowed to do this pass, in packets
612 *
613 * This function is optimized for cleaning one queue only on a single
614 * q_vector!!!
615 **/
616static int ixgbevf_clean_rxonly(struct napi_struct *napi, int budget)
617{
618	struct ixgbevf_q_vector *q_vector =
619		container_of(napi, struct ixgbevf_q_vector, napi);
620	struct ixgbevf_adapter *adapter = q_vector->adapter;
621	struct ixgbevf_ring *rx_ring = NULL;
622	int work_done = 0;
623	long r_idx;
624
625	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
626	rx_ring = &(adapter->rx_ring[r_idx]);
627
628	ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
629
630	/* If all Rx work done, exit the polling mode */
631	if (work_done < budget) {
632		napi_complete(napi);
633		if (adapter->itr_setting & 1)
634			ixgbevf_set_itr_msix(q_vector);
635		if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
636			ixgbevf_irq_enable_queues(adapter, rx_ring->v_idx);
637	}
638
639	return work_done;
640}
641
642/**
643 * ixgbevf_clean_rxonly_many - msix (aka one shot) rx clean routine
644 * @napi: napi struct with our devices info in it
645 * @budget: amount of work driver is allowed to do this pass, in packets
646 *
647 * This function will clean more than one rx queue associated with a
648 * q_vector.
649 **/
650static int ixgbevf_clean_rxonly_many(struct napi_struct *napi, int budget)
651{
652	struct ixgbevf_q_vector *q_vector =
653		container_of(napi, struct ixgbevf_q_vector, napi);
654	struct ixgbevf_adapter *adapter = q_vector->adapter;
655	struct ixgbevf_ring *rx_ring = NULL;
656	int work_done = 0, i;
657	long r_idx;
658	u64 enable_mask = 0;
659
660	/* attempt to distribute budget to each queue fairly, but don't allow
661	 * the budget to go below 1 because we'll exit polling */
662	budget /= (q_vector->rxr_count ?: 1);
663	budget = max(budget, 1);
664	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
665	for (i = 0; i < q_vector->rxr_count; i++) {
666		rx_ring = &(adapter->rx_ring[r_idx]);
667		ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
668		enable_mask |= rx_ring->v_idx;
669		r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
670				      r_idx + 1);
671	}
672
673#ifndef HAVE_NETDEV_NAPI_LIST
674	if (!netif_running(adapter->netdev))
675		work_done = 0;
676
677#endif
678	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
679	rx_ring = &(adapter->rx_ring[r_idx]);
680
681	/* If all Rx work done, exit the polling mode */
682	if (work_done < budget) {
683		napi_complete(napi);
684		if (adapter->itr_setting & 1)
685			ixgbevf_set_itr_msix(q_vector);
686		if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
687			ixgbevf_irq_enable_queues(adapter, enable_mask);
688	}
689
690	return work_done;
691}
692
693
694/**
695 * ixgbevf_configure_msix - Configure MSI-X hardware
696 * @adapter: board private structure
697 *
698 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
699 * interrupts.
700 **/
701static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
702{
703	struct ixgbevf_q_vector *q_vector;
704	struct ixgbe_hw *hw = &adapter->hw;
705	int i, j, q_vectors, v_idx, r_idx;
706	u32 mask;
707
708	q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
709
710	/*
711	 * Populate the IVAR table and set the ITR values to the
712	 * corresponding register.
713	 */
714	for (v_idx = 0; v_idx < q_vectors; v_idx++) {
715		q_vector = adapter->q_vector[v_idx];
716		/* XXX for_each_set_bit(...) */
717		r_idx = find_first_bit(q_vector->rxr_idx,
718				       adapter->num_rx_queues);
719
720		for (i = 0; i < q_vector->rxr_count; i++) {
721			j = adapter->rx_ring[r_idx].reg_idx;
722			ixgbevf_set_ivar(adapter, 0, j, v_idx);
723			r_idx = find_next_bit(q_vector->rxr_idx,
724					      adapter->num_rx_queues,
725					      r_idx + 1);
726		}
727		r_idx = find_first_bit(q_vector->txr_idx,
728				       adapter->num_tx_queues);
729
730		for (i = 0; i < q_vector->txr_count; i++) {
731			j = adapter->tx_ring[r_idx].reg_idx;
732			ixgbevf_set_ivar(adapter, 1, j, v_idx);
733			r_idx = find_next_bit(q_vector->txr_idx,
734					      adapter->num_tx_queues,
735					      r_idx + 1);
736		}
737
738		/* if this is a tx only vector halve the interrupt rate */
739		if (q_vector->txr_count && !q_vector->rxr_count)
740			q_vector->eitr = (adapter->eitr_param >> 1);
741		else if (q_vector->rxr_count)
742			/* rx only */
743			q_vector->eitr = adapter->eitr_param;
744
745		ixgbevf_write_eitr(adapter, v_idx, q_vector->eitr);
746	}
747
748	ixgbevf_set_ivar(adapter, -1, 1, v_idx);
749
750	/* set up to autoclear timer, and the vectors */
751	mask = IXGBE_EIMS_ENABLE_MASK;
752	mask &= ~IXGBE_EIMS_OTHER;
753	IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, mask);
754}
755
756enum latency_range {
757	lowest_latency = 0,
758	low_latency = 1,
759	bulk_latency = 2,
760	latency_invalid = 255
761};
762
763/**
764 * ixgbevf_update_itr - update the dynamic ITR value based on statistics
765 * @adapter: pointer to adapter
766 * @eitr: eitr setting (ints per sec) to give last timeslice
767 * @itr_setting: current throttle rate in ints/second
768 * @packets: the number of packets during this measurement interval
769 * @bytes: the number of bytes during this measurement interval
770 *
771 *      Stores a new ITR value based on packets and byte
772 *      counts during the last interrupt.  The advantage of per interrupt
773 *      computation is faster updates and more accurate ITR for the current
774 *      traffic pattern.  Constants in this function were computed
775 *      based on theoretical maximum wire speed and thresholds were set based
776 *      on testing data as well as attempting to minimize response time
777 *      while increasing bulk throughput.
778 **/
779static u8 ixgbevf_update_itr(struct ixgbevf_adapter *adapter,
780			     u32 eitr, u8 itr_setting,
781			     int packets, int bytes)
782{
783	unsigned int retval = itr_setting;
784	u32 timepassed_us;
785	u64 bytes_perint;
786
787	if (packets == 0)
788		goto update_itr_done;
789
790
791	/* simple throttlerate management
792	 *    0-20MB/s lowest (100000 ints/s)
793	 *   20-100MB/s low   (20000 ints/s)
794	 *  100-1249MB/s bulk (8000 ints/s)
795	 */
796	/* what was last interrupt timeslice? */
797	timepassed_us = 1000000/eitr;
798	bytes_perint = bytes / timepassed_us; /* bytes/usec */
799
800	switch (itr_setting) {
801	case lowest_latency:
802		if (bytes_perint > adapter->eitr_low)
803			retval = low_latency;
804		break;
805	case low_latency:
806		if (bytes_perint > adapter->eitr_high)
807			retval = bulk_latency;
808		else if (bytes_perint <= adapter->eitr_low)
809			retval = lowest_latency;
810		break;
811	case bulk_latency:
812		if (bytes_perint <= adapter->eitr_high)
813			retval = low_latency;
814		break;
815	}
816
817update_itr_done:
818	return retval;
819}
820
821/**
822 * ixgbevf_write_eitr - write VTEITR register in hardware specific way
823 * @adapter: pointer to adapter struct
824 * @v_idx: vector index into q_vector array
825 * @itr_reg: new value to be written in *register* format, not ints/s
826 *
827 * This function is made to be called by ethtool and by the driver
828 * when it needs to update VTEITR registers at runtime.  Hardware
829 * specific quirks/differences are taken care of here.
830 */
831static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
832			       u32 itr_reg)
833{
834	struct ixgbe_hw *hw = &adapter->hw;
835
836	itr_reg = EITR_INTS_PER_SEC_TO_REG(itr_reg);
837
838	/*
839	 * set the WDIS bit to not clear the timer bits and cause an
840	 * immediate assertion of the interrupt
841	 */
842	itr_reg |= IXGBE_EITR_CNT_WDIS;
843
844	IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
845}
846
847static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector)
848{
849	struct ixgbevf_adapter *adapter = q_vector->adapter;
850	u32 new_itr;
851	u8 current_itr, ret_itr;
852	int i, r_idx, v_idx = q_vector->v_idx;
853	struct ixgbevf_ring *rx_ring, *tx_ring;
854
855	r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
856	for (i = 0; i < q_vector->txr_count; i++) {
857		tx_ring = &(adapter->tx_ring[r_idx]);
858		ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
859					     q_vector->tx_itr,
860					     tx_ring->total_packets,
861					     tx_ring->total_bytes);
862		/* if the result for this queue would decrease interrupt
863		 * rate for this vector then use that result */
864		q_vector->tx_itr = ((q_vector->tx_itr > ret_itr) ?
865				    q_vector->tx_itr - 1 : ret_itr);
866		r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
867				      r_idx + 1);
868	}
869
870	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
871	for (i = 0; i < q_vector->rxr_count; i++) {
872		rx_ring = &(adapter->rx_ring[r_idx]);
873		ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
874					     q_vector->rx_itr,
875					     rx_ring->total_packets,
876					     rx_ring->total_bytes);
877		/* if the result for this queue would decrease interrupt
878		 * rate for this vector then use that result */
879		q_vector->rx_itr = ((q_vector->rx_itr > ret_itr) ?
880				    q_vector->rx_itr - 1 : ret_itr);
881		r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
882				      r_idx + 1);
883	}
884
885	current_itr = max(q_vector->rx_itr, q_vector->tx_itr);
886
887	switch (current_itr) {
888	/* counts and packets in update_itr are dependent on these numbers */
889	case lowest_latency:
890		new_itr = 100000;
891		break;
892	case low_latency:
893		new_itr = 20000; /* aka hwitr = ~200 */
894		break;
895	case bulk_latency:
896	default:
897		new_itr = 8000;
898		break;
899	}
900
901	if (new_itr != q_vector->eitr) {
902		u32 itr_reg;
903
904		/* save the algorithm value here, not the smoothed one */
905		q_vector->eitr = new_itr;
906		/* do an exponential smoothing */
907		new_itr = ((q_vector->eitr * 90)/100) + ((new_itr * 10)/100);
908		itr_reg = EITR_INTS_PER_SEC_TO_REG(new_itr);
909		ixgbevf_write_eitr(adapter, v_idx, itr_reg);
910	}
911}
912
913static irqreturn_t ixgbevf_msix_mbx(int irq, void *data)
914{
915	struct net_device *netdev = data;
916	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
917	struct ixgbe_hw *hw = &adapter->hw;
918	u32 eicr;
919	u32 msg;
920	bool got_ack = false;
921
922	eicr = IXGBE_READ_REG(hw, IXGBE_VTEICS);
923	IXGBE_WRITE_REG(hw, IXGBE_VTEICR, eicr);
924
925	if (!hw->mbx.ops.check_for_ack(hw))
926		got_ack = true;
927
928	if (!hw->mbx.ops.check_for_msg(hw)) {
929		hw->mbx.ops.read(hw, &msg, 1);
930
931		if ((msg & IXGBE_MBVFICR_VFREQ_MASK) == IXGBE_PF_CONTROL_MSG)
932			mod_timer(&adapter->watchdog_timer,
933				  round_jiffies(jiffies + 1));
934
935		if (msg & IXGBE_VT_MSGTYPE_NACK)
936			pr_warn("Last Request of type %2.2x to PF Nacked\n",
937				msg & 0xFF);
938		/*
939		 * Restore the PFSTS bit in case someone is polling for a
940		 * return message from the PF
941		 */
942		hw->mbx.v2p_mailbox |= IXGBE_VFMAILBOX_PFSTS;
943	}
944
945	/*
946	 * checking for the ack clears the PFACK bit.  Place
947	 * it back in the v2p_mailbox cache so that anyone
948	 * polling for an ack will not miss it
949	 */
950	if (got_ack)
951		hw->mbx.v2p_mailbox |= IXGBE_VFMAILBOX_PFACK;
952
953	return IRQ_HANDLED;
954}
955
956static irqreturn_t ixgbevf_msix_clean_tx(int irq, void *data)
957{
958	struct ixgbevf_q_vector *q_vector = data;
959	struct ixgbevf_adapter  *adapter = q_vector->adapter;
960	struct ixgbevf_ring     *tx_ring;
961	int i, r_idx;
962
963	if (!q_vector->txr_count)
964		return IRQ_HANDLED;
965
966	r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
967	for (i = 0; i < q_vector->txr_count; i++) {
968		tx_ring = &(adapter->tx_ring[r_idx]);
969		tx_ring->total_bytes = 0;
970		tx_ring->total_packets = 0;
971		ixgbevf_clean_tx_irq(adapter, tx_ring);
972		r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
973				      r_idx + 1);
974	}
975
976	if (adapter->itr_setting & 1)
977		ixgbevf_set_itr_msix(q_vector);
978
979	return IRQ_HANDLED;
980}
981
982/**
983 * ixgbevf_msix_clean_rx - single unshared vector rx clean (all queues)
984 * @irq: unused
985 * @data: pointer to our q_vector struct for this interrupt vector
986 **/
987static irqreturn_t ixgbevf_msix_clean_rx(int irq, void *data)
988{
989	struct ixgbevf_q_vector *q_vector = data;
990	struct ixgbevf_adapter  *adapter = q_vector->adapter;
991	struct ixgbe_hw *hw = &adapter->hw;
992	struct ixgbevf_ring  *rx_ring;
993	int r_idx;
994	int i;
995
996	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
997	for (i = 0; i < q_vector->rxr_count; i++) {
998		rx_ring = &(adapter->rx_ring[r_idx]);
999		rx_ring->total_bytes = 0;
1000		rx_ring->total_packets = 0;
1001		r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
1002				      r_idx + 1);
1003	}
1004
1005	if (!q_vector->rxr_count)
1006		return IRQ_HANDLED;
1007
1008	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
1009	rx_ring = &(adapter->rx_ring[r_idx]);
1010	/* disable interrupts on this vector only */
1011	IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, rx_ring->v_idx);
1012	napi_schedule(&q_vector->napi);
1013
1014
1015	return IRQ_HANDLED;
1016}
1017
1018static irqreturn_t ixgbevf_msix_clean_many(int irq, void *data)
1019{
1020	ixgbevf_msix_clean_rx(irq, data);
1021	ixgbevf_msix_clean_tx(irq, data);
1022
1023	return IRQ_HANDLED;
1024}
1025
1026static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
1027				     int r_idx)
1028{
1029	struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1030
1031	set_bit(r_idx, q_vector->rxr_idx);
1032	q_vector->rxr_count++;
1033	a->rx_ring[r_idx].v_idx = 1 << v_idx;
1034}
1035
1036static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
1037				     int t_idx)
1038{
1039	struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1040
1041	set_bit(t_idx, q_vector->txr_idx);
1042	q_vector->txr_count++;
1043	a->tx_ring[t_idx].v_idx = 1 << v_idx;
1044}
1045
1046/**
1047 * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
1048 * @adapter: board private structure to initialize
1049 *
1050 * This function maps descriptor rings to the queue-specific vectors
1051 * we were allotted through the MSI-X enabling code.  Ideally, we'd have
1052 * one vector per ring/queue, but on a constrained vector budget, we
1053 * group the rings as "efficiently" as possible.  You would add new
1054 * mapping configurations in here.
1055 **/
1056static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
1057{
1058	int q_vectors;
1059	int v_start = 0;
1060	int rxr_idx = 0, txr_idx = 0;
1061	int rxr_remaining = adapter->num_rx_queues;
1062	int txr_remaining = adapter->num_tx_queues;
1063	int i, j;
1064	int rqpv, tqpv;
1065	int err = 0;
1066
1067	q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1068
1069	/*
1070	 * The ideal configuration...
1071	 * We have enough vectors to map one per queue.
1072	 */
1073	if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
1074		for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
1075			map_vector_to_rxq(adapter, v_start, rxr_idx);
1076
1077		for (; txr_idx < txr_remaining; v_start++, txr_idx++)
1078			map_vector_to_txq(adapter, v_start, txr_idx);
1079		goto out;
1080	}
1081
1082	/*
1083	 * If we don't have enough vectors for a 1-to-1
1084	 * mapping, we'll have to group them so there are
1085	 * multiple queues per vector.
1086	 */
1087	/* Re-adjusting *qpv takes care of the remainder. */
1088	for (i = v_start; i < q_vectors; i++) {
1089		rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
1090		for (j = 0; j < rqpv; j++) {
1091			map_vector_to_rxq(adapter, i, rxr_idx);
1092			rxr_idx++;
1093			rxr_remaining--;
1094		}
1095	}
1096	for (i = v_start; i < q_vectors; i++) {
1097		tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
1098		for (j = 0; j < tqpv; j++) {
1099			map_vector_to_txq(adapter, i, txr_idx);
1100			txr_idx++;
1101			txr_remaining--;
1102		}
1103	}
1104
1105out:
1106	return err;
1107}
1108
1109/**
1110 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1111 * @adapter: board private structure
1112 *
1113 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1114 * interrupts from the kernel.
1115 **/
1116static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1117{
1118	struct net_device *netdev = adapter->netdev;
1119	irqreturn_t (*handler)(int, void *);
1120	int i, vector, q_vectors, err;
1121	int ri = 0, ti = 0;
1122
1123	/* Decrement for Other and TCP Timer vectors */
1124	q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1125
1126#define SET_HANDLER(_v) (((_v)->rxr_count && (_v)->txr_count)          \
1127					  ? &ixgbevf_msix_clean_many : \
1128			  (_v)->rxr_count ? &ixgbevf_msix_clean_rx   : \
1129			  (_v)->txr_count ? &ixgbevf_msix_clean_tx   : \
1130			  NULL)
1131	for (vector = 0; vector < q_vectors; vector++) {
1132		handler = SET_HANDLER(adapter->q_vector[vector]);
1133
1134		if (handler == &ixgbevf_msix_clean_rx) {
1135			sprintf(adapter->name[vector], "%s-%s-%d",
1136				netdev->name, "rx", ri++);
1137		} else if (handler == &ixgbevf_msix_clean_tx) {
1138			sprintf(adapter->name[vector], "%s-%s-%d",
1139				netdev->name, "tx", ti++);
1140		} else if (handler == &ixgbevf_msix_clean_many) {
1141			sprintf(adapter->name[vector], "%s-%s-%d",
1142				netdev->name, "TxRx", vector);
1143		} else {
1144			/* skip this unused q_vector */
1145			continue;
1146		}
1147		err = request_irq(adapter->msix_entries[vector].vector,
1148				  handler, 0, adapter->name[vector],
1149				  adapter->q_vector[vector]);
1150		if (err) {
1151			hw_dbg(&adapter->hw,
1152			       "request_irq failed for MSIX interrupt "
1153			       "Error: %d\n", err);
1154			goto free_queue_irqs;
1155		}
1156	}
1157
1158	sprintf(adapter->name[vector], "%s:mbx", netdev->name);
1159	err = request_irq(adapter->msix_entries[vector].vector,
1160			  &ixgbevf_msix_mbx, 0, adapter->name[vector], netdev);
1161	if (err) {
1162		hw_dbg(&adapter->hw,
1163		       "request_irq for msix_mbx failed: %d\n", err);
1164		goto free_queue_irqs;
1165	}
1166
1167	return 0;
1168
1169free_queue_irqs:
1170	for (i = vector - 1; i >= 0; i--)
1171		free_irq(adapter->msix_entries[--vector].vector,
1172			 &(adapter->q_vector[i]));
1173	pci_disable_msix(adapter->pdev);
1174	kfree(adapter->msix_entries);
1175	adapter->msix_entries = NULL;
1176	return err;
1177}
1178
1179static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
1180{
1181	int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1182
1183	for (i = 0; i < q_vectors; i++) {
1184		struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
1185		bitmap_zero(q_vector->rxr_idx, MAX_RX_QUEUES);
1186		bitmap_zero(q_vector->txr_idx, MAX_TX_QUEUES);
1187		q_vector->rxr_count = 0;
1188		q_vector->txr_count = 0;
1189		q_vector->eitr = adapter->eitr_param;
1190	}
1191}
1192
1193/**
1194 * ixgbevf_request_irq - initialize interrupts
1195 * @adapter: board private structure
1196 *
1197 * Attempts to configure interrupts using the best available
1198 * capabilities of the hardware and kernel.
1199 **/
1200static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1201{
1202	int err = 0;
1203
1204	err = ixgbevf_request_msix_irqs(adapter);
1205
1206	if (err)
1207		hw_dbg(&adapter->hw,
1208		       "request_irq failed, Error %d\n", err);
1209
1210	return err;
1211}
1212
1213static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1214{
1215	struct net_device *netdev = adapter->netdev;
1216	int i, q_vectors;
1217
1218	q_vectors = adapter->num_msix_vectors;
1219
1220	i = q_vectors - 1;
1221
1222	free_irq(adapter->msix_entries[i].vector, netdev);
1223	i--;
1224
1225	for (; i >= 0; i--) {
1226		free_irq(adapter->msix_entries[i].vector,
1227			 adapter->q_vector[i]);
1228	}
1229
1230	ixgbevf_reset_q_vectors(adapter);
1231}
1232
1233/**
1234 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1235 * @adapter: board private structure
1236 **/
1237static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1238{
1239	int i;
1240	struct ixgbe_hw *hw = &adapter->hw;
1241
1242	IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1243
1244	IXGBE_WRITE_FLUSH(hw);
1245
1246	for (i = 0; i < adapter->num_msix_vectors; i++)
1247		synchronize_irq(adapter->msix_entries[i].vector);
1248}
1249
1250/**
1251 * ixgbevf_irq_enable - Enable default interrupt generation settings
1252 * @adapter: board private structure
1253 **/
1254static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter,
1255				      bool queues, bool flush)
1256{
1257	struct ixgbe_hw *hw = &adapter->hw;
1258	u32 mask;
1259	u64 qmask;
1260
1261	mask = (IXGBE_EIMS_ENABLE_MASK & ~IXGBE_EIMS_RTX_QUEUE);
1262	qmask = ~0;
1263
1264	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
1265
1266	if (queues)
1267		ixgbevf_irq_enable_queues(adapter, qmask);
1268
1269	if (flush)
1270		IXGBE_WRITE_FLUSH(hw);
1271}
1272
1273/**
1274 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1275 * @adapter: board private structure
1276 *
1277 * Configure the Tx unit of the MAC after a reset.
1278 **/
1279static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1280{
1281	u64 tdba;
1282	struct ixgbe_hw *hw = &adapter->hw;
1283	u32 i, j, tdlen, txctrl;
1284
1285	/* Setup the HW Tx Head and Tail descriptor pointers */
1286	for (i = 0; i < adapter->num_tx_queues; i++) {
1287		struct ixgbevf_ring *ring = &adapter->tx_ring[i];
1288		j = ring->reg_idx;
1289		tdba = ring->dma;
1290		tdlen = ring->count * sizeof(union ixgbe_adv_tx_desc);
1291		IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(j),
1292				(tdba & DMA_BIT_MASK(32)));
1293		IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(j), (tdba >> 32));
1294		IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(j), tdlen);
1295		IXGBE_WRITE_REG(hw, IXGBE_VFTDH(j), 0);
1296		IXGBE_WRITE_REG(hw, IXGBE_VFTDT(j), 0);
1297		adapter->tx_ring[i].head = IXGBE_VFTDH(j);
1298		adapter->tx_ring[i].tail = IXGBE_VFTDT(j);
1299		/* Disable Tx Head Writeback RO bit, since this hoses
1300		 * bookkeeping if things aren't delivered in order.
1301		 */
1302		txctrl = IXGBE_READ_REG(hw, IXGBE_VFDCA_TXCTRL(j));
1303		txctrl &= ~IXGBE_DCA_TXCTRL_TX_WB_RO_EN;
1304		IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(j), txctrl);
1305	}
1306}
1307
1308#define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT	2
1309
1310static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
1311{
1312	struct ixgbevf_ring *rx_ring;
1313	struct ixgbe_hw *hw = &adapter->hw;
1314	u32 srrctl;
1315
1316	rx_ring = &adapter->rx_ring[index];
1317
1318	srrctl = IXGBE_SRRCTL_DROP_EN;
1319
1320	if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1321		u16 bufsz = IXGBEVF_RXBUFFER_2048;
1322		/* grow the amount we can receive on large page machines */
1323		if (bufsz < (PAGE_SIZE / 2))
1324			bufsz = (PAGE_SIZE / 2);
1325		/* cap the bufsz at our largest descriptor size */
1326		bufsz = min((u16)IXGBEVF_MAX_RXBUFFER, bufsz);
1327
1328		srrctl |= bufsz >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1329		srrctl |= IXGBE_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1330		srrctl |= ((IXGBEVF_RX_HDR_SIZE <<
1331			   IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
1332			   IXGBE_SRRCTL_BSIZEHDR_MASK);
1333	} else {
1334		srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1335
1336		if (rx_ring->rx_buf_len == MAXIMUM_ETHERNET_VLAN_SIZE)
1337			srrctl |= IXGBEVF_RXBUFFER_2048 >>
1338				IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1339		else
1340			srrctl |= rx_ring->rx_buf_len >>
1341				IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1342	}
1343	IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1344}
1345
1346/**
1347 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1348 * @adapter: board private structure
1349 *
1350 * Configure the Rx unit of the MAC after a reset.
1351 **/
1352static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1353{
1354	u64 rdba;
1355	struct ixgbe_hw *hw = &adapter->hw;
1356	struct net_device *netdev = adapter->netdev;
1357	int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1358	int i, j;
1359	u32 rdlen;
1360	int rx_buf_len;
1361
1362	/* Decide whether to use packet split mode or not */
1363	if (netdev->mtu > ETH_DATA_LEN) {
1364		if (adapter->flags & IXGBE_FLAG_RX_PS_CAPABLE)
1365			adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1366		else
1367			adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1368	} else {
1369		if (adapter->flags & IXGBE_FLAG_RX_1BUF_CAPABLE)
1370			adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1371		else
1372			adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1373	}
1374
1375	/* Set the RX buffer length according to the mode */
1376	if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1377		/* PSRTYPE must be initialized in 82599 */
1378		u32 psrtype = IXGBE_PSRTYPE_TCPHDR |
1379			IXGBE_PSRTYPE_UDPHDR |
1380			IXGBE_PSRTYPE_IPV4HDR |
1381			IXGBE_PSRTYPE_IPV6HDR |
1382			IXGBE_PSRTYPE_L2HDR;
1383		IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1384		rx_buf_len = IXGBEVF_RX_HDR_SIZE;
1385	} else {
1386		IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, 0);
1387		if (netdev->mtu <= ETH_DATA_LEN)
1388			rx_buf_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1389		else
1390			rx_buf_len = ALIGN(max_frame, 1024);
1391	}
1392
1393	rdlen = adapter->rx_ring[0].count * sizeof(union ixgbe_adv_rx_desc);
1394	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1395	 * the Base and Length of the Rx Descriptor Ring */
1396	for (i = 0; i < adapter->num_rx_queues; i++) {
1397		rdba = adapter->rx_ring[i].dma;
1398		j = adapter->rx_ring[i].reg_idx;
1399		IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(j),
1400				(rdba & DMA_BIT_MASK(32)));
1401		IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(j), (rdba >> 32));
1402		IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(j), rdlen);
1403		IXGBE_WRITE_REG(hw, IXGBE_VFRDH(j), 0);
1404		IXGBE_WRITE_REG(hw, IXGBE_VFRDT(j), 0);
1405		adapter->rx_ring[i].head = IXGBE_VFRDH(j);
1406		adapter->rx_ring[i].tail = IXGBE_VFRDT(j);
1407		adapter->rx_ring[i].rx_buf_len = rx_buf_len;
1408
1409		ixgbevf_configure_srrctl(adapter, j);
1410	}
1411}
1412
1413static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1414{
1415	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1416	struct ixgbe_hw *hw = &adapter->hw;
1417
1418	/* add VID to filter table */
1419	if (hw->mac.ops.set_vfta)
1420		hw->mac.ops.set_vfta(hw, vid, 0, true);
1421	set_bit(vid, adapter->active_vlans);
1422
1423	return 0;
1424}
1425
1426static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1427{
1428	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1429	struct ixgbe_hw *hw = &adapter->hw;
1430
1431	/* remove VID from filter table */
1432	if (hw->mac.ops.set_vfta)
1433		hw->mac.ops.set_vfta(hw, vid, 0, false);
1434	clear_bit(vid, adapter->active_vlans);
1435
1436	return 0;
1437}
1438
1439static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1440{
1441	u16 vid;
1442
1443	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1444		ixgbevf_vlan_rx_add_vid(adapter->netdev, vid);
1445}
1446
1447static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
1448{
1449	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1450	struct ixgbe_hw *hw = &adapter->hw;
1451	int count = 0;
1452
1453	if ((netdev_uc_count(netdev)) > 10) {
1454		pr_err("Too many unicast filters - No Space\n");
1455		return -ENOSPC;
1456	}
1457
1458	if (!netdev_uc_empty(netdev)) {
1459		struct netdev_hw_addr *ha;
1460		netdev_for_each_uc_addr(ha, netdev) {
1461			hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
1462			udelay(200);
1463		}
1464	} else {
1465		/*
1466		 * If the list is empty then send message to PF driver to
1467		 * clear all macvlans on this VF.
1468		 */
1469		hw->mac.ops.set_uc_addr(hw, 0, NULL);
1470	}
1471
1472	return count;
1473}
1474
1475/**
1476 * ixgbevf_set_rx_mode - Multicast set
1477 * @netdev: network interface device structure
1478 *
1479 * The set_rx_method entry point is called whenever the multicast address
1480 * list or the network interface flags are updated.  This routine is
1481 * responsible for configuring the hardware for proper multicast mode.
1482 **/
1483static void ixgbevf_set_rx_mode(struct net_device *netdev)
1484{
1485	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1486	struct ixgbe_hw *hw = &adapter->hw;
1487
1488	/* reprogram multicast list */
1489	if (hw->mac.ops.update_mc_addr_list)
1490		hw->mac.ops.update_mc_addr_list(hw, netdev);
1491
1492	ixgbevf_write_uc_addr_list(netdev);
1493}
1494
1495static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1496{
1497	int q_idx;
1498	struct ixgbevf_q_vector *q_vector;
1499	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1500
1501	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1502		struct napi_struct *napi;
1503		q_vector = adapter->q_vector[q_idx];
1504		if (!q_vector->rxr_count)
1505			continue;
1506		napi = &q_vector->napi;
1507		if (q_vector->rxr_count > 1)
1508			napi->poll = &ixgbevf_clean_rxonly_many;
1509
1510		napi_enable(napi);
1511	}
1512}
1513
1514static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1515{
1516	int q_idx;
1517	struct ixgbevf_q_vector *q_vector;
1518	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1519
1520	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1521		q_vector = adapter->q_vector[q_idx];
1522		if (!q_vector->rxr_count)
1523			continue;
1524		napi_disable(&q_vector->napi);
1525	}
1526}
1527
1528static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
1529{
1530	struct net_device *netdev = adapter->netdev;
1531	int i;
1532
1533	ixgbevf_set_rx_mode(netdev);
1534
1535	ixgbevf_restore_vlan(adapter);
1536
1537	ixgbevf_configure_tx(adapter);
1538	ixgbevf_configure_rx(adapter);
1539	for (i = 0; i < adapter->num_rx_queues; i++) {
1540		struct ixgbevf_ring *ring = &adapter->rx_ring[i];
1541		ixgbevf_alloc_rx_buffers(adapter, ring, ring->count);
1542		ring->next_to_use = ring->count - 1;
1543		writel(ring->next_to_use, adapter->hw.hw_addr + ring->tail);
1544	}
1545}
1546
1547#define IXGBE_MAX_RX_DESC_POLL 10
1548static inline void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1549						int rxr)
1550{
1551	struct ixgbe_hw *hw = &adapter->hw;
1552	int j = adapter->rx_ring[rxr].reg_idx;
1553	int k;
1554
1555	for (k = 0; k < IXGBE_MAX_RX_DESC_POLL; k++) {
1556		if (IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j)) & IXGBE_RXDCTL_ENABLE)
1557			break;
1558		else
1559			msleep(1);
1560	}
1561	if (k >= IXGBE_MAX_RX_DESC_POLL) {
1562		hw_dbg(hw, "RXDCTL.ENABLE on Rx queue %d "
1563		       "not set within the polling period\n", rxr);
1564	}
1565
1566	ixgbevf_release_rx_desc(&adapter->hw, &adapter->rx_ring[rxr],
1567				(adapter->rx_ring[rxr].count - 1));
1568}
1569
1570static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
1571{
1572	/* Only save pre-reset stats if there are some */
1573	if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
1574		adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
1575			adapter->stats.base_vfgprc;
1576		adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
1577			adapter->stats.base_vfgptc;
1578		adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
1579			adapter->stats.base_vfgorc;
1580		adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
1581			adapter->stats.base_vfgotc;
1582		adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
1583			adapter->stats.base_vfmprc;
1584	}
1585}
1586
1587static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
1588{
1589	struct ixgbe_hw *hw = &adapter->hw;
1590
1591	adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
1592	adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
1593	adapter->stats.last_vfgorc |=
1594		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
1595	adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
1596	adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
1597	adapter->stats.last_vfgotc |=
1598		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
1599	adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
1600
1601	adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
1602	adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
1603	adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
1604	adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
1605	adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
1606}
1607
1608static int ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
1609{
1610	struct net_device *netdev = adapter->netdev;
1611	struct ixgbe_hw *hw = &adapter->hw;
1612	int i, j = 0;
1613	int num_rx_rings = adapter->num_rx_queues;
1614	u32 txdctl, rxdctl;
1615
1616	for (i = 0; i < adapter->num_tx_queues; i++) {
1617		j = adapter->tx_ring[i].reg_idx;
1618		txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1619		/* enable WTHRESH=8 descriptors, to encourage burst writeback */
1620		txdctl |= (8 << 16);
1621		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1622	}
1623
1624	for (i = 0; i < adapter->num_tx_queues; i++) {
1625		j = adapter->tx_ring[i].reg_idx;
1626		txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1627		txdctl |= IXGBE_TXDCTL_ENABLE;
1628		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1629	}
1630
1631	for (i = 0; i < num_rx_rings; i++) {
1632		j = adapter->rx_ring[i].reg_idx;
1633		rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
1634		rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1635		if (hw->mac.type == ixgbe_mac_X540_vf) {
1636			rxdctl &= ~IXGBE_RXDCTL_RLPMLMASK;
1637			rxdctl |= ((netdev->mtu + ETH_HLEN + ETH_FCS_LEN) |
1638				   IXGBE_RXDCTL_RLPML_EN);
1639		}
1640		IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), rxdctl);
1641		ixgbevf_rx_desc_queue_enable(adapter, i);
1642	}
1643
1644	ixgbevf_configure_msix(adapter);
1645
1646	if (hw->mac.ops.set_rar) {
1647		if (is_valid_ether_addr(hw->mac.addr))
1648			hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
1649		else
1650			hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
1651	}
1652
1653	clear_bit(__IXGBEVF_DOWN, &adapter->state);
1654	ixgbevf_napi_enable_all(adapter);
1655
1656	/* enable transmits */
1657	netif_tx_start_all_queues(netdev);
1658
1659	ixgbevf_save_reset_stats(adapter);
1660	ixgbevf_init_last_counter_stats(adapter);
1661
1662	/* bring the link up in the watchdog, this could race with our first
1663	 * link up interrupt but shouldn't be a problem */
1664	adapter->flags |= IXGBE_FLAG_NEED_LINK_UPDATE;
1665	adapter->link_check_timeout = jiffies;
1666	mod_timer(&adapter->watchdog_timer, jiffies);
1667	return 0;
1668}
1669
1670int ixgbevf_up(struct ixgbevf_adapter *adapter)
1671{
1672	int err;
1673	struct ixgbe_hw *hw = &adapter->hw;
1674
1675	ixgbevf_configure(adapter);
1676
1677	err = ixgbevf_up_complete(adapter);
1678
1679	/* clear any pending interrupts, may auto mask */
1680	IXGBE_READ_REG(hw, IXGBE_VTEICR);
1681
1682	ixgbevf_irq_enable(adapter, true, true);
1683
1684	return err;
1685}
1686
1687/**
1688 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
1689 * @adapter: board private structure
1690 * @rx_ring: ring to free buffers from
1691 **/
1692static void ixgbevf_clean_rx_ring(struct ixgbevf_adapter *adapter,
1693				  struct ixgbevf_ring *rx_ring)
1694{
1695	struct pci_dev *pdev = adapter->pdev;
1696	unsigned long size;
1697	unsigned int i;
1698
1699	if (!rx_ring->rx_buffer_info)
1700		return;
1701
1702	/* Free all the Rx ring sk_buffs */
1703	for (i = 0; i < rx_ring->count; i++) {
1704		struct ixgbevf_rx_buffer *rx_buffer_info;
1705
1706		rx_buffer_info = &rx_ring->rx_buffer_info[i];
1707		if (rx_buffer_info->dma) {
1708			dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
1709					 rx_ring->rx_buf_len,
1710					 DMA_FROM_DEVICE);
1711			rx_buffer_info->dma = 0;
1712		}
1713		if (rx_buffer_info->skb) {
1714			struct sk_buff *skb = rx_buffer_info->skb;
1715			rx_buffer_info->skb = NULL;
1716			do {
1717				struct sk_buff *this = skb;
1718				skb = skb->prev;
1719				dev_kfree_skb(this);
1720			} while (skb);
1721		}
1722		if (!rx_buffer_info->page)
1723			continue;
1724		dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
1725			       PAGE_SIZE / 2, DMA_FROM_DEVICE);
1726		rx_buffer_info->page_dma = 0;
1727		put_page(rx_buffer_info->page);
1728		rx_buffer_info->page = NULL;
1729		rx_buffer_info->page_offset = 0;
1730	}
1731
1732	size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
1733	memset(rx_ring->rx_buffer_info, 0, size);
1734
1735	/* Zero out the descriptor ring */
1736	memset(rx_ring->desc, 0, rx_ring->size);
1737
1738	rx_ring->next_to_clean = 0;
1739	rx_ring->next_to_use = 0;
1740
1741	if (rx_ring->head)
1742		writel(0, adapter->hw.hw_addr + rx_ring->head);
1743	if (rx_ring->tail)
1744		writel(0, adapter->hw.hw_addr + rx_ring->tail);
1745}
1746
1747/**
1748 * ixgbevf_clean_tx_ring - Free Tx Buffers
1749 * @adapter: board private structure
1750 * @tx_ring: ring to be cleaned
1751 **/
1752static void ixgbevf_clean_tx_ring(struct ixgbevf_adapter *adapter,
1753				  struct ixgbevf_ring *tx_ring)
1754{
1755	struct ixgbevf_tx_buffer *tx_buffer_info;
1756	unsigned long size;
1757	unsigned int i;
1758
1759	if (!tx_ring->tx_buffer_info)
1760		return;
1761
1762	/* Free all the Tx ring sk_buffs */
1763
1764	for (i = 0; i < tx_ring->count; i++) {
1765		tx_buffer_info = &tx_ring->tx_buffer_info[i];
1766		ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
1767	}
1768
1769	size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
1770	memset(tx_ring->tx_buffer_info, 0, size);
1771
1772	memset(tx_ring->desc, 0, tx_ring->size);
1773
1774	tx_ring->next_to_use = 0;
1775	tx_ring->next_to_clean = 0;
1776
1777	if (tx_ring->head)
1778		writel(0, adapter->hw.hw_addr + tx_ring->head);
1779	if (tx_ring->tail)
1780		writel(0, adapter->hw.hw_addr + tx_ring->tail);
1781}
1782
1783/**
1784 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
1785 * @adapter: board private structure
1786 **/
1787static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
1788{
1789	int i;
1790
1791	for (i = 0; i < adapter->num_rx_queues; i++)
1792		ixgbevf_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1793}
1794
1795/**
1796 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
1797 * @adapter: board private structure
1798 **/
1799static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
1800{
1801	int i;
1802
1803	for (i = 0; i < adapter->num_tx_queues; i++)
1804		ixgbevf_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1805}
1806
1807void ixgbevf_down(struct ixgbevf_adapter *adapter)
1808{
1809	struct net_device *netdev = adapter->netdev;
1810	struct ixgbe_hw *hw = &adapter->hw;
1811	u32 txdctl;
1812	int i, j;
1813
1814	/* signal that we are down to the interrupt handler */
1815	set_bit(__IXGBEVF_DOWN, &adapter->state);
1816	/* disable receives */
1817
1818	netif_tx_disable(netdev);
1819
1820	msleep(10);
1821
1822	netif_tx_stop_all_queues(netdev);
1823
1824	ixgbevf_irq_disable(adapter);
1825
1826	ixgbevf_napi_disable_all(adapter);
1827
1828	del_timer_sync(&adapter->watchdog_timer);
1829	/* can't call flush scheduled work here because it can deadlock
1830	 * if linkwatch_event tries to acquire the rtnl_lock which we are
1831	 * holding */
1832	while (adapter->flags & IXGBE_FLAG_IN_WATCHDOG_TASK)
1833		msleep(1);
1834
1835	/* disable transmits in the hardware now that interrupts are off */
1836	for (i = 0; i < adapter->num_tx_queues; i++) {
1837		j = adapter->tx_ring[i].reg_idx;
1838		txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1839		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j),
1840				(txdctl & ~IXGBE_TXDCTL_ENABLE));
1841	}
1842
1843	netif_carrier_off(netdev);
1844
1845	if (!pci_channel_offline(adapter->pdev))
1846		ixgbevf_reset(adapter);
1847
1848	ixgbevf_clean_all_tx_rings(adapter);
1849	ixgbevf_clean_all_rx_rings(adapter);
1850}
1851
1852void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
1853{
1854	struct ixgbe_hw *hw = &adapter->hw;
1855
1856	WARN_ON(in_interrupt());
1857
1858	while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
1859		msleep(1);
1860
1861	/*
1862	 * Check if PF is up before re-init.  If not then skip until
1863	 * later when the PF is up and ready to service requests from
1864	 * the VF via mailbox.  If the VF is up and running then the
1865	 * watchdog task will continue to schedule reset tasks until
1866	 * the PF is up and running.
1867	 */
1868	if (!hw->mac.ops.reset_hw(hw)) {
1869		ixgbevf_down(adapter);
1870		ixgbevf_up(adapter);
1871	}
1872
1873	clear_bit(__IXGBEVF_RESETTING, &adapter->state);
1874}
1875
1876void ixgbevf_reset(struct ixgbevf_adapter *adapter)
1877{
1878	struct ixgbe_hw *hw = &adapter->hw;
1879	struct net_device *netdev = adapter->netdev;
1880
1881	if (hw->mac.ops.reset_hw(hw))
1882		hw_dbg(hw, "PF still resetting\n");
1883	else
1884		hw->mac.ops.init_hw(hw);
1885
1886	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1887		memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1888		       netdev->addr_len);
1889		memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1890		       netdev->addr_len);
1891	}
1892}
1893
1894static void ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
1895					 int vectors)
1896{
1897	int err, vector_threshold;
1898
1899	/* We'll want at least 3 (vector_threshold):
1900	 * 1) TxQ[0] Cleanup
1901	 * 2) RxQ[0] Cleanup
1902	 * 3) Other (Link Status Change, etc.)
1903	 */
1904	vector_threshold = MIN_MSIX_COUNT;
1905
1906	/* The more we get, the more we will assign to Tx/Rx Cleanup
1907	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1908	 * Right now, we simply care about how many we'll get; we'll
1909	 * set them up later while requesting irq's.
1910	 */
1911	while (vectors >= vector_threshold) {
1912		err = pci_enable_msix(adapter->pdev, adapter->msix_entries,
1913				      vectors);
1914		if (!err) /* Success in acquiring all requested vectors. */
1915			break;
1916		else if (err < 0)
1917			vectors = 0; /* Nasty failure, quit now */
1918		else /* err == number of vectors we should try again with */
1919			vectors = err;
1920	}
1921
1922	if (vectors < vector_threshold) {
1923		/* Can't allocate enough MSI-X interrupts?  Oh well.
1924		 * This just means we'll go with either a single MSI
1925		 * vector or fall back to legacy interrupts.
1926		 */
1927		hw_dbg(&adapter->hw,
1928		       "Unable to allocate MSI-X interrupts\n");
1929		kfree(adapter->msix_entries);
1930		adapter->msix_entries = NULL;
1931	} else {
1932		/*
1933		 * Adjust for only the vectors we'll use, which is minimum
1934		 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
1935		 * vectors we were allocated.
1936		 */
1937		adapter->num_msix_vectors = vectors;
1938	}
1939}
1940
1941/*
1942 * ixgbevf_set_num_queues: Allocate queues for device, feature dependent
1943 * @adapter: board private structure to initialize
1944 *
1945 * This is the top level queue allocation routine.  The order here is very
1946 * important, starting with the "most" number of features turned on at once,
1947 * and ending with the smallest set of features.  This way large combinations
1948 * can be allocated if they're turned on, and smaller combinations are the
1949 * fallthrough conditions.
1950 *
1951 **/
1952static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
1953{
1954	/* Start with base case */
1955	adapter->num_rx_queues = 1;
1956	adapter->num_tx_queues = 1;
1957	adapter->num_rx_pools = adapter->num_rx_queues;
1958	adapter->num_rx_queues_per_pool = 1;
1959}
1960
1961/**
1962 * ixgbevf_alloc_queues - Allocate memory for all rings
1963 * @adapter: board private structure to initialize
1964 *
1965 * We allocate one ring per queue at run-time since we don't know the
1966 * number of queues at compile-time.  The polling_netdev array is
1967 * intended for Multiqueue, but should work fine with a single queue.
1968 **/
1969static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
1970{
1971	int i;
1972
1973	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1974				   sizeof(struct ixgbevf_ring), GFP_KERNEL);
1975	if (!adapter->tx_ring)
1976		goto err_tx_ring_allocation;
1977
1978	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1979				   sizeof(struct ixgbevf_ring), GFP_KERNEL);
1980	if (!adapter->rx_ring)
1981		goto err_rx_ring_allocation;
1982
1983	for (i = 0; i < adapter->num_tx_queues; i++) {
1984		adapter->tx_ring[i].count = adapter->tx_ring_count;
1985		adapter->tx_ring[i].queue_index = i;
1986		adapter->tx_ring[i].reg_idx = i;
1987	}
1988
1989	for (i = 0; i < adapter->num_rx_queues; i++) {
1990		adapter->rx_ring[i].count = adapter->rx_ring_count;
1991		adapter->rx_ring[i].queue_index = i;
1992		adapter->rx_ring[i].reg_idx = i;
1993	}
1994
1995	return 0;
1996
1997err_rx_ring_allocation:
1998	kfree(adapter->tx_ring);
1999err_tx_ring_allocation:
2000	return -ENOMEM;
2001}
2002
2003/**
2004 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2005 * @adapter: board private structure to initialize
2006 *
2007 * Attempt to configure the interrupts using the best available
2008 * capabilities of the hardware and the kernel.
2009 **/
2010static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2011{
2012	int err = 0;
2013	int vector, v_budget;
2014
2015	/*
2016	 * It's easy to be greedy for MSI-X vectors, but it really
2017	 * doesn't do us much good if we have a lot more vectors
2018	 * than CPU's.  So let's be conservative and only ask for
2019	 * (roughly) twice the number of vectors as there are CPU's.
2020	 */
2021	v_budget = min(adapter->num_rx_queues + adapter->num_tx_queues,
2022		       (int)(num_online_cpus() * 2)) + NON_Q_VECTORS;
2023
2024	/* A failure in MSI-X entry allocation isn't fatal, but it does
2025	 * mean we disable MSI-X capabilities of the adapter. */
2026	adapter->msix_entries = kcalloc(v_budget,
2027					sizeof(struct msix_entry), GFP_KERNEL);
2028	if (!adapter->msix_entries) {
2029		err = -ENOMEM;
2030		goto out;
2031	}
2032
2033	for (vector = 0; vector < v_budget; vector++)
2034		adapter->msix_entries[vector].entry = vector;
2035
2036	ixgbevf_acquire_msix_vectors(adapter, v_budget);
2037
2038out:
2039	return err;
2040}
2041
2042/**
2043 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2044 * @adapter: board private structure to initialize
2045 *
2046 * We allocate one q_vector per queue interrupt.  If allocation fails we
2047 * return -ENOMEM.
2048 **/
2049static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2050{
2051	int q_idx, num_q_vectors;
2052	struct ixgbevf_q_vector *q_vector;
2053	int napi_vectors;
2054	int (*poll)(struct napi_struct *, int);
2055
2056	num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2057	napi_vectors = adapter->num_rx_queues;
2058	poll = &ixgbevf_clean_rxonly;
2059
2060	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2061		q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
2062		if (!q_vector)
2063			goto err_out;
2064		q_vector->adapter = adapter;
2065		q_vector->v_idx = q_idx;
2066		q_vector->eitr = adapter->eitr_param;
2067		if (q_idx < napi_vectors)
2068			netif_napi_add(adapter->netdev, &q_vector->napi,
2069				       (*poll), 64);
2070		adapter->q_vector[q_idx] = q_vector;
2071	}
2072
2073	return 0;
2074
2075err_out:
2076	while (q_idx) {
2077		q_idx--;
2078		q_vector = adapter->q_vector[q_idx];
2079		netif_napi_del(&q_vector->napi);
2080		kfree(q_vector);
2081		adapter->q_vector[q_idx] = NULL;
2082	}
2083	return -ENOMEM;
2084}
2085
2086/**
2087 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2088 * @adapter: board private structure to initialize
2089 *
2090 * This function frees the memory allocated to the q_vectors.  In addition if
2091 * NAPI is enabled it will delete any references to the NAPI struct prior
2092 * to freeing the q_vector.
2093 **/
2094static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2095{
2096	int q_idx, num_q_vectors;
2097	int napi_vectors;
2098
2099	num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2100	napi_vectors = adapter->num_rx_queues;
2101
2102	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2103		struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
2104
2105		adapter->q_vector[q_idx] = NULL;
2106		if (q_idx < napi_vectors)
2107			netif_napi_del(&q_vector->napi);
2108		kfree(q_vector);
2109	}
2110}
2111
2112/**
2113 * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2114 * @adapter: board private structure
2115 *
2116 **/
2117static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2118{
2119	pci_disable_msix(adapter->pdev);
2120	kfree(adapter->msix_entries);
2121	adapter->msix_entries = NULL;
2122}
2123
2124/**
2125 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2126 * @adapter: board private structure to initialize
2127 *
2128 **/
2129static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2130{
2131	int err;
2132
2133	/* Number of supported queues */
2134	ixgbevf_set_num_queues(adapter);
2135
2136	err = ixgbevf_set_interrupt_capability(adapter);
2137	if (err) {
2138		hw_dbg(&adapter->hw,
2139		       "Unable to setup interrupt capabilities\n");
2140		goto err_set_interrupt;
2141	}
2142
2143	err = ixgbevf_alloc_q_vectors(adapter);
2144	if (err) {
2145		hw_dbg(&adapter->hw, "Unable to allocate memory for queue "
2146		       "vectors\n");
2147		goto err_alloc_q_vectors;
2148	}
2149
2150	err = ixgbevf_alloc_queues(adapter);
2151	if (err) {
2152		pr_err("Unable to allocate memory for queues\n");
2153		goto err_alloc_queues;
2154	}
2155
2156	hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, "
2157	       "Tx Queue count = %u\n",
2158	       (adapter->num_rx_queues > 1) ? "Enabled" :
2159	       "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
2160
2161	set_bit(__IXGBEVF_DOWN, &adapter->state);
2162
2163	return 0;
2164err_alloc_queues:
2165	ixgbevf_free_q_vectors(adapter);
2166err_alloc_q_vectors:
2167	ixgbevf_reset_interrupt_capability(adapter);
2168err_set_interrupt:
2169	return err;
2170}
2171
2172/**
2173 * ixgbevf_sw_init - Initialize general software structures
2174 * (struct ixgbevf_adapter)
2175 * @adapter: board private structure to initialize
2176 *
2177 * ixgbevf_sw_init initializes the Adapter private data structure.
2178 * Fields are initialized based on PCI device information and
2179 * OS network device settings (MTU size).
2180 **/
2181static int __devinit ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
2182{
2183	struct ixgbe_hw *hw = &adapter->hw;
2184	struct pci_dev *pdev = adapter->pdev;
2185	int err;
2186
2187	/* PCI config space info */
2188
2189	hw->vendor_id = pdev->vendor;
2190	hw->device_id = pdev->device;
2191	hw->revision_id = pdev->revision;
2192	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2193	hw->subsystem_device_id = pdev->subsystem_device;
2194
2195	hw->mbx.ops.init_params(hw);
2196	hw->mac.max_tx_queues = MAX_TX_QUEUES;
2197	hw->mac.max_rx_queues = MAX_RX_QUEUES;
2198	err = hw->mac.ops.reset_hw(hw);
2199	if (err) {
2200		dev_info(&pdev->dev,
2201		         "PF still in reset state, assigning new address\n");
2202		dev_hw_addr_random(adapter->netdev, hw->mac.addr);
2203	} else {
2204		err = hw->mac.ops.init_hw(hw);
2205		if (err) {
2206			pr_err("init_shared_code failed: %d\n", err);
2207			goto out;
2208		}
2209	}
2210
2211	/* Enable dynamic interrupt throttling rates */
2212	adapter->eitr_param = 20000;
2213	adapter->itr_setting = 1;
2214
2215	/* set defaults for eitr in MegaBytes */
2216	adapter->eitr_low = 10;
2217	adapter->eitr_high = 20;
2218
2219	/* set default ring sizes */
2220	adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
2221	adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
2222
2223	/* enable rx csum by default */
2224	adapter->flags |= IXGBE_FLAG_RX_CSUM_ENABLED;
2225
2226	set_bit(__IXGBEVF_DOWN, &adapter->state);
2227
2228out:
2229	return err;
2230}
2231
2232#define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter)	\
2233	{							\
2234		u32 current_counter = IXGBE_READ_REG(hw, reg);	\
2235		if (current_counter < last_counter)		\
2236			counter += 0x100000000LL;		\
2237		last_counter = current_counter;			\
2238		counter &= 0xFFFFFFFF00000000LL;		\
2239		counter |= current_counter;			\
2240	}
2241
2242#define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
2243	{								 \
2244		u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb);	 \
2245		u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb);	 \
2246		u64 current_counter = (current_counter_msb << 32) |      \
2247			current_counter_lsb;                             \
2248		if (current_counter < last_counter)			 \
2249			counter += 0x1000000000LL;			 \
2250		last_counter = current_counter;				 \
2251		counter &= 0xFFFFFFF000000000LL;			 \
2252		counter |= current_counter;				 \
2253	}
2254/**
2255 * ixgbevf_update_stats - Update the board statistics counters.
2256 * @adapter: board private structure
2257 **/
2258void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
2259{
2260	struct ixgbe_hw *hw = &adapter->hw;
2261
2262	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
2263				adapter->stats.vfgprc);
2264	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
2265				adapter->stats.vfgptc);
2266	UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
2267				adapter->stats.last_vfgorc,
2268				adapter->stats.vfgorc);
2269	UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
2270				adapter->stats.last_vfgotc,
2271				adapter->stats.vfgotc);
2272	UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
2273				adapter->stats.vfmprc);
2274}
2275
2276/**
2277 * ixgbevf_watchdog - Timer Call-back
2278 * @data: pointer to adapter cast into an unsigned long
2279 **/
2280static void ixgbevf_watchdog(unsigned long data)
2281{
2282	struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
2283	struct ixgbe_hw *hw = &adapter->hw;
2284	u64 eics = 0;
2285	int i;
2286
2287	/*
2288	 * Do the watchdog outside of interrupt context due to the lovely
2289	 * delays that some of the newer hardware requires
2290	 */
2291
2292	if (test_bit(__IXGBEVF_DOWN, &adapter->state))
2293		goto watchdog_short_circuit;
2294
2295	/* get one bit for every active tx/rx interrupt vector */
2296	for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
2297		struct ixgbevf_q_vector *qv = adapter->q_vector[i];
2298		if (qv->rxr_count || qv->txr_count)
2299			eics |= (1 << i);
2300	}
2301
2302	IXGBE_WRITE_REG(hw, IXGBE_VTEICS, (u32)eics);
2303
2304watchdog_short_circuit:
2305	schedule_work(&adapter->watchdog_task);
2306}
2307
2308/**
2309 * ixgbevf_tx_timeout - Respond to a Tx Hang
2310 * @netdev: network interface device structure
2311 **/
2312static void ixgbevf_tx_timeout(struct net_device *netdev)
2313{
2314	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2315
2316	/* Do the reset outside of interrupt context */
2317	schedule_work(&adapter->reset_task);
2318}
2319
2320static void ixgbevf_reset_task(struct work_struct *work)
2321{
2322	struct ixgbevf_adapter *adapter;
2323	adapter = container_of(work, struct ixgbevf_adapter, reset_task);
2324
2325	/* If we're already down or resetting, just bail */
2326	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2327	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
2328		return;
2329
2330	adapter->tx_timeout_count++;
2331
2332	ixgbevf_reinit_locked(adapter);
2333}
2334
2335/**
2336 * ixgbevf_watchdog_task - worker thread to bring link up
2337 * @work: pointer to work_struct containing our data
2338 **/
2339static void ixgbevf_watchdog_task(struct work_struct *work)
2340{
2341	struct ixgbevf_adapter *adapter = container_of(work,
2342						       struct ixgbevf_adapter,
2343						       watchdog_task);
2344	struct net_device *netdev = adapter->netdev;
2345	struct ixgbe_hw *hw = &adapter->hw;
2346	u32 link_speed = adapter->link_speed;
2347	bool link_up = adapter->link_up;
2348
2349	adapter->flags |= IXGBE_FLAG_IN_WATCHDOG_TASK;
2350
2351	/*
2352	 * Always check the link on the watchdog because we have
2353	 * no LSC interrupt
2354	 */
2355	if (hw->mac.ops.check_link) {
2356		if ((hw->mac.ops.check_link(hw, &link_speed,
2357					    &link_up, false)) != 0) {
2358			adapter->link_up = link_up;
2359			adapter->link_speed = link_speed;
2360			netif_carrier_off(netdev);
2361			netif_tx_stop_all_queues(netdev);
2362			schedule_work(&adapter->reset_task);
2363			goto pf_has_reset;
2364		}
2365	} else {
2366		/* always assume link is up, if no check link
2367		 * function */
2368		link_speed = IXGBE_LINK_SPEED_10GB_FULL;
2369		link_up = true;
2370	}
2371	adapter->link_up = link_up;
2372	adapter->link_speed = link_speed;
2373
2374	if (link_up) {
2375		if (!netif_carrier_ok(netdev)) {
2376			hw_dbg(&adapter->hw, "NIC Link is Up, %u Gbps\n",
2377			       (link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
2378			       10 : 1);
2379			netif_carrier_on(netdev);
2380			netif_tx_wake_all_queues(netdev);
2381		}
2382	} else {
2383		adapter->link_up = false;
2384		adapter->link_speed = 0;
2385		if (netif_carrier_ok(netdev)) {
2386			hw_dbg(&adapter->hw, "NIC Link is Down\n");
2387			netif_carrier_off(netdev);
2388			netif_tx_stop_all_queues(netdev);
2389		}
2390	}
2391
2392	ixgbevf_update_stats(adapter);
2393
2394pf_has_reset:
2395	/* Reset the timer */
2396	if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
2397		mod_timer(&adapter->watchdog_timer,
2398			  round_jiffies(jiffies + (2 * HZ)));
2399
2400	adapter->flags &= ~IXGBE_FLAG_IN_WATCHDOG_TASK;
2401}
2402
2403/**
2404 * ixgbevf_free_tx_resources - Free Tx Resources per Queue
2405 * @adapter: board private structure
2406 * @tx_ring: Tx descriptor ring for a specific queue
2407 *
2408 * Free all transmit software resources
2409 **/
2410void ixgbevf_free_tx_resources(struct ixgbevf_adapter *adapter,
2411			       struct ixgbevf_ring *tx_ring)
2412{
2413	struct pci_dev *pdev = adapter->pdev;
2414
2415	ixgbevf_clean_tx_ring(adapter, tx_ring);
2416
2417	vfree(tx_ring->tx_buffer_info);
2418	tx_ring->tx_buffer_info = NULL;
2419
2420	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2421			  tx_ring->dma);
2422
2423	tx_ring->desc = NULL;
2424}
2425
2426/**
2427 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
2428 * @adapter: board private structure
2429 *
2430 * Free all transmit software resources
2431 **/
2432static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
2433{
2434	int i;
2435
2436	for (i = 0; i < adapter->num_tx_queues; i++)
2437		if (adapter->tx_ring[i].desc)
2438			ixgbevf_free_tx_resources(adapter,
2439						  &adapter->tx_ring[i]);
2440
2441}
2442
2443/**
2444 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
2445 * @adapter: board private structure
2446 * @tx_ring:    tx descriptor ring (for a specific queue) to setup
2447 *
2448 * Return 0 on success, negative on failure
2449 **/
2450int ixgbevf_setup_tx_resources(struct ixgbevf_adapter *adapter,
2451			       struct ixgbevf_ring *tx_ring)
2452{
2453	struct pci_dev *pdev = adapter->pdev;
2454	int size;
2455
2456	size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2457	tx_ring->tx_buffer_info = vzalloc(size);
2458	if (!tx_ring->tx_buffer_info)
2459		goto err;
2460
2461	/* round up to nearest 4K */
2462	tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
2463	tx_ring->size = ALIGN(tx_ring->size, 4096);
2464
2465	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
2466					   &tx_ring->dma, GFP_KERNEL);
2467	if (!tx_ring->desc)
2468		goto err;
2469
2470	tx_ring->next_to_use = 0;
2471	tx_ring->next_to_clean = 0;
2472	tx_ring->work_limit = tx_ring->count;
2473	return 0;
2474
2475err:
2476	vfree(tx_ring->tx_buffer_info);
2477	tx_ring->tx_buffer_info = NULL;
2478	hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit "
2479	       "descriptor ring\n");
2480	return -ENOMEM;
2481}
2482
2483/**
2484 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
2485 * @adapter: board private structure
2486 *
2487 * If this function returns with an error, then it's possible one or
2488 * more of the rings is populated (while the rest are not).  It is the
2489 * callers duty to clean those orphaned rings.
2490 *
2491 * Return 0 on success, negative on failure
2492 **/
2493static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
2494{
2495	int i, err = 0;
2496
2497	for (i = 0; i < adapter->num_tx_queues; i++) {
2498		err = ixgbevf_setup_tx_resources(adapter, &adapter->tx_ring[i]);
2499		if (!err)
2500			continue;
2501		hw_dbg(&adapter->hw,
2502		       "Allocation for Tx Queue %u failed\n", i);
2503		break;
2504	}
2505
2506	return err;
2507}
2508
2509/**
2510 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
2511 * @adapter: board private structure
2512 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2513 *
2514 * Returns 0 on success, negative on failure
2515 **/
2516int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter,
2517			       struct ixgbevf_ring *rx_ring)
2518{
2519	struct pci_dev *pdev = adapter->pdev;
2520	int size;
2521
2522	size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
2523	rx_ring->rx_buffer_info = vzalloc(size);
2524	if (!rx_ring->rx_buffer_info) {
2525		hw_dbg(&adapter->hw,
2526		       "Unable to vmalloc buffer memory for "
2527		       "the receive descriptor ring\n");
2528		goto alloc_failed;
2529	}
2530
2531	/* Round up to nearest 4K */
2532	rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
2533	rx_ring->size = ALIGN(rx_ring->size, 4096);
2534
2535	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
2536					   &rx_ring->dma, GFP_KERNEL);
2537
2538	if (!rx_ring->desc) {
2539		hw_dbg(&adapter->hw,
2540		       "Unable to allocate memory for "
2541		       "the receive descriptor ring\n");
2542		vfree(rx_ring->rx_buffer_info);
2543		rx_ring->rx_buffer_info = NULL;
2544		goto alloc_failed;
2545	}
2546
2547	rx_ring->next_to_clean = 0;
2548	rx_ring->next_to_use = 0;
2549
2550	return 0;
2551alloc_failed:
2552	return -ENOMEM;
2553}
2554
2555/**
2556 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
2557 * @adapter: board private structure
2558 *
2559 * If this function returns with an error, then it's possible one or
2560 * more of the rings is populated (while the rest are not).  It is the
2561 * callers duty to clean those orphaned rings.
2562 *
2563 * Return 0 on success, negative on failure
2564 **/
2565static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
2566{
2567	int i, err = 0;
2568
2569	for (i = 0; i < adapter->num_rx_queues; i++) {
2570		err = ixgbevf_setup_rx_resources(adapter, &adapter->rx_ring[i]);
2571		if (!err)
2572			continue;
2573		hw_dbg(&adapter->hw,
2574		       "Allocation for Rx Queue %u failed\n", i);
2575		break;
2576	}
2577	return err;
2578}
2579
2580/**
2581 * ixgbevf_free_rx_resources - Free Rx Resources
2582 * @adapter: board private structure
2583 * @rx_ring: ring to clean the resources from
2584 *
2585 * Free all receive software resources
2586 **/
2587void ixgbevf_free_rx_resources(struct ixgbevf_adapter *adapter,
2588			       struct ixgbevf_ring *rx_ring)
2589{
2590	struct pci_dev *pdev = adapter->pdev;
2591
2592	ixgbevf_clean_rx_ring(adapter, rx_ring);
2593
2594	vfree(rx_ring->rx_buffer_info);
2595	rx_ring->rx_buffer_info = NULL;
2596
2597	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2598			  rx_ring->dma);
2599
2600	rx_ring->desc = NULL;
2601}
2602
2603/**
2604 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
2605 * @adapter: board private structure
2606 *
2607 * Free all receive software resources
2608 **/
2609static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
2610{
2611	int i;
2612
2613	for (i = 0; i < adapter->num_rx_queues; i++)
2614		if (adapter->rx_ring[i].desc)
2615			ixgbevf_free_rx_resources(adapter,
2616						  &adapter->rx_ring[i]);
2617}
2618
2619/**
2620 * ixgbevf_open - Called when a network interface is made active
2621 * @netdev: network interface device structure
2622 *
2623 * Returns 0 on success, negative value on failure
2624 *
2625 * The open entry point is called when a network interface is made
2626 * active by the system (IFF_UP).  At this point all resources needed
2627 * for transmit and receive operations are allocated, the interrupt
2628 * handler is registered with the OS, the watchdog timer is started,
2629 * and the stack is notified that the interface is ready.
2630 **/
2631static int ixgbevf_open(struct net_device *netdev)
2632{
2633	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2634	struct ixgbe_hw *hw = &adapter->hw;
2635	int err;
2636
2637	/* disallow open during test */
2638	if (test_bit(__IXGBEVF_TESTING, &adapter->state))
2639		return -EBUSY;
2640
2641	if (hw->adapter_stopped) {
2642		ixgbevf_reset(adapter);
2643		/* if adapter is still stopped then PF isn't up and
2644		 * the vf can't start. */
2645		if (hw->adapter_stopped) {
2646			err = IXGBE_ERR_MBX;
2647			pr_err("Unable to start - perhaps the PF Driver isn't "
2648			       "up yet\n");
2649			goto err_setup_reset;
2650		}
2651	}
2652
2653	/* allocate transmit descriptors */
2654	err = ixgbevf_setup_all_tx_resources(adapter);
2655	if (err)
2656		goto err_setup_tx;
2657
2658	/* allocate receive descriptors */
2659	err = ixgbevf_setup_all_rx_resources(adapter);
2660	if (err)
2661		goto err_setup_rx;
2662
2663	ixgbevf_configure(adapter);
2664
2665	/*
2666	 * Map the Tx/Rx rings to the vectors we were allotted.
2667	 * if request_irq will be called in this function map_rings
2668	 * must be called *before* up_complete
2669	 */
2670	ixgbevf_map_rings_to_vectors(adapter);
2671
2672	err = ixgbevf_up_complete(adapter);
2673	if (err)
2674		goto err_up;
2675
2676	/* clear any pending interrupts, may auto mask */
2677	IXGBE_READ_REG(hw, IXGBE_VTEICR);
2678	err = ixgbevf_request_irq(adapter);
2679	if (err)
2680		goto err_req_irq;
2681
2682	ixgbevf_irq_enable(adapter, true, true);
2683
2684	return 0;
2685
2686err_req_irq:
2687	ixgbevf_down(adapter);
2688err_up:
2689	ixgbevf_free_irq(adapter);
2690err_setup_rx:
2691	ixgbevf_free_all_rx_resources(adapter);
2692err_setup_tx:
2693	ixgbevf_free_all_tx_resources(adapter);
2694	ixgbevf_reset(adapter);
2695
2696err_setup_reset:
2697
2698	return err;
2699}
2700
2701/**
2702 * ixgbevf_close - Disables a network interface
2703 * @netdev: network interface device structure
2704 *
2705 * Returns 0, this is not allowed to fail
2706 *
2707 * The close entry point is called when an interface is de-activated
2708 * by the OS.  The hardware is still under the drivers control, but
2709 * needs to be disabled.  A global MAC reset is issued to stop the
2710 * hardware, and all transmit and receive resources are freed.
2711 **/
2712static int ixgbevf_close(struct net_device *netdev)
2713{
2714	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2715
2716	ixgbevf_down(adapter);
2717	ixgbevf_free_irq(adapter);
2718
2719	ixgbevf_free_all_tx_resources(adapter);
2720	ixgbevf_free_all_rx_resources(adapter);
2721
2722	return 0;
2723}
2724
2725static int ixgbevf_tso(struct ixgbevf_adapter *adapter,
2726		       struct ixgbevf_ring *tx_ring,
2727		       struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2728{
2729	struct ixgbe_adv_tx_context_desc *context_desc;
2730	unsigned int i;
2731	int err;
2732	struct ixgbevf_tx_buffer *tx_buffer_info;
2733	u32 vlan_macip_lens = 0, type_tucmd_mlhl;
2734	u32 mss_l4len_idx, l4len;
2735
2736	if (skb_is_gso(skb)) {
2737		if (skb_header_cloned(skb)) {
2738			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2739			if (err)
2740				return err;
2741		}
2742		l4len = tcp_hdrlen(skb);
2743		*hdr_len += l4len;
2744
2745		if (skb->protocol == htons(ETH_P_IP)) {
2746			struct iphdr *iph = ip_hdr(skb);
2747			iph->tot_len = 0;
2748			iph->check = 0;
2749			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2750								 iph->daddr, 0,
2751								 IPPROTO_TCP,
2752								 0);
2753			adapter->hw_tso_ctxt++;
2754		} else if (skb_is_gso_v6(skb)) {
2755			ipv6_hdr(skb)->payload_len = 0;
2756			tcp_hdr(skb)->check =
2757			    ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2758					     &ipv6_hdr(skb)->daddr,
2759					     0, IPPROTO_TCP, 0);
2760			adapter->hw_tso6_ctxt++;
2761		}
2762
2763		i = tx_ring->next_to_use;
2764
2765		tx_buffer_info = &tx_ring->tx_buffer_info[i];
2766		context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2767
2768		/* VLAN MACLEN IPLEN */
2769		if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2770			vlan_macip_lens |=
2771				(tx_flags & IXGBE_TX_FLAGS_VLAN_MASK);
2772		vlan_macip_lens |= ((skb_network_offset(skb)) <<
2773				    IXGBE_ADVTXD_MACLEN_SHIFT);
2774		*hdr_len += skb_network_offset(skb);
2775		vlan_macip_lens |=
2776			(skb_transport_header(skb) - skb_network_header(skb));
2777		*hdr_len +=
2778			(skb_transport_header(skb) - skb_network_header(skb));
2779		context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2780		context_desc->seqnum_seed = 0;
2781
2782		/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2783		type_tucmd_mlhl = (IXGBE_TXD_CMD_DEXT |
2784				    IXGBE_ADVTXD_DTYP_CTXT);
2785
2786		if (skb->protocol == htons(ETH_P_IP))
2787			type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2788		type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP;
2789		context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2790
2791		/* MSS L4LEN IDX */
2792		mss_l4len_idx =
2793			(skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT);
2794		mss_l4len_idx |= (l4len << IXGBE_ADVTXD_L4LEN_SHIFT);
2795		/* use index 1 for TSO */
2796		mss_l4len_idx |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
2797		context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2798
2799		tx_buffer_info->time_stamp = jiffies;
2800		tx_buffer_info->next_to_watch = i;
2801
2802		i++;
2803		if (i == tx_ring->count)
2804			i = 0;
2805		tx_ring->next_to_use = i;
2806
2807		return true;
2808	}
2809
2810	return false;
2811}
2812
2813static bool ixgbevf_tx_csum(struct ixgbevf_adapter *adapter,
2814			    struct ixgbevf_ring *tx_ring,
2815			    struct sk_buff *skb, u32 tx_flags)
2816{
2817	struct ixgbe_adv_tx_context_desc *context_desc;
2818	unsigned int i;
2819	struct ixgbevf_tx_buffer *tx_buffer_info;
2820	u32 vlan_macip_lens = 0, type_tucmd_mlhl = 0;
2821
2822	if (skb->ip_summed == CHECKSUM_PARTIAL ||
2823	    (tx_flags & IXGBE_TX_FLAGS_VLAN)) {
2824		i = tx_ring->next_to_use;
2825		tx_buffer_info = &tx_ring->tx_buffer_info[i];
2826		context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2827
2828		if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2829			vlan_macip_lens |= (tx_flags &
2830					    IXGBE_TX_FLAGS_VLAN_MASK);
2831		vlan_macip_lens |= (skb_network_offset(skb) <<
2832				    IXGBE_ADVTXD_MACLEN_SHIFT);
2833		if (skb->ip_summed == CHECKSUM_PARTIAL)
2834			vlan_macip_lens |= (skb_transport_header(skb) -
2835					    skb_network_header(skb));
2836
2837		context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2838		context_desc->seqnum_seed = 0;
2839
2840		type_tucmd_mlhl |= (IXGBE_TXD_CMD_DEXT |
2841				    IXGBE_ADVTXD_DTYP_CTXT);
2842
2843		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2844			switch (skb->protocol) {
2845			case __constant_htons(ETH_P_IP):
2846				type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2847				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2848					type_tucmd_mlhl |=
2849					    IXGBE_ADVTXD_TUCMD_L4T_TCP;
2850				break;
2851			case __constant_htons(ETH_P_IPV6):
2852				/* XXX what about other V6 headers?? */
2853				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2854					type_tucmd_mlhl |=
2855						IXGBE_ADVTXD_TUCMD_L4T_TCP;
2856				break;
2857			default:
2858				if (unlikely(net_ratelimit())) {
2859					pr_warn("partial checksum but "
2860						"proto=%x!\n", skb->protocol);
2861				}
2862				break;
2863			}
2864		}
2865
2866		context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2867		/* use index zero for tx checksum offload */
2868		context_desc->mss_l4len_idx = 0;
2869
2870		tx_buffer_info->time_stamp = jiffies;
2871		tx_buffer_info->next_to_watch = i;
2872
2873		adapter->hw_csum_tx_good++;
2874		i++;
2875		if (i == tx_ring->count)
2876			i = 0;
2877		tx_ring->next_to_use = i;
2878
2879		return true;
2880	}
2881
2882	return false;
2883}
2884
2885static int ixgbevf_tx_map(struct ixgbevf_adapter *adapter,
2886			  struct ixgbevf_ring *tx_ring,
2887			  struct sk_buff *skb, u32 tx_flags,
2888			  unsigned int first)
2889{
2890	struct pci_dev *pdev = adapter->pdev;
2891	struct ixgbevf_tx_buffer *tx_buffer_info;
2892	unsigned int len;
2893	unsigned int total = skb->len;
2894	unsigned int offset = 0, size;
2895	int count = 0;
2896	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2897	unsigned int f;
2898	int i;
2899
2900	i = tx_ring->next_to_use;
2901
2902	len = min(skb_headlen(skb), total);
2903	while (len) {
2904		tx_buffer_info = &tx_ring->tx_buffer_info[i];
2905		size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2906
2907		tx_buffer_info->length = size;
2908		tx_buffer_info->mapped_as_page = false;
2909		tx_buffer_info->dma = dma_map_single(&adapter->pdev->dev,
2910						     skb->data + offset,
2911						     size, DMA_TO_DEVICE);
2912		if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
2913			goto dma_error;
2914		tx_buffer_info->time_stamp = jiffies;
2915		tx_buffer_info->next_to_watch = i;
2916
2917		len -= size;
2918		total -= size;
2919		offset += size;
2920		count++;
2921		i++;
2922		if (i == tx_ring->count)
2923			i = 0;
2924	}
2925
2926	for (f = 0; f < nr_frags; f++) {
2927		const struct skb_frag_struct *frag;
2928
2929		frag = &skb_shinfo(skb)->frags[f];
2930		len = min((unsigned int)skb_frag_size(frag), total);
2931		offset = 0;
2932
2933		while (len) {
2934			tx_buffer_info = &tx_ring->tx_buffer_info[i];
2935			size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2936
2937			tx_buffer_info->length = size;
2938			tx_buffer_info->dma =
2939				skb_frag_dma_map(&adapter->pdev->dev, frag,
2940						 offset, size, DMA_TO_DEVICE);
2941			tx_buffer_info->mapped_as_page = true;
2942			if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
2943				goto dma_error;
2944			tx_buffer_info->time_stamp = jiffies;
2945			tx_buffer_info->next_to_watch = i;
2946
2947			len -= size;
2948			total -= size;
2949			offset += size;
2950			count++;
2951			i++;
2952			if (i == tx_ring->count)
2953				i = 0;
2954		}
2955		if (total == 0)
2956			break;
2957	}
2958
2959	if (i == 0)
2960		i = tx_ring->count - 1;
2961	else
2962		i = i - 1;
2963	tx_ring->tx_buffer_info[i].skb = skb;
2964	tx_ring->tx_buffer_info[first].next_to_watch = i;
2965
2966	return count;
2967
2968dma_error:
2969	dev_err(&pdev->dev, "TX DMA map failed\n");
2970
2971	/* clear timestamp and dma mappings for failed tx_buffer_info map */
2972	tx_buffer_info->dma = 0;
2973	tx_buffer_info->time_stamp = 0;
2974	tx_buffer_info->next_to_watch = 0;
2975	count--;
2976
2977	/* clear timestamp and dma mappings for remaining portion of packet */
2978	while (count >= 0) {
2979		count--;
2980		i--;
2981		if (i < 0)
2982			i += tx_ring->count;
2983		tx_buffer_info = &tx_ring->tx_buffer_info[i];
2984		ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
2985	}
2986
2987	return count;
2988}
2989
2990static void ixgbevf_tx_queue(struct ixgbevf_adapter *adapter,
2991			     struct ixgbevf_ring *tx_ring, int tx_flags,
2992			     int count, u32 paylen, u8 hdr_len)
2993{
2994	union ixgbe_adv_tx_desc *tx_desc = NULL;
2995	struct ixgbevf_tx_buffer *tx_buffer_info;
2996	u32 olinfo_status = 0, cmd_type_len = 0;
2997	unsigned int i;
2998
2999	u32 txd_cmd = IXGBE_TXD_CMD_EOP | IXGBE_TXD_CMD_RS | IXGBE_TXD_CMD_IFCS;
3000
3001	cmd_type_len |= IXGBE_ADVTXD_DTYP_DATA;
3002
3003	cmd_type_len |= IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
3004
3005	if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3006		cmd_type_len |= IXGBE_ADVTXD_DCMD_VLE;
3007
3008	if (tx_flags & IXGBE_TX_FLAGS_TSO) {
3009		cmd_type_len |= IXGBE_ADVTXD_DCMD_TSE;
3010
3011		olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3012			IXGBE_ADVTXD_POPTS_SHIFT;
3013
3014		/* use index 1 context for tso */
3015		olinfo_status |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
3016		if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3017			olinfo_status |= IXGBE_TXD_POPTS_IXSM <<
3018				IXGBE_ADVTXD_POPTS_SHIFT;
3019
3020	} else if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3021		olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3022			IXGBE_ADVTXD_POPTS_SHIFT;
3023
3024	olinfo_status |= ((paylen - hdr_len) << IXGBE_ADVTXD_PAYLEN_SHIFT);
3025
3026	i = tx_ring->next_to_use;
3027	while (count--) {
3028		tx_buffer_info = &tx_ring->tx_buffer_info[i];
3029		tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
3030		tx_desc->read.buffer_addr = cpu_to_le64(tx_buffer_info->dma);
3031		tx_desc->read.cmd_type_len =
3032			cpu_to_le32(cmd_type_len | tx_buffer_info->length);
3033		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3034		i++;
3035		if (i == tx_ring->count)
3036			i = 0;
3037	}
3038
3039	tx_desc->read.cmd_type_len |= cpu_to_le32(txd_cmd);
3040
3041	/*
3042	 * Force memory writes to complete before letting h/w
3043	 * know there are new descriptors to fetch.  (Only
3044	 * applicable for weak-ordered memory model archs,
3045	 * such as IA-64).
3046	 */
3047	wmb();
3048
3049	tx_ring->next_to_use = i;
3050	writel(i, adapter->hw.hw_addr + tx_ring->tail);
3051}
3052
3053static int __ixgbevf_maybe_stop_tx(struct net_device *netdev,
3054				   struct ixgbevf_ring *tx_ring, int size)
3055{
3056	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3057
3058	netif_stop_subqueue(netdev, tx_ring->queue_index);
3059	/* Herbert's original patch had:
3060	 *  smp_mb__after_netif_stop_queue();
3061	 * but since that doesn't exist yet, just open code it. */
3062	smp_mb();
3063
3064	/* We need to check again in a case another CPU has just
3065	 * made room available. */
3066	if (likely(IXGBE_DESC_UNUSED(tx_ring) < size))
3067		return -EBUSY;
3068
3069	/* A reprieve! - use start_queue because it doesn't call schedule */
3070	netif_start_subqueue(netdev, tx_ring->queue_index);
3071	++adapter->restart_queue;
3072	return 0;
3073}
3074
3075static int ixgbevf_maybe_stop_tx(struct net_device *netdev,
3076				 struct ixgbevf_ring *tx_ring, int size)
3077{
3078	if (likely(IXGBE_DESC_UNUSED(tx_ring) >= size))
3079		return 0;
3080	return __ixgbevf_maybe_stop_tx(netdev, tx_ring, size);
3081}
3082
3083static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3084{
3085	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3086	struct ixgbevf_ring *tx_ring;
3087	unsigned int first;
3088	unsigned int tx_flags = 0;
3089	u8 hdr_len = 0;
3090	int r_idx = 0, tso;
3091	int count = 0;
3092
3093	unsigned int f;
3094
3095	tx_ring = &adapter->tx_ring[r_idx];
3096
3097	if (vlan_tx_tag_present(skb)) {
3098		tx_flags |= vlan_tx_tag_get(skb);
3099		tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
3100		tx_flags |= IXGBE_TX_FLAGS_VLAN;
3101	}
3102
3103	/* four things can cause us to need a context descriptor */
3104	if (skb_is_gso(skb) ||
3105	    (skb->ip_summed == CHECKSUM_PARTIAL) ||
3106	    (tx_flags & IXGBE_TX_FLAGS_VLAN))
3107		count++;
3108
3109	count += TXD_USE_COUNT(skb_headlen(skb));
3110	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
3111		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]));
3112
3113	if (ixgbevf_maybe_stop_tx(netdev, tx_ring, count)) {
3114		adapter->tx_busy++;
3115		return NETDEV_TX_BUSY;
3116	}
3117
3118	first = tx_ring->next_to_use;
3119
3120	if (skb->protocol == htons(ETH_P_IP))
3121		tx_flags |= IXGBE_TX_FLAGS_IPV4;
3122	tso = ixgbevf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len);
3123	if (tso < 0) {
3124		dev_kfree_skb_any(skb);
3125		return NETDEV_TX_OK;
3126	}
3127
3128	if (tso)
3129		tx_flags |= IXGBE_TX_FLAGS_TSO;
3130	else if (ixgbevf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
3131		 (skb->ip_summed == CHECKSUM_PARTIAL))
3132		tx_flags |= IXGBE_TX_FLAGS_CSUM;
3133
3134	ixgbevf_tx_queue(adapter, tx_ring, tx_flags,
3135			 ixgbevf_tx_map(adapter, tx_ring, skb, tx_flags, first),
3136			 skb->len, hdr_len);
3137
3138	ixgbevf_maybe_stop_tx(netdev, tx_ring, DESC_NEEDED);
3139
3140	return NETDEV_TX_OK;
3141}
3142
3143/**
3144 * ixgbevf_set_mac - Change the Ethernet Address of the NIC
3145 * @netdev: network interface device structure
3146 * @p: pointer to an address structure
3147 *
3148 * Returns 0 on success, negative on failure
3149 **/
3150static int ixgbevf_set_mac(struct net_device *netdev, void *p)
3151{
3152	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3153	struct ixgbe_hw *hw = &adapter->hw;
3154	struct sockaddr *addr = p;
3155
3156	if (!is_valid_ether_addr(addr->sa_data))
3157		return -EADDRNOTAVAIL;
3158
3159	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3160	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3161
3162	if (hw->mac.ops.set_rar)
3163		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
3164
3165	return 0;
3166}
3167
3168/**
3169 * ixgbevf_change_mtu - Change the Maximum Transfer Unit
3170 * @netdev: network interface device structure
3171 * @new_mtu: new value for maximum frame size
3172 *
3173 * Returns 0 on success, negative on failure
3174 **/
3175static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
3176{
3177	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3178	struct ixgbe_hw *hw = &adapter->hw;
3179	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3180	int max_possible_frame = MAXIMUM_ETHERNET_VLAN_SIZE;
3181	u32 msg[2];
3182
3183	if (adapter->hw.mac.type == ixgbe_mac_X540_vf)
3184		max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
3185
3186	/* MTU < 68 is an error and causes problems on some kernels */
3187	if ((new_mtu < 68) || (max_frame > max_possible_frame))
3188		return -EINVAL;
3189
3190	hw_dbg(&adapter->hw, "changing MTU from %d to %d\n",
3191	       netdev->mtu, new_mtu);
3192	/* must set new MTU before calling down or up */
3193	netdev->mtu = new_mtu;
3194
3195	msg[0] = IXGBE_VF_SET_LPE;
3196	msg[1] = max_frame;
3197	hw->mbx.ops.write_posted(hw, msg, 2);
3198
3199	if (netif_running(netdev))
3200		ixgbevf_reinit_locked(adapter);
3201
3202	return 0;
3203}
3204
3205static void ixgbevf_shutdown(struct pci_dev *pdev)
3206{
3207	struct net_device *netdev = pci_get_drvdata(pdev);
3208	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3209
3210	netif_device_detach(netdev);
3211
3212	if (netif_running(netdev)) {
3213		ixgbevf_down(adapter);
3214		ixgbevf_free_irq(adapter);
3215		ixgbevf_free_all_tx_resources(adapter);
3216		ixgbevf_free_all_rx_resources(adapter);
3217	}
3218
3219#ifdef CONFIG_PM
3220	pci_save_state(pdev);
3221#endif
3222
3223	pci_disable_device(pdev);
3224}
3225
3226static struct rtnl_link_stats64 *ixgbevf_get_stats(struct net_device *netdev,
3227						struct rtnl_link_stats64 *stats)
3228{
3229	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3230	unsigned int start;
3231	u64 bytes, packets;
3232	const struct ixgbevf_ring *ring;
3233	int i;
3234
3235	ixgbevf_update_stats(adapter);
3236
3237	stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
3238
3239	for (i = 0; i < adapter->num_rx_queues; i++) {
3240		ring = &adapter->rx_ring[i];
3241		do {
3242			start = u64_stats_fetch_begin_bh(&ring->syncp);
3243			bytes = ring->total_bytes;
3244			packets = ring->total_packets;
3245		} while (u64_stats_fetch_retry_bh(&ring->syncp, start));
3246		stats->rx_bytes += bytes;
3247		stats->rx_packets += packets;
3248	}
3249
3250	for (i = 0; i < adapter->num_tx_queues; i++) {
3251		ring = &adapter->tx_ring[i];
3252		do {
3253			start = u64_stats_fetch_begin_bh(&ring->syncp);
3254			bytes = ring->total_bytes;
3255			packets = ring->total_packets;
3256		} while (u64_stats_fetch_retry_bh(&ring->syncp, start));
3257		stats->tx_bytes += bytes;
3258		stats->tx_packets += packets;
3259	}
3260
3261	return stats;
3262}
3263
3264static int ixgbevf_set_features(struct net_device *netdev,
3265	netdev_features_t features)
3266{
3267	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3268
3269	if (features & NETIF_F_RXCSUM)
3270		adapter->flags |= IXGBE_FLAG_RX_CSUM_ENABLED;
3271	else
3272		adapter->flags &= ~IXGBE_FLAG_RX_CSUM_ENABLED;
3273
3274	return 0;
3275}
3276
3277static const struct net_device_ops ixgbe_netdev_ops = {
3278	.ndo_open		= ixgbevf_open,
3279	.ndo_stop		= ixgbevf_close,
3280	.ndo_start_xmit		= ixgbevf_xmit_frame,
3281	.ndo_set_rx_mode	= ixgbevf_set_rx_mode,
3282	.ndo_get_stats64	= ixgbevf_get_stats,
3283	.ndo_validate_addr	= eth_validate_addr,
3284	.ndo_set_mac_address	= ixgbevf_set_mac,
3285	.ndo_change_mtu		= ixgbevf_change_mtu,
3286	.ndo_tx_timeout		= ixgbevf_tx_timeout,
3287	.ndo_vlan_rx_add_vid	= ixgbevf_vlan_rx_add_vid,
3288	.ndo_vlan_rx_kill_vid	= ixgbevf_vlan_rx_kill_vid,
3289	.ndo_set_features	= ixgbevf_set_features,
3290};
3291
3292static void ixgbevf_assign_netdev_ops(struct net_device *dev)
3293{
3294	dev->netdev_ops = &ixgbe_netdev_ops;
3295	ixgbevf_set_ethtool_ops(dev);
3296	dev->watchdog_timeo = 5 * HZ;
3297}
3298
3299/**
3300 * ixgbevf_probe - Device Initialization Routine
3301 * @pdev: PCI device information struct
3302 * @ent: entry in ixgbevf_pci_tbl
3303 *
3304 * Returns 0 on success, negative on failure
3305 *
3306 * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
3307 * The OS initialization, configuring of the adapter private structure,
3308 * and a hardware reset occur.
3309 **/
3310static int __devinit ixgbevf_probe(struct pci_dev *pdev,
3311				   const struct pci_device_id *ent)
3312{
3313	struct net_device *netdev;
3314	struct ixgbevf_adapter *adapter = NULL;
3315	struct ixgbe_hw *hw = NULL;
3316	const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
3317	static int cards_found;
3318	int err, pci_using_dac;
3319
3320	err = pci_enable_device(pdev);
3321	if (err)
3322		return err;
3323
3324	if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
3325	    !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3326		pci_using_dac = 1;
3327	} else {
3328		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
3329		if (err) {
3330			err = dma_set_coherent_mask(&pdev->dev,
3331						    DMA_BIT_MASK(32));
3332			if (err) {
3333				dev_err(&pdev->dev, "No usable DMA "
3334					"configuration, aborting\n");
3335				goto err_dma;
3336			}
3337		}
3338		pci_using_dac = 0;
3339	}
3340
3341	err = pci_request_regions(pdev, ixgbevf_driver_name);
3342	if (err) {
3343		dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
3344		goto err_pci_reg;
3345	}
3346
3347	pci_set_master(pdev);
3348
3349#ifdef HAVE_TX_MQ
3350	netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
3351				   MAX_TX_QUEUES);
3352#else
3353	netdev = alloc_etherdev(sizeof(struct ixgbevf_adapter));
3354#endif
3355	if (!netdev) {
3356		err = -ENOMEM;
3357		goto err_alloc_etherdev;
3358	}
3359
3360	SET_NETDEV_DEV(netdev, &pdev->dev);
3361
3362	pci_set_drvdata(pdev, netdev);
3363	adapter = netdev_priv(netdev);
3364
3365	adapter->netdev = netdev;
3366	adapter->pdev = pdev;
3367	hw = &adapter->hw;
3368	hw->back = adapter;
3369	adapter->msg_enable = (1 << DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3370
3371	/*
3372	 * call save state here in standalone driver because it relies on
3373	 * adapter struct to exist, and needs to call netdev_priv
3374	 */
3375	pci_save_state(pdev);
3376
3377	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3378			      pci_resource_len(pdev, 0));
3379	if (!hw->hw_addr) {
3380		err = -EIO;
3381		goto err_ioremap;
3382	}
3383
3384	ixgbevf_assign_netdev_ops(netdev);
3385
3386	adapter->bd_number = cards_found;
3387
3388	/* Setup hw api */
3389	memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
3390	hw->mac.type  = ii->mac;
3391
3392	memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
3393	       sizeof(struct ixgbe_mbx_operations));
3394
3395	adapter->flags &= ~IXGBE_FLAG_RX_PS_CAPABLE;
3396	adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
3397	adapter->flags |= IXGBE_FLAG_RX_1BUF_CAPABLE;
3398
3399	/* setup the private structure */
3400	err = ixgbevf_sw_init(adapter);
3401
3402	netdev->hw_features = NETIF_F_SG |
3403			   NETIF_F_IP_CSUM |
3404			   NETIF_F_IPV6_CSUM |
3405			   NETIF_F_TSO |
3406			   NETIF_F_TSO6 |
3407			   NETIF_F_RXCSUM;
3408
3409	netdev->features = netdev->hw_features |
3410			   NETIF_F_HW_VLAN_TX |
3411			   NETIF_F_HW_VLAN_RX |
3412			   NETIF_F_HW_VLAN_FILTER;
3413
3414	netdev->vlan_features |= NETIF_F_TSO;
3415	netdev->vlan_features |= NETIF_F_TSO6;
3416	netdev->vlan_features |= NETIF_F_IP_CSUM;
3417	netdev->vlan_features |= NETIF_F_IPV6_CSUM;
3418	netdev->vlan_features |= NETIF_F_SG;
3419
3420	if (pci_using_dac)
3421		netdev->features |= NETIF_F_HIGHDMA;
3422
3423	netdev->priv_flags |= IFF_UNICAST_FLT;
3424
3425	/* The HW MAC address was set and/or determined in sw_init */
3426	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
3427	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
3428
3429	if (!is_valid_ether_addr(netdev->dev_addr)) {
3430		pr_err("invalid MAC address\n");
3431		err = -EIO;
3432		goto err_sw_init;
3433	}
3434
3435	init_timer(&adapter->watchdog_timer);
3436	adapter->watchdog_timer.function = ixgbevf_watchdog;
3437	adapter->watchdog_timer.data = (unsigned long)adapter;
3438
3439	INIT_WORK(&adapter->reset_task, ixgbevf_reset_task);
3440	INIT_WORK(&adapter->watchdog_task, ixgbevf_watchdog_task);
3441
3442	err = ixgbevf_init_interrupt_scheme(adapter);
3443	if (err)
3444		goto err_sw_init;
3445
3446	/* pick up the PCI bus settings for reporting later */
3447	if (hw->mac.ops.get_bus_info)
3448		hw->mac.ops.get_bus_info(hw);
3449
3450	strcpy(netdev->name, "eth%d");
3451
3452	err = register_netdev(netdev);
3453	if (err)
3454		goto err_register;
3455
3456	adapter->netdev_registered = true;
3457
3458	netif_carrier_off(netdev);
3459
3460	ixgbevf_init_last_counter_stats(adapter);
3461
3462	/* print the MAC address */
3463	hw_dbg(hw, "%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
3464	       netdev->dev_addr[0],
3465	       netdev->dev_addr[1],
3466	       netdev->dev_addr[2],
3467	       netdev->dev_addr[3],
3468	       netdev->dev_addr[4],
3469	       netdev->dev_addr[5]);
3470
3471	hw_dbg(hw, "MAC: %d\n", hw->mac.type);
3472
3473	hw_dbg(hw, "LRO is disabled\n");
3474
3475	hw_dbg(hw, "Intel(R) 82599 Virtual Function\n");
3476	cards_found++;
3477	return 0;
3478
3479err_register:
3480err_sw_init:
3481	ixgbevf_reset_interrupt_capability(adapter);
3482	iounmap(hw->hw_addr);
3483err_ioremap:
3484	free_netdev(netdev);
3485err_alloc_etherdev:
3486	pci_release_regions(pdev);
3487err_pci_reg:
3488err_dma:
3489	pci_disable_device(pdev);
3490	return err;
3491}
3492
3493/**
3494 * ixgbevf_remove - Device Removal Routine
3495 * @pdev: PCI device information struct
3496 *
3497 * ixgbevf_remove is called by the PCI subsystem to alert the driver
3498 * that it should release a PCI device.  The could be caused by a
3499 * Hot-Plug event, or because the driver is going to be removed from
3500 * memory.
3501 **/
3502static void __devexit ixgbevf_remove(struct pci_dev *pdev)
3503{
3504	struct net_device *netdev = pci_get_drvdata(pdev);
3505	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3506
3507	set_bit(__IXGBEVF_DOWN, &adapter->state);
3508
3509	del_timer_sync(&adapter->watchdog_timer);
3510
3511	cancel_work_sync(&adapter->reset_task);
3512	cancel_work_sync(&adapter->watchdog_task);
3513
3514	if (adapter->netdev_registered) {
3515		unregister_netdev(netdev);
3516		adapter->netdev_registered = false;
3517	}
3518
3519	ixgbevf_reset_interrupt_capability(adapter);
3520
3521	iounmap(adapter->hw.hw_addr);
3522	pci_release_regions(pdev);
3523
3524	hw_dbg(&adapter->hw, "Remove complete\n");
3525
3526	kfree(adapter->tx_ring);
3527	kfree(adapter->rx_ring);
3528
3529	free_netdev(netdev);
3530
3531	pci_disable_device(pdev);
3532}
3533
3534static struct pci_driver ixgbevf_driver = {
3535	.name     = ixgbevf_driver_name,
3536	.id_table = ixgbevf_pci_tbl,
3537	.probe    = ixgbevf_probe,
3538	.remove   = __devexit_p(ixgbevf_remove),
3539	.shutdown = ixgbevf_shutdown,
3540};
3541
3542/**
3543 * ixgbevf_init_module - Driver Registration Routine
3544 *
3545 * ixgbevf_init_module is the first routine called when the driver is
3546 * loaded. All it does is register with the PCI subsystem.
3547 **/
3548static int __init ixgbevf_init_module(void)
3549{
3550	int ret;
3551	pr_info("%s - version %s\n", ixgbevf_driver_string,
3552		ixgbevf_driver_version);
3553
3554	pr_info("%s\n", ixgbevf_copyright);
3555
3556	ret = pci_register_driver(&ixgbevf_driver);
3557	return ret;
3558}
3559
3560module_init(ixgbevf_init_module);
3561
3562/**
3563 * ixgbevf_exit_module - Driver Exit Cleanup Routine
3564 *
3565 * ixgbevf_exit_module is called just before the driver is removed
3566 * from memory.
3567 **/
3568static void __exit ixgbevf_exit_module(void)
3569{
3570	pci_unregister_driver(&ixgbevf_driver);
3571}
3572
3573#ifdef DEBUG
3574/**
3575 * ixgbevf_get_hw_dev_name - return device name string
3576 * used by hardware layer to print debugging information
3577 **/
3578char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
3579{
3580	struct ixgbevf_adapter *adapter = hw->back;
3581	return adapter->netdev->name;
3582}
3583
3584#endif
3585module_exit(ixgbevf_exit_module);
3586
3587/* ixgbevf_main.c */
3588