1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2011 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/crc32.h>
21#include <linux/ethtool.h>
22#include <linux/topology.h>
23#include <linux/gfp.h>
24#include <linux/cpu_rmap.h>
25#include "net_driver.h"
26#include "efx.h"
27#include "nic.h"
28
29#include "mcdi.h"
30#include "workarounds.h"
31
32/**************************************************************************
33 *
34 * Type name strings
35 *
36 **************************************************************************
37 */
38
39/* Loopback mode names (see LOOPBACK_MODE()) */
40const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
41const char *efx_loopback_mode_names[] = {
42	[LOOPBACK_NONE]		= "NONE",
43	[LOOPBACK_DATA]		= "DATAPATH",
44	[LOOPBACK_GMAC]		= "GMAC",
45	[LOOPBACK_XGMII]	= "XGMII",
46	[LOOPBACK_XGXS]		= "XGXS",
47	[LOOPBACK_XAUI]  	= "XAUI",
48	[LOOPBACK_GMII] 	= "GMII",
49	[LOOPBACK_SGMII] 	= "SGMII",
50	[LOOPBACK_XGBR]		= "XGBR",
51	[LOOPBACK_XFI]		= "XFI",
52	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
53	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
54	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
55	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
56	[LOOPBACK_GPHY]		= "GPHY",
57	[LOOPBACK_PHYXS]	= "PHYXS",
58	[LOOPBACK_PCS]	 	= "PCS",
59	[LOOPBACK_PMAPMD] 	= "PMA/PMD",
60	[LOOPBACK_XPORT]	= "XPORT",
61	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
62	[LOOPBACK_XAUI_WS]  	= "XAUI_WS",
63	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
64	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
65	[LOOPBACK_GMII_WS] 	= "GMII_WS",
66	[LOOPBACK_XFI_WS]	= "XFI_WS",
67	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
68	[LOOPBACK_PHYXS_WS]  	= "PHYXS_WS",
69};
70
71const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
72const char *efx_reset_type_names[] = {
73	[RESET_TYPE_INVISIBLE]     = "INVISIBLE",
74	[RESET_TYPE_ALL]           = "ALL",
75	[RESET_TYPE_WORLD]         = "WORLD",
76	[RESET_TYPE_DISABLE]       = "DISABLE",
77	[RESET_TYPE_TX_WATCHDOG]   = "TX_WATCHDOG",
78	[RESET_TYPE_INT_ERROR]     = "INT_ERROR",
79	[RESET_TYPE_RX_RECOVERY]   = "RX_RECOVERY",
80	[RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
81	[RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
82	[RESET_TYPE_TX_SKIP]       = "TX_SKIP",
83	[RESET_TYPE_MC_FAILURE]    = "MC_FAILURE",
84};
85
86#define EFX_MAX_MTU (9 * 1024)
87
88/* Reset workqueue. If any NIC has a hardware failure then a reset will be
89 * queued onto this work queue. This is not a per-nic work queue, because
90 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
91 */
92static struct workqueue_struct *reset_workqueue;
93
94/**************************************************************************
95 *
96 * Configurable values
97 *
98 *************************************************************************/
99
100/*
101 * Use separate channels for TX and RX events
102 *
103 * Set this to 1 to use separate channels for TX and RX. It allows us
104 * to control interrupt affinity separately for TX and RX.
105 *
106 * This is only used in MSI-X interrupt mode
107 */
108static unsigned int separate_tx_channels;
109module_param(separate_tx_channels, uint, 0444);
110MODULE_PARM_DESC(separate_tx_channels,
111		 "Use separate channels for TX and RX");
112
113/* This is the weight assigned to each of the (per-channel) virtual
114 * NAPI devices.
115 */
116static int napi_weight = 64;
117
118/* This is the time (in jiffies) between invocations of the hardware
119 * monitor.  On Falcon-based NICs, this will:
120 * - Check the on-board hardware monitor;
121 * - Poll the link state and reconfigure the hardware as necessary.
122 */
123static unsigned int efx_monitor_interval = 1 * HZ;
124
125/* This controls whether or not the driver will initialise devices
126 * with invalid MAC addresses stored in the EEPROM or flash.  If true,
127 * such devices will be initialised with a random locally-generated
128 * MAC address.  This allows for loading the sfc_mtd driver to
129 * reprogram the flash, even if the flash contents (including the MAC
130 * address) have previously been erased.
131 */
132static unsigned int allow_bad_hwaddr;
133
134/* Initial interrupt moderation settings.  They can be modified after
135 * module load with ethtool.
136 *
137 * The default for RX should strike a balance between increasing the
138 * round-trip latency and reducing overhead.
139 */
140static unsigned int rx_irq_mod_usec = 60;
141
142/* Initial interrupt moderation settings.  They can be modified after
143 * module load with ethtool.
144 *
145 * This default is chosen to ensure that a 10G link does not go idle
146 * while a TX queue is stopped after it has become full.  A queue is
147 * restarted when it drops below half full.  The time this takes (assuming
148 * worst case 3 descriptors per packet and 1024 descriptors) is
149 *   512 / 3 * 1.2 = 205 usec.
150 */
151static unsigned int tx_irq_mod_usec = 150;
152
153/* This is the first interrupt mode to try out of:
154 * 0 => MSI-X
155 * 1 => MSI
156 * 2 => legacy
157 */
158static unsigned int interrupt_mode;
159
160/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
161 * i.e. the number of CPUs among which we may distribute simultaneous
162 * interrupt handling.
163 *
164 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
165 * The default (0) means to assign an interrupt to each package (level II cache)
166 */
167static unsigned int rss_cpus;
168module_param(rss_cpus, uint, 0444);
169MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
170
171static int phy_flash_cfg;
172module_param(phy_flash_cfg, int, 0644);
173MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
174
175static unsigned irq_adapt_low_thresh = 10000;
176module_param(irq_adapt_low_thresh, uint, 0644);
177MODULE_PARM_DESC(irq_adapt_low_thresh,
178		 "Threshold score for reducing IRQ moderation");
179
180static unsigned irq_adapt_high_thresh = 20000;
181module_param(irq_adapt_high_thresh, uint, 0644);
182MODULE_PARM_DESC(irq_adapt_high_thresh,
183		 "Threshold score for increasing IRQ moderation");
184
185static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
186			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
187			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
188			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
189module_param(debug, uint, 0);
190MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
191
192/**************************************************************************
193 *
194 * Utility functions and prototypes
195 *
196 *************************************************************************/
197
198static void efx_remove_channels(struct efx_nic *efx);
199static void efx_remove_port(struct efx_nic *efx);
200static void efx_init_napi(struct efx_nic *efx);
201static void efx_fini_napi(struct efx_nic *efx);
202static void efx_fini_napi_channel(struct efx_channel *channel);
203static void efx_fini_struct(struct efx_nic *efx);
204static void efx_start_all(struct efx_nic *efx);
205static void efx_stop_all(struct efx_nic *efx);
206
207#define EFX_ASSERT_RESET_SERIALISED(efx)		\
208	do {						\
209		if ((efx->state == STATE_RUNNING) ||	\
210		    (efx->state == STATE_DISABLED))	\
211			ASSERT_RTNL();			\
212	} while (0)
213
214/**************************************************************************
215 *
216 * Event queue processing
217 *
218 *************************************************************************/
219
220/* Process channel's event queue
221 *
222 * This function is responsible for processing the event queue of a
223 * single channel.  The caller must guarantee that this function will
224 * never be concurrently called more than once on the same channel,
225 * though different channels may be being processed concurrently.
226 */
227static int efx_process_channel(struct efx_channel *channel, int budget)
228{
229	struct efx_nic *efx = channel->efx;
230	int spent;
231
232	if (unlikely(efx->reset_pending || !channel->enabled))
233		return 0;
234
235	spent = efx_nic_process_eventq(channel, budget);
236	if (spent == 0)
237		return 0;
238
239	/* Deliver last RX packet. */
240	if (channel->rx_pkt) {
241		__efx_rx_packet(channel, channel->rx_pkt,
242				channel->rx_pkt_csummed);
243		channel->rx_pkt = NULL;
244	}
245
246	efx_rx_strategy(channel);
247
248	efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel));
249
250	return spent;
251}
252
253/* Mark channel as finished processing
254 *
255 * Note that since we will not receive further interrupts for this
256 * channel before we finish processing and call the eventq_read_ack()
257 * method, there is no need to use the interrupt hold-off timers.
258 */
259static inline void efx_channel_processed(struct efx_channel *channel)
260{
261	/* The interrupt handler for this channel may set work_pending
262	 * as soon as we acknowledge the events we've seen.  Make sure
263	 * it's cleared before then. */
264	channel->work_pending = false;
265	smp_wmb();
266
267	efx_nic_eventq_read_ack(channel);
268}
269
270/* NAPI poll handler
271 *
272 * NAPI guarantees serialisation of polls of the same device, which
273 * provides the guarantee required by efx_process_channel().
274 */
275static int efx_poll(struct napi_struct *napi, int budget)
276{
277	struct efx_channel *channel =
278		container_of(napi, struct efx_channel, napi_str);
279	struct efx_nic *efx = channel->efx;
280	int spent;
281
282	netif_vdbg(efx, intr, efx->net_dev,
283		   "channel %d NAPI poll executing on CPU %d\n",
284		   channel->channel, raw_smp_processor_id());
285
286	spent = efx_process_channel(channel, budget);
287
288	if (spent < budget) {
289		if (channel->channel < efx->n_rx_channels &&
290		    efx->irq_rx_adaptive &&
291		    unlikely(++channel->irq_count == 1000)) {
292			if (unlikely(channel->irq_mod_score <
293				     irq_adapt_low_thresh)) {
294				if (channel->irq_moderation > 1) {
295					channel->irq_moderation -= 1;
296					efx->type->push_irq_moderation(channel);
297				}
298			} else if (unlikely(channel->irq_mod_score >
299					    irq_adapt_high_thresh)) {
300				if (channel->irq_moderation <
301				    efx->irq_rx_moderation) {
302					channel->irq_moderation += 1;
303					efx->type->push_irq_moderation(channel);
304				}
305			}
306			channel->irq_count = 0;
307			channel->irq_mod_score = 0;
308		}
309
310		efx_filter_rfs_expire(channel);
311
312		/* There is no race here; although napi_disable() will
313		 * only wait for napi_complete(), this isn't a problem
314		 * since efx_channel_processed() will have no effect if
315		 * interrupts have already been disabled.
316		 */
317		napi_complete(napi);
318		efx_channel_processed(channel);
319	}
320
321	return spent;
322}
323
324/* Process the eventq of the specified channel immediately on this CPU
325 *
326 * Disable hardware generated interrupts, wait for any existing
327 * processing to finish, then directly poll (and ack ) the eventq.
328 * Finally reenable NAPI and interrupts.
329 *
330 * This is for use only during a loopback self-test.  It must not
331 * deliver any packets up the stack as this can result in deadlock.
332 */
333void efx_process_channel_now(struct efx_channel *channel)
334{
335	struct efx_nic *efx = channel->efx;
336
337	BUG_ON(channel->channel >= efx->n_channels);
338	BUG_ON(!channel->enabled);
339	BUG_ON(!efx->loopback_selftest);
340
341	/* Disable interrupts and wait for ISRs to complete */
342	efx_nic_disable_interrupts(efx);
343	if (efx->legacy_irq) {
344		synchronize_irq(efx->legacy_irq);
345		efx->legacy_irq_enabled = false;
346	}
347	if (channel->irq)
348		synchronize_irq(channel->irq);
349
350	/* Wait for any NAPI processing to complete */
351	napi_disable(&channel->napi_str);
352
353	/* Poll the channel */
354	efx_process_channel(channel, channel->eventq_mask + 1);
355
356	/* Ack the eventq. This may cause an interrupt to be generated
357	 * when they are reenabled */
358	efx_channel_processed(channel);
359
360	napi_enable(&channel->napi_str);
361	if (efx->legacy_irq)
362		efx->legacy_irq_enabled = true;
363	efx_nic_enable_interrupts(efx);
364}
365
366/* Create event queue
367 * Event queue memory allocations are done only once.  If the channel
368 * is reset, the memory buffer will be reused; this guards against
369 * errors during channel reset and also simplifies interrupt handling.
370 */
371static int efx_probe_eventq(struct efx_channel *channel)
372{
373	struct efx_nic *efx = channel->efx;
374	unsigned long entries;
375
376	netif_dbg(channel->efx, probe, channel->efx->net_dev,
377		  "chan %d create event queue\n", channel->channel);
378
379	/* Build an event queue with room for one event per tx and rx buffer,
380	 * plus some extra for link state events and MCDI completions. */
381	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
382	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
383	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
384
385	return efx_nic_probe_eventq(channel);
386}
387
388/* Prepare channel's event queue */
389static void efx_init_eventq(struct efx_channel *channel)
390{
391	netif_dbg(channel->efx, drv, channel->efx->net_dev,
392		  "chan %d init event queue\n", channel->channel);
393
394	channel->eventq_read_ptr = 0;
395
396	efx_nic_init_eventq(channel);
397}
398
399static void efx_fini_eventq(struct efx_channel *channel)
400{
401	netif_dbg(channel->efx, drv, channel->efx->net_dev,
402		  "chan %d fini event queue\n", channel->channel);
403
404	efx_nic_fini_eventq(channel);
405}
406
407static void efx_remove_eventq(struct efx_channel *channel)
408{
409	netif_dbg(channel->efx, drv, channel->efx->net_dev,
410		  "chan %d remove event queue\n", channel->channel);
411
412	efx_nic_remove_eventq(channel);
413}
414
415/**************************************************************************
416 *
417 * Channel handling
418 *
419 *************************************************************************/
420
421/* Allocate and initialise a channel structure, optionally copying
422 * parameters (but not resources) from an old channel structure. */
423static struct efx_channel *
424efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
425{
426	struct efx_channel *channel;
427	struct efx_rx_queue *rx_queue;
428	struct efx_tx_queue *tx_queue;
429	int j;
430
431	if (old_channel) {
432		channel = kmalloc(sizeof(*channel), GFP_KERNEL);
433		if (!channel)
434			return NULL;
435
436		*channel = *old_channel;
437
438		channel->napi_dev = NULL;
439		memset(&channel->eventq, 0, sizeof(channel->eventq));
440
441		rx_queue = &channel->rx_queue;
442		rx_queue->buffer = NULL;
443		memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
444
445		for (j = 0; j < EFX_TXQ_TYPES; j++) {
446			tx_queue = &channel->tx_queue[j];
447			if (tx_queue->channel)
448				tx_queue->channel = channel;
449			tx_queue->buffer = NULL;
450			memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
451		}
452	} else {
453		channel = kzalloc(sizeof(*channel), GFP_KERNEL);
454		if (!channel)
455			return NULL;
456
457		channel->efx = efx;
458		channel->channel = i;
459
460		for (j = 0; j < EFX_TXQ_TYPES; j++) {
461			tx_queue = &channel->tx_queue[j];
462			tx_queue->efx = efx;
463			tx_queue->queue = i * EFX_TXQ_TYPES + j;
464			tx_queue->channel = channel;
465		}
466	}
467
468	rx_queue = &channel->rx_queue;
469	rx_queue->efx = efx;
470	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
471		    (unsigned long)rx_queue);
472
473	return channel;
474}
475
476static int efx_probe_channel(struct efx_channel *channel)
477{
478	struct efx_tx_queue *tx_queue;
479	struct efx_rx_queue *rx_queue;
480	int rc;
481
482	netif_dbg(channel->efx, probe, channel->efx->net_dev,
483		  "creating channel %d\n", channel->channel);
484
485	rc = efx_probe_eventq(channel);
486	if (rc)
487		goto fail1;
488
489	efx_for_each_channel_tx_queue(tx_queue, channel) {
490		rc = efx_probe_tx_queue(tx_queue);
491		if (rc)
492			goto fail2;
493	}
494
495	efx_for_each_channel_rx_queue(rx_queue, channel) {
496		rc = efx_probe_rx_queue(rx_queue);
497		if (rc)
498			goto fail3;
499	}
500
501	channel->n_rx_frm_trunc = 0;
502
503	return 0;
504
505 fail3:
506	efx_for_each_channel_rx_queue(rx_queue, channel)
507		efx_remove_rx_queue(rx_queue);
508 fail2:
509	efx_for_each_channel_tx_queue(tx_queue, channel)
510		efx_remove_tx_queue(tx_queue);
511 fail1:
512	return rc;
513}
514
515
516static void efx_set_channel_names(struct efx_nic *efx)
517{
518	struct efx_channel *channel;
519	const char *type = "";
520	int number;
521
522	efx_for_each_channel(channel, efx) {
523		number = channel->channel;
524		if (efx->n_channels > efx->n_rx_channels) {
525			if (channel->channel < efx->n_rx_channels) {
526				type = "-rx";
527			} else {
528				type = "-tx";
529				number -= efx->n_rx_channels;
530			}
531		}
532		snprintf(efx->channel_name[channel->channel],
533			 sizeof(efx->channel_name[0]),
534			 "%s%s-%d", efx->name, type, number);
535	}
536}
537
538static int efx_probe_channels(struct efx_nic *efx)
539{
540	struct efx_channel *channel;
541	int rc;
542
543	/* Restart special buffer allocation */
544	efx->next_buffer_table = 0;
545
546	efx_for_each_channel(channel, efx) {
547		rc = efx_probe_channel(channel);
548		if (rc) {
549			netif_err(efx, probe, efx->net_dev,
550				  "failed to create channel %d\n",
551				  channel->channel);
552			goto fail;
553		}
554	}
555	efx_set_channel_names(efx);
556
557	return 0;
558
559fail:
560	efx_remove_channels(efx);
561	return rc;
562}
563
564/* Channels are shutdown and reinitialised whilst the NIC is running
565 * to propagate configuration changes (mtu, checksum offload), or
566 * to clear hardware error conditions
567 */
568static void efx_init_channels(struct efx_nic *efx)
569{
570	struct efx_tx_queue *tx_queue;
571	struct efx_rx_queue *rx_queue;
572	struct efx_channel *channel;
573
574	/* Calculate the rx buffer allocation parameters required to
575	 * support the current MTU, including padding for header
576	 * alignment and overruns.
577	 */
578	efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
579			      EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
580			      efx->type->rx_buffer_hash_size +
581			      efx->type->rx_buffer_padding);
582	efx->rx_buffer_order = get_order(efx->rx_buffer_len +
583					 sizeof(struct efx_rx_page_state));
584
585	/* Initialise the channels */
586	efx_for_each_channel(channel, efx) {
587		netif_dbg(channel->efx, drv, channel->efx->net_dev,
588			  "init chan %d\n", channel->channel);
589
590		efx_init_eventq(channel);
591
592		efx_for_each_channel_tx_queue(tx_queue, channel)
593			efx_init_tx_queue(tx_queue);
594
595		/* The rx buffer allocation strategy is MTU dependent */
596		efx_rx_strategy(channel);
597
598		efx_for_each_channel_rx_queue(rx_queue, channel)
599			efx_init_rx_queue(rx_queue);
600
601		WARN_ON(channel->rx_pkt != NULL);
602		efx_rx_strategy(channel);
603	}
604}
605
606/* This enables event queue processing and packet transmission.
607 *
608 * Note that this function is not allowed to fail, since that would
609 * introduce too much complexity into the suspend/resume path.
610 */
611static void efx_start_channel(struct efx_channel *channel)
612{
613	struct efx_rx_queue *rx_queue;
614
615	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
616		  "starting chan %d\n", channel->channel);
617
618	/* The interrupt handler for this channel may set work_pending
619	 * as soon as we enable it.  Make sure it's cleared before
620	 * then.  Similarly, make sure it sees the enabled flag set. */
621	channel->work_pending = false;
622	channel->enabled = true;
623	smp_wmb();
624
625	/* Fill the queues before enabling NAPI */
626	efx_for_each_channel_rx_queue(rx_queue, channel)
627		efx_fast_push_rx_descriptors(rx_queue);
628
629	napi_enable(&channel->napi_str);
630}
631
632/* This disables event queue processing and packet transmission.
633 * This function does not guarantee that all queue processing
634 * (e.g. RX refill) is complete.
635 */
636static void efx_stop_channel(struct efx_channel *channel)
637{
638	if (!channel->enabled)
639		return;
640
641	netif_dbg(channel->efx, ifdown, channel->efx->net_dev,
642		  "stop chan %d\n", channel->channel);
643
644	channel->enabled = false;
645	napi_disable(&channel->napi_str);
646}
647
648static void efx_fini_channels(struct efx_nic *efx)
649{
650	struct efx_channel *channel;
651	struct efx_tx_queue *tx_queue;
652	struct efx_rx_queue *rx_queue;
653	int rc;
654
655	EFX_ASSERT_RESET_SERIALISED(efx);
656	BUG_ON(efx->port_enabled);
657
658	rc = efx_nic_flush_queues(efx);
659	if (rc && EFX_WORKAROUND_7803(efx)) {
660		/* Schedule a reset to recover from the flush failure. The
661		 * descriptor caches reference memory we're about to free,
662		 * but falcon_reconfigure_mac_wrapper() won't reconnect
663		 * the MACs because of the pending reset. */
664		netif_err(efx, drv, efx->net_dev,
665			  "Resetting to recover from flush failure\n");
666		efx_schedule_reset(efx, RESET_TYPE_ALL);
667	} else if (rc) {
668		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
669	} else {
670		netif_dbg(efx, drv, efx->net_dev,
671			  "successfully flushed all queues\n");
672	}
673
674	efx_for_each_channel(channel, efx) {
675		netif_dbg(channel->efx, drv, channel->efx->net_dev,
676			  "shut down chan %d\n", channel->channel);
677
678		efx_for_each_channel_rx_queue(rx_queue, channel)
679			efx_fini_rx_queue(rx_queue);
680		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
681			efx_fini_tx_queue(tx_queue);
682		efx_fini_eventq(channel);
683	}
684}
685
686static void efx_remove_channel(struct efx_channel *channel)
687{
688	struct efx_tx_queue *tx_queue;
689	struct efx_rx_queue *rx_queue;
690
691	netif_dbg(channel->efx, drv, channel->efx->net_dev,
692		  "destroy chan %d\n", channel->channel);
693
694	efx_for_each_channel_rx_queue(rx_queue, channel)
695		efx_remove_rx_queue(rx_queue);
696	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
697		efx_remove_tx_queue(tx_queue);
698	efx_remove_eventq(channel);
699}
700
701static void efx_remove_channels(struct efx_nic *efx)
702{
703	struct efx_channel *channel;
704
705	efx_for_each_channel(channel, efx)
706		efx_remove_channel(channel);
707}
708
709int
710efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
711{
712	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
713	u32 old_rxq_entries, old_txq_entries;
714	unsigned i;
715	int rc;
716
717	efx_stop_all(efx);
718	efx_fini_channels(efx);
719
720	/* Clone channels */
721	memset(other_channel, 0, sizeof(other_channel));
722	for (i = 0; i < efx->n_channels; i++) {
723		channel = efx_alloc_channel(efx, i, efx->channel[i]);
724		if (!channel) {
725			rc = -ENOMEM;
726			goto out;
727		}
728		other_channel[i] = channel;
729	}
730
731	/* Swap entry counts and channel pointers */
732	old_rxq_entries = efx->rxq_entries;
733	old_txq_entries = efx->txq_entries;
734	efx->rxq_entries = rxq_entries;
735	efx->txq_entries = txq_entries;
736	for (i = 0; i < efx->n_channels; i++) {
737		channel = efx->channel[i];
738		efx->channel[i] = other_channel[i];
739		other_channel[i] = channel;
740	}
741
742	rc = efx_probe_channels(efx);
743	if (rc)
744		goto rollback;
745
746	efx_init_napi(efx);
747
748	/* Destroy old channels */
749	for (i = 0; i < efx->n_channels; i++) {
750		efx_fini_napi_channel(other_channel[i]);
751		efx_remove_channel(other_channel[i]);
752	}
753out:
754	/* Free unused channel structures */
755	for (i = 0; i < efx->n_channels; i++)
756		kfree(other_channel[i]);
757
758	efx_init_channels(efx);
759	efx_start_all(efx);
760	return rc;
761
762rollback:
763	/* Swap back */
764	efx->rxq_entries = old_rxq_entries;
765	efx->txq_entries = old_txq_entries;
766	for (i = 0; i < efx->n_channels; i++) {
767		channel = efx->channel[i];
768		efx->channel[i] = other_channel[i];
769		other_channel[i] = channel;
770	}
771	goto out;
772}
773
774void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
775{
776	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
777}
778
779/**************************************************************************
780 *
781 * Port handling
782 *
783 **************************************************************************/
784
785/* This ensures that the kernel is kept informed (via
786 * netif_carrier_on/off) of the link status, and also maintains the
787 * link status's stop on the port's TX queue.
788 */
789void efx_link_status_changed(struct efx_nic *efx)
790{
791	struct efx_link_state *link_state = &efx->link_state;
792
793	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
794	 * that no events are triggered between unregister_netdev() and the
795	 * driver unloading. A more general condition is that NETDEV_CHANGE
796	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
797	if (!netif_running(efx->net_dev))
798		return;
799
800	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
801		efx->n_link_state_changes++;
802
803		if (link_state->up)
804			netif_carrier_on(efx->net_dev);
805		else
806			netif_carrier_off(efx->net_dev);
807	}
808
809	/* Status message for kernel log */
810	if (link_state->up) {
811		netif_info(efx, link, efx->net_dev,
812			   "link up at %uMbps %s-duplex (MTU %d)%s\n",
813			   link_state->speed, link_state->fd ? "full" : "half",
814			   efx->net_dev->mtu,
815			   (efx->promiscuous ? " [PROMISC]" : ""));
816	} else {
817		netif_info(efx, link, efx->net_dev, "link down\n");
818	}
819
820}
821
822void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
823{
824	efx->link_advertising = advertising;
825	if (advertising) {
826		if (advertising & ADVERTISED_Pause)
827			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
828		else
829			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
830		if (advertising & ADVERTISED_Asym_Pause)
831			efx->wanted_fc ^= EFX_FC_TX;
832	}
833}
834
835void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
836{
837	efx->wanted_fc = wanted_fc;
838	if (efx->link_advertising) {
839		if (wanted_fc & EFX_FC_RX)
840			efx->link_advertising |= (ADVERTISED_Pause |
841						  ADVERTISED_Asym_Pause);
842		else
843			efx->link_advertising &= ~(ADVERTISED_Pause |
844						   ADVERTISED_Asym_Pause);
845		if (wanted_fc & EFX_FC_TX)
846			efx->link_advertising ^= ADVERTISED_Asym_Pause;
847	}
848}
849
850static void efx_fini_port(struct efx_nic *efx);
851
852/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
853 * the MAC appropriately. All other PHY configuration changes are pushed
854 * through phy_op->set_settings(), and pushed asynchronously to the MAC
855 * through efx_monitor().
856 *
857 * Callers must hold the mac_lock
858 */
859int __efx_reconfigure_port(struct efx_nic *efx)
860{
861	enum efx_phy_mode phy_mode;
862	int rc;
863
864	WARN_ON(!mutex_is_locked(&efx->mac_lock));
865
866	/* Serialise the promiscuous flag with efx_set_multicast_list. */
867	if (efx_dev_registered(efx)) {
868		netif_addr_lock_bh(efx->net_dev);
869		netif_addr_unlock_bh(efx->net_dev);
870	}
871
872	/* Disable PHY transmit in mac level loopbacks */
873	phy_mode = efx->phy_mode;
874	if (LOOPBACK_INTERNAL(efx))
875		efx->phy_mode |= PHY_MODE_TX_DISABLED;
876	else
877		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
878
879	rc = efx->type->reconfigure_port(efx);
880
881	if (rc)
882		efx->phy_mode = phy_mode;
883
884	return rc;
885}
886
887/* Reinitialise the MAC to pick up new PHY settings, even if the port is
888 * disabled. */
889int efx_reconfigure_port(struct efx_nic *efx)
890{
891	int rc;
892
893	EFX_ASSERT_RESET_SERIALISED(efx);
894
895	mutex_lock(&efx->mac_lock);
896	rc = __efx_reconfigure_port(efx);
897	mutex_unlock(&efx->mac_lock);
898
899	return rc;
900}
901
902/* Asynchronous work item for changing MAC promiscuity and multicast
903 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
904 * MAC directly. */
905static void efx_mac_work(struct work_struct *data)
906{
907	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
908
909	mutex_lock(&efx->mac_lock);
910	if (efx->port_enabled) {
911		efx->type->push_multicast_hash(efx);
912		efx->mac_op->reconfigure(efx);
913	}
914	mutex_unlock(&efx->mac_lock);
915}
916
917static int efx_probe_port(struct efx_nic *efx)
918{
919	unsigned char *perm_addr;
920	int rc;
921
922	netif_dbg(efx, probe, efx->net_dev, "create port\n");
923
924	if (phy_flash_cfg)
925		efx->phy_mode = PHY_MODE_SPECIAL;
926
927	/* Connect up MAC/PHY operations table */
928	rc = efx->type->probe_port(efx);
929	if (rc)
930		return rc;
931
932	/* Sanity check MAC address */
933	perm_addr = efx->net_dev->perm_addr;
934	if (is_valid_ether_addr(perm_addr)) {
935		memcpy(efx->net_dev->dev_addr, perm_addr, ETH_ALEN);
936	} else {
937		netif_err(efx, probe, efx->net_dev, "invalid MAC address %pM\n",
938			  perm_addr);
939		if (!allow_bad_hwaddr) {
940			rc = -EINVAL;
941			goto err;
942		}
943		random_ether_addr(efx->net_dev->dev_addr);
944		netif_info(efx, probe, efx->net_dev,
945			   "using locally-generated MAC %pM\n",
946			   efx->net_dev->dev_addr);
947	}
948
949	return 0;
950
951 err:
952	efx->type->remove_port(efx);
953	return rc;
954}
955
956static int efx_init_port(struct efx_nic *efx)
957{
958	int rc;
959
960	netif_dbg(efx, drv, efx->net_dev, "init port\n");
961
962	mutex_lock(&efx->mac_lock);
963
964	rc = efx->phy_op->init(efx);
965	if (rc)
966		goto fail1;
967
968	efx->port_initialized = true;
969
970	/* Reconfigure the MAC before creating dma queues (required for
971	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
972	efx->mac_op->reconfigure(efx);
973
974	/* Ensure the PHY advertises the correct flow control settings */
975	rc = efx->phy_op->reconfigure(efx);
976	if (rc)
977		goto fail2;
978
979	mutex_unlock(&efx->mac_lock);
980	return 0;
981
982fail2:
983	efx->phy_op->fini(efx);
984fail1:
985	mutex_unlock(&efx->mac_lock);
986	return rc;
987}
988
989static void efx_start_port(struct efx_nic *efx)
990{
991	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
992	BUG_ON(efx->port_enabled);
993
994	mutex_lock(&efx->mac_lock);
995	efx->port_enabled = true;
996
997	/* efx_mac_work() might have been scheduled after efx_stop_port(),
998	 * and then cancelled by efx_flush_all() */
999	efx->type->push_multicast_hash(efx);
1000	efx->mac_op->reconfigure(efx);
1001
1002	mutex_unlock(&efx->mac_lock);
1003}
1004
1005/* Prevent efx_mac_work() and efx_monitor() from working */
1006static void efx_stop_port(struct efx_nic *efx)
1007{
1008	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1009
1010	mutex_lock(&efx->mac_lock);
1011	efx->port_enabled = false;
1012	mutex_unlock(&efx->mac_lock);
1013
1014	/* Serialise against efx_set_multicast_list() */
1015	if (efx_dev_registered(efx)) {
1016		netif_addr_lock_bh(efx->net_dev);
1017		netif_addr_unlock_bh(efx->net_dev);
1018	}
1019}
1020
1021static void efx_fini_port(struct efx_nic *efx)
1022{
1023	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1024
1025	if (!efx->port_initialized)
1026		return;
1027
1028	efx->phy_op->fini(efx);
1029	efx->port_initialized = false;
1030
1031	efx->link_state.up = false;
1032	efx_link_status_changed(efx);
1033}
1034
1035static void efx_remove_port(struct efx_nic *efx)
1036{
1037	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1038
1039	efx->type->remove_port(efx);
1040}
1041
1042/**************************************************************************
1043 *
1044 * NIC handling
1045 *
1046 **************************************************************************/
1047
1048/* This configures the PCI device to enable I/O and DMA. */
1049static int efx_init_io(struct efx_nic *efx)
1050{
1051	struct pci_dev *pci_dev = efx->pci_dev;
1052	dma_addr_t dma_mask = efx->type->max_dma_mask;
1053	int rc;
1054
1055	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1056
1057	rc = pci_enable_device(pci_dev);
1058	if (rc) {
1059		netif_err(efx, probe, efx->net_dev,
1060			  "failed to enable PCI device\n");
1061		goto fail1;
1062	}
1063
1064	pci_set_master(pci_dev);
1065
1066	/* Set the PCI DMA mask.  Try all possibilities from our
1067	 * genuine mask down to 32 bits, because some architectures
1068	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1069	 * masks event though they reject 46 bit masks.
1070	 */
1071	while (dma_mask > 0x7fffffffUL) {
1072		if (pci_dma_supported(pci_dev, dma_mask) &&
1073		    ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
1074			break;
1075		dma_mask >>= 1;
1076	}
1077	if (rc) {
1078		netif_err(efx, probe, efx->net_dev,
1079			  "could not find a suitable DMA mask\n");
1080		goto fail2;
1081	}
1082	netif_dbg(efx, probe, efx->net_dev,
1083		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1084	rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
1085	if (rc) {
1086		/* pci_set_consistent_dma_mask() is not *allowed* to
1087		 * fail with a mask that pci_set_dma_mask() accepted,
1088		 * but just in case...
1089		 */
1090		netif_err(efx, probe, efx->net_dev,
1091			  "failed to set consistent DMA mask\n");
1092		goto fail2;
1093	}
1094
1095	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
1096	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1097	if (rc) {
1098		netif_err(efx, probe, efx->net_dev,
1099			  "request for memory BAR failed\n");
1100		rc = -EIO;
1101		goto fail3;
1102	}
1103	efx->membase = ioremap_nocache(efx->membase_phys,
1104				       efx->type->mem_map_size);
1105	if (!efx->membase) {
1106		netif_err(efx, probe, efx->net_dev,
1107			  "could not map memory BAR at %llx+%x\n",
1108			  (unsigned long long)efx->membase_phys,
1109			  efx->type->mem_map_size);
1110		rc = -ENOMEM;
1111		goto fail4;
1112	}
1113	netif_dbg(efx, probe, efx->net_dev,
1114		  "memory BAR at %llx+%x (virtual %p)\n",
1115		  (unsigned long long)efx->membase_phys,
1116		  efx->type->mem_map_size, efx->membase);
1117
1118	return 0;
1119
1120 fail4:
1121	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1122 fail3:
1123	efx->membase_phys = 0;
1124 fail2:
1125	pci_disable_device(efx->pci_dev);
1126 fail1:
1127	return rc;
1128}
1129
1130static void efx_fini_io(struct efx_nic *efx)
1131{
1132	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1133
1134	if (efx->membase) {
1135		iounmap(efx->membase);
1136		efx->membase = NULL;
1137	}
1138
1139	if (efx->membase_phys) {
1140		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1141		efx->membase_phys = 0;
1142	}
1143
1144	pci_disable_device(efx->pci_dev);
1145}
1146
1147/* Get number of channels wanted.  Each channel will have its own IRQ,
1148 * 1 RX queue and/or 2 TX queues. */
1149static int efx_wanted_channels(void)
1150{
1151	cpumask_var_t core_mask;
1152	int count;
1153	int cpu;
1154
1155	if (rss_cpus)
1156		return rss_cpus;
1157
1158	if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
1159		printk(KERN_WARNING
1160		       "sfc: RSS disabled due to allocation failure\n");
1161		return 1;
1162	}
1163
1164	count = 0;
1165	for_each_online_cpu(cpu) {
1166		if (!cpumask_test_cpu(cpu, core_mask)) {
1167			++count;
1168			cpumask_or(core_mask, core_mask,
1169				   topology_core_cpumask(cpu));
1170		}
1171	}
1172
1173	free_cpumask_var(core_mask);
1174	return count;
1175}
1176
1177static int
1178efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries)
1179{
1180#ifdef CONFIG_RFS_ACCEL
1181	int i, rc;
1182
1183	efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels);
1184	if (!efx->net_dev->rx_cpu_rmap)
1185		return -ENOMEM;
1186	for (i = 0; i < efx->n_rx_channels; i++) {
1187		rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
1188				      xentries[i].vector);
1189		if (rc) {
1190			free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
1191			efx->net_dev->rx_cpu_rmap = NULL;
1192			return rc;
1193		}
1194	}
1195#endif
1196	return 0;
1197}
1198
1199/* Probe the number and type of interrupts we are able to obtain, and
1200 * the resulting numbers of channels and RX queues.
1201 */
1202static int efx_probe_interrupts(struct efx_nic *efx)
1203{
1204	int max_channels =
1205		min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
1206	int rc, i;
1207
1208	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1209		struct msix_entry xentries[EFX_MAX_CHANNELS];
1210		int n_channels;
1211
1212		n_channels = efx_wanted_channels();
1213		if (separate_tx_channels)
1214			n_channels *= 2;
1215		n_channels = min(n_channels, max_channels);
1216
1217		for (i = 0; i < n_channels; i++)
1218			xentries[i].entry = i;
1219		rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1220		if (rc > 0) {
1221			netif_err(efx, drv, efx->net_dev,
1222				  "WARNING: Insufficient MSI-X vectors"
1223				  " available (%d < %d).\n", rc, n_channels);
1224			netif_err(efx, drv, efx->net_dev,
1225				  "WARNING: Performance may be reduced.\n");
1226			EFX_BUG_ON_PARANOID(rc >= n_channels);
1227			n_channels = rc;
1228			rc = pci_enable_msix(efx->pci_dev, xentries,
1229					     n_channels);
1230		}
1231
1232		if (rc == 0) {
1233			efx->n_channels = n_channels;
1234			if (separate_tx_channels) {
1235				efx->n_tx_channels =
1236					max(efx->n_channels / 2, 1U);
1237				efx->n_rx_channels =
1238					max(efx->n_channels -
1239					    efx->n_tx_channels, 1U);
1240			} else {
1241				efx->n_tx_channels = efx->n_channels;
1242				efx->n_rx_channels = efx->n_channels;
1243			}
1244			rc = efx_init_rx_cpu_rmap(efx, xentries);
1245			if (rc) {
1246				pci_disable_msix(efx->pci_dev);
1247				return rc;
1248			}
1249			for (i = 0; i < n_channels; i++)
1250				efx_get_channel(efx, i)->irq =
1251					xentries[i].vector;
1252		} else {
1253			/* Fall back to single channel MSI */
1254			efx->interrupt_mode = EFX_INT_MODE_MSI;
1255			netif_err(efx, drv, efx->net_dev,
1256				  "could not enable MSI-X\n");
1257		}
1258	}
1259
1260	/* Try single interrupt MSI */
1261	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1262		efx->n_channels = 1;
1263		efx->n_rx_channels = 1;
1264		efx->n_tx_channels = 1;
1265		rc = pci_enable_msi(efx->pci_dev);
1266		if (rc == 0) {
1267			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1268		} else {
1269			netif_err(efx, drv, efx->net_dev,
1270				  "could not enable MSI\n");
1271			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1272		}
1273	}
1274
1275	/* Assume legacy interrupts */
1276	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1277		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
1278		efx->n_rx_channels = 1;
1279		efx->n_tx_channels = 1;
1280		efx->legacy_irq = efx->pci_dev->irq;
1281	}
1282
1283	return 0;
1284}
1285
1286static void efx_remove_interrupts(struct efx_nic *efx)
1287{
1288	struct efx_channel *channel;
1289
1290	/* Remove MSI/MSI-X interrupts */
1291	efx_for_each_channel(channel, efx)
1292		channel->irq = 0;
1293	pci_disable_msi(efx->pci_dev);
1294	pci_disable_msix(efx->pci_dev);
1295
1296	/* Remove legacy interrupt */
1297	efx->legacy_irq = 0;
1298}
1299
1300static void efx_set_channels(struct efx_nic *efx)
1301{
1302	struct efx_channel *channel;
1303	struct efx_tx_queue *tx_queue;
1304
1305	efx->tx_channel_offset =
1306		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1307
1308	/* We need to adjust the TX queue numbers if we have separate
1309	 * RX-only and TX-only channels.
1310	 */
1311	efx_for_each_channel(channel, efx) {
1312		efx_for_each_channel_tx_queue(tx_queue, channel)
1313			tx_queue->queue -= (efx->tx_channel_offset *
1314					    EFX_TXQ_TYPES);
1315	}
1316}
1317
1318static int efx_probe_nic(struct efx_nic *efx)
1319{
1320	size_t i;
1321	int rc;
1322
1323	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1324
1325	/* Carry out hardware-type specific initialisation */
1326	rc = efx->type->probe(efx);
1327	if (rc)
1328		return rc;
1329
1330	/* Determine the number of channels and queues by trying to hook
1331	 * in MSI-X interrupts. */
1332	rc = efx_probe_interrupts(efx);
1333	if (rc)
1334		goto fail;
1335
1336	if (efx->n_channels > 1)
1337		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1338	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1339		efx->rx_indir_table[i] =
1340			ethtool_rxfh_indir_default(i, efx->n_rx_channels);
1341
1342	efx_set_channels(efx);
1343	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1344	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1345
1346	/* Initialise the interrupt moderation settings */
1347	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1348				true);
1349
1350	return 0;
1351
1352fail:
1353	efx->type->remove(efx);
1354	return rc;
1355}
1356
1357static void efx_remove_nic(struct efx_nic *efx)
1358{
1359	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1360
1361	efx_remove_interrupts(efx);
1362	efx->type->remove(efx);
1363}
1364
1365/**************************************************************************
1366 *
1367 * NIC startup/shutdown
1368 *
1369 *************************************************************************/
1370
1371static int efx_probe_all(struct efx_nic *efx)
1372{
1373	int rc;
1374
1375	rc = efx_probe_nic(efx);
1376	if (rc) {
1377		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1378		goto fail1;
1379	}
1380
1381	rc = efx_probe_port(efx);
1382	if (rc) {
1383		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1384		goto fail2;
1385	}
1386
1387	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1388	rc = efx_probe_channels(efx);
1389	if (rc)
1390		goto fail3;
1391
1392	rc = efx_probe_filters(efx);
1393	if (rc) {
1394		netif_err(efx, probe, efx->net_dev,
1395			  "failed to create filter tables\n");
1396		goto fail4;
1397	}
1398
1399	return 0;
1400
1401 fail4:
1402	efx_remove_channels(efx);
1403 fail3:
1404	efx_remove_port(efx);
1405 fail2:
1406	efx_remove_nic(efx);
1407 fail1:
1408	return rc;
1409}
1410
1411/* Called after previous invocation(s) of efx_stop_all, restarts the
1412 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1413 * and ensures that the port is scheduled to be reconfigured.
1414 * This function is safe to call multiple times when the NIC is in any
1415 * state. */
1416static void efx_start_all(struct efx_nic *efx)
1417{
1418	struct efx_channel *channel;
1419
1420	EFX_ASSERT_RESET_SERIALISED(efx);
1421
1422	/* Check that it is appropriate to restart the interface. All
1423	 * of these flags are safe to read under just the rtnl lock */
1424	if (efx->port_enabled)
1425		return;
1426	if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1427		return;
1428	if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
1429		return;
1430
1431	/* Mark the port as enabled so port reconfigurations can start, then
1432	 * restart the transmit interface early so the watchdog timer stops */
1433	efx_start_port(efx);
1434
1435	if (efx_dev_registered(efx) && netif_device_present(efx->net_dev))
1436		netif_tx_wake_all_queues(efx->net_dev);
1437
1438	efx_for_each_channel(channel, efx)
1439		efx_start_channel(channel);
1440
1441	if (efx->legacy_irq)
1442		efx->legacy_irq_enabled = true;
1443	efx_nic_enable_interrupts(efx);
1444
1445	/* Switch to event based MCDI completions after enabling interrupts.
1446	 * If a reset has been scheduled, then we need to stay in polled mode.
1447	 * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
1448	 * reset_pending [modified from an atomic context], we instead guarantee
1449	 * that efx_mcdi_mode_poll() isn't reverted erroneously */
1450	efx_mcdi_mode_event(efx);
1451	if (efx->reset_pending)
1452		efx_mcdi_mode_poll(efx);
1453
1454	/* Start the hardware monitor if there is one. Otherwise (we're link
1455	 * event driven), we have to poll the PHY because after an event queue
1456	 * flush, we could have a missed a link state change */
1457	if (efx->type->monitor != NULL) {
1458		queue_delayed_work(efx->workqueue, &efx->monitor_work,
1459				   efx_monitor_interval);
1460	} else {
1461		mutex_lock(&efx->mac_lock);
1462		if (efx->phy_op->poll(efx))
1463			efx_link_status_changed(efx);
1464		mutex_unlock(&efx->mac_lock);
1465	}
1466
1467	efx->type->start_stats(efx);
1468}
1469
1470/* Flush all delayed work. Should only be called when no more delayed work
1471 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1472 * since we're holding the rtnl_lock at this point. */
1473static void efx_flush_all(struct efx_nic *efx)
1474{
1475	/* Make sure the hardware monitor is stopped */
1476	cancel_delayed_work_sync(&efx->monitor_work);
1477	/* Stop scheduled port reconfigurations */
1478	cancel_work_sync(&efx->mac_work);
1479}
1480
1481/* Quiesce hardware and software without bringing the link down.
1482 * Safe to call multiple times, when the nic and interface is in any
1483 * state. The caller is guaranteed to subsequently be in a position
1484 * to modify any hardware and software state they see fit without
1485 * taking locks. */
1486static void efx_stop_all(struct efx_nic *efx)
1487{
1488	struct efx_channel *channel;
1489
1490	EFX_ASSERT_RESET_SERIALISED(efx);
1491
1492	/* port_enabled can be read safely under the rtnl lock */
1493	if (!efx->port_enabled)
1494		return;
1495
1496	efx->type->stop_stats(efx);
1497
1498	/* Switch to MCDI polling on Siena before disabling interrupts */
1499	efx_mcdi_mode_poll(efx);
1500
1501	/* Disable interrupts and wait for ISR to complete */
1502	efx_nic_disable_interrupts(efx);
1503	if (efx->legacy_irq) {
1504		synchronize_irq(efx->legacy_irq);
1505		efx->legacy_irq_enabled = false;
1506	}
1507	efx_for_each_channel(channel, efx) {
1508		if (channel->irq)
1509			synchronize_irq(channel->irq);
1510	}
1511
1512	/* Stop all NAPI processing and synchronous rx refills */
1513	efx_for_each_channel(channel, efx)
1514		efx_stop_channel(channel);
1515
1516	/* Stop all asynchronous port reconfigurations. Since all
1517	 * event processing has already been stopped, there is no
1518	 * window to loose phy events */
1519	efx_stop_port(efx);
1520
1521	/* Flush efx_mac_work(), refill_workqueue, monitor_work */
1522	efx_flush_all(efx);
1523
1524	/* Stop the kernel transmit interface late, so the watchdog
1525	 * timer isn't ticking over the flush */
1526	if (efx_dev_registered(efx)) {
1527		netif_tx_stop_all_queues(efx->net_dev);
1528		netif_tx_lock_bh(efx->net_dev);
1529		netif_tx_unlock_bh(efx->net_dev);
1530	}
1531}
1532
1533static void efx_remove_all(struct efx_nic *efx)
1534{
1535	efx_remove_filters(efx);
1536	efx_remove_channels(efx);
1537	efx_remove_port(efx);
1538	efx_remove_nic(efx);
1539}
1540
1541/**************************************************************************
1542 *
1543 * Interrupt moderation
1544 *
1545 **************************************************************************/
1546
1547static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int resolution)
1548{
1549	if (usecs == 0)
1550		return 0;
1551	if (usecs < resolution)
1552		return 1; /* never round down to 0 */
1553	return usecs / resolution;
1554}
1555
1556/* Set interrupt moderation parameters */
1557int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1558			    unsigned int rx_usecs, bool rx_adaptive,
1559			    bool rx_may_override_tx)
1560{
1561	struct efx_channel *channel;
1562	unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION);
1563	unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION);
1564
1565	EFX_ASSERT_RESET_SERIALISED(efx);
1566
1567	if (tx_ticks > EFX_IRQ_MOD_MAX || rx_ticks > EFX_IRQ_MOD_MAX)
1568		return -EINVAL;
1569
1570	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
1571	    !rx_may_override_tx) {
1572		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1573			  "RX and TX IRQ moderation must be equal\n");
1574		return -EINVAL;
1575	}
1576
1577	efx->irq_rx_adaptive = rx_adaptive;
1578	efx->irq_rx_moderation = rx_ticks;
1579	efx_for_each_channel(channel, efx) {
1580		if (efx_channel_has_rx_queue(channel))
1581			channel->irq_moderation = rx_ticks;
1582		else if (efx_channel_has_tx_queues(channel))
1583			channel->irq_moderation = tx_ticks;
1584	}
1585
1586	return 0;
1587}
1588
1589void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
1590			    unsigned int *rx_usecs, bool *rx_adaptive)
1591{
1592	*rx_adaptive = efx->irq_rx_adaptive;
1593	*rx_usecs = efx->irq_rx_moderation * EFX_IRQ_MOD_RESOLUTION;
1594
1595	/* If channels are shared between RX and TX, so is IRQ
1596	 * moderation.  Otherwise, IRQ moderation is the same for all
1597	 * TX channels and is not adaptive.
1598	 */
1599	if (efx->tx_channel_offset == 0)
1600		*tx_usecs = *rx_usecs;
1601	else
1602		*tx_usecs =
1603			efx->channel[efx->tx_channel_offset]->irq_moderation *
1604			EFX_IRQ_MOD_RESOLUTION;
1605}
1606
1607/**************************************************************************
1608 *
1609 * Hardware monitor
1610 *
1611 **************************************************************************/
1612
1613/* Run periodically off the general workqueue */
1614static void efx_monitor(struct work_struct *data)
1615{
1616	struct efx_nic *efx = container_of(data, struct efx_nic,
1617					   monitor_work.work);
1618
1619	netif_vdbg(efx, timer, efx->net_dev,
1620		   "hardware monitor executing on CPU %d\n",
1621		   raw_smp_processor_id());
1622	BUG_ON(efx->type->monitor == NULL);
1623
1624	/* If the mac_lock is already held then it is likely a port
1625	 * reconfiguration is already in place, which will likely do
1626	 * most of the work of monitor() anyway. */
1627	if (mutex_trylock(&efx->mac_lock)) {
1628		if (efx->port_enabled)
1629			efx->type->monitor(efx);
1630		mutex_unlock(&efx->mac_lock);
1631	}
1632
1633	queue_delayed_work(efx->workqueue, &efx->monitor_work,
1634			   efx_monitor_interval);
1635}
1636
1637/**************************************************************************
1638 *
1639 * ioctls
1640 *
1641 *************************************************************************/
1642
1643/* Net device ioctl
1644 * Context: process, rtnl_lock() held.
1645 */
1646static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1647{
1648	struct efx_nic *efx = netdev_priv(net_dev);
1649	struct mii_ioctl_data *data = if_mii(ifr);
1650
1651	EFX_ASSERT_RESET_SERIALISED(efx);
1652
1653	/* Convert phy_id from older PRTAD/DEVAD format */
1654	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1655	    (data->phy_id & 0xfc00) == 0x0400)
1656		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1657
1658	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1659}
1660
1661/**************************************************************************
1662 *
1663 * NAPI interface
1664 *
1665 **************************************************************************/
1666
1667static void efx_init_napi(struct efx_nic *efx)
1668{
1669	struct efx_channel *channel;
1670
1671	efx_for_each_channel(channel, efx) {
1672		channel->napi_dev = efx->net_dev;
1673		netif_napi_add(channel->napi_dev, &channel->napi_str,
1674			       efx_poll, napi_weight);
1675	}
1676}
1677
1678static void efx_fini_napi_channel(struct efx_channel *channel)
1679{
1680	if (channel->napi_dev)
1681		netif_napi_del(&channel->napi_str);
1682	channel->napi_dev = NULL;
1683}
1684
1685static void efx_fini_napi(struct efx_nic *efx)
1686{
1687	struct efx_channel *channel;
1688
1689	efx_for_each_channel(channel, efx)
1690		efx_fini_napi_channel(channel);
1691}
1692
1693/**************************************************************************
1694 *
1695 * Kernel netpoll interface
1696 *
1697 *************************************************************************/
1698
1699#ifdef CONFIG_NET_POLL_CONTROLLER
1700
1701/* Although in the common case interrupts will be disabled, this is not
1702 * guaranteed. However, all our work happens inside the NAPI callback,
1703 * so no locking is required.
1704 */
1705static void efx_netpoll(struct net_device *net_dev)
1706{
1707	struct efx_nic *efx = netdev_priv(net_dev);
1708	struct efx_channel *channel;
1709
1710	efx_for_each_channel(channel, efx)
1711		efx_schedule_channel(channel);
1712}
1713
1714#endif
1715
1716/**************************************************************************
1717 *
1718 * Kernel net device interface
1719 *
1720 *************************************************************************/
1721
1722/* Context: process, rtnl_lock() held. */
1723static int efx_net_open(struct net_device *net_dev)
1724{
1725	struct efx_nic *efx = netdev_priv(net_dev);
1726	EFX_ASSERT_RESET_SERIALISED(efx);
1727
1728	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
1729		  raw_smp_processor_id());
1730
1731	if (efx->state == STATE_DISABLED)
1732		return -EIO;
1733	if (efx->phy_mode & PHY_MODE_SPECIAL)
1734		return -EBUSY;
1735	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1736		return -EIO;
1737
1738	/* Notify the kernel of the link state polled during driver load,
1739	 * before the monitor starts running */
1740	efx_link_status_changed(efx);
1741
1742	efx_start_all(efx);
1743	return 0;
1744}
1745
1746/* Context: process, rtnl_lock() held.
1747 * Note that the kernel will ignore our return code; this method
1748 * should really be a void.
1749 */
1750static int efx_net_stop(struct net_device *net_dev)
1751{
1752	struct efx_nic *efx = netdev_priv(net_dev);
1753
1754	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
1755		  raw_smp_processor_id());
1756
1757	if (efx->state != STATE_DISABLED) {
1758		/* Stop the device and flush all the channels */
1759		efx_stop_all(efx);
1760		efx_fini_channels(efx);
1761		efx_init_channels(efx);
1762	}
1763
1764	return 0;
1765}
1766
1767/* Context: process, dev_base_lock or RTNL held, non-blocking. */
1768static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats)
1769{
1770	struct efx_nic *efx = netdev_priv(net_dev);
1771	struct efx_mac_stats *mac_stats = &efx->mac_stats;
1772
1773	spin_lock_bh(&efx->stats_lock);
1774	efx->type->update_stats(efx);
1775	spin_unlock_bh(&efx->stats_lock);
1776
1777	stats->rx_packets = mac_stats->rx_packets;
1778	stats->tx_packets = mac_stats->tx_packets;
1779	stats->rx_bytes = mac_stats->rx_bytes;
1780	stats->tx_bytes = mac_stats->tx_bytes;
1781	stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
1782	stats->multicast = mac_stats->rx_multicast;
1783	stats->collisions = mac_stats->tx_collision;
1784	stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1785				   mac_stats->rx_length_error);
1786	stats->rx_crc_errors = mac_stats->rx_bad;
1787	stats->rx_frame_errors = mac_stats->rx_align_error;
1788	stats->rx_fifo_errors = mac_stats->rx_overflow;
1789	stats->rx_missed_errors = mac_stats->rx_missed;
1790	stats->tx_window_errors = mac_stats->tx_late_collision;
1791
1792	stats->rx_errors = (stats->rx_length_errors +
1793			    stats->rx_crc_errors +
1794			    stats->rx_frame_errors +
1795			    mac_stats->rx_symbol_error);
1796	stats->tx_errors = (stats->tx_window_errors +
1797			    mac_stats->tx_bad);
1798
1799	return stats;
1800}
1801
1802/* Context: netif_tx_lock held, BHs disabled. */
1803static void efx_watchdog(struct net_device *net_dev)
1804{
1805	struct efx_nic *efx = netdev_priv(net_dev);
1806
1807	netif_err(efx, tx_err, efx->net_dev,
1808		  "TX stuck with port_enabled=%d: resetting channels\n",
1809		  efx->port_enabled);
1810
1811	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1812}
1813
1814
1815/* Context: process, rtnl_lock() held. */
1816static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1817{
1818	struct efx_nic *efx = netdev_priv(net_dev);
1819	int rc = 0;
1820
1821	EFX_ASSERT_RESET_SERIALISED(efx);
1822
1823	if (new_mtu > EFX_MAX_MTU)
1824		return -EINVAL;
1825
1826	efx_stop_all(efx);
1827
1828	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
1829
1830	efx_fini_channels(efx);
1831
1832	mutex_lock(&efx->mac_lock);
1833	/* Reconfigure the MAC before enabling the dma queues so that
1834	 * the RX buffers don't overflow */
1835	net_dev->mtu = new_mtu;
1836	efx->mac_op->reconfigure(efx);
1837	mutex_unlock(&efx->mac_lock);
1838
1839	efx_init_channels(efx);
1840
1841	efx_start_all(efx);
1842	return rc;
1843}
1844
1845static int efx_set_mac_address(struct net_device *net_dev, void *data)
1846{
1847	struct efx_nic *efx = netdev_priv(net_dev);
1848	struct sockaddr *addr = data;
1849	char *new_addr = addr->sa_data;
1850
1851	EFX_ASSERT_RESET_SERIALISED(efx);
1852
1853	if (!is_valid_ether_addr(new_addr)) {
1854		netif_err(efx, drv, efx->net_dev,
1855			  "invalid ethernet MAC address requested: %pM\n",
1856			  new_addr);
1857		return -EINVAL;
1858	}
1859
1860	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1861
1862	/* Reconfigure the MAC */
1863	mutex_lock(&efx->mac_lock);
1864	efx->mac_op->reconfigure(efx);
1865	mutex_unlock(&efx->mac_lock);
1866
1867	return 0;
1868}
1869
1870/* Context: netif_addr_lock held, BHs disabled. */
1871static void efx_set_multicast_list(struct net_device *net_dev)
1872{
1873	struct efx_nic *efx = netdev_priv(net_dev);
1874	struct netdev_hw_addr *ha;
1875	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1876	u32 crc;
1877	int bit;
1878
1879	efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
1880
1881	/* Build multicast hash table */
1882	if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1883		memset(mc_hash, 0xff, sizeof(*mc_hash));
1884	} else {
1885		memset(mc_hash, 0x00, sizeof(*mc_hash));
1886		netdev_for_each_mc_addr(ha, net_dev) {
1887			crc = ether_crc_le(ETH_ALEN, ha->addr);
1888			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1889			set_bit_le(bit, mc_hash->byte);
1890		}
1891
1892		/* Broadcast packets go through the multicast hash filter.
1893		 * ether_crc_le() of the broadcast address is 0xbe2612ff
1894		 * so we always add bit 0xff to the mask.
1895		 */
1896		set_bit_le(0xff, mc_hash->byte);
1897	}
1898
1899	if (efx->port_enabled)
1900		queue_work(efx->workqueue, &efx->mac_work);
1901	/* Otherwise efx_start_port() will do this */
1902}
1903
1904static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
1905{
1906	struct efx_nic *efx = netdev_priv(net_dev);
1907
1908	/* If disabling RX n-tuple filtering, clear existing filters */
1909	if (net_dev->features & ~data & NETIF_F_NTUPLE)
1910		efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
1911
1912	return 0;
1913}
1914
1915static const struct net_device_ops efx_netdev_ops = {
1916	.ndo_open		= efx_net_open,
1917	.ndo_stop		= efx_net_stop,
1918	.ndo_get_stats64	= efx_net_stats,
1919	.ndo_tx_timeout		= efx_watchdog,
1920	.ndo_start_xmit		= efx_hard_start_xmit,
1921	.ndo_validate_addr	= eth_validate_addr,
1922	.ndo_do_ioctl		= efx_ioctl,
1923	.ndo_change_mtu		= efx_change_mtu,
1924	.ndo_set_mac_address	= efx_set_mac_address,
1925	.ndo_set_rx_mode	= efx_set_multicast_list,
1926	.ndo_set_features	= efx_set_features,
1927#ifdef CONFIG_NET_POLL_CONTROLLER
1928	.ndo_poll_controller = efx_netpoll,
1929#endif
1930	.ndo_setup_tc		= efx_setup_tc,
1931#ifdef CONFIG_RFS_ACCEL
1932	.ndo_rx_flow_steer	= efx_filter_rfs,
1933#endif
1934};
1935
1936static void efx_update_name(struct efx_nic *efx)
1937{
1938	strcpy(efx->name, efx->net_dev->name);
1939	efx_mtd_rename(efx);
1940	efx_set_channel_names(efx);
1941}
1942
1943static int efx_netdev_event(struct notifier_block *this,
1944			    unsigned long event, void *ptr)
1945{
1946	struct net_device *net_dev = ptr;
1947
1948	if (net_dev->netdev_ops == &efx_netdev_ops &&
1949	    event == NETDEV_CHANGENAME)
1950		efx_update_name(netdev_priv(net_dev));
1951
1952	return NOTIFY_DONE;
1953}
1954
1955static struct notifier_block efx_netdev_notifier = {
1956	.notifier_call = efx_netdev_event,
1957};
1958
1959static ssize_t
1960show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1961{
1962	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1963	return sprintf(buf, "%d\n", efx->phy_type);
1964}
1965static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1966
1967static int efx_register_netdev(struct efx_nic *efx)
1968{
1969	struct net_device *net_dev = efx->net_dev;
1970	struct efx_channel *channel;
1971	int rc;
1972
1973	net_dev->watchdog_timeo = 5 * HZ;
1974	net_dev->irq = efx->pci_dev->irq;
1975	net_dev->netdev_ops = &efx_netdev_ops;
1976	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1977
1978	/* Clear MAC statistics */
1979	efx->mac_op->update_stats(efx);
1980	memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1981
1982	rtnl_lock();
1983
1984	rc = dev_alloc_name(net_dev, net_dev->name);
1985	if (rc < 0)
1986		goto fail_locked;
1987	efx_update_name(efx);
1988
1989	rc = register_netdevice(net_dev);
1990	if (rc)
1991		goto fail_locked;
1992
1993	efx_for_each_channel(channel, efx) {
1994		struct efx_tx_queue *tx_queue;
1995		efx_for_each_channel_tx_queue(tx_queue, channel)
1996			efx_init_tx_queue_core_txq(tx_queue);
1997	}
1998
1999	/* Always start with carrier off; PHY events will detect the link */
2000	netif_carrier_off(efx->net_dev);
2001
2002	rtnl_unlock();
2003
2004	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2005	if (rc) {
2006		netif_err(efx, drv, efx->net_dev,
2007			  "failed to init net dev attributes\n");
2008		goto fail_registered;
2009	}
2010
2011	return 0;
2012
2013fail_locked:
2014	rtnl_unlock();
2015	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2016	return rc;
2017
2018fail_registered:
2019	unregister_netdev(net_dev);
2020	return rc;
2021}
2022
2023static void efx_unregister_netdev(struct efx_nic *efx)
2024{
2025	struct efx_channel *channel;
2026	struct efx_tx_queue *tx_queue;
2027
2028	if (!efx->net_dev)
2029		return;
2030
2031	BUG_ON(netdev_priv(efx->net_dev) != efx);
2032
2033	/* Free up any skbs still remaining. This has to happen before
2034	 * we try to unregister the netdev as running their destructors
2035	 * may be needed to get the device ref. count to 0. */
2036	efx_for_each_channel(channel, efx) {
2037		efx_for_each_channel_tx_queue(tx_queue, channel)
2038			efx_release_tx_buffers(tx_queue);
2039	}
2040
2041	if (efx_dev_registered(efx)) {
2042		strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2043		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2044		unregister_netdev(efx->net_dev);
2045	}
2046}
2047
2048/**************************************************************************
2049 *
2050 * Device reset and suspend
2051 *
2052 **************************************************************************/
2053
2054/* Tears down the entire software state and most of the hardware state
2055 * before reset.  */
2056void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2057{
2058	EFX_ASSERT_RESET_SERIALISED(efx);
2059
2060	efx_stop_all(efx);
2061	mutex_lock(&efx->mac_lock);
2062
2063	efx_fini_channels(efx);
2064	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
2065		efx->phy_op->fini(efx);
2066	efx->type->fini(efx);
2067}
2068
2069/* This function will always ensure that the locks acquired in
2070 * efx_reset_down() are released. A failure return code indicates
2071 * that we were unable to reinitialise the hardware, and the
2072 * driver should be disabled. If ok is false, then the rx and tx
2073 * engines are not restarted, pending a RESET_DISABLE. */
2074int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2075{
2076	int rc;
2077
2078	EFX_ASSERT_RESET_SERIALISED(efx);
2079
2080	rc = efx->type->init(efx);
2081	if (rc) {
2082		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2083		goto fail;
2084	}
2085
2086	if (!ok)
2087		goto fail;
2088
2089	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2090		rc = efx->phy_op->init(efx);
2091		if (rc)
2092			goto fail;
2093		if (efx->phy_op->reconfigure(efx))
2094			netif_err(efx, drv, efx->net_dev,
2095				  "could not restore PHY settings\n");
2096	}
2097
2098	efx->mac_op->reconfigure(efx);
2099
2100	efx_init_channels(efx);
2101	efx_restore_filters(efx);
2102
2103	mutex_unlock(&efx->mac_lock);
2104
2105	efx_start_all(efx);
2106
2107	return 0;
2108
2109fail:
2110	efx->port_initialized = false;
2111
2112	mutex_unlock(&efx->mac_lock);
2113
2114	return rc;
2115}
2116
2117/* Reset the NIC using the specified method.  Note that the reset may
2118 * fail, in which case the card will be left in an unusable state.
2119 *
2120 * Caller must hold the rtnl_lock.
2121 */
2122int efx_reset(struct efx_nic *efx, enum reset_type method)
2123{
2124	int rc, rc2;
2125	bool disabled;
2126
2127	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2128		   RESET_TYPE(method));
2129
2130	netif_device_detach(efx->net_dev);
2131	efx_reset_down(efx, method);
2132
2133	rc = efx->type->reset(efx, method);
2134	if (rc) {
2135		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2136		goto out;
2137	}
2138
2139	/* Clear flags for the scopes we covered.  We assume the NIC and
2140	 * driver are now quiescent so that there is no race here.
2141	 */
2142	efx->reset_pending &= -(1 << (method + 1));
2143
2144	/* Reinitialise bus-mastering, which may have been turned off before
2145	 * the reset was scheduled. This is still appropriate, even in the
2146	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2147	 * can respond to requests. */
2148	pci_set_master(efx->pci_dev);
2149
2150out:
2151	/* Leave device stopped if necessary */
2152	disabled = rc || method == RESET_TYPE_DISABLE;
2153	rc2 = efx_reset_up(efx, method, !disabled);
2154	if (rc2) {
2155		disabled = true;
2156		if (!rc)
2157			rc = rc2;
2158	}
2159
2160	if (disabled) {
2161		dev_close(efx->net_dev);
2162		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2163		efx->state = STATE_DISABLED;
2164	} else {
2165		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2166		netif_device_attach(efx->net_dev);
2167	}
2168	return rc;
2169}
2170
2171/* The worker thread exists so that code that cannot sleep can
2172 * schedule a reset for later.
2173 */
2174static void efx_reset_work(struct work_struct *data)
2175{
2176	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2177	unsigned long pending = ACCESS_ONCE(efx->reset_pending);
2178
2179	if (!pending)
2180		return;
2181
2182	/* If we're not RUNNING then don't reset. Leave the reset_pending
2183	 * flags set so that efx_pci_probe_main will be retried */
2184	if (efx->state != STATE_RUNNING) {
2185		netif_info(efx, drv, efx->net_dev,
2186			   "scheduled reset quenched. NIC not RUNNING\n");
2187		return;
2188	}
2189
2190	rtnl_lock();
2191	(void)efx_reset(efx, fls(pending) - 1);
2192	rtnl_unlock();
2193}
2194
2195void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2196{
2197	enum reset_type method;
2198
2199	switch (type) {
2200	case RESET_TYPE_INVISIBLE:
2201	case RESET_TYPE_ALL:
2202	case RESET_TYPE_WORLD:
2203	case RESET_TYPE_DISABLE:
2204		method = type;
2205		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2206			  RESET_TYPE(method));
2207		break;
2208	default:
2209		method = efx->type->map_reset_reason(type);
2210		netif_dbg(efx, drv, efx->net_dev,
2211			  "scheduling %s reset for %s\n",
2212			  RESET_TYPE(method), RESET_TYPE(type));
2213		break;
2214	}
2215
2216	set_bit(method, &efx->reset_pending);
2217
2218	/* efx_process_channel() will no longer read events once a
2219	 * reset is scheduled. So switch back to poll'd MCDI completions. */
2220	efx_mcdi_mode_poll(efx);
2221
2222	queue_work(reset_workqueue, &efx->reset_work);
2223}
2224
2225/**************************************************************************
2226 *
2227 * List of NICs we support
2228 *
2229 **************************************************************************/
2230
2231/* PCI device ID table */
2232static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2233	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2234		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2235	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2236	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2237		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2238	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2239	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2240	 .driver_data = (unsigned long) &siena_a0_nic_type},
2241	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2242	 .driver_data = (unsigned long) &siena_a0_nic_type},
2243	{0}			/* end of list */
2244};
2245
2246/**************************************************************************
2247 *
2248 * Dummy PHY/MAC operations
2249 *
2250 * Can be used for some unimplemented operations
2251 * Needed so all function pointers are valid and do not have to be tested
2252 * before use
2253 *
2254 **************************************************************************/
2255int efx_port_dummy_op_int(struct efx_nic *efx)
2256{
2257	return 0;
2258}
2259void efx_port_dummy_op_void(struct efx_nic *efx) {}
2260
2261static bool efx_port_dummy_op_poll(struct efx_nic *efx)
2262{
2263	return false;
2264}
2265
2266static const struct efx_phy_operations efx_dummy_phy_operations = {
2267	.init		 = efx_port_dummy_op_int,
2268	.reconfigure	 = efx_port_dummy_op_int,
2269	.poll		 = efx_port_dummy_op_poll,
2270	.fini		 = efx_port_dummy_op_void,
2271};
2272
2273/**************************************************************************
2274 *
2275 * Data housekeeping
2276 *
2277 **************************************************************************/
2278
2279/* This zeroes out and then fills in the invariants in a struct
2280 * efx_nic (including all sub-structures).
2281 */
2282static int efx_init_struct(struct efx_nic *efx, const struct efx_nic_type *type,
2283			   struct pci_dev *pci_dev, struct net_device *net_dev)
2284{
2285	int i;
2286
2287	/* Initialise common structures */
2288	memset(efx, 0, sizeof(*efx));
2289	spin_lock_init(&efx->biu_lock);
2290#ifdef CONFIG_SFC_MTD
2291	INIT_LIST_HEAD(&efx->mtd_list);
2292#endif
2293	INIT_WORK(&efx->reset_work, efx_reset_work);
2294	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2295	efx->pci_dev = pci_dev;
2296	efx->msg_enable = debug;
2297	efx->state = STATE_INIT;
2298	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2299
2300	efx->net_dev = net_dev;
2301	spin_lock_init(&efx->stats_lock);
2302	mutex_init(&efx->mac_lock);
2303	efx->mac_op = type->default_mac_ops;
2304	efx->phy_op = &efx_dummy_phy_operations;
2305	efx->mdio.dev = net_dev;
2306	INIT_WORK(&efx->mac_work, efx_mac_work);
2307
2308	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2309		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2310		if (!efx->channel[i])
2311			goto fail;
2312	}
2313
2314	efx->type = type;
2315
2316	EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
2317
2318	/* Higher numbered interrupt modes are less capable! */
2319	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2320				  interrupt_mode);
2321
2322	/* Would be good to use the net_dev name, but we're too early */
2323	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2324		 pci_name(pci_dev));
2325	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2326	if (!efx->workqueue)
2327		goto fail;
2328
2329	return 0;
2330
2331fail:
2332	efx_fini_struct(efx);
2333	return -ENOMEM;
2334}
2335
2336static void efx_fini_struct(struct efx_nic *efx)
2337{
2338	int i;
2339
2340	for (i = 0; i < EFX_MAX_CHANNELS; i++)
2341		kfree(efx->channel[i]);
2342
2343	if (efx->workqueue) {
2344		destroy_workqueue(efx->workqueue);
2345		efx->workqueue = NULL;
2346	}
2347}
2348
2349/**************************************************************************
2350 *
2351 * PCI interface
2352 *
2353 **************************************************************************/
2354
2355/* Main body of final NIC shutdown code
2356 * This is called only at module unload (or hotplug removal).
2357 */
2358static void efx_pci_remove_main(struct efx_nic *efx)
2359{
2360#ifdef CONFIG_RFS_ACCEL
2361	free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
2362	efx->net_dev->rx_cpu_rmap = NULL;
2363#endif
2364	efx_nic_fini_interrupt(efx);
2365	efx_fini_channels(efx);
2366	efx_fini_port(efx);
2367	efx->type->fini(efx);
2368	efx_fini_napi(efx);
2369	efx_remove_all(efx);
2370}
2371
2372/* Final NIC shutdown
2373 * This is called only at module unload (or hotplug removal).
2374 */
2375static void efx_pci_remove(struct pci_dev *pci_dev)
2376{
2377	struct efx_nic *efx;
2378
2379	efx = pci_get_drvdata(pci_dev);
2380	if (!efx)
2381		return;
2382
2383	/* Mark the NIC as fini, then stop the interface */
2384	rtnl_lock();
2385	efx->state = STATE_FINI;
2386	dev_close(efx->net_dev);
2387
2388	/* Allow any queued efx_resets() to complete */
2389	rtnl_unlock();
2390
2391	efx_unregister_netdev(efx);
2392
2393	efx_mtd_remove(efx);
2394
2395	/* Wait for any scheduled resets to complete. No more will be
2396	 * scheduled from this point because efx_stop_all() has been
2397	 * called, we are no longer registered with driverlink, and
2398	 * the net_device's have been removed. */
2399	cancel_work_sync(&efx->reset_work);
2400
2401	efx_pci_remove_main(efx);
2402
2403	efx_fini_io(efx);
2404	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2405
2406	pci_set_drvdata(pci_dev, NULL);
2407	efx_fini_struct(efx);
2408	free_netdev(efx->net_dev);
2409};
2410
2411/* Main body of NIC initialisation
2412 * This is called at module load (or hotplug insertion, theoretically).
2413 */
2414static int efx_pci_probe_main(struct efx_nic *efx)
2415{
2416	int rc;
2417
2418	/* Do start-of-day initialisation */
2419	rc = efx_probe_all(efx);
2420	if (rc)
2421		goto fail1;
2422
2423	efx_init_napi(efx);
2424
2425	rc = efx->type->init(efx);
2426	if (rc) {
2427		netif_err(efx, probe, efx->net_dev,
2428			  "failed to initialise NIC\n");
2429		goto fail3;
2430	}
2431
2432	rc = efx_init_port(efx);
2433	if (rc) {
2434		netif_err(efx, probe, efx->net_dev,
2435			  "failed to initialise port\n");
2436		goto fail4;
2437	}
2438
2439	efx_init_channels(efx);
2440
2441	rc = efx_nic_init_interrupt(efx);
2442	if (rc)
2443		goto fail5;
2444
2445	return 0;
2446
2447 fail5:
2448	efx_fini_channels(efx);
2449	efx_fini_port(efx);
2450 fail4:
2451	efx->type->fini(efx);
2452 fail3:
2453	efx_fini_napi(efx);
2454	efx_remove_all(efx);
2455 fail1:
2456	return rc;
2457}
2458
2459/* NIC initialisation
2460 *
2461 * This is called at module load (or hotplug insertion,
2462 * theoretically).  It sets up PCI mappings, tests and resets the NIC,
2463 * sets up and registers the network devices with the kernel and hooks
2464 * the interrupt service routine.  It does not prepare the device for
2465 * transmission; this is left to the first time one of the network
2466 * interfaces is brought up (i.e. efx_net_open).
2467 */
2468static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2469				   const struct pci_device_id *entry)
2470{
2471	const struct efx_nic_type *type = (const struct efx_nic_type *) entry->driver_data;
2472	struct net_device *net_dev;
2473	struct efx_nic *efx;
2474	int i, rc;
2475
2476	/* Allocate and initialise a struct net_device and struct efx_nic */
2477	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
2478				     EFX_MAX_RX_QUEUES);
2479	if (!net_dev)
2480		return -ENOMEM;
2481	net_dev->features |= (type->offload_features | NETIF_F_SG |
2482			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2483			      NETIF_F_RXCSUM);
2484	if (type->offload_features & NETIF_F_V6_CSUM)
2485		net_dev->features |= NETIF_F_TSO6;
2486	/* Mask for features that also apply to VLAN devices */
2487	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2488				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
2489				   NETIF_F_RXCSUM);
2490	/* All offloads can be toggled */
2491	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2492	efx = netdev_priv(net_dev);
2493	pci_set_drvdata(pci_dev, efx);
2494	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2495	rc = efx_init_struct(efx, type, pci_dev, net_dev);
2496	if (rc)
2497		goto fail1;
2498
2499	netif_info(efx, probe, efx->net_dev,
2500		   "Solarflare NIC detected\n");
2501
2502	/* Set up basic I/O (BAR mappings etc) */
2503	rc = efx_init_io(efx);
2504	if (rc)
2505		goto fail2;
2506
2507	/* No serialisation is required with the reset path because
2508	 * we're in STATE_INIT. */
2509	for (i = 0; i < 5; i++) {
2510		rc = efx_pci_probe_main(efx);
2511
2512		/* Serialise against efx_reset(). No more resets will be
2513		 * scheduled since efx_stop_all() has been called, and we
2514		 * have not and never have been registered with either
2515		 * the rtnetlink or driverlink layers. */
2516		cancel_work_sync(&efx->reset_work);
2517
2518		if (rc == 0) {
2519			if (efx->reset_pending) {
2520				/* If there was a scheduled reset during
2521				 * probe, the NIC is probably hosed anyway */
2522				efx_pci_remove_main(efx);
2523				rc = -EIO;
2524			} else {
2525				break;
2526			}
2527		}
2528
2529		/* Retry if a recoverably reset event has been scheduled */
2530		if (efx->reset_pending &
2531		    ~(1 << RESET_TYPE_INVISIBLE | 1 << RESET_TYPE_ALL) ||
2532		    !efx->reset_pending)
2533			goto fail3;
2534
2535		efx->reset_pending = 0;
2536	}
2537
2538	if (rc) {
2539		netif_err(efx, probe, efx->net_dev, "Could not reset NIC\n");
2540		goto fail4;
2541	}
2542
2543	/* Switch to the running state before we expose the device to the OS,
2544	 * so that dev_open()|efx_start_all() will actually start the device */
2545	efx->state = STATE_RUNNING;
2546
2547	rc = efx_register_netdev(efx);
2548	if (rc)
2549		goto fail5;
2550
2551	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2552
2553	rtnl_lock();
2554	efx_mtd_probe(efx); /* allowed to fail */
2555	rtnl_unlock();
2556	return 0;
2557
2558 fail5:
2559	efx_pci_remove_main(efx);
2560 fail4:
2561 fail3:
2562	efx_fini_io(efx);
2563 fail2:
2564	efx_fini_struct(efx);
2565 fail1:
2566	WARN_ON(rc > 0);
2567	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2568	free_netdev(net_dev);
2569	return rc;
2570}
2571
2572static int efx_pm_freeze(struct device *dev)
2573{
2574	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2575
2576	efx->state = STATE_FINI;
2577
2578	netif_device_detach(efx->net_dev);
2579
2580	efx_stop_all(efx);
2581	efx_fini_channels(efx);
2582
2583	return 0;
2584}
2585
2586static int efx_pm_thaw(struct device *dev)
2587{
2588	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2589
2590	efx->state = STATE_INIT;
2591
2592	efx_init_channels(efx);
2593
2594	mutex_lock(&efx->mac_lock);
2595	efx->phy_op->reconfigure(efx);
2596	mutex_unlock(&efx->mac_lock);
2597
2598	efx_start_all(efx);
2599
2600	netif_device_attach(efx->net_dev);
2601
2602	efx->state = STATE_RUNNING;
2603
2604	efx->type->resume_wol(efx);
2605
2606	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2607	queue_work(reset_workqueue, &efx->reset_work);
2608
2609	return 0;
2610}
2611
2612static int efx_pm_poweroff(struct device *dev)
2613{
2614	struct pci_dev *pci_dev = to_pci_dev(dev);
2615	struct efx_nic *efx = pci_get_drvdata(pci_dev);
2616
2617	efx->type->fini(efx);
2618
2619	efx->reset_pending = 0;
2620
2621	pci_save_state(pci_dev);
2622	return pci_set_power_state(pci_dev, PCI_D3hot);
2623}
2624
2625/* Used for both resume and restore */
2626static int efx_pm_resume(struct device *dev)
2627{
2628	struct pci_dev *pci_dev = to_pci_dev(dev);
2629	struct efx_nic *efx = pci_get_drvdata(pci_dev);
2630	int rc;
2631
2632	rc = pci_set_power_state(pci_dev, PCI_D0);
2633	if (rc)
2634		return rc;
2635	pci_restore_state(pci_dev);
2636	rc = pci_enable_device(pci_dev);
2637	if (rc)
2638		return rc;
2639	pci_set_master(efx->pci_dev);
2640	rc = efx->type->reset(efx, RESET_TYPE_ALL);
2641	if (rc)
2642		return rc;
2643	rc = efx->type->init(efx);
2644	if (rc)
2645		return rc;
2646	efx_pm_thaw(dev);
2647	return 0;
2648}
2649
2650static int efx_pm_suspend(struct device *dev)
2651{
2652	int rc;
2653
2654	efx_pm_freeze(dev);
2655	rc = efx_pm_poweroff(dev);
2656	if (rc)
2657		efx_pm_resume(dev);
2658	return rc;
2659}
2660
2661static struct dev_pm_ops efx_pm_ops = {
2662	.suspend	= efx_pm_suspend,
2663	.resume		= efx_pm_resume,
2664	.freeze		= efx_pm_freeze,
2665	.thaw		= efx_pm_thaw,
2666	.poweroff	= efx_pm_poweroff,
2667	.restore	= efx_pm_resume,
2668};
2669
2670static struct pci_driver efx_pci_driver = {
2671	.name		= KBUILD_MODNAME,
2672	.id_table	= efx_pci_table,
2673	.probe		= efx_pci_probe,
2674	.remove		= efx_pci_remove,
2675	.driver.pm	= &efx_pm_ops,
2676};
2677
2678/**************************************************************************
2679 *
2680 * Kernel module interface
2681 *
2682 *************************************************************************/
2683
2684module_param(interrupt_mode, uint, 0444);
2685MODULE_PARM_DESC(interrupt_mode,
2686		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2687
2688static int __init efx_init_module(void)
2689{
2690	int rc;
2691
2692	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2693
2694	rc = register_netdevice_notifier(&efx_netdev_notifier);
2695	if (rc)
2696		goto err_notifier;
2697
2698	reset_workqueue = create_singlethread_workqueue("sfc_reset");
2699	if (!reset_workqueue) {
2700		rc = -ENOMEM;
2701		goto err_reset;
2702	}
2703
2704	rc = pci_register_driver(&efx_pci_driver);
2705	if (rc < 0)
2706		goto err_pci;
2707
2708	return 0;
2709
2710 err_pci:
2711	destroy_workqueue(reset_workqueue);
2712 err_reset:
2713	unregister_netdevice_notifier(&efx_netdev_notifier);
2714 err_notifier:
2715	return rc;
2716}
2717
2718static void __exit efx_exit_module(void)
2719{
2720	printk(KERN_INFO "Solarflare NET driver unloading\n");
2721
2722	pci_unregister_driver(&efx_pci_driver);
2723	destroy_workqueue(reset_workqueue);
2724	unregister_netdevice_notifier(&efx_netdev_notifier);
2725
2726}
2727
2728module_init(efx_init_module);
2729module_exit(efx_exit_module);
2730
2731MODULE_AUTHOR("Solarflare Communications and "
2732	      "Michael Brown <mbrown@fensystems.co.uk>");
2733MODULE_DESCRIPTION("Solarflare Communications network driver");
2734MODULE_LICENSE("GPL");
2735MODULE_DEVICE_TABLE(pci, efx_pci_table);
2736