1/*
2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
5 *
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
9 *
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 */
25
26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28#include <linux/in.h>
29#include <linux/kernel.h>
30#include <linux/module.h>
31#include <linux/moduleparam.h>
32#include <linux/netdevice.h>
33#include <linux/etherdevice.h>
34#include <linux/ethtool.h>
35#include <linux/pci.h>
36#include <linux/if_vlan.h>
37#include <linux/ip.h>
38#include <linux/delay.h>
39#include <linux/crc32.h>
40#include <linux/dma-mapping.h>
41#include <linux/debugfs.h>
42#include <linux/sched.h>
43#include <linux/seq_file.h>
44#include <linux/mii.h>
45#include <linux/slab.h>
46#include <linux/dmi.h>
47#include <linux/prefetch.h>
48#include <asm/irq.h>
49
50#include "skge.h"
51
52#define DRV_NAME		"skge"
53#define DRV_VERSION		"1.14"
54
55#define DEFAULT_TX_RING_SIZE	128
56#define DEFAULT_RX_RING_SIZE	512
57#define MAX_TX_RING_SIZE	1024
58#define TX_LOW_WATER		(MAX_SKB_FRAGS + 1)
59#define MAX_RX_RING_SIZE	4096
60#define RX_COPY_THRESHOLD	128
61#define RX_BUF_SIZE		1536
62#define PHY_RETRIES	        1000
63#define ETH_JUMBO_MTU		9000
64#define TX_WATCHDOG		(5 * HZ)
65#define NAPI_WEIGHT		64
66#define BLINK_MS		250
67#define LINK_HZ			HZ
68
69#define SKGE_EEPROM_MAGIC	0x9933aabb
70
71
72MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
73MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
74MODULE_LICENSE("GPL");
75MODULE_VERSION(DRV_VERSION);
76
77static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
78				NETIF_MSG_LINK | NETIF_MSG_IFUP |
79				NETIF_MSG_IFDOWN);
80
81static int debug = -1;	/* defaults above */
82module_param(debug, int, 0);
83MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
84
85static DEFINE_PCI_DEVICE_TABLE(skge_id_table) = {
86	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x1700) },	  /* 3Com 3C940 */
87	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x80EB) },	  /* 3Com 3C940B */
88#ifdef CONFIG_SKGE_GENESIS
89	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4300) }, /* SK-9xx */
90#endif
91	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4320) }, /* SK-98xx V2.0 */
92	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) },	  /* D-Link DGE-530T (rev.B) */
93	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4c00) },	  /* D-Link DGE-530T */
94	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4302) },	  /* D-Link DGE-530T Rev C1 */
95	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },	  /* Marvell Yukon 88E8001/8003/8010 */
96	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) },	  /* Belkin */
97	{ PCI_DEVICE(PCI_VENDOR_ID_CNET, 0x434E) }, 	  /* CNet PowerG-2000 */
98	{ PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, 0x1064) },	  /* Linksys EG1064 v2 */
99	{ PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, /* Linksys EG1032 v2 */
100	{ 0 }
101};
102MODULE_DEVICE_TABLE(pci, skge_id_table);
103
104static int skge_up(struct net_device *dev);
105static int skge_down(struct net_device *dev);
106static void skge_phy_reset(struct skge_port *skge);
107static void skge_tx_clean(struct net_device *dev);
108static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
109static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
110static void genesis_get_stats(struct skge_port *skge, u64 *data);
111static void yukon_get_stats(struct skge_port *skge, u64 *data);
112static void yukon_init(struct skge_hw *hw, int port);
113static void genesis_mac_init(struct skge_hw *hw, int port);
114static void genesis_link_up(struct skge_port *skge);
115static void skge_set_multicast(struct net_device *dev);
116static irqreturn_t skge_intr(int irq, void *dev_id);
117
118/* Avoid conditionals by using array */
119static const int txqaddr[] = { Q_XA1, Q_XA2 };
120static const int rxqaddr[] = { Q_R1, Q_R2 };
121static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
122static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
123static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
124static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
125
126static inline bool is_genesis(const struct skge_hw *hw)
127{
128#ifdef CONFIG_SKGE_GENESIS
129	return hw->chip_id == CHIP_ID_GENESIS;
130#else
131	return false;
132#endif
133}
134
135static int skge_get_regs_len(struct net_device *dev)
136{
137	return 0x4000;
138}
139
140/*
141 * Returns copy of whole control register region
142 * Note: skip RAM address register because accessing it will
143 * 	 cause bus hangs!
144 */
145static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
146			  void *p)
147{
148	const struct skge_port *skge = netdev_priv(dev);
149	const void __iomem *io = skge->hw->regs;
150
151	regs->version = 1;
152	memset(p, 0, regs->len);
153	memcpy_fromio(p, io, B3_RAM_ADDR);
154
155	memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
156		      regs->len - B3_RI_WTO_R1);
157}
158
159/* Wake on Lan only supported on Yukon chips with rev 1 or above */
160static u32 wol_supported(const struct skge_hw *hw)
161{
162	if (is_genesis(hw))
163		return 0;
164
165	if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
166		return 0;
167
168	return WAKE_MAGIC | WAKE_PHY;
169}
170
171static void skge_wol_init(struct skge_port *skge)
172{
173	struct skge_hw *hw = skge->hw;
174	int port = skge->port;
175	u16 ctrl;
176
177	skge_write16(hw, B0_CTST, CS_RST_CLR);
178	skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
179
180	/* Turn on Vaux */
181	skge_write8(hw, B0_POWER_CTRL,
182		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
183
184	/* WA code for COMA mode -- clear PHY reset */
185	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
186	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
187		u32 reg = skge_read32(hw, B2_GP_IO);
188		reg |= GP_DIR_9;
189		reg &= ~GP_IO_9;
190		skge_write32(hw, B2_GP_IO, reg);
191	}
192
193	skge_write32(hw, SK_REG(port, GPHY_CTRL),
194		     GPC_DIS_SLEEP |
195		     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
196		     GPC_ANEG_1 | GPC_RST_SET);
197
198	skge_write32(hw, SK_REG(port, GPHY_CTRL),
199		     GPC_DIS_SLEEP |
200		     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
201		     GPC_ANEG_1 | GPC_RST_CLR);
202
203	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
204
205	/* Force to 10/100 skge_reset will re-enable on resume	 */
206	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
207		     (PHY_AN_100FULL | PHY_AN_100HALF |
208		      PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
209	/* no 1000 HD/FD */
210	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
211	gm_phy_write(hw, port, PHY_MARV_CTRL,
212		     PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
213		     PHY_CT_RE_CFG | PHY_CT_DUP_MD);
214
215
216	/* Set GMAC to no flow control and auto update for speed/duplex */
217	gma_write16(hw, port, GM_GP_CTRL,
218		    GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
219		    GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
220
221	/* Set WOL address */
222	memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
223		    skge->netdev->dev_addr, ETH_ALEN);
224
225	/* Turn on appropriate WOL control bits */
226	skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
227	ctrl = 0;
228	if (skge->wol & WAKE_PHY)
229		ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
230	else
231		ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
232
233	if (skge->wol & WAKE_MAGIC)
234		ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
235	else
236		ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
237
238	ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
239	skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
240
241	/* block receiver */
242	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
243}
244
245static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
246{
247	struct skge_port *skge = netdev_priv(dev);
248
249	wol->supported = wol_supported(skge->hw);
250	wol->wolopts = skge->wol;
251}
252
253static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
254{
255	struct skge_port *skge = netdev_priv(dev);
256	struct skge_hw *hw = skge->hw;
257
258	if ((wol->wolopts & ~wol_supported(hw)) ||
259	    !device_can_wakeup(&hw->pdev->dev))
260		return -EOPNOTSUPP;
261
262	skge->wol = wol->wolopts;
263
264	device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
265
266	return 0;
267}
268
269/* Determine supported/advertised modes based on hardware.
270 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
271 */
272static u32 skge_supported_modes(const struct skge_hw *hw)
273{
274	u32 supported;
275
276	if (hw->copper) {
277		supported = (SUPPORTED_10baseT_Half |
278			     SUPPORTED_10baseT_Full |
279			     SUPPORTED_100baseT_Half |
280			     SUPPORTED_100baseT_Full |
281			     SUPPORTED_1000baseT_Half |
282			     SUPPORTED_1000baseT_Full |
283			     SUPPORTED_Autoneg |
284			     SUPPORTED_TP);
285
286		if (is_genesis(hw))
287			supported &= ~(SUPPORTED_10baseT_Half |
288				       SUPPORTED_10baseT_Full |
289				       SUPPORTED_100baseT_Half |
290				       SUPPORTED_100baseT_Full);
291
292		else if (hw->chip_id == CHIP_ID_YUKON)
293			supported &= ~SUPPORTED_1000baseT_Half;
294	} else
295		supported = (SUPPORTED_1000baseT_Full |
296			     SUPPORTED_1000baseT_Half |
297			     SUPPORTED_FIBRE |
298			     SUPPORTED_Autoneg);
299
300	return supported;
301}
302
303static int skge_get_settings(struct net_device *dev,
304			     struct ethtool_cmd *ecmd)
305{
306	struct skge_port *skge = netdev_priv(dev);
307	struct skge_hw *hw = skge->hw;
308
309	ecmd->transceiver = XCVR_INTERNAL;
310	ecmd->supported = skge_supported_modes(hw);
311
312	if (hw->copper) {
313		ecmd->port = PORT_TP;
314		ecmd->phy_address = hw->phy_addr;
315	} else
316		ecmd->port = PORT_FIBRE;
317
318	ecmd->advertising = skge->advertising;
319	ecmd->autoneg = skge->autoneg;
320	ethtool_cmd_speed_set(ecmd, skge->speed);
321	ecmd->duplex = skge->duplex;
322	return 0;
323}
324
325static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
326{
327	struct skge_port *skge = netdev_priv(dev);
328	const struct skge_hw *hw = skge->hw;
329	u32 supported = skge_supported_modes(hw);
330	int err = 0;
331
332	if (ecmd->autoneg == AUTONEG_ENABLE) {
333		ecmd->advertising = supported;
334		skge->duplex = -1;
335		skge->speed = -1;
336	} else {
337		u32 setting;
338		u32 speed = ethtool_cmd_speed(ecmd);
339
340		switch (speed) {
341		case SPEED_1000:
342			if (ecmd->duplex == DUPLEX_FULL)
343				setting = SUPPORTED_1000baseT_Full;
344			else if (ecmd->duplex == DUPLEX_HALF)
345				setting = SUPPORTED_1000baseT_Half;
346			else
347				return -EINVAL;
348			break;
349		case SPEED_100:
350			if (ecmd->duplex == DUPLEX_FULL)
351				setting = SUPPORTED_100baseT_Full;
352			else if (ecmd->duplex == DUPLEX_HALF)
353				setting = SUPPORTED_100baseT_Half;
354			else
355				return -EINVAL;
356			break;
357
358		case SPEED_10:
359			if (ecmd->duplex == DUPLEX_FULL)
360				setting = SUPPORTED_10baseT_Full;
361			else if (ecmd->duplex == DUPLEX_HALF)
362				setting = SUPPORTED_10baseT_Half;
363			else
364				return -EINVAL;
365			break;
366		default:
367			return -EINVAL;
368		}
369
370		if ((setting & supported) == 0)
371			return -EINVAL;
372
373		skge->speed = speed;
374		skge->duplex = ecmd->duplex;
375	}
376
377	skge->autoneg = ecmd->autoneg;
378	skge->advertising = ecmd->advertising;
379
380	if (netif_running(dev)) {
381		skge_down(dev);
382		err = skge_up(dev);
383		if (err) {
384			dev_close(dev);
385			return err;
386		}
387	}
388
389	return 0;
390}
391
392static void skge_get_drvinfo(struct net_device *dev,
393			     struct ethtool_drvinfo *info)
394{
395	struct skge_port *skge = netdev_priv(dev);
396
397	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
398	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
399	strlcpy(info->bus_info, pci_name(skge->hw->pdev),
400		sizeof(info->bus_info));
401}
402
403static const struct skge_stat {
404	char 	   name[ETH_GSTRING_LEN];
405	u16	   xmac_offset;
406	u16	   gma_offset;
407} skge_stats[] = {
408	{ "tx_bytes",		XM_TXO_OK_HI,  GM_TXO_OK_HI },
409	{ "rx_bytes",		XM_RXO_OK_HI,  GM_RXO_OK_HI },
410
411	{ "tx_broadcast",	XM_TXF_BC_OK,  GM_TXF_BC_OK },
412	{ "rx_broadcast",	XM_RXF_BC_OK,  GM_RXF_BC_OK },
413	{ "tx_multicast",	XM_TXF_MC_OK,  GM_TXF_MC_OK },
414	{ "rx_multicast",	XM_RXF_MC_OK,  GM_RXF_MC_OK },
415	{ "tx_unicast",		XM_TXF_UC_OK,  GM_TXF_UC_OK },
416	{ "rx_unicast",		XM_RXF_UC_OK,  GM_RXF_UC_OK },
417	{ "tx_mac_pause",	XM_TXF_MPAUSE, GM_TXF_MPAUSE },
418	{ "rx_mac_pause",	XM_RXF_MPAUSE, GM_RXF_MPAUSE },
419
420	{ "collisions",		XM_TXF_SNG_COL, GM_TXF_SNG_COL },
421	{ "multi_collisions",	XM_TXF_MUL_COL, GM_TXF_MUL_COL },
422	{ "aborted",		XM_TXF_ABO_COL, GM_TXF_ABO_COL },
423	{ "late_collision",	XM_TXF_LAT_COL, GM_TXF_LAT_COL },
424	{ "fifo_underrun",	XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
425	{ "fifo_overflow",	XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
426
427	{ "rx_toolong",		XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
428	{ "rx_jabber",		XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
429	{ "rx_runt",		XM_RXE_RUNT, 	GM_RXE_FRAG },
430	{ "rx_too_long",	XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
431	{ "rx_fcs_error",	XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
432};
433
434static int skge_get_sset_count(struct net_device *dev, int sset)
435{
436	switch (sset) {
437	case ETH_SS_STATS:
438		return ARRAY_SIZE(skge_stats);
439	default:
440		return -EOPNOTSUPP;
441	}
442}
443
444static void skge_get_ethtool_stats(struct net_device *dev,
445				   struct ethtool_stats *stats, u64 *data)
446{
447	struct skge_port *skge = netdev_priv(dev);
448
449	if (is_genesis(skge->hw))
450		genesis_get_stats(skge, data);
451	else
452		yukon_get_stats(skge, data);
453}
454
455/* Use hardware MIB variables for critical path statistics and
456 * transmit feedback not reported at interrupt.
457 * Other errors are accounted for in interrupt handler.
458 */
459static struct net_device_stats *skge_get_stats(struct net_device *dev)
460{
461	struct skge_port *skge = netdev_priv(dev);
462	u64 data[ARRAY_SIZE(skge_stats)];
463
464	if (is_genesis(skge->hw))
465		genesis_get_stats(skge, data);
466	else
467		yukon_get_stats(skge, data);
468
469	dev->stats.tx_bytes = data[0];
470	dev->stats.rx_bytes = data[1];
471	dev->stats.tx_packets = data[2] + data[4] + data[6];
472	dev->stats.rx_packets = data[3] + data[5] + data[7];
473	dev->stats.multicast = data[3] + data[5];
474	dev->stats.collisions = data[10];
475	dev->stats.tx_aborted_errors = data[12];
476
477	return &dev->stats;
478}
479
480static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
481{
482	int i;
483
484	switch (stringset) {
485	case ETH_SS_STATS:
486		for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
487			memcpy(data + i * ETH_GSTRING_LEN,
488			       skge_stats[i].name, ETH_GSTRING_LEN);
489		break;
490	}
491}
492
493static void skge_get_ring_param(struct net_device *dev,
494				struct ethtool_ringparam *p)
495{
496	struct skge_port *skge = netdev_priv(dev);
497
498	p->rx_max_pending = MAX_RX_RING_SIZE;
499	p->tx_max_pending = MAX_TX_RING_SIZE;
500
501	p->rx_pending = skge->rx_ring.count;
502	p->tx_pending = skge->tx_ring.count;
503}
504
505static int skge_set_ring_param(struct net_device *dev,
506			       struct ethtool_ringparam *p)
507{
508	struct skge_port *skge = netdev_priv(dev);
509	int err = 0;
510
511	if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
512	    p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
513		return -EINVAL;
514
515	skge->rx_ring.count = p->rx_pending;
516	skge->tx_ring.count = p->tx_pending;
517
518	if (netif_running(dev)) {
519		skge_down(dev);
520		err = skge_up(dev);
521		if (err)
522			dev_close(dev);
523	}
524
525	return err;
526}
527
528static u32 skge_get_msglevel(struct net_device *netdev)
529{
530	struct skge_port *skge = netdev_priv(netdev);
531	return skge->msg_enable;
532}
533
534static void skge_set_msglevel(struct net_device *netdev, u32 value)
535{
536	struct skge_port *skge = netdev_priv(netdev);
537	skge->msg_enable = value;
538}
539
540static int skge_nway_reset(struct net_device *dev)
541{
542	struct skge_port *skge = netdev_priv(dev);
543
544	if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
545		return -EINVAL;
546
547	skge_phy_reset(skge);
548	return 0;
549}
550
551static void skge_get_pauseparam(struct net_device *dev,
552				struct ethtool_pauseparam *ecmd)
553{
554	struct skge_port *skge = netdev_priv(dev);
555
556	ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
557			  (skge->flow_control == FLOW_MODE_SYM_OR_REM));
558	ecmd->tx_pause = (ecmd->rx_pause ||
559			  (skge->flow_control == FLOW_MODE_LOC_SEND));
560
561	ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
562}
563
564static int skge_set_pauseparam(struct net_device *dev,
565			       struct ethtool_pauseparam *ecmd)
566{
567	struct skge_port *skge = netdev_priv(dev);
568	struct ethtool_pauseparam old;
569	int err = 0;
570
571	skge_get_pauseparam(dev, &old);
572
573	if (ecmd->autoneg != old.autoneg)
574		skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
575	else {
576		if (ecmd->rx_pause && ecmd->tx_pause)
577			skge->flow_control = FLOW_MODE_SYMMETRIC;
578		else if (ecmd->rx_pause && !ecmd->tx_pause)
579			skge->flow_control = FLOW_MODE_SYM_OR_REM;
580		else if (!ecmd->rx_pause && ecmd->tx_pause)
581			skge->flow_control = FLOW_MODE_LOC_SEND;
582		else
583			skge->flow_control = FLOW_MODE_NONE;
584	}
585
586	if (netif_running(dev)) {
587		skge_down(dev);
588		err = skge_up(dev);
589		if (err) {
590			dev_close(dev);
591			return err;
592		}
593	}
594
595	return 0;
596}
597
598/* Chip internal frequency for clock calculations */
599static inline u32 hwkhz(const struct skge_hw *hw)
600{
601	return is_genesis(hw) ? 53125 : 78125;
602}
603
604/* Chip HZ to microseconds */
605static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
606{
607	return (ticks * 1000) / hwkhz(hw);
608}
609
610/* Microseconds to chip HZ */
611static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
612{
613	return hwkhz(hw) * usec / 1000;
614}
615
616static int skge_get_coalesce(struct net_device *dev,
617			     struct ethtool_coalesce *ecmd)
618{
619	struct skge_port *skge = netdev_priv(dev);
620	struct skge_hw *hw = skge->hw;
621	int port = skge->port;
622
623	ecmd->rx_coalesce_usecs = 0;
624	ecmd->tx_coalesce_usecs = 0;
625
626	if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
627		u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
628		u32 msk = skge_read32(hw, B2_IRQM_MSK);
629
630		if (msk & rxirqmask[port])
631			ecmd->rx_coalesce_usecs = delay;
632		if (msk & txirqmask[port])
633			ecmd->tx_coalesce_usecs = delay;
634	}
635
636	return 0;
637}
638
639/* Note: interrupt timer is per board, but can turn on/off per port */
640static int skge_set_coalesce(struct net_device *dev,
641			     struct ethtool_coalesce *ecmd)
642{
643	struct skge_port *skge = netdev_priv(dev);
644	struct skge_hw *hw = skge->hw;
645	int port = skge->port;
646	u32 msk = skge_read32(hw, B2_IRQM_MSK);
647	u32 delay = 25;
648
649	if (ecmd->rx_coalesce_usecs == 0)
650		msk &= ~rxirqmask[port];
651	else if (ecmd->rx_coalesce_usecs < 25 ||
652		 ecmd->rx_coalesce_usecs > 33333)
653		return -EINVAL;
654	else {
655		msk |= rxirqmask[port];
656		delay = ecmd->rx_coalesce_usecs;
657	}
658
659	if (ecmd->tx_coalesce_usecs == 0)
660		msk &= ~txirqmask[port];
661	else if (ecmd->tx_coalesce_usecs < 25 ||
662		 ecmd->tx_coalesce_usecs > 33333)
663		return -EINVAL;
664	else {
665		msk |= txirqmask[port];
666		delay = min(delay, ecmd->rx_coalesce_usecs);
667	}
668
669	skge_write32(hw, B2_IRQM_MSK, msk);
670	if (msk == 0)
671		skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
672	else {
673		skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
674		skge_write32(hw, B2_IRQM_CTRL, TIM_START);
675	}
676	return 0;
677}
678
679enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
680static void skge_led(struct skge_port *skge, enum led_mode mode)
681{
682	struct skge_hw *hw = skge->hw;
683	int port = skge->port;
684
685	spin_lock_bh(&hw->phy_lock);
686	if (is_genesis(hw)) {
687		switch (mode) {
688		case LED_MODE_OFF:
689			if (hw->phy_type == SK_PHY_BCOM)
690				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
691			else {
692				skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
693				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
694			}
695			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
696			skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
697			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
698			break;
699
700		case LED_MODE_ON:
701			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
702			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
703
704			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
705			skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
706
707			break;
708
709		case LED_MODE_TST:
710			skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
711			skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
712			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
713
714			if (hw->phy_type == SK_PHY_BCOM)
715				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
716			else {
717				skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
718				skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
719				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
720			}
721
722		}
723	} else {
724		switch (mode) {
725		case LED_MODE_OFF:
726			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
727			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
728				     PHY_M_LED_MO_DUP(MO_LED_OFF)  |
729				     PHY_M_LED_MO_10(MO_LED_OFF)   |
730				     PHY_M_LED_MO_100(MO_LED_OFF)  |
731				     PHY_M_LED_MO_1000(MO_LED_OFF) |
732				     PHY_M_LED_MO_RX(MO_LED_OFF));
733			break;
734		case LED_MODE_ON:
735			gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
736				     PHY_M_LED_PULS_DUR(PULS_170MS) |
737				     PHY_M_LED_BLINK_RT(BLINK_84MS) |
738				     PHY_M_LEDC_TX_CTRL |
739				     PHY_M_LEDC_DP_CTRL);
740
741			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
742				     PHY_M_LED_MO_RX(MO_LED_OFF) |
743				     (skge->speed == SPEED_100 ?
744				      PHY_M_LED_MO_100(MO_LED_ON) : 0));
745			break;
746		case LED_MODE_TST:
747			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
748			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
749				     PHY_M_LED_MO_DUP(MO_LED_ON)  |
750				     PHY_M_LED_MO_10(MO_LED_ON)   |
751				     PHY_M_LED_MO_100(MO_LED_ON)  |
752				     PHY_M_LED_MO_1000(MO_LED_ON) |
753				     PHY_M_LED_MO_RX(MO_LED_ON));
754		}
755	}
756	spin_unlock_bh(&hw->phy_lock);
757}
758
759/* blink LED's for finding board */
760static int skge_set_phys_id(struct net_device *dev,
761			    enum ethtool_phys_id_state state)
762{
763	struct skge_port *skge = netdev_priv(dev);
764
765	switch (state) {
766	case ETHTOOL_ID_ACTIVE:
767		return 2;	/* cycle on/off twice per second */
768
769	case ETHTOOL_ID_ON:
770		skge_led(skge, LED_MODE_TST);
771		break;
772
773	case ETHTOOL_ID_OFF:
774		skge_led(skge, LED_MODE_OFF);
775		break;
776
777	case ETHTOOL_ID_INACTIVE:
778		/* back to regular LED state */
779		skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
780	}
781
782	return 0;
783}
784
785static int skge_get_eeprom_len(struct net_device *dev)
786{
787	struct skge_port *skge = netdev_priv(dev);
788	u32 reg2;
789
790	pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
791	return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
792}
793
794static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
795{
796	u32 val;
797
798	pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
799
800	do {
801		pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
802	} while (!(offset & PCI_VPD_ADDR_F));
803
804	pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
805	return val;
806}
807
808static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
809{
810	pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
811	pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
812			      offset | PCI_VPD_ADDR_F);
813
814	do {
815		pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
816	} while (offset & PCI_VPD_ADDR_F);
817}
818
819static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
820			   u8 *data)
821{
822	struct skge_port *skge = netdev_priv(dev);
823	struct pci_dev *pdev = skge->hw->pdev;
824	int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
825	int length = eeprom->len;
826	u16 offset = eeprom->offset;
827
828	if (!cap)
829		return -EINVAL;
830
831	eeprom->magic = SKGE_EEPROM_MAGIC;
832
833	while (length > 0) {
834		u32 val = skge_vpd_read(pdev, cap, offset);
835		int n = min_t(int, length, sizeof(val));
836
837		memcpy(data, &val, n);
838		length -= n;
839		data += n;
840		offset += n;
841	}
842	return 0;
843}
844
845static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
846			   u8 *data)
847{
848	struct skge_port *skge = netdev_priv(dev);
849	struct pci_dev *pdev = skge->hw->pdev;
850	int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
851	int length = eeprom->len;
852	u16 offset = eeprom->offset;
853
854	if (!cap)
855		return -EINVAL;
856
857	if (eeprom->magic != SKGE_EEPROM_MAGIC)
858		return -EINVAL;
859
860	while (length > 0) {
861		u32 val;
862		int n = min_t(int, length, sizeof(val));
863
864		if (n < sizeof(val))
865			val = skge_vpd_read(pdev, cap, offset);
866		memcpy(&val, data, n);
867
868		skge_vpd_write(pdev, cap, offset, val);
869
870		length -= n;
871		data += n;
872		offset += n;
873	}
874	return 0;
875}
876
877static const struct ethtool_ops skge_ethtool_ops = {
878	.get_settings	= skge_get_settings,
879	.set_settings	= skge_set_settings,
880	.get_drvinfo	= skge_get_drvinfo,
881	.get_regs_len	= skge_get_regs_len,
882	.get_regs	= skge_get_regs,
883	.get_wol	= skge_get_wol,
884	.set_wol	= skge_set_wol,
885	.get_msglevel	= skge_get_msglevel,
886	.set_msglevel	= skge_set_msglevel,
887	.nway_reset	= skge_nway_reset,
888	.get_link	= ethtool_op_get_link,
889	.get_eeprom_len	= skge_get_eeprom_len,
890	.get_eeprom	= skge_get_eeprom,
891	.set_eeprom	= skge_set_eeprom,
892	.get_ringparam	= skge_get_ring_param,
893	.set_ringparam	= skge_set_ring_param,
894	.get_pauseparam = skge_get_pauseparam,
895	.set_pauseparam = skge_set_pauseparam,
896	.get_coalesce	= skge_get_coalesce,
897	.set_coalesce	= skge_set_coalesce,
898	.get_strings	= skge_get_strings,
899	.set_phys_id	= skge_set_phys_id,
900	.get_sset_count = skge_get_sset_count,
901	.get_ethtool_stats = skge_get_ethtool_stats,
902};
903
904/*
905 * Allocate ring elements and chain them together
906 * One-to-one association of board descriptors with ring elements
907 */
908static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
909{
910	struct skge_tx_desc *d;
911	struct skge_element *e;
912	int i;
913
914	ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
915	if (!ring->start)
916		return -ENOMEM;
917
918	for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
919		e->desc = d;
920		if (i == ring->count - 1) {
921			e->next = ring->start;
922			d->next_offset = base;
923		} else {
924			e->next = e + 1;
925			d->next_offset = base + (i+1) * sizeof(*d);
926		}
927	}
928	ring->to_use = ring->to_clean = ring->start;
929
930	return 0;
931}
932
933/* Allocate and setup a new buffer for receiving */
934static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
935			  struct sk_buff *skb, unsigned int bufsize)
936{
937	struct skge_rx_desc *rd = e->desc;
938	u64 map;
939
940	map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
941			     PCI_DMA_FROMDEVICE);
942
943	rd->dma_lo = map;
944	rd->dma_hi = map >> 32;
945	e->skb = skb;
946	rd->csum1_start = ETH_HLEN;
947	rd->csum2_start = ETH_HLEN;
948	rd->csum1 = 0;
949	rd->csum2 = 0;
950
951	wmb();
952
953	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
954	dma_unmap_addr_set(e, mapaddr, map);
955	dma_unmap_len_set(e, maplen, bufsize);
956}
957
958/* Resume receiving using existing skb,
959 * Note: DMA address is not changed by chip.
960 * 	 MTU not changed while receiver active.
961 */
962static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
963{
964	struct skge_rx_desc *rd = e->desc;
965
966	rd->csum2 = 0;
967	rd->csum2_start = ETH_HLEN;
968
969	wmb();
970
971	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
972}
973
974
975/* Free all  buffers in receive ring, assumes receiver stopped */
976static void skge_rx_clean(struct skge_port *skge)
977{
978	struct skge_hw *hw = skge->hw;
979	struct skge_ring *ring = &skge->rx_ring;
980	struct skge_element *e;
981
982	e = ring->start;
983	do {
984		struct skge_rx_desc *rd = e->desc;
985		rd->control = 0;
986		if (e->skb) {
987			pci_unmap_single(hw->pdev,
988					 dma_unmap_addr(e, mapaddr),
989					 dma_unmap_len(e, maplen),
990					 PCI_DMA_FROMDEVICE);
991			dev_kfree_skb(e->skb);
992			e->skb = NULL;
993		}
994	} while ((e = e->next) != ring->start);
995}
996
997
998/* Allocate buffers for receive ring
999 * For receive:  to_clean is next received frame.
1000 */
1001static int skge_rx_fill(struct net_device *dev)
1002{
1003	struct skge_port *skge = netdev_priv(dev);
1004	struct skge_ring *ring = &skge->rx_ring;
1005	struct skge_element *e;
1006
1007	e = ring->start;
1008	do {
1009		struct sk_buff *skb;
1010
1011		skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
1012					 GFP_KERNEL);
1013		if (!skb)
1014			return -ENOMEM;
1015
1016		skb_reserve(skb, NET_IP_ALIGN);
1017		skge_rx_setup(skge, e, skb, skge->rx_buf_size);
1018	} while ((e = e->next) != ring->start);
1019
1020	ring->to_clean = ring->start;
1021	return 0;
1022}
1023
1024static const char *skge_pause(enum pause_status status)
1025{
1026	switch (status) {
1027	case FLOW_STAT_NONE:
1028		return "none";
1029	case FLOW_STAT_REM_SEND:
1030		return "rx only";
1031	case FLOW_STAT_LOC_SEND:
1032		return "tx_only";
1033	case FLOW_STAT_SYMMETRIC:		/* Both station may send PAUSE */
1034		return "both";
1035	default:
1036		return "indeterminated";
1037	}
1038}
1039
1040
1041static void skge_link_up(struct skge_port *skge)
1042{
1043	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
1044		    LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
1045
1046	netif_carrier_on(skge->netdev);
1047	netif_wake_queue(skge->netdev);
1048
1049	netif_info(skge, link, skge->netdev,
1050		   "Link is up at %d Mbps, %s duplex, flow control %s\n",
1051		   skge->speed,
1052		   skge->duplex == DUPLEX_FULL ? "full" : "half",
1053		   skge_pause(skge->flow_status));
1054}
1055
1056static void skge_link_down(struct skge_port *skge)
1057{
1058	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
1059	netif_carrier_off(skge->netdev);
1060	netif_stop_queue(skge->netdev);
1061
1062	netif_info(skge, link, skge->netdev, "Link is down\n");
1063}
1064
1065static void xm_link_down(struct skge_hw *hw, int port)
1066{
1067	struct net_device *dev = hw->dev[port];
1068	struct skge_port *skge = netdev_priv(dev);
1069
1070	xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1071
1072	if (netif_carrier_ok(dev))
1073		skge_link_down(skge);
1074}
1075
1076static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1077{
1078	int i;
1079
1080	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1081	*val = xm_read16(hw, port, XM_PHY_DATA);
1082
1083	if (hw->phy_type == SK_PHY_XMAC)
1084		goto ready;
1085
1086	for (i = 0; i < PHY_RETRIES; i++) {
1087		if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1088			goto ready;
1089		udelay(1);
1090	}
1091
1092	return -ETIMEDOUT;
1093 ready:
1094	*val = xm_read16(hw, port, XM_PHY_DATA);
1095
1096	return 0;
1097}
1098
1099static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1100{
1101	u16 v = 0;
1102	if (__xm_phy_read(hw, port, reg, &v))
1103		pr_warning("%s: phy read timed out\n", hw->dev[port]->name);
1104	return v;
1105}
1106
1107static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1108{
1109	int i;
1110
1111	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1112	for (i = 0; i < PHY_RETRIES; i++) {
1113		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1114			goto ready;
1115		udelay(1);
1116	}
1117	return -EIO;
1118
1119 ready:
1120	xm_write16(hw, port, XM_PHY_DATA, val);
1121	for (i = 0; i < PHY_RETRIES; i++) {
1122		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1123			return 0;
1124		udelay(1);
1125	}
1126	return -ETIMEDOUT;
1127}
1128
1129static void genesis_init(struct skge_hw *hw)
1130{
1131	/* set blink source counter */
1132	skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1133	skge_write8(hw, B2_BSC_CTRL, BSC_START);
1134
1135	/* configure mac arbiter */
1136	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1137
1138	/* configure mac arbiter timeout values */
1139	skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1140	skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1141	skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1142	skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1143
1144	skge_write8(hw, B3_MA_RCINI_RX1, 0);
1145	skge_write8(hw, B3_MA_RCINI_RX2, 0);
1146	skge_write8(hw, B3_MA_RCINI_TX1, 0);
1147	skge_write8(hw, B3_MA_RCINI_TX2, 0);
1148
1149	/* configure packet arbiter timeout */
1150	skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1151	skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1152	skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1153	skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1154	skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1155}
1156
1157static void genesis_reset(struct skge_hw *hw, int port)
1158{
1159	static const u8 zero[8]  = { 0 };
1160	u32 reg;
1161
1162	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1163
1164	/* reset the statistics module */
1165	xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1166	xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1167	xm_write32(hw, port, XM_MODE, 0);		/* clear Mode Reg */
1168	xm_write16(hw, port, XM_TX_CMD, 0);	/* reset TX CMD Reg */
1169	xm_write16(hw, port, XM_RX_CMD, 0);	/* reset RX CMD Reg */
1170
1171	/* disable Broadcom PHY IRQ */
1172	if (hw->phy_type == SK_PHY_BCOM)
1173		xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1174
1175	xm_outhash(hw, port, XM_HSM, zero);
1176
1177	/* Flush TX and RX fifo */
1178	reg = xm_read32(hw, port, XM_MODE);
1179	xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
1180	xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
1181}
1182
1183/* Convert mode to MII values  */
1184static const u16 phy_pause_map[] = {
1185	[FLOW_MODE_NONE] =	0,
1186	[FLOW_MODE_LOC_SEND] =	PHY_AN_PAUSE_ASYM,
1187	[FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1188	[FLOW_MODE_SYM_OR_REM]  = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1189};
1190
1191/* special defines for FIBER (88E1011S only) */
1192static const u16 fiber_pause_map[] = {
1193	[FLOW_MODE_NONE]	= PHY_X_P_NO_PAUSE,
1194	[FLOW_MODE_LOC_SEND]	= PHY_X_P_ASYM_MD,
1195	[FLOW_MODE_SYMMETRIC]	= PHY_X_P_SYM_MD,
1196	[FLOW_MODE_SYM_OR_REM]	= PHY_X_P_BOTH_MD,
1197};
1198
1199
1200/* Check status of Broadcom phy link */
1201static void bcom_check_link(struct skge_hw *hw, int port)
1202{
1203	struct net_device *dev = hw->dev[port];
1204	struct skge_port *skge = netdev_priv(dev);
1205	u16 status;
1206
1207	/* read twice because of latch */
1208	xm_phy_read(hw, port, PHY_BCOM_STAT);
1209	status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1210
1211	if ((status & PHY_ST_LSYNC) == 0) {
1212		xm_link_down(hw, port);
1213		return;
1214	}
1215
1216	if (skge->autoneg == AUTONEG_ENABLE) {
1217		u16 lpa, aux;
1218
1219		if (!(status & PHY_ST_AN_OVER))
1220			return;
1221
1222		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1223		if (lpa & PHY_B_AN_RF) {
1224			netdev_notice(dev, "remote fault\n");
1225			return;
1226		}
1227
1228		aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1229
1230		/* Check Duplex mismatch */
1231		switch (aux & PHY_B_AS_AN_RES_MSK) {
1232		case PHY_B_RES_1000FD:
1233			skge->duplex = DUPLEX_FULL;
1234			break;
1235		case PHY_B_RES_1000HD:
1236			skge->duplex = DUPLEX_HALF;
1237			break;
1238		default:
1239			netdev_notice(dev, "duplex mismatch\n");
1240			return;
1241		}
1242
1243		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
1244		switch (aux & PHY_B_AS_PAUSE_MSK) {
1245		case PHY_B_AS_PAUSE_MSK:
1246			skge->flow_status = FLOW_STAT_SYMMETRIC;
1247			break;
1248		case PHY_B_AS_PRR:
1249			skge->flow_status = FLOW_STAT_REM_SEND;
1250			break;
1251		case PHY_B_AS_PRT:
1252			skge->flow_status = FLOW_STAT_LOC_SEND;
1253			break;
1254		default:
1255			skge->flow_status = FLOW_STAT_NONE;
1256		}
1257		skge->speed = SPEED_1000;
1258	}
1259
1260	if (!netif_carrier_ok(dev))
1261		genesis_link_up(skge);
1262}
1263
1264/* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1265 * Phy on for 100 or 10Mbit operation
1266 */
1267static void bcom_phy_init(struct skge_port *skge)
1268{
1269	struct skge_hw *hw = skge->hw;
1270	int port = skge->port;
1271	int i;
1272	u16 id1, r, ext, ctl;
1273
1274	/* magic workaround patterns for Broadcom */
1275	static const struct {
1276		u16 reg;
1277		u16 val;
1278	} A1hack[] = {
1279		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1280		{ 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1281		{ 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1282		{ 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1283	}, C0hack[] = {
1284		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1285		{ 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1286	};
1287
1288	/* read Id from external PHY (all have the same address) */
1289	id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1290
1291	/* Optimize MDIO transfer by suppressing preamble. */
1292	r = xm_read16(hw, port, XM_MMU_CMD);
1293	r |=  XM_MMU_NO_PRE;
1294	xm_write16(hw, port, XM_MMU_CMD, r);
1295
1296	switch (id1) {
1297	case PHY_BCOM_ID1_C0:
1298		/*
1299		 * Workaround BCOM Errata for the C0 type.
1300		 * Write magic patterns to reserved registers.
1301		 */
1302		for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1303			xm_phy_write(hw, port,
1304				     C0hack[i].reg, C0hack[i].val);
1305
1306		break;
1307	case PHY_BCOM_ID1_A1:
1308		/*
1309		 * Workaround BCOM Errata for the A1 type.
1310		 * Write magic patterns to reserved registers.
1311		 */
1312		for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1313			xm_phy_write(hw, port,
1314				     A1hack[i].reg, A1hack[i].val);
1315		break;
1316	}
1317
1318	/*
1319	 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1320	 * Disable Power Management after reset.
1321	 */
1322	r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1323	r |= PHY_B_AC_DIS_PM;
1324	xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1325
1326	/* Dummy read */
1327	xm_read16(hw, port, XM_ISRC);
1328
1329	ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1330	ctl = PHY_CT_SP1000;	/* always 1000mbit */
1331
1332	if (skge->autoneg == AUTONEG_ENABLE) {
1333		/*
1334		 * Workaround BCOM Errata #1 for the C5 type.
1335		 * 1000Base-T Link Acquisition Failure in Slave Mode
1336		 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1337		 */
1338		u16 adv = PHY_B_1000C_RD;
1339		if (skge->advertising & ADVERTISED_1000baseT_Half)
1340			adv |= PHY_B_1000C_AHD;
1341		if (skge->advertising & ADVERTISED_1000baseT_Full)
1342			adv |= PHY_B_1000C_AFD;
1343		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1344
1345		ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1346	} else {
1347		if (skge->duplex == DUPLEX_FULL)
1348			ctl |= PHY_CT_DUP_MD;
1349		/* Force to slave */
1350		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1351	}
1352
1353	/* Set autonegotiation pause parameters */
1354	xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1355		     phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1356
1357	/* Handle Jumbo frames */
1358	if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1359		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1360			     PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1361
1362		ext |= PHY_B_PEC_HIGH_LA;
1363
1364	}
1365
1366	xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1367	xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1368
1369	/* Use link status change interrupt */
1370	xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1371}
1372
1373static void xm_phy_init(struct skge_port *skge)
1374{
1375	struct skge_hw *hw = skge->hw;
1376	int port = skge->port;
1377	u16 ctrl = 0;
1378
1379	if (skge->autoneg == AUTONEG_ENABLE) {
1380		if (skge->advertising & ADVERTISED_1000baseT_Half)
1381			ctrl |= PHY_X_AN_HD;
1382		if (skge->advertising & ADVERTISED_1000baseT_Full)
1383			ctrl |= PHY_X_AN_FD;
1384
1385		ctrl |= fiber_pause_map[skge->flow_control];
1386
1387		xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1388
1389		/* Restart Auto-negotiation */
1390		ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1391	} else {
1392		/* Set DuplexMode in Config register */
1393		if (skge->duplex == DUPLEX_FULL)
1394			ctrl |= PHY_CT_DUP_MD;
1395		/*
1396		 * Do NOT enable Auto-negotiation here. This would hold
1397		 * the link down because no IDLEs are transmitted
1398		 */
1399	}
1400
1401	xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1402
1403	/* Poll PHY for status changes */
1404	mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1405}
1406
1407static int xm_check_link(struct net_device *dev)
1408{
1409	struct skge_port *skge = netdev_priv(dev);
1410	struct skge_hw *hw = skge->hw;
1411	int port = skge->port;
1412	u16 status;
1413
1414	/* read twice because of latch */
1415	xm_phy_read(hw, port, PHY_XMAC_STAT);
1416	status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1417
1418	if ((status & PHY_ST_LSYNC) == 0) {
1419		xm_link_down(hw, port);
1420		return 0;
1421	}
1422
1423	if (skge->autoneg == AUTONEG_ENABLE) {
1424		u16 lpa, res;
1425
1426		if (!(status & PHY_ST_AN_OVER))
1427			return 0;
1428
1429		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1430		if (lpa & PHY_B_AN_RF) {
1431			netdev_notice(dev, "remote fault\n");
1432			return 0;
1433		}
1434
1435		res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1436
1437		/* Check Duplex mismatch */
1438		switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1439		case PHY_X_RS_FD:
1440			skge->duplex = DUPLEX_FULL;
1441			break;
1442		case PHY_X_RS_HD:
1443			skge->duplex = DUPLEX_HALF;
1444			break;
1445		default:
1446			netdev_notice(dev, "duplex mismatch\n");
1447			return 0;
1448		}
1449
1450		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
1451		if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1452		     skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1453		    (lpa & PHY_X_P_SYM_MD))
1454			skge->flow_status = FLOW_STAT_SYMMETRIC;
1455		else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1456			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1457			/* Enable PAUSE receive, disable PAUSE transmit */
1458			skge->flow_status  = FLOW_STAT_REM_SEND;
1459		else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1460			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1461			/* Disable PAUSE receive, enable PAUSE transmit */
1462			skge->flow_status = FLOW_STAT_LOC_SEND;
1463		else
1464			skge->flow_status = FLOW_STAT_NONE;
1465
1466		skge->speed = SPEED_1000;
1467	}
1468
1469	if (!netif_carrier_ok(dev))
1470		genesis_link_up(skge);
1471	return 1;
1472}
1473
1474/* Poll to check for link coming up.
1475 *
1476 * Since internal PHY is wired to a level triggered pin, can't
1477 * get an interrupt when carrier is detected, need to poll for
1478 * link coming up.
1479 */
1480static void xm_link_timer(unsigned long arg)
1481{
1482	struct skge_port *skge = (struct skge_port *) arg;
1483	struct net_device *dev = skge->netdev;
1484	struct skge_hw *hw = skge->hw;
1485	int port = skge->port;
1486	int i;
1487	unsigned long flags;
1488
1489	if (!netif_running(dev))
1490		return;
1491
1492	spin_lock_irqsave(&hw->phy_lock, flags);
1493
1494	/*
1495	 * Verify that the link by checking GPIO register three times.
1496	 * This pin has the signal from the link_sync pin connected to it.
1497	 */
1498	for (i = 0; i < 3; i++) {
1499		if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1500			goto link_down;
1501	}
1502
1503	/* Re-enable interrupt to detect link down */
1504	if (xm_check_link(dev)) {
1505		u16 msk = xm_read16(hw, port, XM_IMSK);
1506		msk &= ~XM_IS_INP_ASS;
1507		xm_write16(hw, port, XM_IMSK, msk);
1508		xm_read16(hw, port, XM_ISRC);
1509	} else {
1510link_down:
1511		mod_timer(&skge->link_timer,
1512			  round_jiffies(jiffies + LINK_HZ));
1513	}
1514	spin_unlock_irqrestore(&hw->phy_lock, flags);
1515}
1516
1517static void genesis_mac_init(struct skge_hw *hw, int port)
1518{
1519	struct net_device *dev = hw->dev[port];
1520	struct skge_port *skge = netdev_priv(dev);
1521	int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1522	int i;
1523	u32 r;
1524	static const u8 zero[6]  = { 0 };
1525
1526	for (i = 0; i < 10; i++) {
1527		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1528			     MFF_SET_MAC_RST);
1529		if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1530			goto reset_ok;
1531		udelay(1);
1532	}
1533
1534	netdev_warn(dev, "genesis reset failed\n");
1535
1536 reset_ok:
1537	/* Unreset the XMAC. */
1538	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1539
1540	/*
1541	 * Perform additional initialization for external PHYs,
1542	 * namely for the 1000baseTX cards that use the XMAC's
1543	 * GMII mode.
1544	 */
1545	if (hw->phy_type != SK_PHY_XMAC) {
1546		/* Take external Phy out of reset */
1547		r = skge_read32(hw, B2_GP_IO);
1548		if (port == 0)
1549			r |= GP_DIR_0|GP_IO_0;
1550		else
1551			r |= GP_DIR_2|GP_IO_2;
1552
1553		skge_write32(hw, B2_GP_IO, r);
1554
1555		/* Enable GMII interface */
1556		xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1557	}
1558
1559
1560	switch (hw->phy_type) {
1561	case SK_PHY_XMAC:
1562		xm_phy_init(skge);
1563		break;
1564	case SK_PHY_BCOM:
1565		bcom_phy_init(skge);
1566		bcom_check_link(hw, port);
1567	}
1568
1569	/* Set Station Address */
1570	xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1571
1572	/* We don't use match addresses so clear */
1573	for (i = 1; i < 16; i++)
1574		xm_outaddr(hw, port, XM_EXM(i), zero);
1575
1576	/* Clear MIB counters */
1577	xm_write16(hw, port, XM_STAT_CMD,
1578			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1579	/* Clear two times according to Errata #3 */
1580	xm_write16(hw, port, XM_STAT_CMD,
1581			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1582
1583	/* configure Rx High Water Mark (XM_RX_HI_WM) */
1584	xm_write16(hw, port, XM_RX_HI_WM, 1450);
1585
1586	/* We don't need the FCS appended to the packet. */
1587	r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1588	if (jumbo)
1589		r |= XM_RX_BIG_PK_OK;
1590
1591	if (skge->duplex == DUPLEX_HALF) {
1592		/*
1593		 * If in manual half duplex mode the other side might be in
1594		 * full duplex mode, so ignore if a carrier extension is not seen
1595		 * on frames received
1596		 */
1597		r |= XM_RX_DIS_CEXT;
1598	}
1599	xm_write16(hw, port, XM_RX_CMD, r);
1600
1601	/* We want short frames padded to 60 bytes. */
1602	xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1603
1604	/* Increase threshold for jumbo frames on dual port */
1605	if (hw->ports > 1 && jumbo)
1606		xm_write16(hw, port, XM_TX_THR, 1020);
1607	else
1608		xm_write16(hw, port, XM_TX_THR, 512);
1609
1610	/*
1611	 * Enable the reception of all error frames. This is is
1612	 * a necessary evil due to the design of the XMAC. The
1613	 * XMAC's receive FIFO is only 8K in size, however jumbo
1614	 * frames can be up to 9000 bytes in length. When bad
1615	 * frame filtering is enabled, the XMAC's RX FIFO operates
1616	 * in 'store and forward' mode. For this to work, the
1617	 * entire frame has to fit into the FIFO, but that means
1618	 * that jumbo frames larger than 8192 bytes will be
1619	 * truncated. Disabling all bad frame filtering causes
1620	 * the RX FIFO to operate in streaming mode, in which
1621	 * case the XMAC will start transferring frames out of the
1622	 * RX FIFO as soon as the FIFO threshold is reached.
1623	 */
1624	xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1625
1626
1627	/*
1628	 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1629	 *	- Enable all bits excepting 'Octets Rx OK Low CntOv'
1630	 *	  and 'Octets Rx OK Hi Cnt Ov'.
1631	 */
1632	xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1633
1634	/*
1635	 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1636	 *	- Enable all bits excepting 'Octets Tx OK Low CntOv'
1637	 *	  and 'Octets Tx OK Hi Cnt Ov'.
1638	 */
1639	xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1640
1641	/* Configure MAC arbiter */
1642	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1643
1644	/* configure timeout values */
1645	skge_write8(hw, B3_MA_TOINI_RX1, 72);
1646	skge_write8(hw, B3_MA_TOINI_RX2, 72);
1647	skge_write8(hw, B3_MA_TOINI_TX1, 72);
1648	skge_write8(hw, B3_MA_TOINI_TX2, 72);
1649
1650	skge_write8(hw, B3_MA_RCINI_RX1, 0);
1651	skge_write8(hw, B3_MA_RCINI_RX2, 0);
1652	skge_write8(hw, B3_MA_RCINI_TX1, 0);
1653	skge_write8(hw, B3_MA_RCINI_TX2, 0);
1654
1655	/* Configure Rx MAC FIFO */
1656	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1657	skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1658	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1659
1660	/* Configure Tx MAC FIFO */
1661	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1662	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1663	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1664
1665	if (jumbo) {
1666		/* Enable frame flushing if jumbo frames used */
1667		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
1668	} else {
1669		/* enable timeout timers if normal frames */
1670		skge_write16(hw, B3_PA_CTRL,
1671			     (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1672	}
1673}
1674
1675static void genesis_stop(struct skge_port *skge)
1676{
1677	struct skge_hw *hw = skge->hw;
1678	int port = skge->port;
1679	unsigned retries = 1000;
1680	u16 cmd;
1681
1682	/* Disable Tx and Rx */
1683	cmd = xm_read16(hw, port, XM_MMU_CMD);
1684	cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1685	xm_write16(hw, port, XM_MMU_CMD, cmd);
1686
1687	genesis_reset(hw, port);
1688
1689	/* Clear Tx packet arbiter timeout IRQ */
1690	skge_write16(hw, B3_PA_CTRL,
1691		     port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1692
1693	/* Reset the MAC */
1694	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1695	do {
1696		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1697		if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
1698			break;
1699	} while (--retries > 0);
1700
1701	/* For external PHYs there must be special handling */
1702	if (hw->phy_type != SK_PHY_XMAC) {
1703		u32 reg = skge_read32(hw, B2_GP_IO);
1704		if (port == 0) {
1705			reg |= GP_DIR_0;
1706			reg &= ~GP_IO_0;
1707		} else {
1708			reg |= GP_DIR_2;
1709			reg &= ~GP_IO_2;
1710		}
1711		skge_write32(hw, B2_GP_IO, reg);
1712		skge_read32(hw, B2_GP_IO);
1713	}
1714
1715	xm_write16(hw, port, XM_MMU_CMD,
1716			xm_read16(hw, port, XM_MMU_CMD)
1717			& ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1718
1719	xm_read16(hw, port, XM_MMU_CMD);
1720}
1721
1722
1723static void genesis_get_stats(struct skge_port *skge, u64 *data)
1724{
1725	struct skge_hw *hw = skge->hw;
1726	int port = skge->port;
1727	int i;
1728	unsigned long timeout = jiffies + HZ;
1729
1730	xm_write16(hw, port,
1731			XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1732
1733	/* wait for update to complete */
1734	while (xm_read16(hw, port, XM_STAT_CMD)
1735	       & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1736		if (time_after(jiffies, timeout))
1737			break;
1738		udelay(10);
1739	}
1740
1741	/* special case for 64 bit octet counter */
1742	data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1743		| xm_read32(hw, port, XM_TXO_OK_LO);
1744	data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1745		| xm_read32(hw, port, XM_RXO_OK_LO);
1746
1747	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1748		data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1749}
1750
1751static void genesis_mac_intr(struct skge_hw *hw, int port)
1752{
1753	struct net_device *dev = hw->dev[port];
1754	struct skge_port *skge = netdev_priv(dev);
1755	u16 status = xm_read16(hw, port, XM_ISRC);
1756
1757	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1758		     "mac interrupt status 0x%x\n", status);
1759
1760	if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
1761		xm_link_down(hw, port);
1762		mod_timer(&skge->link_timer, jiffies + 1);
1763	}
1764
1765	if (status & XM_IS_TXF_UR) {
1766		xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1767		++dev->stats.tx_fifo_errors;
1768	}
1769}
1770
1771static void genesis_link_up(struct skge_port *skge)
1772{
1773	struct skge_hw *hw = skge->hw;
1774	int port = skge->port;
1775	u16 cmd, msk;
1776	u32 mode;
1777
1778	cmd = xm_read16(hw, port, XM_MMU_CMD);
1779
1780	/*
1781	 * enabling pause frame reception is required for 1000BT
1782	 * because the XMAC is not reset if the link is going down
1783	 */
1784	if (skge->flow_status == FLOW_STAT_NONE ||
1785	    skge->flow_status == FLOW_STAT_LOC_SEND)
1786		/* Disable Pause Frame Reception */
1787		cmd |= XM_MMU_IGN_PF;
1788	else
1789		/* Enable Pause Frame Reception */
1790		cmd &= ~XM_MMU_IGN_PF;
1791
1792	xm_write16(hw, port, XM_MMU_CMD, cmd);
1793
1794	mode = xm_read32(hw, port, XM_MODE);
1795	if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
1796	    skge->flow_status == FLOW_STAT_LOC_SEND) {
1797		/*
1798		 * Configure Pause Frame Generation
1799		 * Use internal and external Pause Frame Generation.
1800		 * Sending pause frames is edge triggered.
1801		 * Send a Pause frame with the maximum pause time if
1802		 * internal oder external FIFO full condition occurs.
1803		 * Send a zero pause time frame to re-start transmission.
1804		 */
1805		/* XM_PAUSE_DA = '010000C28001' (default) */
1806		/* XM_MAC_PTIME = 0xffff (maximum) */
1807		/* remember this value is defined in big endian (!) */
1808		xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1809
1810		mode |= XM_PAUSE_MODE;
1811		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1812	} else {
1813		/*
1814		 * disable pause frame generation is required for 1000BT
1815		 * because the XMAC is not reset if the link is going down
1816		 */
1817		/* Disable Pause Mode in Mode Register */
1818		mode &= ~XM_PAUSE_MODE;
1819
1820		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1821	}
1822
1823	xm_write32(hw, port, XM_MODE, mode);
1824
1825	/* Turn on detection of Tx underrun */
1826	msk = xm_read16(hw, port, XM_IMSK);
1827	msk &= ~XM_IS_TXF_UR;
1828	xm_write16(hw, port, XM_IMSK, msk);
1829
1830	xm_read16(hw, port, XM_ISRC);
1831
1832	/* get MMU Command Reg. */
1833	cmd = xm_read16(hw, port, XM_MMU_CMD);
1834	if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1835		cmd |= XM_MMU_GMII_FD;
1836
1837	/*
1838	 * Workaround BCOM Errata (#10523) for all BCom Phys
1839	 * Enable Power Management after link up
1840	 */
1841	if (hw->phy_type == SK_PHY_BCOM) {
1842		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1843			     xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1844			     & ~PHY_B_AC_DIS_PM);
1845		xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1846	}
1847
1848	/* enable Rx/Tx */
1849	xm_write16(hw, port, XM_MMU_CMD,
1850			cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1851	skge_link_up(skge);
1852}
1853
1854
1855static inline void bcom_phy_intr(struct skge_port *skge)
1856{
1857	struct skge_hw *hw = skge->hw;
1858	int port = skge->port;
1859	u16 isrc;
1860
1861	isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1862	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1863		     "phy interrupt status 0x%x\n", isrc);
1864
1865	if (isrc & PHY_B_IS_PSE)
1866		pr_err("%s: uncorrectable pair swap error\n",
1867		       hw->dev[port]->name);
1868
1869	/* Workaround BCom Errata:
1870	 *	enable and disable loopback mode if "NO HCD" occurs.
1871	 */
1872	if (isrc & PHY_B_IS_NO_HDCL) {
1873		u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1874		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1875				  ctrl | PHY_CT_LOOP);
1876		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1877				  ctrl & ~PHY_CT_LOOP);
1878	}
1879
1880	if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1881		bcom_check_link(hw, port);
1882
1883}
1884
1885static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1886{
1887	int i;
1888
1889	gma_write16(hw, port, GM_SMI_DATA, val);
1890	gma_write16(hw, port, GM_SMI_CTRL,
1891			 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1892	for (i = 0; i < PHY_RETRIES; i++) {
1893		udelay(1);
1894
1895		if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1896			return 0;
1897	}
1898
1899	pr_warning("%s: phy write timeout\n", hw->dev[port]->name);
1900	return -EIO;
1901}
1902
1903static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1904{
1905	int i;
1906
1907	gma_write16(hw, port, GM_SMI_CTRL,
1908			 GM_SMI_CT_PHY_AD(hw->phy_addr)
1909			 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1910
1911	for (i = 0; i < PHY_RETRIES; i++) {
1912		udelay(1);
1913		if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1914			goto ready;
1915	}
1916
1917	return -ETIMEDOUT;
1918 ready:
1919	*val = gma_read16(hw, port, GM_SMI_DATA);
1920	return 0;
1921}
1922
1923static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1924{
1925	u16 v = 0;
1926	if (__gm_phy_read(hw, port, reg, &v))
1927		pr_warning("%s: phy read timeout\n", hw->dev[port]->name);
1928	return v;
1929}
1930
1931/* Marvell Phy Initialization */
1932static void yukon_init(struct skge_hw *hw, int port)
1933{
1934	struct skge_port *skge = netdev_priv(hw->dev[port]);
1935	u16 ctrl, ct1000, adv;
1936
1937	if (skge->autoneg == AUTONEG_ENABLE) {
1938		u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1939
1940		ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1941			  PHY_M_EC_MAC_S_MSK);
1942		ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1943
1944		ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1945
1946		gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1947	}
1948
1949	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1950	if (skge->autoneg == AUTONEG_DISABLE)
1951		ctrl &= ~PHY_CT_ANE;
1952
1953	ctrl |= PHY_CT_RESET;
1954	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1955
1956	ctrl = 0;
1957	ct1000 = 0;
1958	adv = PHY_AN_CSMA;
1959
1960	if (skge->autoneg == AUTONEG_ENABLE) {
1961		if (hw->copper) {
1962			if (skge->advertising & ADVERTISED_1000baseT_Full)
1963				ct1000 |= PHY_M_1000C_AFD;
1964			if (skge->advertising & ADVERTISED_1000baseT_Half)
1965				ct1000 |= PHY_M_1000C_AHD;
1966			if (skge->advertising & ADVERTISED_100baseT_Full)
1967				adv |= PHY_M_AN_100_FD;
1968			if (skge->advertising & ADVERTISED_100baseT_Half)
1969				adv |= PHY_M_AN_100_HD;
1970			if (skge->advertising & ADVERTISED_10baseT_Full)
1971				adv |= PHY_M_AN_10_FD;
1972			if (skge->advertising & ADVERTISED_10baseT_Half)
1973				adv |= PHY_M_AN_10_HD;
1974
1975			/* Set Flow-control capabilities */
1976			adv |= phy_pause_map[skge->flow_control];
1977		} else {
1978			if (skge->advertising & ADVERTISED_1000baseT_Full)
1979				adv |= PHY_M_AN_1000X_AFD;
1980			if (skge->advertising & ADVERTISED_1000baseT_Half)
1981				adv |= PHY_M_AN_1000X_AHD;
1982
1983			adv |= fiber_pause_map[skge->flow_control];
1984		}
1985
1986		/* Restart Auto-negotiation */
1987		ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1988	} else {
1989		/* forced speed/duplex settings */
1990		ct1000 = PHY_M_1000C_MSE;
1991
1992		if (skge->duplex == DUPLEX_FULL)
1993			ctrl |= PHY_CT_DUP_MD;
1994
1995		switch (skge->speed) {
1996		case SPEED_1000:
1997			ctrl |= PHY_CT_SP1000;
1998			break;
1999		case SPEED_100:
2000			ctrl |= PHY_CT_SP100;
2001			break;
2002		}
2003
2004		ctrl |= PHY_CT_RESET;
2005	}
2006
2007	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
2008
2009	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
2010	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2011
2012	/* Enable phy interrupt on autonegotiation complete (or link up) */
2013	if (skge->autoneg == AUTONEG_ENABLE)
2014		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
2015	else
2016		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2017}
2018
2019static void yukon_reset(struct skge_hw *hw, int port)
2020{
2021	gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
2022	gma_write16(hw, port, GM_MC_ADDR_H1, 0);	/* clear MC hash */
2023	gma_write16(hw, port, GM_MC_ADDR_H2, 0);
2024	gma_write16(hw, port, GM_MC_ADDR_H3, 0);
2025	gma_write16(hw, port, GM_MC_ADDR_H4, 0);
2026
2027	gma_write16(hw, port, GM_RX_CTRL,
2028			 gma_read16(hw, port, GM_RX_CTRL)
2029			 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2030}
2031
2032/* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2033static int is_yukon_lite_a0(struct skge_hw *hw)
2034{
2035	u32 reg;
2036	int ret;
2037
2038	if (hw->chip_id != CHIP_ID_YUKON)
2039		return 0;
2040
2041	reg = skge_read32(hw, B2_FAR);
2042	skge_write8(hw, B2_FAR + 3, 0xff);
2043	ret = (skge_read8(hw, B2_FAR + 3) != 0);
2044	skge_write32(hw, B2_FAR, reg);
2045	return ret;
2046}
2047
2048static void yukon_mac_init(struct skge_hw *hw, int port)
2049{
2050	struct skge_port *skge = netdev_priv(hw->dev[port]);
2051	int i;
2052	u32 reg;
2053	const u8 *addr = hw->dev[port]->dev_addr;
2054
2055	/* WA code for COMA mode -- set PHY reset */
2056	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2057	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2058		reg = skge_read32(hw, B2_GP_IO);
2059		reg |= GP_DIR_9 | GP_IO_9;
2060		skge_write32(hw, B2_GP_IO, reg);
2061	}
2062
2063	/* hard reset */
2064	skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2065	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2066
2067	/* WA code for COMA mode -- clear PHY reset */
2068	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2069	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2070		reg = skge_read32(hw, B2_GP_IO);
2071		reg |= GP_DIR_9;
2072		reg &= ~GP_IO_9;
2073		skge_write32(hw, B2_GP_IO, reg);
2074	}
2075
2076	/* Set hardware config mode */
2077	reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
2078		GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
2079	reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
2080
2081	/* Clear GMC reset */
2082	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2083	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2084	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2085
2086	if (skge->autoneg == AUTONEG_DISABLE) {
2087		reg = GM_GPCR_AU_ALL_DIS;
2088		gma_write16(hw, port, GM_GP_CTRL,
2089				 gma_read16(hw, port, GM_GP_CTRL) | reg);
2090
2091		switch (skge->speed) {
2092		case SPEED_1000:
2093			reg &= ~GM_GPCR_SPEED_100;
2094			reg |= GM_GPCR_SPEED_1000;
2095			break;
2096		case SPEED_100:
2097			reg &= ~GM_GPCR_SPEED_1000;
2098			reg |= GM_GPCR_SPEED_100;
2099			break;
2100		case SPEED_10:
2101			reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2102			break;
2103		}
2104
2105		if (skge->duplex == DUPLEX_FULL)
2106			reg |= GM_GPCR_DUP_FULL;
2107	} else
2108		reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2109
2110	switch (skge->flow_control) {
2111	case FLOW_MODE_NONE:
2112		skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2113		reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2114		break;
2115	case FLOW_MODE_LOC_SEND:
2116		/* disable Rx flow-control */
2117		reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2118		break;
2119	case FLOW_MODE_SYMMETRIC:
2120	case FLOW_MODE_SYM_OR_REM:
2121		/* enable Tx & Rx flow-control */
2122		break;
2123	}
2124
2125	gma_write16(hw, port, GM_GP_CTRL, reg);
2126	skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2127
2128	yukon_init(hw, port);
2129
2130	/* MIB clear */
2131	reg = gma_read16(hw, port, GM_PHY_ADDR);
2132	gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2133
2134	for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2135		gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2136	gma_write16(hw, port, GM_PHY_ADDR, reg);
2137
2138	/* transmit control */
2139	gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2140
2141	/* receive control reg: unicast + multicast + no FCS  */
2142	gma_write16(hw, port, GM_RX_CTRL,
2143			 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2144
2145	/* transmit flow control */
2146	gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2147
2148	/* transmit parameter */
2149	gma_write16(hw, port, GM_TX_PARAM,
2150			 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2151			 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2152			 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2153
2154	/* configure the Serial Mode Register */
2155	reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
2156		| GM_SMOD_VLAN_ENA
2157		| IPG_DATA_VAL(IPG_DATA_DEF);
2158
2159	if (hw->dev[port]->mtu > ETH_DATA_LEN)
2160		reg |= GM_SMOD_JUMBO_ENA;
2161
2162	gma_write16(hw, port, GM_SERIAL_MODE, reg);
2163
2164	/* physical address: used for pause frames */
2165	gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2166	/* virtual address for data */
2167	gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2168
2169	/* enable interrupt mask for counter overflows */
2170	gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2171	gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2172	gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2173
2174	/* Initialize Mac Fifo */
2175
2176	/* Configure Rx MAC FIFO */
2177	skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2178	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2179
2180	/* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2181	if (is_yukon_lite_a0(hw))
2182		reg &= ~GMF_RX_F_FL_ON;
2183
2184	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2185	skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2186	/*
2187	 * because Pause Packet Truncation in GMAC is not working
2188	 * we have to increase the Flush Threshold to 64 bytes
2189	 * in order to flush pause packets in Rx FIFO on Yukon-1
2190	 */
2191	skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2192
2193	/* Configure Tx MAC FIFO */
2194	skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2195	skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2196}
2197
2198/* Go into power down mode */
2199static void yukon_suspend(struct skge_hw *hw, int port)
2200{
2201	u16 ctrl;
2202
2203	ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2204	ctrl |= PHY_M_PC_POL_R_DIS;
2205	gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2206
2207	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2208	ctrl |= PHY_CT_RESET;
2209	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2210
2211	/* switch IEEE compatible power down mode on */
2212	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2213	ctrl |= PHY_CT_PDOWN;
2214	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2215}
2216
2217static void yukon_stop(struct skge_port *skge)
2218{
2219	struct skge_hw *hw = skge->hw;
2220	int port = skge->port;
2221
2222	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2223	yukon_reset(hw, port);
2224
2225	gma_write16(hw, port, GM_GP_CTRL,
2226			 gma_read16(hw, port, GM_GP_CTRL)
2227			 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2228	gma_read16(hw, port, GM_GP_CTRL);
2229
2230	yukon_suspend(hw, port);
2231
2232	/* set GPHY Control reset */
2233	skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2234	skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2235}
2236
2237static void yukon_get_stats(struct skge_port *skge, u64 *data)
2238{
2239	struct skge_hw *hw = skge->hw;
2240	int port = skge->port;
2241	int i;
2242
2243	data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2244		| gma_read32(hw, port, GM_TXO_OK_LO);
2245	data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2246		| gma_read32(hw, port, GM_RXO_OK_LO);
2247
2248	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2249		data[i] = gma_read32(hw, port,
2250					  skge_stats[i].gma_offset);
2251}
2252
2253static void yukon_mac_intr(struct skge_hw *hw, int port)
2254{
2255	struct net_device *dev = hw->dev[port];
2256	struct skge_port *skge = netdev_priv(dev);
2257	u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2258
2259	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2260		     "mac interrupt status 0x%x\n", status);
2261
2262	if (status & GM_IS_RX_FF_OR) {
2263		++dev->stats.rx_fifo_errors;
2264		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2265	}
2266
2267	if (status & GM_IS_TX_FF_UR) {
2268		++dev->stats.tx_fifo_errors;
2269		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2270	}
2271
2272}
2273
2274static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2275{
2276	switch (aux & PHY_M_PS_SPEED_MSK) {
2277	case PHY_M_PS_SPEED_1000:
2278		return SPEED_1000;
2279	case PHY_M_PS_SPEED_100:
2280		return SPEED_100;
2281	default:
2282		return SPEED_10;
2283	}
2284}
2285
2286static void yukon_link_up(struct skge_port *skge)
2287{
2288	struct skge_hw *hw = skge->hw;
2289	int port = skge->port;
2290	u16 reg;
2291
2292	/* Enable Transmit FIFO Underrun */
2293	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2294
2295	reg = gma_read16(hw, port, GM_GP_CTRL);
2296	if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2297		reg |= GM_GPCR_DUP_FULL;
2298
2299	/* enable Rx/Tx */
2300	reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2301	gma_write16(hw, port, GM_GP_CTRL, reg);
2302
2303	gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2304	skge_link_up(skge);
2305}
2306
2307static void yukon_link_down(struct skge_port *skge)
2308{
2309	struct skge_hw *hw = skge->hw;
2310	int port = skge->port;
2311	u16 ctrl;
2312
2313	ctrl = gma_read16(hw, port, GM_GP_CTRL);
2314	ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2315	gma_write16(hw, port, GM_GP_CTRL, ctrl);
2316
2317	if (skge->flow_status == FLOW_STAT_REM_SEND) {
2318		ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2319		ctrl |= PHY_M_AN_ASP;
2320		/* restore Asymmetric Pause bit */
2321		gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2322	}
2323
2324	skge_link_down(skge);
2325
2326	yukon_init(hw, port);
2327}
2328
2329static void yukon_phy_intr(struct skge_port *skge)
2330{
2331	struct skge_hw *hw = skge->hw;
2332	int port = skge->port;
2333	const char *reason = NULL;
2334	u16 istatus, phystat;
2335
2336	istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2337	phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2338
2339	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2340		     "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
2341
2342	if (istatus & PHY_M_IS_AN_COMPL) {
2343		if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2344		    & PHY_M_AN_RF) {
2345			reason = "remote fault";
2346			goto failed;
2347		}
2348
2349		if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2350			reason = "master/slave fault";
2351			goto failed;
2352		}
2353
2354		if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2355			reason = "speed/duplex";
2356			goto failed;
2357		}
2358
2359		skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2360			? DUPLEX_FULL : DUPLEX_HALF;
2361		skge->speed = yukon_speed(hw, phystat);
2362
2363		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
2364		switch (phystat & PHY_M_PS_PAUSE_MSK) {
2365		case PHY_M_PS_PAUSE_MSK:
2366			skge->flow_status = FLOW_STAT_SYMMETRIC;
2367			break;
2368		case PHY_M_PS_RX_P_EN:
2369			skge->flow_status = FLOW_STAT_REM_SEND;
2370			break;
2371		case PHY_M_PS_TX_P_EN:
2372			skge->flow_status = FLOW_STAT_LOC_SEND;
2373			break;
2374		default:
2375			skge->flow_status = FLOW_STAT_NONE;
2376		}
2377
2378		if (skge->flow_status == FLOW_STAT_NONE ||
2379		    (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2380			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2381		else
2382			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2383		yukon_link_up(skge);
2384		return;
2385	}
2386
2387	if (istatus & PHY_M_IS_LSP_CHANGE)
2388		skge->speed = yukon_speed(hw, phystat);
2389
2390	if (istatus & PHY_M_IS_DUP_CHANGE)
2391		skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2392	if (istatus & PHY_M_IS_LST_CHANGE) {
2393		if (phystat & PHY_M_PS_LINK_UP)
2394			yukon_link_up(skge);
2395		else
2396			yukon_link_down(skge);
2397	}
2398	return;
2399 failed:
2400	pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
2401
2402	/* XXX restart autonegotiation? */
2403}
2404
2405static void skge_phy_reset(struct skge_port *skge)
2406{
2407	struct skge_hw *hw = skge->hw;
2408	int port = skge->port;
2409	struct net_device *dev = hw->dev[port];
2410
2411	netif_stop_queue(skge->netdev);
2412	netif_carrier_off(skge->netdev);
2413
2414	spin_lock_bh(&hw->phy_lock);
2415	if (is_genesis(hw)) {
2416		genesis_reset(hw, port);
2417		genesis_mac_init(hw, port);
2418	} else {
2419		yukon_reset(hw, port);
2420		yukon_init(hw, port);
2421	}
2422	spin_unlock_bh(&hw->phy_lock);
2423
2424	skge_set_multicast(dev);
2425}
2426
2427/* Basic MII support */
2428static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2429{
2430	struct mii_ioctl_data *data = if_mii(ifr);
2431	struct skge_port *skge = netdev_priv(dev);
2432	struct skge_hw *hw = skge->hw;
2433	int err = -EOPNOTSUPP;
2434
2435	if (!netif_running(dev))
2436		return -ENODEV;	/* Phy still in reset */
2437
2438	switch (cmd) {
2439	case SIOCGMIIPHY:
2440		data->phy_id = hw->phy_addr;
2441
2442		/* fallthru */
2443	case SIOCGMIIREG: {
2444		u16 val = 0;
2445		spin_lock_bh(&hw->phy_lock);
2446
2447		if (is_genesis(hw))
2448			err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2449		else
2450			err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2451		spin_unlock_bh(&hw->phy_lock);
2452		data->val_out = val;
2453		break;
2454	}
2455
2456	case SIOCSMIIREG:
2457		spin_lock_bh(&hw->phy_lock);
2458		if (is_genesis(hw))
2459			err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2460				   data->val_in);
2461		else
2462			err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2463				   data->val_in);
2464		spin_unlock_bh(&hw->phy_lock);
2465		break;
2466	}
2467	return err;
2468}
2469
2470static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2471{
2472	u32 end;
2473
2474	start /= 8;
2475	len /= 8;
2476	end = start + len - 1;
2477
2478	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2479	skge_write32(hw, RB_ADDR(q, RB_START), start);
2480	skge_write32(hw, RB_ADDR(q, RB_WP), start);
2481	skge_write32(hw, RB_ADDR(q, RB_RP), start);
2482	skge_write32(hw, RB_ADDR(q, RB_END), end);
2483
2484	if (q == Q_R1 || q == Q_R2) {
2485		/* Set thresholds on receive queue's */
2486		skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2487			     start + (2*len)/3);
2488		skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2489			     start + (len/3));
2490	} else {
2491		/* Enable store & forward on Tx queue's because
2492		 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2493		 */
2494		skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2495	}
2496
2497	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2498}
2499
2500/* Setup Bus Memory Interface */
2501static void skge_qset(struct skge_port *skge, u16 q,
2502		      const struct skge_element *e)
2503{
2504	struct skge_hw *hw = skge->hw;
2505	u32 watermark = 0x600;
2506	u64 base = skge->dma + (e->desc - skge->mem);
2507
2508	/* optimization to reduce window on 32bit/33mhz */
2509	if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2510		watermark /= 2;
2511
2512	skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2513	skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2514	skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2515	skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2516}
2517
2518static int skge_up(struct net_device *dev)
2519{
2520	struct skge_port *skge = netdev_priv(dev);
2521	struct skge_hw *hw = skge->hw;
2522	int port = skge->port;
2523	u32 chunk, ram_addr;
2524	size_t rx_size, tx_size;
2525	int err;
2526
2527	if (!is_valid_ether_addr(dev->dev_addr))
2528		return -EINVAL;
2529
2530	netif_info(skge, ifup, skge->netdev, "enabling interface\n");
2531
2532	if (dev->mtu > RX_BUF_SIZE)
2533		skge->rx_buf_size = dev->mtu + ETH_HLEN;
2534	else
2535		skge->rx_buf_size = RX_BUF_SIZE;
2536
2537
2538	rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2539	tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2540	skge->mem_size = tx_size + rx_size;
2541	skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2542	if (!skge->mem)
2543		return -ENOMEM;
2544
2545	BUG_ON(skge->dma & 7);
2546
2547	if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
2548		dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
2549		err = -EINVAL;
2550		goto free_pci_mem;
2551	}
2552
2553	memset(skge->mem, 0, skge->mem_size);
2554
2555	err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2556	if (err)
2557		goto free_pci_mem;
2558
2559	err = skge_rx_fill(dev);
2560	if (err)
2561		goto free_rx_ring;
2562
2563	err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2564			      skge->dma + rx_size);
2565	if (err)
2566		goto free_rx_ring;
2567
2568	if (hw->ports == 1) {
2569		err = request_irq(hw->pdev->irq, skge_intr, IRQF_SHARED,
2570				  dev->name, hw);
2571		if (err) {
2572			netdev_err(dev, "Unable to allocate interrupt %d error: %d\n",
2573				   hw->pdev->irq, err);
2574			goto free_tx_ring;
2575		}
2576	}
2577
2578	/* Initialize MAC */
2579	netif_carrier_off(dev);
2580	spin_lock_bh(&hw->phy_lock);
2581	if (is_genesis(hw))
2582		genesis_mac_init(hw, port);
2583	else
2584		yukon_mac_init(hw, port);
2585	spin_unlock_bh(&hw->phy_lock);
2586
2587	/* Configure RAMbuffers - equally between ports and tx/rx */
2588	chunk = (hw->ram_size  - hw->ram_offset) / (hw->ports * 2);
2589	ram_addr = hw->ram_offset + 2 * chunk * port;
2590
2591	skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2592	skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2593
2594	BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2595	skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2596	skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2597
2598	/* Start receiver BMU */
2599	wmb();
2600	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2601	skge_led(skge, LED_MODE_ON);
2602
2603	spin_lock_irq(&hw->hw_lock);
2604	hw->intr_mask |= portmask[port];
2605	skge_write32(hw, B0_IMSK, hw->intr_mask);
2606	skge_read32(hw, B0_IMSK);
2607	spin_unlock_irq(&hw->hw_lock);
2608
2609	napi_enable(&skge->napi);
2610
2611	skge_set_multicast(dev);
2612
2613	return 0;
2614
2615 free_tx_ring:
2616	kfree(skge->tx_ring.start);
2617 free_rx_ring:
2618	skge_rx_clean(skge);
2619	kfree(skge->rx_ring.start);
2620 free_pci_mem:
2621	pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2622	skge->mem = NULL;
2623
2624	return err;
2625}
2626
2627/* stop receiver */
2628static void skge_rx_stop(struct skge_hw *hw, int port)
2629{
2630	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2631	skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2632		     RB_RST_SET|RB_DIS_OP_MD);
2633	skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2634}
2635
2636static int skge_down(struct net_device *dev)
2637{
2638	struct skge_port *skge = netdev_priv(dev);
2639	struct skge_hw *hw = skge->hw;
2640	int port = skge->port;
2641
2642	if (skge->mem == NULL)
2643		return 0;
2644
2645	netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
2646
2647	netif_tx_disable(dev);
2648
2649	if (is_genesis(hw) && hw->phy_type == SK_PHY_XMAC)
2650		del_timer_sync(&skge->link_timer);
2651
2652	napi_disable(&skge->napi);
2653	netif_carrier_off(dev);
2654
2655	spin_lock_irq(&hw->hw_lock);
2656	hw->intr_mask &= ~portmask[port];
2657	skge_write32(hw, B0_IMSK, (hw->ports == 1) ? 0 : hw->intr_mask);
2658	skge_read32(hw, B0_IMSK);
2659	spin_unlock_irq(&hw->hw_lock);
2660
2661	if (hw->ports == 1)
2662		free_irq(hw->pdev->irq, hw);
2663
2664	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
2665	if (is_genesis(hw))
2666		genesis_stop(skge);
2667	else
2668		yukon_stop(skge);
2669
2670	/* Stop transmitter */
2671	skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2672	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2673		     RB_RST_SET|RB_DIS_OP_MD);
2674
2675
2676	/* Disable Force Sync bit and Enable Alloc bit */
2677	skge_write8(hw, SK_REG(port, TXA_CTRL),
2678		    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2679
2680	/* Stop Interval Timer and Limit Counter of Tx Arbiter */
2681	skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2682	skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2683
2684	/* Reset PCI FIFO */
2685	skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2686	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2687
2688	/* Reset the RAM Buffer async Tx queue */
2689	skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2690
2691	skge_rx_stop(hw, port);
2692
2693	if (is_genesis(hw)) {
2694		skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2695		skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2696	} else {
2697		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2698		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2699	}
2700
2701	skge_led(skge, LED_MODE_OFF);
2702
2703	netif_tx_lock_bh(dev);
2704	skge_tx_clean(dev);
2705	netif_tx_unlock_bh(dev);
2706
2707	skge_rx_clean(skge);
2708
2709	kfree(skge->rx_ring.start);
2710	kfree(skge->tx_ring.start);
2711	pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2712	skge->mem = NULL;
2713	return 0;
2714}
2715
2716static inline int skge_avail(const struct skge_ring *ring)
2717{
2718	smp_mb();
2719	return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2720		+ (ring->to_clean - ring->to_use) - 1;
2721}
2722
2723static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
2724				   struct net_device *dev)
2725{
2726	struct skge_port *skge = netdev_priv(dev);
2727	struct skge_hw *hw = skge->hw;
2728	struct skge_element *e;
2729	struct skge_tx_desc *td;
2730	int i;
2731	u32 control, len;
2732	u64 map;
2733
2734	if (skb_padto(skb, ETH_ZLEN))
2735		return NETDEV_TX_OK;
2736
2737	if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2738		return NETDEV_TX_BUSY;
2739
2740	e = skge->tx_ring.to_use;
2741	td = e->desc;
2742	BUG_ON(td->control & BMU_OWN);
2743	e->skb = skb;
2744	len = skb_headlen(skb);
2745	map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2746	dma_unmap_addr_set(e, mapaddr, map);
2747	dma_unmap_len_set(e, maplen, len);
2748
2749	td->dma_lo = map;
2750	td->dma_hi = map >> 32;
2751
2752	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2753		const int offset = skb_checksum_start_offset(skb);
2754
2755		/* This seems backwards, but it is what the sk98lin
2756		 * does.  Looks like hardware is wrong?
2757		 */
2758		if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
2759		    hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2760			control = BMU_TCP_CHECK;
2761		else
2762			control = BMU_UDP_CHECK;
2763
2764		td->csum_offs = 0;
2765		td->csum_start = offset;
2766		td->csum_write = offset + skb->csum_offset;
2767	} else
2768		control = BMU_CHECK;
2769
2770	if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2771		control |= BMU_EOF | BMU_IRQ_EOF;
2772	else {
2773		struct skge_tx_desc *tf = td;
2774
2775		control |= BMU_STFWD;
2776		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2777			const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2778
2779			map = skb_frag_dma_map(&hw->pdev->dev, frag, 0,
2780					       skb_frag_size(frag), DMA_TO_DEVICE);
2781
2782			e = e->next;
2783			e->skb = skb;
2784			tf = e->desc;
2785			BUG_ON(tf->control & BMU_OWN);
2786
2787			tf->dma_lo = map;
2788			tf->dma_hi = (u64) map >> 32;
2789			dma_unmap_addr_set(e, mapaddr, map);
2790			dma_unmap_len_set(e, maplen, skb_frag_size(frag));
2791
2792			tf->control = BMU_OWN | BMU_SW | control | skb_frag_size(frag);
2793		}
2794		tf->control |= BMU_EOF | BMU_IRQ_EOF;
2795	}
2796	/* Make sure all the descriptors written */
2797	wmb();
2798	td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2799	wmb();
2800
2801	netdev_sent_queue(dev, skb->len);
2802
2803	skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2804
2805	netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
2806		     "tx queued, slot %td, len %d\n",
2807		     e - skge->tx_ring.start, skb->len);
2808
2809	skge->tx_ring.to_use = e->next;
2810	smp_wmb();
2811
2812	if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2813		netdev_dbg(dev, "transmit queue full\n");
2814		netif_stop_queue(dev);
2815	}
2816
2817	return NETDEV_TX_OK;
2818}
2819
2820
2821/* Free resources associated with this reing element */
2822static inline void skge_tx_unmap(struct pci_dev *pdev, struct skge_element *e,
2823				 u32 control)
2824{
2825	/* skb header vs. fragment */
2826	if (control & BMU_STF)
2827		pci_unmap_single(pdev, dma_unmap_addr(e, mapaddr),
2828				 dma_unmap_len(e, maplen),
2829				 PCI_DMA_TODEVICE);
2830	else
2831		pci_unmap_page(pdev, dma_unmap_addr(e, mapaddr),
2832			       dma_unmap_len(e, maplen),
2833			       PCI_DMA_TODEVICE);
2834}
2835
2836/* Free all buffers in transmit ring */
2837static void skge_tx_clean(struct net_device *dev)
2838{
2839	struct skge_port *skge = netdev_priv(dev);
2840	struct skge_element *e;
2841
2842	for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2843		struct skge_tx_desc *td = e->desc;
2844
2845		skge_tx_unmap(skge->hw->pdev, e, td->control);
2846
2847		if (td->control & BMU_EOF)
2848			dev_kfree_skb(e->skb);
2849		td->control = 0;
2850	}
2851
2852	netdev_reset_queue(dev);
2853	skge->tx_ring.to_clean = e;
2854}
2855
2856static void skge_tx_timeout(struct net_device *dev)
2857{
2858	struct skge_port *skge = netdev_priv(dev);
2859
2860	netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
2861
2862	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2863	skge_tx_clean(dev);
2864	netif_wake_queue(dev);
2865}
2866
2867static int skge_change_mtu(struct net_device *dev, int new_mtu)
2868{
2869	int err;
2870
2871	if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
2872		return -EINVAL;
2873
2874	if (!netif_running(dev)) {
2875		dev->mtu = new_mtu;
2876		return 0;
2877	}
2878
2879	skge_down(dev);
2880
2881	dev->mtu = new_mtu;
2882
2883	err = skge_up(dev);
2884	if (err)
2885		dev_close(dev);
2886
2887	return err;
2888}
2889
2890static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2891
2892static void genesis_add_filter(u8 filter[8], const u8 *addr)
2893{
2894	u32 crc, bit;
2895
2896	crc = ether_crc_le(ETH_ALEN, addr);
2897	bit = ~crc & 0x3f;
2898	filter[bit/8] |= 1 << (bit%8);
2899}
2900
2901static void genesis_set_multicast(struct net_device *dev)
2902{
2903	struct skge_port *skge = netdev_priv(dev);
2904	struct skge_hw *hw = skge->hw;
2905	int port = skge->port;
2906	struct netdev_hw_addr *ha;
2907	u32 mode;
2908	u8 filter[8];
2909
2910	mode = xm_read32(hw, port, XM_MODE);
2911	mode |= XM_MD_ENA_HASH;
2912	if (dev->flags & IFF_PROMISC)
2913		mode |= XM_MD_ENA_PROM;
2914	else
2915		mode &= ~XM_MD_ENA_PROM;
2916
2917	if (dev->flags & IFF_ALLMULTI)
2918		memset(filter, 0xff, sizeof(filter));
2919	else {
2920		memset(filter, 0, sizeof(filter));
2921
2922		if (skge->flow_status == FLOW_STAT_REM_SEND ||
2923		    skge->flow_status == FLOW_STAT_SYMMETRIC)
2924			genesis_add_filter(filter, pause_mc_addr);
2925
2926		netdev_for_each_mc_addr(ha, dev)
2927			genesis_add_filter(filter, ha->addr);
2928	}
2929
2930	xm_write32(hw, port, XM_MODE, mode);
2931	xm_outhash(hw, port, XM_HSM, filter);
2932}
2933
2934static void yukon_add_filter(u8 filter[8], const u8 *addr)
2935{
2936	 u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2937	 filter[bit/8] |= 1 << (bit%8);
2938}
2939
2940static void yukon_set_multicast(struct net_device *dev)
2941{
2942	struct skge_port *skge = netdev_priv(dev);
2943	struct skge_hw *hw = skge->hw;
2944	int port = skge->port;
2945	struct netdev_hw_addr *ha;
2946	int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
2947			skge->flow_status == FLOW_STAT_SYMMETRIC);
2948	u16 reg;
2949	u8 filter[8];
2950
2951	memset(filter, 0, sizeof(filter));
2952
2953	reg = gma_read16(hw, port, GM_RX_CTRL);
2954	reg |= GM_RXCR_UCF_ENA;
2955
2956	if (dev->flags & IFF_PROMISC) 		/* promiscuous */
2957		reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2958	else if (dev->flags & IFF_ALLMULTI)	/* all multicast */
2959		memset(filter, 0xff, sizeof(filter));
2960	else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
2961		reg &= ~GM_RXCR_MCF_ENA;
2962	else {
2963		reg |= GM_RXCR_MCF_ENA;
2964
2965		if (rx_pause)
2966			yukon_add_filter(filter, pause_mc_addr);
2967
2968		netdev_for_each_mc_addr(ha, dev)
2969			yukon_add_filter(filter, ha->addr);
2970	}
2971
2972
2973	gma_write16(hw, port, GM_MC_ADDR_H1,
2974			 (u16)filter[0] | ((u16)filter[1] << 8));
2975	gma_write16(hw, port, GM_MC_ADDR_H2,
2976			 (u16)filter[2] | ((u16)filter[3] << 8));
2977	gma_write16(hw, port, GM_MC_ADDR_H3,
2978			 (u16)filter[4] | ((u16)filter[5] << 8));
2979	gma_write16(hw, port, GM_MC_ADDR_H4,
2980			 (u16)filter[6] | ((u16)filter[7] << 8));
2981
2982	gma_write16(hw, port, GM_RX_CTRL, reg);
2983}
2984
2985static inline u16 phy_length(const struct skge_hw *hw, u32 status)
2986{
2987	if (is_genesis(hw))
2988		return status >> XMR_FS_LEN_SHIFT;
2989	else
2990		return status >> GMR_FS_LEN_SHIFT;
2991}
2992
2993static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
2994{
2995	if (is_genesis(hw))
2996		return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
2997	else
2998		return (status & GMR_FS_ANY_ERR) ||
2999			(status & GMR_FS_RX_OK) == 0;
3000}
3001
3002static void skge_set_multicast(struct net_device *dev)
3003{
3004	struct skge_port *skge = netdev_priv(dev);
3005
3006	if (is_genesis(skge->hw))
3007		genesis_set_multicast(dev);
3008	else
3009		yukon_set_multicast(dev);
3010
3011}
3012
3013
3014/* Get receive buffer from descriptor.
3015 * Handles copy of small buffers and reallocation failures
3016 */
3017static struct sk_buff *skge_rx_get(struct net_device *dev,
3018				   struct skge_element *e,
3019				   u32 control, u32 status, u16 csum)
3020{
3021	struct skge_port *skge = netdev_priv(dev);
3022	struct sk_buff *skb;
3023	u16 len = control & BMU_BBC;
3024
3025	netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
3026		     "rx slot %td status 0x%x len %d\n",
3027		     e - skge->rx_ring.start, status, len);
3028
3029	if (len > skge->rx_buf_size)
3030		goto error;
3031
3032	if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
3033		goto error;
3034
3035	if (bad_phy_status(skge->hw, status))
3036		goto error;
3037
3038	if (phy_length(skge->hw, status) != len)
3039		goto error;
3040
3041	if (len < RX_COPY_THRESHOLD) {
3042		skb = netdev_alloc_skb_ip_align(dev, len);
3043		if (!skb)
3044			goto resubmit;
3045
3046		pci_dma_sync_single_for_cpu(skge->hw->pdev,
3047					    dma_unmap_addr(e, mapaddr),
3048					    len, PCI_DMA_FROMDEVICE);
3049		skb_copy_from_linear_data(e->skb, skb->data, len);
3050		pci_dma_sync_single_for_device(skge->hw->pdev,
3051					       dma_unmap_addr(e, mapaddr),
3052					       len, PCI_DMA_FROMDEVICE);
3053		skge_rx_reuse(e, skge->rx_buf_size);
3054	} else {
3055		struct sk_buff *nskb;
3056
3057		nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
3058		if (!nskb)
3059			goto resubmit;
3060
3061		pci_unmap_single(skge->hw->pdev,
3062				 dma_unmap_addr(e, mapaddr),
3063				 dma_unmap_len(e, maplen),
3064				 PCI_DMA_FROMDEVICE);
3065		skb = e->skb;
3066		prefetch(skb->data);
3067		skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
3068	}
3069
3070	skb_put(skb, len);
3071
3072	if (dev->features & NETIF_F_RXCSUM) {
3073		skb->csum = csum;
3074		skb->ip_summed = CHECKSUM_COMPLETE;
3075	}
3076
3077	skb->protocol = eth_type_trans(skb, dev);
3078
3079	return skb;
3080error:
3081
3082	netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
3083		     "rx err, slot %td control 0x%x status 0x%x\n",
3084		     e - skge->rx_ring.start, control, status);
3085
3086	if (is_genesis(skge->hw)) {
3087		if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
3088			dev->stats.rx_length_errors++;
3089		if (status & XMR_FS_FRA_ERR)
3090			dev->stats.rx_frame_errors++;
3091		if (status & XMR_FS_FCS_ERR)
3092			dev->stats.rx_crc_errors++;
3093	} else {
3094		if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3095			dev->stats.rx_length_errors++;
3096		if (status & GMR_FS_FRAGMENT)
3097			dev->stats.rx_frame_errors++;
3098		if (status & GMR_FS_CRC_ERR)
3099			dev->stats.rx_crc_errors++;
3100	}
3101
3102resubmit:
3103	skge_rx_reuse(e, skge->rx_buf_size);
3104	return NULL;
3105}
3106
3107/* Free all buffers in Tx ring which are no longer owned by device */
3108static void skge_tx_done(struct net_device *dev)
3109{
3110	struct skge_port *skge = netdev_priv(dev);
3111	struct skge_ring *ring = &skge->tx_ring;
3112	struct skge_element *e;
3113	unsigned int bytes_compl = 0, pkts_compl = 0;
3114
3115	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3116
3117	for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3118		u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3119
3120		if (control & BMU_OWN)
3121			break;
3122
3123		skge_tx_unmap(skge->hw->pdev, e, control);
3124
3125		if (control & BMU_EOF) {
3126			netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
3127				     "tx done slot %td\n",
3128				     e - skge->tx_ring.start);
3129
3130			pkts_compl++;
3131			bytes_compl += e->skb->len;
3132
3133			dev_kfree_skb(e->skb);
3134		}
3135	}
3136	netdev_completed_queue(dev, pkts_compl, bytes_compl);
3137	skge->tx_ring.to_clean = e;
3138
3139	/* Can run lockless until we need to synchronize to restart queue. */
3140	smp_mb();
3141
3142	if (unlikely(netif_queue_stopped(dev) &&
3143		     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3144		netif_tx_lock(dev);
3145		if (unlikely(netif_queue_stopped(dev) &&
3146			     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3147			netif_wake_queue(dev);
3148
3149		}
3150		netif_tx_unlock(dev);
3151	}
3152}
3153
3154static int skge_poll(struct napi_struct *napi, int to_do)
3155{
3156	struct skge_port *skge = container_of(napi, struct skge_port, napi);
3157	struct net_device *dev = skge->netdev;
3158	struct skge_hw *hw = skge->hw;
3159	struct skge_ring *ring = &skge->rx_ring;
3160	struct skge_element *e;
3161	int work_done = 0;
3162
3163	skge_tx_done(dev);
3164
3165	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3166
3167	for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
3168		struct skge_rx_desc *rd = e->desc;
3169		struct sk_buff *skb;
3170		u32 control;
3171
3172		rmb();
3173		control = rd->control;
3174		if (control & BMU_OWN)
3175			break;
3176
3177		skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3178		if (likely(skb)) {
3179			napi_gro_receive(napi, skb);
3180			++work_done;
3181		}
3182	}
3183	ring->to_clean = e;
3184
3185	/* restart receiver */
3186	wmb();
3187	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3188
3189	if (work_done < to_do) {
3190		unsigned long flags;
3191
3192		napi_gro_flush(napi);
3193		spin_lock_irqsave(&hw->hw_lock, flags);
3194		__napi_complete(napi);
3195		hw->intr_mask |= napimask[skge->port];
3196		skge_write32(hw, B0_IMSK, hw->intr_mask);
3197		skge_read32(hw, B0_IMSK);
3198		spin_unlock_irqrestore(&hw->hw_lock, flags);
3199	}
3200
3201	return work_done;
3202}
3203
3204/* Parity errors seem to happen when Genesis is connected to a switch
3205 * with no other ports present. Heartbeat error??
3206 */
3207static void skge_mac_parity(struct skge_hw *hw, int port)
3208{
3209	struct net_device *dev = hw->dev[port];
3210
3211	++dev->stats.tx_heartbeat_errors;
3212
3213	if (is_genesis(hw))
3214		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3215			     MFF_CLR_PERR);
3216	else
3217		/* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3218		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3219			    (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3220			    ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3221}
3222
3223static void skge_mac_intr(struct skge_hw *hw, int port)
3224{
3225	if (is_genesis(hw))
3226		genesis_mac_intr(hw, port);
3227	else
3228		yukon_mac_intr(hw, port);
3229}
3230
3231/* Handle device specific framing and timeout interrupts */
3232static void skge_error_irq(struct skge_hw *hw)
3233{
3234	struct pci_dev *pdev = hw->pdev;
3235	u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3236
3237	if (is_genesis(hw)) {
3238		/* clear xmac errors */
3239		if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3240			skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3241		if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3242			skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3243	} else {
3244		/* Timestamp (unused) overflow */
3245		if (hwstatus & IS_IRQ_TIST_OV)
3246			skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3247	}
3248
3249	if (hwstatus & IS_RAM_RD_PAR) {
3250		dev_err(&pdev->dev, "Ram read data parity error\n");
3251		skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3252	}
3253
3254	if (hwstatus & IS_RAM_WR_PAR) {
3255		dev_err(&pdev->dev, "Ram write data parity error\n");
3256		skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3257	}
3258
3259	if (hwstatus & IS_M1_PAR_ERR)
3260		skge_mac_parity(hw, 0);
3261
3262	if (hwstatus & IS_M2_PAR_ERR)
3263		skge_mac_parity(hw, 1);
3264
3265	if (hwstatus & IS_R1_PAR_ERR) {
3266		dev_err(&pdev->dev, "%s: receive queue parity error\n",
3267			hw->dev[0]->name);
3268		skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3269	}
3270
3271	if (hwstatus & IS_R2_PAR_ERR) {
3272		dev_err(&pdev->dev, "%s: receive queue parity error\n",
3273			hw->dev[1]->name);
3274		skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3275	}
3276
3277	if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3278		u16 pci_status, pci_cmd;
3279
3280		pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3281		pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3282
3283		dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3284			pci_cmd, pci_status);
3285
3286		/* Write the error bits back to clear them. */
3287		pci_status &= PCI_STATUS_ERROR_BITS;
3288		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3289		pci_write_config_word(pdev, PCI_COMMAND,
3290				      pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3291		pci_write_config_word(pdev, PCI_STATUS, pci_status);
3292		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3293
3294		/* if error still set then just ignore it */
3295		hwstatus = skge_read32(hw, B0_HWE_ISRC);
3296		if (hwstatus & IS_IRQ_STAT) {
3297			dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3298			hw->intr_mask &= ~IS_HW_ERR;
3299		}
3300	}
3301}
3302
3303/*
3304 * Interrupt from PHY are handled in tasklet (softirq)
3305 * because accessing phy registers requires spin wait which might
3306 * cause excess interrupt latency.
3307 */
3308static void skge_extirq(unsigned long arg)
3309{
3310	struct skge_hw *hw = (struct skge_hw *) arg;
3311	int port;
3312
3313	for (port = 0; port < hw->ports; port++) {
3314		struct net_device *dev = hw->dev[port];
3315
3316		if (netif_running(dev)) {
3317			struct skge_port *skge = netdev_priv(dev);
3318
3319			spin_lock(&hw->phy_lock);
3320			if (!is_genesis(hw))
3321				yukon_phy_intr(skge);
3322			else if (hw->phy_type == SK_PHY_BCOM)
3323				bcom_phy_intr(skge);
3324			spin_unlock(&hw->phy_lock);
3325		}
3326	}
3327
3328	spin_lock_irq(&hw->hw_lock);
3329	hw->intr_mask |= IS_EXT_REG;
3330	skge_write32(hw, B0_IMSK, hw->intr_mask);
3331	skge_read32(hw, B0_IMSK);
3332	spin_unlock_irq(&hw->hw_lock);
3333}
3334
3335static irqreturn_t skge_intr(int irq, void *dev_id)
3336{
3337	struct skge_hw *hw = dev_id;
3338	u32 status;
3339	int handled = 0;
3340
3341	spin_lock(&hw->hw_lock);
3342	/* Reading this register masks IRQ */
3343	status = skge_read32(hw, B0_SP_ISRC);
3344	if (status == 0 || status == ~0)
3345		goto out;
3346
3347	handled = 1;
3348	status &= hw->intr_mask;
3349	if (status & IS_EXT_REG) {
3350		hw->intr_mask &= ~IS_EXT_REG;
3351		tasklet_schedule(&hw->phy_task);
3352	}
3353
3354	if (status & (IS_XA1_F|IS_R1_F)) {
3355		struct skge_port *skge = netdev_priv(hw->dev[0]);
3356		hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3357		napi_schedule(&skge->napi);
3358	}
3359
3360	if (status & IS_PA_TO_TX1)
3361		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3362
3363	if (status & IS_PA_TO_RX1) {
3364		++hw->dev[0]->stats.rx_over_errors;
3365		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3366	}
3367
3368
3369	if (status & IS_MAC1)
3370		skge_mac_intr(hw, 0);
3371
3372	if (hw->dev[1]) {
3373		struct skge_port *skge = netdev_priv(hw->dev[1]);
3374
3375		if (status & (IS_XA2_F|IS_R2_F)) {
3376			hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3377			napi_schedule(&skge->napi);
3378		}
3379
3380		if (status & IS_PA_TO_RX2) {
3381			++hw->dev[1]->stats.rx_over_errors;
3382			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3383		}
3384
3385		if (status & IS_PA_TO_TX2)
3386			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3387
3388		if (status & IS_MAC2)
3389			skge_mac_intr(hw, 1);
3390	}
3391
3392	if (status & IS_HW_ERR)
3393		skge_error_irq(hw);
3394
3395	skge_write32(hw, B0_IMSK, hw->intr_mask);
3396	skge_read32(hw, B0_IMSK);
3397out:
3398	spin_unlock(&hw->hw_lock);
3399
3400	return IRQ_RETVAL(handled);
3401}
3402
3403#ifdef CONFIG_NET_POLL_CONTROLLER
3404static void skge_netpoll(struct net_device *dev)
3405{
3406	struct skge_port *skge = netdev_priv(dev);
3407
3408	disable_irq(dev->irq);
3409	skge_intr(dev->irq, skge->hw);
3410	enable_irq(dev->irq);
3411}
3412#endif
3413
3414static int skge_set_mac_address(struct net_device *dev, void *p)
3415{
3416	struct skge_port *skge = netdev_priv(dev);
3417	struct skge_hw *hw = skge->hw;
3418	unsigned port = skge->port;
3419	const struct sockaddr *addr = p;
3420	u16 ctrl;
3421
3422	if (!is_valid_ether_addr(addr->sa_data))
3423		return -EADDRNOTAVAIL;
3424
3425	memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
3426
3427	if (!netif_running(dev)) {
3428		memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3429		memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3430	} else {
3431		/* disable Rx */
3432		spin_lock_bh(&hw->phy_lock);
3433		ctrl = gma_read16(hw, port, GM_GP_CTRL);
3434		gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3435
3436		memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3437		memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3438
3439		if (is_genesis(hw))
3440			xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3441		else {
3442			gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3443			gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3444		}
3445
3446		gma_write16(hw, port, GM_GP_CTRL, ctrl);
3447		spin_unlock_bh(&hw->phy_lock);
3448	}
3449
3450	return 0;
3451}
3452
3453static const struct {
3454	u8 id;
3455	const char *name;
3456} skge_chips[] = {
3457	{ CHIP_ID_GENESIS,	"Genesis" },
3458	{ CHIP_ID_YUKON,	 "Yukon" },
3459	{ CHIP_ID_YUKON_LITE,	 "Yukon-Lite"},
3460	{ CHIP_ID_YUKON_LP,	 "Yukon-LP"},
3461};
3462
3463static const char *skge_board_name(const struct skge_hw *hw)
3464{
3465	int i;
3466	static char buf[16];
3467
3468	for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3469		if (skge_chips[i].id == hw->chip_id)
3470			return skge_chips[i].name;
3471
3472	snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
3473	return buf;
3474}
3475
3476
3477/*
3478 * Setup the board data structure, but don't bring up
3479 * the port(s)
3480 */
3481static int skge_reset(struct skge_hw *hw)
3482{
3483	u32 reg;
3484	u16 ctst, pci_status;
3485	u8 t8, mac_cfg, pmd_type;
3486	int i;
3487
3488	ctst = skge_read16(hw, B0_CTST);
3489
3490	/* do a SW reset */
3491	skge_write8(hw, B0_CTST, CS_RST_SET);
3492	skge_write8(hw, B0_CTST, CS_RST_CLR);
3493
3494	/* clear PCI errors, if any */
3495	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3496	skge_write8(hw, B2_TST_CTRL2, 0);
3497
3498	pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3499	pci_write_config_word(hw->pdev, PCI_STATUS,
3500			      pci_status | PCI_STATUS_ERROR_BITS);
3501	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3502	skge_write8(hw, B0_CTST, CS_MRST_CLR);
3503
3504	/* restore CLK_RUN bits (for Yukon-Lite) */
3505	skge_write16(hw, B0_CTST,
3506		     ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3507
3508	hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3509	hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3510	pmd_type = skge_read8(hw, B2_PMD_TYP);
3511	hw->copper = (pmd_type == 'T' || pmd_type == '1');
3512
3513	switch (hw->chip_id) {
3514	case CHIP_ID_GENESIS:
3515#ifdef CONFIG_SKGE_GENESIS
3516		switch (hw->phy_type) {
3517		case SK_PHY_XMAC:
3518			hw->phy_addr = PHY_ADDR_XMAC;
3519			break;
3520		case SK_PHY_BCOM:
3521			hw->phy_addr = PHY_ADDR_BCOM;
3522			break;
3523		default:
3524			dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3525			       hw->phy_type);
3526			return -EOPNOTSUPP;
3527		}
3528		break;
3529#else
3530		dev_err(&hw->pdev->dev, "Genesis chip detected but not configured\n");
3531		return -EOPNOTSUPP;
3532#endif
3533
3534	case CHIP_ID_YUKON:
3535	case CHIP_ID_YUKON_LITE:
3536	case CHIP_ID_YUKON_LP:
3537		if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3538			hw->copper = 1;
3539
3540		hw->phy_addr = PHY_ADDR_MARV;
3541		break;
3542
3543	default:
3544		dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3545		       hw->chip_id);
3546		return -EOPNOTSUPP;
3547	}
3548
3549	mac_cfg = skge_read8(hw, B2_MAC_CFG);
3550	hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3551	hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3552
3553	/* read the adapters RAM size */
3554	t8 = skge_read8(hw, B2_E_0);
3555	if (is_genesis(hw)) {
3556		if (t8 == 3) {
3557			/* special case: 4 x 64k x 36, offset = 0x80000 */
3558			hw->ram_size = 0x100000;
3559			hw->ram_offset = 0x80000;
3560		} else
3561			hw->ram_size = t8 * 512;
3562	} else if (t8 == 0)
3563		hw->ram_size = 0x20000;
3564	else
3565		hw->ram_size = t8 * 4096;
3566
3567	hw->intr_mask = IS_HW_ERR;
3568
3569	/* Use PHY IRQ for all but fiber based Genesis board */
3570	if (!(is_genesis(hw) && hw->phy_type == SK_PHY_XMAC))
3571		hw->intr_mask |= IS_EXT_REG;
3572
3573	if (is_genesis(hw))
3574		genesis_init(hw);
3575	else {
3576		/* switch power to VCC (WA for VAUX problem) */
3577		skge_write8(hw, B0_POWER_CTRL,
3578			    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3579
3580		/* avoid boards with stuck Hardware error bits */
3581		if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3582		    (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3583			dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3584			hw->intr_mask &= ~IS_HW_ERR;
3585		}
3586
3587		/* Clear PHY COMA */
3588		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3589		pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3590		reg &= ~PCI_PHY_COMA;
3591		pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3592		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3593
3594
3595		for (i = 0; i < hw->ports; i++) {
3596			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3597			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3598		}
3599	}
3600
3601	/* turn off hardware timer (unused) */
3602	skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3603	skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3604	skge_write8(hw, B0_LED, LED_STAT_ON);
3605
3606	/* enable the Tx Arbiters */
3607	for (i = 0; i < hw->ports; i++)
3608		skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3609
3610	/* Initialize ram interface */
3611	skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3612
3613	skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3614	skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3615	skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3616	skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3617	skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3618	skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3619	skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3620	skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3621	skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3622	skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3623	skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3624	skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3625
3626	skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3627
3628	/* Set interrupt moderation for Transmit only
3629	 * Receive interrupts avoided by NAPI
3630	 */
3631	skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3632	skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3633	skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3634
3635	/* Leave irq disabled until first port is brought up. */
3636	skge_write32(hw, B0_IMSK, 0);
3637
3638	for (i = 0; i < hw->ports; i++) {
3639		if (is_genesis(hw))
3640			genesis_reset(hw, i);
3641		else
3642			yukon_reset(hw, i);
3643	}
3644
3645	return 0;
3646}
3647
3648
3649#ifdef CONFIG_SKGE_DEBUG
3650
3651static struct dentry *skge_debug;
3652
3653static int skge_debug_show(struct seq_file *seq, void *v)
3654{
3655	struct net_device *dev = seq->private;
3656	const struct skge_port *skge = netdev_priv(dev);
3657	const struct skge_hw *hw = skge->hw;
3658	const struct skge_element *e;
3659
3660	if (!netif_running(dev))
3661		return -ENETDOWN;
3662
3663	seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
3664		   skge_read32(hw, B0_IMSK));
3665
3666	seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
3667	for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
3668		const struct skge_tx_desc *t = e->desc;
3669		seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3670			   t->control, t->dma_hi, t->dma_lo, t->status,
3671			   t->csum_offs, t->csum_write, t->csum_start);
3672	}
3673
3674	seq_printf(seq, "\nRx Ring:\n");
3675	for (e = skge->rx_ring.to_clean; ; e = e->next) {
3676		const struct skge_rx_desc *r = e->desc;
3677
3678		if (r->control & BMU_OWN)
3679			break;
3680
3681		seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3682			   r->control, r->dma_hi, r->dma_lo, r->status,
3683			   r->timestamp, r->csum1, r->csum1_start);
3684	}
3685
3686	return 0;
3687}
3688
3689static int skge_debug_open(struct inode *inode, struct file *file)
3690{
3691	return single_open(file, skge_debug_show, inode->i_private);
3692}
3693
3694static const struct file_operations skge_debug_fops = {
3695	.owner		= THIS_MODULE,
3696	.open		= skge_debug_open,
3697	.read		= seq_read,
3698	.llseek		= seq_lseek,
3699	.release	= single_release,
3700};
3701
3702/*
3703 * Use network device events to create/remove/rename
3704 * debugfs file entries
3705 */
3706static int skge_device_event(struct notifier_block *unused,
3707			     unsigned long event, void *ptr)
3708{
3709	struct net_device *dev = ptr;
3710	struct skge_port *skge;
3711	struct dentry *d;
3712
3713	if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
3714		goto done;
3715
3716	skge = netdev_priv(dev);
3717	switch (event) {
3718	case NETDEV_CHANGENAME:
3719		if (skge->debugfs) {
3720			d = debugfs_rename(skge_debug, skge->debugfs,
3721					   skge_debug, dev->name);
3722			if (d)
3723				skge->debugfs = d;
3724			else {
3725				netdev_info(dev, "rename failed\n");
3726				debugfs_remove(skge->debugfs);
3727			}
3728		}
3729		break;
3730
3731	case NETDEV_GOING_DOWN:
3732		if (skge->debugfs) {
3733			debugfs_remove(skge->debugfs);
3734			skge->debugfs = NULL;
3735		}
3736		break;
3737
3738	case NETDEV_UP:
3739		d = debugfs_create_file(dev->name, S_IRUGO,
3740					skge_debug, dev,
3741					&skge_debug_fops);
3742		if (!d || IS_ERR(d))
3743			netdev_info(dev, "debugfs create failed\n");
3744		else
3745			skge->debugfs = d;
3746		break;
3747	}
3748
3749done:
3750	return NOTIFY_DONE;
3751}
3752
3753static struct notifier_block skge_notifier = {
3754	.notifier_call = skge_device_event,
3755};
3756
3757
3758static __init void skge_debug_init(void)
3759{
3760	struct dentry *ent;
3761
3762	ent = debugfs_create_dir("skge", NULL);
3763	if (!ent || IS_ERR(ent)) {
3764		pr_info("debugfs create directory failed\n");
3765		return;
3766	}
3767
3768	skge_debug = ent;
3769	register_netdevice_notifier(&skge_notifier);
3770}
3771
3772static __exit void skge_debug_cleanup(void)
3773{
3774	if (skge_debug) {
3775		unregister_netdevice_notifier(&skge_notifier);
3776		debugfs_remove(skge_debug);
3777		skge_debug = NULL;
3778	}
3779}
3780
3781#else
3782#define skge_debug_init()
3783#define skge_debug_cleanup()
3784#endif
3785
3786static const struct net_device_ops skge_netdev_ops = {
3787	.ndo_open		= skge_up,
3788	.ndo_stop		= skge_down,
3789	.ndo_start_xmit		= skge_xmit_frame,
3790	.ndo_do_ioctl		= skge_ioctl,
3791	.ndo_get_stats		= skge_get_stats,
3792	.ndo_tx_timeout		= skge_tx_timeout,
3793	.ndo_change_mtu		= skge_change_mtu,
3794	.ndo_validate_addr	= eth_validate_addr,
3795	.ndo_set_rx_mode	= skge_set_multicast,
3796	.ndo_set_mac_address	= skge_set_mac_address,
3797#ifdef CONFIG_NET_POLL_CONTROLLER
3798	.ndo_poll_controller	= skge_netpoll,
3799#endif
3800};
3801
3802
3803/* Initialize network device */
3804static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3805				       int highmem)
3806{
3807	struct skge_port *skge;
3808	struct net_device *dev = alloc_etherdev(sizeof(*skge));
3809
3810	if (!dev) {
3811		dev_err(&hw->pdev->dev, "etherdev alloc failed\n");
3812		return NULL;
3813	}
3814
3815	SET_NETDEV_DEV(dev, &hw->pdev->dev);
3816	dev->netdev_ops = &skge_netdev_ops;
3817	dev->ethtool_ops = &skge_ethtool_ops;
3818	dev->watchdog_timeo = TX_WATCHDOG;
3819	dev->irq = hw->pdev->irq;
3820
3821	if (highmem)
3822		dev->features |= NETIF_F_HIGHDMA;
3823
3824	skge = netdev_priv(dev);
3825	netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
3826	skge->netdev = dev;
3827	skge->hw = hw;
3828	skge->msg_enable = netif_msg_init(debug, default_msg);
3829
3830	skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3831	skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3832
3833	/* Auto speed and flow control */
3834	skge->autoneg = AUTONEG_ENABLE;
3835	skge->flow_control = FLOW_MODE_SYM_OR_REM;
3836	skge->duplex = -1;
3837	skge->speed = -1;
3838	skge->advertising = skge_supported_modes(hw);
3839
3840	if (device_can_wakeup(&hw->pdev->dev)) {
3841		skge->wol = wol_supported(hw) & WAKE_MAGIC;
3842		device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
3843	}
3844
3845	hw->dev[port] = dev;
3846
3847	skge->port = port;
3848
3849	/* Only used for Genesis XMAC */
3850	if (is_genesis(hw))
3851	    setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge);
3852	else {
3853		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3854		                   NETIF_F_RXCSUM;
3855		dev->features |= dev->hw_features;
3856	}
3857
3858	/* read the mac address */
3859	memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3860	memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
3861
3862	return dev;
3863}
3864
3865static void __devinit skge_show_addr(struct net_device *dev)
3866{
3867	const struct skge_port *skge = netdev_priv(dev);
3868
3869	netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
3870}
3871
3872static int only_32bit_dma;
3873
3874static int __devinit skge_probe(struct pci_dev *pdev,
3875				const struct pci_device_id *ent)
3876{
3877	struct net_device *dev, *dev1;
3878	struct skge_hw *hw;
3879	int err, using_dac = 0;
3880
3881	err = pci_enable_device(pdev);
3882	if (err) {
3883		dev_err(&pdev->dev, "cannot enable PCI device\n");
3884		goto err_out;
3885	}
3886
3887	err = pci_request_regions(pdev, DRV_NAME);
3888	if (err) {
3889		dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3890		goto err_out_disable_pdev;
3891	}
3892
3893	pci_set_master(pdev);
3894
3895	if (!only_32bit_dma && !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3896		using_dac = 1;
3897		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3898	} else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
3899		using_dac = 0;
3900		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3901	}
3902
3903	if (err) {
3904		dev_err(&pdev->dev, "no usable DMA configuration\n");
3905		goto err_out_free_regions;
3906	}
3907
3908#ifdef __BIG_ENDIAN
3909	/* byte swap descriptors in hardware */
3910	{
3911		u32 reg;
3912
3913		pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3914		reg |= PCI_REV_DESC;
3915		pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3916	}
3917#endif
3918
3919	err = -ENOMEM;
3920	/* space for skge@pci:0000:04:00.0 */
3921	hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
3922		     + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
3923	if (!hw) {
3924		dev_err(&pdev->dev, "cannot allocate hardware struct\n");
3925		goto err_out_free_regions;
3926	}
3927	sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
3928
3929	hw->pdev = pdev;
3930	spin_lock_init(&hw->hw_lock);
3931	spin_lock_init(&hw->phy_lock);
3932	tasklet_init(&hw->phy_task, skge_extirq, (unsigned long) hw);
3933
3934	hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3935	if (!hw->regs) {
3936		dev_err(&pdev->dev, "cannot map device registers\n");
3937		goto err_out_free_hw;
3938	}
3939
3940	err = skge_reset(hw);
3941	if (err)
3942		goto err_out_iounmap;
3943
3944	pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3945		DRV_VERSION,
3946		(unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3947		skge_board_name(hw), hw->chip_rev);
3948
3949	dev = skge_devinit(hw, 0, using_dac);
3950	if (!dev)
3951		goto err_out_led_off;
3952
3953	/* Some motherboards are broken and has zero in ROM. */
3954	if (!is_valid_ether_addr(dev->dev_addr))
3955		dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
3956
3957	err = register_netdev(dev);
3958	if (err) {
3959		dev_err(&pdev->dev, "cannot register net device\n");
3960		goto err_out_free_netdev;
3961	}
3962
3963	skge_show_addr(dev);
3964
3965	if (hw->ports > 1) {
3966		dev1 = skge_devinit(hw, 1, using_dac);
3967		if (!dev1) {
3968			err = -ENOMEM;
3969			goto err_out_unregister;
3970		}
3971
3972		err = register_netdev(dev1);
3973		if (err) {
3974			dev_err(&pdev->dev, "cannot register second net device\n");
3975			goto err_out_free_dev1;
3976		}
3977
3978		err = request_irq(pdev->irq, skge_intr, IRQF_SHARED,
3979				  hw->irq_name, hw);
3980		if (err) {
3981			dev_err(&pdev->dev, "cannot assign irq %d\n",
3982				pdev->irq);
3983			goto err_out_unregister_dev1;
3984		}
3985
3986		skge_show_addr(dev1);
3987	}
3988	pci_set_drvdata(pdev, hw);
3989
3990	return 0;
3991
3992err_out_unregister_dev1:
3993	unregister_netdev(dev1);
3994err_out_free_dev1:
3995	free_netdev(dev1);
3996err_out_unregister:
3997	unregister_netdev(dev);
3998err_out_free_netdev:
3999	free_netdev(dev);
4000err_out_led_off:
4001	skge_write16(hw, B0_LED, LED_STAT_OFF);
4002err_out_iounmap:
4003	iounmap(hw->regs);
4004err_out_free_hw:
4005	kfree(hw);
4006err_out_free_regions:
4007	pci_release_regions(pdev);
4008err_out_disable_pdev:
4009	pci_disable_device(pdev);
4010	pci_set_drvdata(pdev, NULL);
4011err_out:
4012	return err;
4013}
4014
4015static void __devexit skge_remove(struct pci_dev *pdev)
4016{
4017	struct skge_hw *hw  = pci_get_drvdata(pdev);
4018	struct net_device *dev0, *dev1;
4019
4020	if (!hw)
4021		return;
4022
4023	dev1 = hw->dev[1];
4024	if (dev1)
4025		unregister_netdev(dev1);
4026	dev0 = hw->dev[0];
4027	unregister_netdev(dev0);
4028
4029	tasklet_disable(&hw->phy_task);
4030
4031	spin_lock_irq(&hw->hw_lock);
4032	hw->intr_mask = 0;
4033
4034	if (hw->ports > 1) {
4035		skge_write32(hw, B0_IMSK, 0);
4036		skge_read32(hw, B0_IMSK);
4037		free_irq(pdev->irq, hw);
4038	}
4039	spin_unlock_irq(&hw->hw_lock);
4040
4041	skge_write16(hw, B0_LED, LED_STAT_OFF);
4042	skge_write8(hw, B0_CTST, CS_RST_SET);
4043
4044	if (hw->ports > 1)
4045		free_irq(pdev->irq, hw);
4046	pci_release_regions(pdev);
4047	pci_disable_device(pdev);
4048	if (dev1)
4049		free_netdev(dev1);
4050	free_netdev(dev0);
4051
4052	iounmap(hw->regs);
4053	kfree(hw);
4054	pci_set_drvdata(pdev, NULL);
4055}
4056
4057#ifdef CONFIG_PM_SLEEP
4058static int skge_suspend(struct device *dev)
4059{
4060	struct pci_dev *pdev = to_pci_dev(dev);
4061	struct skge_hw *hw  = pci_get_drvdata(pdev);
4062	int i;
4063
4064	if (!hw)
4065		return 0;
4066
4067	for (i = 0; i < hw->ports; i++) {
4068		struct net_device *dev = hw->dev[i];
4069		struct skge_port *skge = netdev_priv(dev);
4070
4071		if (netif_running(dev))
4072			skge_down(dev);
4073
4074		if (skge->wol)
4075			skge_wol_init(skge);
4076	}
4077
4078	skge_write32(hw, B0_IMSK, 0);
4079
4080	return 0;
4081}
4082
4083static int skge_resume(struct device *dev)
4084{
4085	struct pci_dev *pdev = to_pci_dev(dev);
4086	struct skge_hw *hw  = pci_get_drvdata(pdev);
4087	int i, err;
4088
4089	if (!hw)
4090		return 0;
4091
4092	err = skge_reset(hw);
4093	if (err)
4094		goto out;
4095
4096	for (i = 0; i < hw->ports; i++) {
4097		struct net_device *dev = hw->dev[i];
4098
4099		if (netif_running(dev)) {
4100			err = skge_up(dev);
4101
4102			if (err) {
4103				netdev_err(dev, "could not up: %d\n", err);
4104				dev_close(dev);
4105				goto out;
4106			}
4107		}
4108	}
4109out:
4110	return err;
4111}
4112
4113static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume);
4114#define SKGE_PM_OPS (&skge_pm_ops)
4115
4116#else
4117
4118#define SKGE_PM_OPS NULL
4119#endif /* CONFIG_PM_SLEEP */
4120
4121static void skge_shutdown(struct pci_dev *pdev)
4122{
4123	struct skge_hw *hw  = pci_get_drvdata(pdev);
4124	int i;
4125
4126	if (!hw)
4127		return;
4128
4129	for (i = 0; i < hw->ports; i++) {
4130		struct net_device *dev = hw->dev[i];
4131		struct skge_port *skge = netdev_priv(dev);
4132
4133		if (skge->wol)
4134			skge_wol_init(skge);
4135	}
4136
4137	pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev));
4138	pci_set_power_state(pdev, PCI_D3hot);
4139}
4140
4141static struct pci_driver skge_driver = {
4142	.name =         DRV_NAME,
4143	.id_table =     skge_id_table,
4144	.probe =        skge_probe,
4145	.remove =       __devexit_p(skge_remove),
4146	.shutdown =	skge_shutdown,
4147	.driver.pm =	SKGE_PM_OPS,
4148};
4149
4150static struct dmi_system_id skge_32bit_dma_boards[] = {
4151	{
4152		.ident = "Gigabyte nForce boards",
4153		.matches = {
4154			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"),
4155			DMI_MATCH(DMI_BOARD_NAME, "nForce"),
4156		},
4157	},
4158	{}
4159};
4160
4161static int __init skge_init_module(void)
4162{
4163	if (dmi_check_system(skge_32bit_dma_boards))
4164		only_32bit_dma = 1;
4165	skge_debug_init();
4166	return pci_register_driver(&skge_driver);
4167}
4168
4169static void __exit skge_cleanup_module(void)
4170{
4171	pci_unregister_driver(&skge_driver);
4172	skge_debug_cleanup();
4173}
4174
4175module_init(skge_init_module);
4176module_exit(skge_cleanup_module);
4177