1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Driver for SGI's IOC3 based Ethernet cards as found in the PCI card.
7 *
8 * Copyright (C) 1999, 2000, 01, 03, 06 Ralf Baechle
9 * Copyright (C) 1995, 1999, 2000, 2001 by Silicon Graphics, Inc.
10 *
11 * References:
12 *  o IOC3 ASIC specification 4.51, 1996-04-18
13 *  o IEEE 802.3 specification, 2000 edition
14 *  o DP38840A Specification, National Semiconductor, March 1997
15 *
16 * To do:
17 *
18 *  o Handle allocation failures in ioc3_alloc_skb() more gracefully.
19 *  o Handle allocation failures in ioc3_init_rings().
20 *  o Use prefetching for large packets.  What is a good lower limit for
21 *    prefetching?
22 *  o We're probably allocating a bit too much memory.
23 *  o Use hardware checksums.
24 *  o Convert to using a IOC3 meta driver.
25 *  o Which PHYs might possibly be attached to the IOC3 in real live,
26 *    which workarounds are required for them?  Do we ever have Lucent's?
27 *  o For the 2.5 branch kill the mii-tool ioctls.
28 */
29
30#define IOC3_NAME	"ioc3-eth"
31#define IOC3_VERSION	"2.6.3-4"
32
33#include <linux/init.h>
34#include <linux/delay.h>
35#include <linux/kernel.h>
36#include <linux/mm.h>
37#include <linux/errno.h>
38#include <linux/module.h>
39#include <linux/pci.h>
40#include <linux/crc32.h>
41#include <linux/mii.h>
42#include <linux/in.h>
43#include <linux/ip.h>
44#include <linux/tcp.h>
45#include <linux/udp.h>
46#include <linux/dma-mapping.h>
47#include <linux/gfp.h>
48
49#ifdef CONFIG_SERIAL_8250
50#include <linux/serial_core.h>
51#include <linux/serial_8250.h>
52#include <linux/serial_reg.h>
53#endif
54
55#include <linux/netdevice.h>
56#include <linux/etherdevice.h>
57#include <linux/ethtool.h>
58#include <linux/skbuff.h>
59#include <net/ip.h>
60
61#include <asm/byteorder.h>
62#include <asm/io.h>
63#include <asm/pgtable.h>
64#include <asm/uaccess.h>
65#include <asm/sn/types.h>
66#include <asm/sn/ioc3.h>
67#include <asm/pci/bridge.h>
68
69/*
70 * 64 RX buffers.  This is tunable in the range of 16 <= x < 512.  The
71 * value must be a power of two.
72 */
73#define RX_BUFFS 64
74
75#define ETCSR_FD	((17<<ETCSR_IPGR2_SHIFT) | (11<<ETCSR_IPGR1_SHIFT) | 21)
76#define ETCSR_HD	((21<<ETCSR_IPGR2_SHIFT) | (21<<ETCSR_IPGR1_SHIFT) | 21)
77
78/* Private per NIC data of the driver.  */
79struct ioc3_private {
80	struct ioc3 *regs;
81	unsigned long *rxr;		/* pointer to receiver ring */
82	struct ioc3_etxd *txr;
83	struct sk_buff *rx_skbs[512];
84	struct sk_buff *tx_skbs[128];
85	int rx_ci;			/* RX consumer index */
86	int rx_pi;			/* RX producer index */
87	int tx_ci;			/* TX consumer index */
88	int tx_pi;			/* TX producer index */
89	int txqlen;
90	u32 emcr, ehar_h, ehar_l;
91	spinlock_t ioc3_lock;
92	struct mii_if_info mii;
93
94	struct pci_dev *pdev;
95
96	/* Members used by autonegotiation  */
97	struct timer_list ioc3_timer;
98};
99
100static inline struct net_device *priv_netdev(struct ioc3_private *dev)
101{
102	return (void *)dev - ((sizeof(struct net_device) + 31) & ~31);
103}
104
105static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
106static void ioc3_set_multicast_list(struct net_device *dev);
107static int ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev);
108static void ioc3_timeout(struct net_device *dev);
109static inline unsigned int ioc3_hash(const unsigned char *addr);
110static inline void ioc3_stop(struct ioc3_private *ip);
111static void ioc3_init(struct net_device *dev);
112
113static const char ioc3_str[] = "IOC3 Ethernet";
114static const struct ethtool_ops ioc3_ethtool_ops;
115
116/* We use this to acquire receive skb's that we can DMA directly into. */
117
118#define IOC3_CACHELINE	128UL
119
120static inline unsigned long aligned_rx_skb_addr(unsigned long addr)
121{
122	return (~addr + 1) & (IOC3_CACHELINE - 1UL);
123}
124
125static inline struct sk_buff * ioc3_alloc_skb(unsigned long length,
126	unsigned int gfp_mask)
127{
128	struct sk_buff *skb;
129
130	skb = alloc_skb(length + IOC3_CACHELINE - 1, gfp_mask);
131	if (likely(skb)) {
132		int offset = aligned_rx_skb_addr((unsigned long) skb->data);
133		if (offset)
134			skb_reserve(skb, offset);
135	}
136
137	return skb;
138}
139
140static inline unsigned long ioc3_map(void *ptr, unsigned long vdev)
141{
142#ifdef CONFIG_SGI_IP27
143	vdev <<= 57;   /* Shift to PCI64_ATTR_VIRTUAL */
144
145	return vdev | (0xaUL << PCI64_ATTR_TARG_SHFT) | PCI64_ATTR_PREF |
146	       ((unsigned long)ptr & TO_PHYS_MASK);
147#else
148	return virt_to_bus(ptr);
149#endif
150}
151
152/* BEWARE: The IOC3 documentation documents the size of rx buffers as
153   1644 while it's actually 1664.  This one was nasty to track down ...  */
154#define RX_OFFSET		10
155#define RX_BUF_ALLOC_SIZE	(1664 + RX_OFFSET + IOC3_CACHELINE)
156
157/* DMA barrier to separate cached and uncached accesses.  */
158#define BARRIER()							\
159	__asm__("sync" ::: "memory")
160
161
162#define IOC3_SIZE 0x100000
163
164/*
165 * IOC3 is a big endian device
166 *
167 * Unorthodox but makes the users of these macros more readable - the pointer
168 * to the IOC3's memory mapped registers is expected as struct ioc3 * ioc3
169 * in the environment.
170 */
171#define ioc3_r_mcr()		be32_to_cpu(ioc3->mcr)
172#define ioc3_w_mcr(v)		do { ioc3->mcr = cpu_to_be32(v); } while (0)
173#define ioc3_w_gpcr_s(v)	do { ioc3->gpcr_s = cpu_to_be32(v); } while (0)
174#define ioc3_r_emcr()		be32_to_cpu(ioc3->emcr)
175#define ioc3_w_emcr(v)		do { ioc3->emcr = cpu_to_be32(v); } while (0)
176#define ioc3_r_eisr()		be32_to_cpu(ioc3->eisr)
177#define ioc3_w_eisr(v)		do { ioc3->eisr = cpu_to_be32(v); } while (0)
178#define ioc3_r_eier()		be32_to_cpu(ioc3->eier)
179#define ioc3_w_eier(v)		do { ioc3->eier = cpu_to_be32(v); } while (0)
180#define ioc3_r_ercsr()		be32_to_cpu(ioc3->ercsr)
181#define ioc3_w_ercsr(v)		do { ioc3->ercsr = cpu_to_be32(v); } while (0)
182#define ioc3_r_erbr_h()		be32_to_cpu(ioc3->erbr_h)
183#define ioc3_w_erbr_h(v)	do { ioc3->erbr_h = cpu_to_be32(v); } while (0)
184#define ioc3_r_erbr_l()		be32_to_cpu(ioc3->erbr_l)
185#define ioc3_w_erbr_l(v)	do { ioc3->erbr_l = cpu_to_be32(v); } while (0)
186#define ioc3_r_erbar()		be32_to_cpu(ioc3->erbar)
187#define ioc3_w_erbar(v)		do { ioc3->erbar = cpu_to_be32(v); } while (0)
188#define ioc3_r_ercir()		be32_to_cpu(ioc3->ercir)
189#define ioc3_w_ercir(v)		do { ioc3->ercir = cpu_to_be32(v); } while (0)
190#define ioc3_r_erpir()		be32_to_cpu(ioc3->erpir)
191#define ioc3_w_erpir(v)		do { ioc3->erpir = cpu_to_be32(v); } while (0)
192#define ioc3_r_ertr()		be32_to_cpu(ioc3->ertr)
193#define ioc3_w_ertr(v)		do { ioc3->ertr = cpu_to_be32(v); } while (0)
194#define ioc3_r_etcsr()		be32_to_cpu(ioc3->etcsr)
195#define ioc3_w_etcsr(v)		do { ioc3->etcsr = cpu_to_be32(v); } while (0)
196#define ioc3_r_ersr()		be32_to_cpu(ioc3->ersr)
197#define ioc3_w_ersr(v)		do { ioc3->ersr = cpu_to_be32(v); } while (0)
198#define ioc3_r_etcdc()		be32_to_cpu(ioc3->etcdc)
199#define ioc3_w_etcdc(v)		do { ioc3->etcdc = cpu_to_be32(v); } while (0)
200#define ioc3_r_ebir()		be32_to_cpu(ioc3->ebir)
201#define ioc3_w_ebir(v)		do { ioc3->ebir = cpu_to_be32(v); } while (0)
202#define ioc3_r_etbr_h()		be32_to_cpu(ioc3->etbr_h)
203#define ioc3_w_etbr_h(v)	do { ioc3->etbr_h = cpu_to_be32(v); } while (0)
204#define ioc3_r_etbr_l()		be32_to_cpu(ioc3->etbr_l)
205#define ioc3_w_etbr_l(v)	do { ioc3->etbr_l = cpu_to_be32(v); } while (0)
206#define ioc3_r_etcir()		be32_to_cpu(ioc3->etcir)
207#define ioc3_w_etcir(v)		do { ioc3->etcir = cpu_to_be32(v); } while (0)
208#define ioc3_r_etpir()		be32_to_cpu(ioc3->etpir)
209#define ioc3_w_etpir(v)		do { ioc3->etpir = cpu_to_be32(v); } while (0)
210#define ioc3_r_emar_h()		be32_to_cpu(ioc3->emar_h)
211#define ioc3_w_emar_h(v)	do { ioc3->emar_h = cpu_to_be32(v); } while (0)
212#define ioc3_r_emar_l()		be32_to_cpu(ioc3->emar_l)
213#define ioc3_w_emar_l(v)	do { ioc3->emar_l = cpu_to_be32(v); } while (0)
214#define ioc3_r_ehar_h()		be32_to_cpu(ioc3->ehar_h)
215#define ioc3_w_ehar_h(v)	do { ioc3->ehar_h = cpu_to_be32(v); } while (0)
216#define ioc3_r_ehar_l()		be32_to_cpu(ioc3->ehar_l)
217#define ioc3_w_ehar_l(v)	do { ioc3->ehar_l = cpu_to_be32(v); } while (0)
218#define ioc3_r_micr()		be32_to_cpu(ioc3->micr)
219#define ioc3_w_micr(v)		do { ioc3->micr = cpu_to_be32(v); } while (0)
220#define ioc3_r_midr_r()		be32_to_cpu(ioc3->midr_r)
221#define ioc3_w_midr_r(v)	do { ioc3->midr_r = cpu_to_be32(v); } while (0)
222#define ioc3_r_midr_w()		be32_to_cpu(ioc3->midr_w)
223#define ioc3_w_midr_w(v)	do { ioc3->midr_w = cpu_to_be32(v); } while (0)
224
225static inline u32 mcr_pack(u32 pulse, u32 sample)
226{
227	return (pulse << 10) | (sample << 2);
228}
229
230static int nic_wait(struct ioc3 *ioc3)
231{
232	u32 mcr;
233
234        do {
235                mcr = ioc3_r_mcr();
236        } while (!(mcr & 2));
237
238        return mcr & 1;
239}
240
241static int nic_reset(struct ioc3 *ioc3)
242{
243        int presence;
244
245	ioc3_w_mcr(mcr_pack(500, 65));
246	presence = nic_wait(ioc3);
247
248	ioc3_w_mcr(mcr_pack(0, 500));
249	nic_wait(ioc3);
250
251        return presence;
252}
253
254static inline int nic_read_bit(struct ioc3 *ioc3)
255{
256	int result;
257
258	ioc3_w_mcr(mcr_pack(6, 13));
259	result = nic_wait(ioc3);
260	ioc3_w_mcr(mcr_pack(0, 100));
261	nic_wait(ioc3);
262
263	return result;
264}
265
266static inline void nic_write_bit(struct ioc3 *ioc3, int bit)
267{
268	if (bit)
269		ioc3_w_mcr(mcr_pack(6, 110));
270	else
271		ioc3_w_mcr(mcr_pack(80, 30));
272
273	nic_wait(ioc3);
274}
275
276/*
277 * Read a byte from an iButton device
278 */
279static u32 nic_read_byte(struct ioc3 *ioc3)
280{
281	u32 result = 0;
282	int i;
283
284	for (i = 0; i < 8; i++)
285		result = (result >> 1) | (nic_read_bit(ioc3) << 7);
286
287	return result;
288}
289
290/*
291 * Write a byte to an iButton device
292 */
293static void nic_write_byte(struct ioc3 *ioc3, int byte)
294{
295	int i, bit;
296
297	for (i = 8; i; i--) {
298		bit = byte & 1;
299		byte >>= 1;
300
301		nic_write_bit(ioc3, bit);
302	}
303}
304
305static u64 nic_find(struct ioc3 *ioc3, int *last)
306{
307	int a, b, index, disc;
308	u64 address = 0;
309
310	nic_reset(ioc3);
311	/* Search ROM.  */
312	nic_write_byte(ioc3, 0xf0);
313
314	/* Algorithm from ``Book of iButton Standards''.  */
315	for (index = 0, disc = 0; index < 64; index++) {
316		a = nic_read_bit(ioc3);
317		b = nic_read_bit(ioc3);
318
319		if (a && b) {
320			printk("NIC search failed (not fatal).\n");
321			*last = 0;
322			return 0;
323		}
324
325		if (!a && !b) {
326			if (index == *last) {
327				address |= 1UL << index;
328			} else if (index > *last) {
329				address &= ~(1UL << index);
330				disc = index;
331			} else if ((address & (1UL << index)) == 0)
332				disc = index;
333			nic_write_bit(ioc3, address & (1UL << index));
334			continue;
335		} else {
336			if (a)
337				address |= 1UL << index;
338			else
339				address &= ~(1UL << index);
340			nic_write_bit(ioc3, a);
341			continue;
342		}
343	}
344
345	*last = disc;
346
347	return address;
348}
349
350static int nic_init(struct ioc3 *ioc3)
351{
352	const char *unknown = "unknown";
353	const char *type = unknown;
354	u8 crc;
355	u8 serial[6];
356	int save = 0, i;
357
358	while (1) {
359		u64 reg;
360		reg = nic_find(ioc3, &save);
361
362		switch (reg & 0xff) {
363		case 0x91:
364			type = "DS1981U";
365			break;
366		default:
367			if (save == 0) {
368				/* Let the caller try again.  */
369				return -1;
370			}
371			continue;
372		}
373
374		nic_reset(ioc3);
375
376		/* Match ROM.  */
377		nic_write_byte(ioc3, 0x55);
378		for (i = 0; i < 8; i++)
379			nic_write_byte(ioc3, (reg >> (i << 3)) & 0xff);
380
381		reg >>= 8; /* Shift out type.  */
382		for (i = 0; i < 6; i++) {
383			serial[i] = reg & 0xff;
384			reg >>= 8;
385		}
386		crc = reg & 0xff;
387		break;
388	}
389
390	printk("Found %s NIC", type);
391	if (type != unknown)
392		printk (" registration number %pM, CRC %02x", serial, crc);
393	printk(".\n");
394
395	return 0;
396}
397
398/*
399 * Read the NIC (Number-In-a-Can) device used to store the MAC address on
400 * SN0 / SN00 nodeboards and PCI cards.
401 */
402static void ioc3_get_eaddr_nic(struct ioc3_private *ip)
403{
404	struct ioc3 *ioc3 = ip->regs;
405	u8 nic[14];
406	int tries = 2; /* There may be some problem with the battery?  */
407	int i;
408
409	ioc3_w_gpcr_s(1 << 21);
410
411	while (tries--) {
412		if (!nic_init(ioc3))
413			break;
414		udelay(500);
415	}
416
417	if (tries < 0) {
418		printk("Failed to read MAC address\n");
419		return;
420	}
421
422	/* Read Memory.  */
423	nic_write_byte(ioc3, 0xf0);
424	nic_write_byte(ioc3, 0x00);
425	nic_write_byte(ioc3, 0x00);
426
427	for (i = 13; i >= 0; i--)
428		nic[i] = nic_read_byte(ioc3);
429
430	for (i = 2; i < 8; i++)
431		priv_netdev(ip)->dev_addr[i - 2] = nic[i];
432}
433
434/*
435 * Ok, this is hosed by design.  It's necessary to know what machine the
436 * NIC is in in order to know how to read the NIC address.  We also have
437 * to know if it's a PCI card or a NIC in on the node board ...
438 */
439static void ioc3_get_eaddr(struct ioc3_private *ip)
440{
441	ioc3_get_eaddr_nic(ip);
442
443	printk("Ethernet address is %pM.\n", priv_netdev(ip)->dev_addr);
444}
445
446static void __ioc3_set_mac_address(struct net_device *dev)
447{
448	struct ioc3_private *ip = netdev_priv(dev);
449	struct ioc3 *ioc3 = ip->regs;
450
451	ioc3_w_emar_h((dev->dev_addr[5] <<  8) | dev->dev_addr[4]);
452	ioc3_w_emar_l((dev->dev_addr[3] << 24) | (dev->dev_addr[2] << 16) |
453	              (dev->dev_addr[1] <<  8) | dev->dev_addr[0]);
454}
455
456static int ioc3_set_mac_address(struct net_device *dev, void *addr)
457{
458	struct ioc3_private *ip = netdev_priv(dev);
459	struct sockaddr *sa = addr;
460
461	memcpy(dev->dev_addr, sa->sa_data, dev->addr_len);
462
463	spin_lock_irq(&ip->ioc3_lock);
464	__ioc3_set_mac_address(dev);
465	spin_unlock_irq(&ip->ioc3_lock);
466
467	return 0;
468}
469
470/*
471 * Caller must hold the ioc3_lock ever for MII readers.  This is also
472 * used to protect the transmitter side but it's low contention.
473 */
474static int ioc3_mdio_read(struct net_device *dev, int phy, int reg)
475{
476	struct ioc3_private *ip = netdev_priv(dev);
477	struct ioc3 *ioc3 = ip->regs;
478
479	while (ioc3_r_micr() & MICR_BUSY);
480	ioc3_w_micr((phy << MICR_PHYADDR_SHIFT) | reg | MICR_READTRIG);
481	while (ioc3_r_micr() & MICR_BUSY);
482
483	return ioc3_r_midr_r() & MIDR_DATA_MASK;
484}
485
486static void ioc3_mdio_write(struct net_device *dev, int phy, int reg, int data)
487{
488	struct ioc3_private *ip = netdev_priv(dev);
489	struct ioc3 *ioc3 = ip->regs;
490
491	while (ioc3_r_micr() & MICR_BUSY);
492	ioc3_w_midr_w(data);
493	ioc3_w_micr((phy << MICR_PHYADDR_SHIFT) | reg);
494	while (ioc3_r_micr() & MICR_BUSY);
495}
496
497static int ioc3_mii_init(struct ioc3_private *ip);
498
499static struct net_device_stats *ioc3_get_stats(struct net_device *dev)
500{
501	struct ioc3_private *ip = netdev_priv(dev);
502	struct ioc3 *ioc3 = ip->regs;
503
504	dev->stats.collisions += (ioc3_r_etcdc() & ETCDC_COLLCNT_MASK);
505	return &dev->stats;
506}
507
508static void ioc3_tcpudp_checksum(struct sk_buff *skb, uint32_t hwsum, int len)
509{
510	struct ethhdr *eh = eth_hdr(skb);
511	uint32_t csum, ehsum;
512	unsigned int proto;
513	struct iphdr *ih;
514	uint16_t *ew;
515	unsigned char *cp;
516
517	/*
518	 * Did hardware handle the checksum at all?  The cases we can handle
519	 * are:
520	 *
521	 * - TCP and UDP checksums of IPv4 only.
522	 * - IPv6 would be doable but we keep that for later ...
523	 * - Only unfragmented packets.  Did somebody already tell you
524	 *   fragmentation is evil?
525	 * - don't care about packet size.  Worst case when processing a
526	 *   malformed packet we'll try to access the packet at ip header +
527	 *   64 bytes which is still inside the skb.  Even in the unlikely
528	 *   case where the checksum is right the higher layers will still
529	 *   drop the packet as appropriate.
530	 */
531	if (eh->h_proto != htons(ETH_P_IP))
532		return;
533
534	ih = (struct iphdr *) ((char *)eh + ETH_HLEN);
535	if (ip_is_fragment(ih))
536		return;
537
538	proto = ih->protocol;
539	if (proto != IPPROTO_TCP && proto != IPPROTO_UDP)
540		return;
541
542	/* Same as tx - compute csum of pseudo header  */
543	csum = hwsum +
544	       (ih->tot_len - (ih->ihl << 2)) +
545	       htons((uint16_t)ih->protocol) +
546	       (ih->saddr >> 16) + (ih->saddr & 0xffff) +
547	       (ih->daddr >> 16) + (ih->daddr & 0xffff);
548
549	/* Sum up ethernet dest addr, src addr and protocol  */
550	ew = (uint16_t *) eh;
551	ehsum = ew[0] + ew[1] + ew[2] + ew[3] + ew[4] + ew[5] + ew[6];
552
553	ehsum = (ehsum & 0xffff) + (ehsum >> 16);
554	ehsum = (ehsum & 0xffff) + (ehsum >> 16);
555
556	csum += 0xffff ^ ehsum;
557
558	/* In the next step we also subtract the 1's complement
559	   checksum of the trailing ethernet CRC.  */
560	cp = (char *)eh + len;	/* points at trailing CRC */
561	if (len & 1) {
562		csum += 0xffff ^ (uint16_t) ((cp[1] << 8) | cp[0]);
563		csum += 0xffff ^ (uint16_t) ((cp[3] << 8) | cp[2]);
564	} else {
565		csum += 0xffff ^ (uint16_t) ((cp[0] << 8) | cp[1]);
566		csum += 0xffff ^ (uint16_t) ((cp[2] << 8) | cp[3]);
567	}
568
569	csum = (csum & 0xffff) + (csum >> 16);
570	csum = (csum & 0xffff) + (csum >> 16);
571
572	if (csum == 0xffff)
573		skb->ip_summed = CHECKSUM_UNNECESSARY;
574}
575
576static inline void ioc3_rx(struct net_device *dev)
577{
578	struct ioc3_private *ip = netdev_priv(dev);
579	struct sk_buff *skb, *new_skb;
580	struct ioc3 *ioc3 = ip->regs;
581	int rx_entry, n_entry, len;
582	struct ioc3_erxbuf *rxb;
583	unsigned long *rxr;
584	u32 w0, err;
585
586	rxr = (unsigned long *) ip->rxr;		/* Ring base */
587	rx_entry = ip->rx_ci;				/* RX consume index */
588	n_entry = ip->rx_pi;
589
590	skb = ip->rx_skbs[rx_entry];
591	rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
592	w0 = be32_to_cpu(rxb->w0);
593
594	while (w0 & ERXBUF_V) {
595		err = be32_to_cpu(rxb->err);		/* It's valid ...  */
596		if (err & ERXBUF_GOODPKT) {
597			len = ((w0 >> ERXBUF_BYTECNT_SHIFT) & 0x7ff) - 4;
598			skb_trim(skb, len);
599			skb->protocol = eth_type_trans(skb, dev);
600
601			new_skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
602			if (!new_skb) {
603				/* Ouch, drop packet and just recycle packet
604				   to keep the ring filled.  */
605				dev->stats.rx_dropped++;
606				new_skb = skb;
607				goto next;
608			}
609
610			if (likely(dev->features & NETIF_F_RXCSUM))
611				ioc3_tcpudp_checksum(skb,
612					w0 & ERXBUF_IPCKSUM_MASK, len);
613
614			netif_rx(skb);
615
616			ip->rx_skbs[rx_entry] = NULL;	/* Poison  */
617
618			/* Because we reserve afterwards. */
619			skb_put(new_skb, (1664 + RX_OFFSET));
620			rxb = (struct ioc3_erxbuf *) new_skb->data;
621			skb_reserve(new_skb, RX_OFFSET);
622
623			dev->stats.rx_packets++;		/* Statistics */
624			dev->stats.rx_bytes += len;
625		} else {
626			/* The frame is invalid and the skb never
627			   reached the network layer so we can just
628			   recycle it.  */
629			new_skb = skb;
630			dev->stats.rx_errors++;
631		}
632		if (err & ERXBUF_CRCERR)	/* Statistics */
633			dev->stats.rx_crc_errors++;
634		if (err & ERXBUF_FRAMERR)
635			dev->stats.rx_frame_errors++;
636next:
637		ip->rx_skbs[n_entry] = new_skb;
638		rxr[n_entry] = cpu_to_be64(ioc3_map(rxb, 1));
639		rxb->w0 = 0;				/* Clear valid flag */
640		n_entry = (n_entry + 1) & 511;		/* Update erpir */
641
642		/* Now go on to the next ring entry.  */
643		rx_entry = (rx_entry + 1) & 511;
644		skb = ip->rx_skbs[rx_entry];
645		rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
646		w0 = be32_to_cpu(rxb->w0);
647	}
648	ioc3_w_erpir((n_entry << 3) | ERPIR_ARM);
649	ip->rx_pi = n_entry;
650	ip->rx_ci = rx_entry;
651}
652
653static inline void ioc3_tx(struct net_device *dev)
654{
655	struct ioc3_private *ip = netdev_priv(dev);
656	unsigned long packets, bytes;
657	struct ioc3 *ioc3 = ip->regs;
658	int tx_entry, o_entry;
659	struct sk_buff *skb;
660	u32 etcir;
661
662	spin_lock(&ip->ioc3_lock);
663	etcir = ioc3_r_etcir();
664
665	tx_entry = (etcir >> 7) & 127;
666	o_entry = ip->tx_ci;
667	packets = 0;
668	bytes = 0;
669
670	while (o_entry != tx_entry) {
671		packets++;
672		skb = ip->tx_skbs[o_entry];
673		bytes += skb->len;
674		dev_kfree_skb_irq(skb);
675		ip->tx_skbs[o_entry] = NULL;
676
677		o_entry = (o_entry + 1) & 127;		/* Next */
678
679		etcir = ioc3_r_etcir();			/* More pkts sent?  */
680		tx_entry = (etcir >> 7) & 127;
681	}
682
683	dev->stats.tx_packets += packets;
684	dev->stats.tx_bytes += bytes;
685	ip->txqlen -= packets;
686
687	if (ip->txqlen < 128)
688		netif_wake_queue(dev);
689
690	ip->tx_ci = o_entry;
691	spin_unlock(&ip->ioc3_lock);
692}
693
694/*
695 * Deal with fatal IOC3 errors.  This condition might be caused by a hard or
696 * software problems, so we should try to recover
697 * more gracefully if this ever happens.  In theory we might be flooded
698 * with such error interrupts if something really goes wrong, so we might
699 * also consider to take the interface down.
700 */
701static void ioc3_error(struct net_device *dev, u32 eisr)
702{
703	struct ioc3_private *ip = netdev_priv(dev);
704	unsigned char *iface = dev->name;
705
706	spin_lock(&ip->ioc3_lock);
707
708	if (eisr & EISR_RXOFLO)
709		printk(KERN_ERR "%s: RX overflow.\n", iface);
710	if (eisr & EISR_RXBUFOFLO)
711		printk(KERN_ERR "%s: RX buffer overflow.\n", iface);
712	if (eisr & EISR_RXMEMERR)
713		printk(KERN_ERR "%s: RX PCI error.\n", iface);
714	if (eisr & EISR_RXPARERR)
715		printk(KERN_ERR "%s: RX SSRAM parity error.\n", iface);
716	if (eisr & EISR_TXBUFUFLO)
717		printk(KERN_ERR "%s: TX buffer underflow.\n", iface);
718	if (eisr & EISR_TXMEMERR)
719		printk(KERN_ERR "%s: TX PCI error.\n", iface);
720
721	ioc3_stop(ip);
722	ioc3_init(dev);
723	ioc3_mii_init(ip);
724
725	netif_wake_queue(dev);
726
727	spin_unlock(&ip->ioc3_lock);
728}
729
730/* The interrupt handler does all of the Rx thread work and cleans up
731   after the Tx thread.  */
732static irqreturn_t ioc3_interrupt(int irq, void *_dev)
733{
734	struct net_device *dev = (struct net_device *)_dev;
735	struct ioc3_private *ip = netdev_priv(dev);
736	struct ioc3 *ioc3 = ip->regs;
737	const u32 enabled = EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
738	                    EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
739	                    EISR_TXEXPLICIT | EISR_TXMEMERR;
740	u32 eisr;
741
742	eisr = ioc3_r_eisr() & enabled;
743
744	ioc3_w_eisr(eisr);
745	(void) ioc3_r_eisr();				/* Flush */
746
747	if (eisr & (EISR_RXOFLO | EISR_RXBUFOFLO | EISR_RXMEMERR |
748	            EISR_RXPARERR | EISR_TXBUFUFLO | EISR_TXMEMERR))
749		ioc3_error(dev, eisr);
750	if (eisr & EISR_RXTIMERINT)
751		ioc3_rx(dev);
752	if (eisr & EISR_TXEXPLICIT)
753		ioc3_tx(dev);
754
755	return IRQ_HANDLED;
756}
757
758static inline void ioc3_setup_duplex(struct ioc3_private *ip)
759{
760	struct ioc3 *ioc3 = ip->regs;
761
762	if (ip->mii.full_duplex) {
763		ioc3_w_etcsr(ETCSR_FD);
764		ip->emcr |= EMCR_DUPLEX;
765	} else {
766		ioc3_w_etcsr(ETCSR_HD);
767		ip->emcr &= ~EMCR_DUPLEX;
768	}
769	ioc3_w_emcr(ip->emcr);
770}
771
772static void ioc3_timer(unsigned long data)
773{
774	struct ioc3_private *ip = (struct ioc3_private *) data;
775
776	/* Print the link status if it has changed */
777	mii_check_media(&ip->mii, 1, 0);
778	ioc3_setup_duplex(ip);
779
780	ip->ioc3_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2s */
781	add_timer(&ip->ioc3_timer);
782}
783
784/*
785 * Try to find a PHY.  There is no apparent relation between the MII addresses
786 * in the SGI documentation and what we find in reality, so we simply probe
787 * for the PHY.  It seems IOC3 PHYs usually live on address 31.  One of my
788 * onboard IOC3s has the special oddity that probing doesn't seem to find it
789 * yet the interface seems to work fine, so if probing fails we for now will
790 * simply default to PHY 31 instead of bailing out.
791 */
792static int ioc3_mii_init(struct ioc3_private *ip)
793{
794	struct net_device *dev = priv_netdev(ip);
795	int i, found = 0, res = 0;
796	int ioc3_phy_workaround = 1;
797	u16 word;
798
799	for (i = 0; i < 32; i++) {
800		word = ioc3_mdio_read(dev, i, MII_PHYSID1);
801
802		if (word != 0xffff && word != 0x0000) {
803			found = 1;
804			break;			/* Found a PHY		*/
805		}
806	}
807
808	if (!found) {
809		if (ioc3_phy_workaround)
810			i = 31;
811		else {
812			ip->mii.phy_id = -1;
813			res = -ENODEV;
814			goto out;
815		}
816	}
817
818	ip->mii.phy_id = i;
819
820out:
821	return res;
822}
823
824static void ioc3_mii_start(struct ioc3_private *ip)
825{
826	ip->ioc3_timer.expires = jiffies + (12 * HZ)/10;  /* 1.2 sec. */
827	ip->ioc3_timer.data = (unsigned long) ip;
828	ip->ioc3_timer.function = ioc3_timer;
829	add_timer(&ip->ioc3_timer);
830}
831
832static inline void ioc3_clean_rx_ring(struct ioc3_private *ip)
833{
834	struct sk_buff *skb;
835	int i;
836
837	for (i = ip->rx_ci; i & 15; i++) {
838		ip->rx_skbs[ip->rx_pi] = ip->rx_skbs[ip->rx_ci];
839		ip->rxr[ip->rx_pi++] = ip->rxr[ip->rx_ci++];
840	}
841	ip->rx_pi &= 511;
842	ip->rx_ci &= 511;
843
844	for (i = ip->rx_ci; i != ip->rx_pi; i = (i+1) & 511) {
845		struct ioc3_erxbuf *rxb;
846		skb = ip->rx_skbs[i];
847		rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
848		rxb->w0 = 0;
849	}
850}
851
852static inline void ioc3_clean_tx_ring(struct ioc3_private *ip)
853{
854	struct sk_buff *skb;
855	int i;
856
857	for (i=0; i < 128; i++) {
858		skb = ip->tx_skbs[i];
859		if (skb) {
860			ip->tx_skbs[i] = NULL;
861			dev_kfree_skb_any(skb);
862		}
863		ip->txr[i].cmd = 0;
864	}
865	ip->tx_pi = 0;
866	ip->tx_ci = 0;
867}
868
869static void ioc3_free_rings(struct ioc3_private *ip)
870{
871	struct sk_buff *skb;
872	int rx_entry, n_entry;
873
874	if (ip->txr) {
875		ioc3_clean_tx_ring(ip);
876		free_pages((unsigned long)ip->txr, 2);
877		ip->txr = NULL;
878	}
879
880	if (ip->rxr) {
881		n_entry = ip->rx_ci;
882		rx_entry = ip->rx_pi;
883
884		while (n_entry != rx_entry) {
885			skb = ip->rx_skbs[n_entry];
886			if (skb)
887				dev_kfree_skb_any(skb);
888
889			n_entry = (n_entry + 1) & 511;
890		}
891		free_page((unsigned long)ip->rxr);
892		ip->rxr = NULL;
893	}
894}
895
896static void ioc3_alloc_rings(struct net_device *dev)
897{
898	struct ioc3_private *ip = netdev_priv(dev);
899	struct ioc3_erxbuf *rxb;
900	unsigned long *rxr;
901	int i;
902
903	if (ip->rxr == NULL) {
904		/* Allocate and initialize rx ring.  4kb = 512 entries  */
905		ip->rxr = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
906		rxr = (unsigned long *) ip->rxr;
907		if (!rxr)
908			printk("ioc3_alloc_rings(): get_zeroed_page() failed!\n");
909
910		/* Now the rx buffers.  The RX ring may be larger but
911		   we only allocate 16 buffers for now.  Need to tune
912		   this for performance and memory later.  */
913		for (i = 0; i < RX_BUFFS; i++) {
914			struct sk_buff *skb;
915
916			skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
917			if (!skb) {
918				show_free_areas(0);
919				continue;
920			}
921
922			ip->rx_skbs[i] = skb;
923
924			/* Because we reserve afterwards. */
925			skb_put(skb, (1664 + RX_OFFSET));
926			rxb = (struct ioc3_erxbuf *) skb->data;
927			rxr[i] = cpu_to_be64(ioc3_map(rxb, 1));
928			skb_reserve(skb, RX_OFFSET);
929		}
930		ip->rx_ci = 0;
931		ip->rx_pi = RX_BUFFS;
932	}
933
934	if (ip->txr == NULL) {
935		/* Allocate and initialize tx rings.  16kb = 128 bufs.  */
936		ip->txr = (struct ioc3_etxd *)__get_free_pages(GFP_KERNEL, 2);
937		if (!ip->txr)
938			printk("ioc3_alloc_rings(): __get_free_pages() failed!\n");
939		ip->tx_pi = 0;
940		ip->tx_ci = 0;
941	}
942}
943
944static void ioc3_init_rings(struct net_device *dev)
945{
946	struct ioc3_private *ip = netdev_priv(dev);
947	struct ioc3 *ioc3 = ip->regs;
948	unsigned long ring;
949
950	ioc3_free_rings(ip);
951	ioc3_alloc_rings(dev);
952
953	ioc3_clean_rx_ring(ip);
954	ioc3_clean_tx_ring(ip);
955
956	/* Now the rx ring base, consume & produce registers.  */
957	ring = ioc3_map(ip->rxr, 0);
958	ioc3_w_erbr_h(ring >> 32);
959	ioc3_w_erbr_l(ring & 0xffffffff);
960	ioc3_w_ercir(ip->rx_ci << 3);
961	ioc3_w_erpir((ip->rx_pi << 3) | ERPIR_ARM);
962
963	ring = ioc3_map(ip->txr, 0);
964
965	ip->txqlen = 0;					/* nothing queued  */
966
967	/* Now the tx ring base, consume & produce registers.  */
968	ioc3_w_etbr_h(ring >> 32);
969	ioc3_w_etbr_l(ring & 0xffffffff);
970	ioc3_w_etpir(ip->tx_pi << 7);
971	ioc3_w_etcir(ip->tx_ci << 7);
972	(void) ioc3_r_etcir();				/* Flush */
973}
974
975static inline void ioc3_ssram_disc(struct ioc3_private *ip)
976{
977	struct ioc3 *ioc3 = ip->regs;
978	volatile u32 *ssram0 = &ioc3->ssram[0x0000];
979	volatile u32 *ssram1 = &ioc3->ssram[0x4000];
980	unsigned int pattern = 0x5555;
981
982	/* Assume the larger size SSRAM and enable parity checking */
983	ioc3_w_emcr(ioc3_r_emcr() | (EMCR_BUFSIZ | EMCR_RAMPAR));
984
985	*ssram0 = pattern;
986	*ssram1 = ~pattern & IOC3_SSRAM_DM;
987
988	if ((*ssram0 & IOC3_SSRAM_DM) != pattern ||
989	    (*ssram1 & IOC3_SSRAM_DM) != (~pattern & IOC3_SSRAM_DM)) {
990		/* set ssram size to 64 KB */
991		ip->emcr = EMCR_RAMPAR;
992		ioc3_w_emcr(ioc3_r_emcr() & ~EMCR_BUFSIZ);
993	} else
994		ip->emcr = EMCR_BUFSIZ | EMCR_RAMPAR;
995}
996
997static void ioc3_init(struct net_device *dev)
998{
999	struct ioc3_private *ip = netdev_priv(dev);
1000	struct ioc3 *ioc3 = ip->regs;
1001
1002	del_timer_sync(&ip->ioc3_timer);	/* Kill if running	*/
1003
1004	ioc3_w_emcr(EMCR_RST);			/* Reset		*/
1005	(void) ioc3_r_emcr();			/* Flush WB		*/
1006	udelay(4);				/* Give it time ...	*/
1007	ioc3_w_emcr(0);
1008	(void) ioc3_r_emcr();
1009
1010	/* Misc registers  */
1011#ifdef CONFIG_SGI_IP27
1012	ioc3_w_erbar(PCI64_ATTR_BAR >> 32);	/* Barrier on last store */
1013#else
1014	ioc3_w_erbar(0);			/* Let PCI API get it right */
1015#endif
1016	(void) ioc3_r_etcdc();			/* Clear on read */
1017	ioc3_w_ercsr(15);			/* RX low watermark  */
1018	ioc3_w_ertr(0);				/* Interrupt immediately */
1019	__ioc3_set_mac_address(dev);
1020	ioc3_w_ehar_h(ip->ehar_h);
1021	ioc3_w_ehar_l(ip->ehar_l);
1022	ioc3_w_ersr(42);			/* XXX should be random */
1023
1024	ioc3_init_rings(dev);
1025
1026	ip->emcr |= ((RX_OFFSET / 2) << EMCR_RXOFF_SHIFT) | EMCR_TXDMAEN |
1027	             EMCR_TXEN | EMCR_RXDMAEN | EMCR_RXEN | EMCR_PADEN;
1028	ioc3_w_emcr(ip->emcr);
1029	ioc3_w_eier(EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
1030	            EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
1031	            EISR_TXEXPLICIT | EISR_TXMEMERR);
1032	(void) ioc3_r_eier();
1033}
1034
1035static inline void ioc3_stop(struct ioc3_private *ip)
1036{
1037	struct ioc3 *ioc3 = ip->regs;
1038
1039	ioc3_w_emcr(0);				/* Shutup */
1040	ioc3_w_eier(0);				/* Disable interrupts */
1041	(void) ioc3_r_eier();			/* Flush */
1042}
1043
1044static int ioc3_open(struct net_device *dev)
1045{
1046	struct ioc3_private *ip = netdev_priv(dev);
1047
1048	if (request_irq(dev->irq, ioc3_interrupt, IRQF_SHARED, ioc3_str, dev)) {
1049		printk(KERN_ERR "%s: Can't get irq %d\n", dev->name, dev->irq);
1050
1051		return -EAGAIN;
1052	}
1053
1054	ip->ehar_h = 0;
1055	ip->ehar_l = 0;
1056	ioc3_init(dev);
1057	ioc3_mii_start(ip);
1058
1059	netif_start_queue(dev);
1060	return 0;
1061}
1062
1063static int ioc3_close(struct net_device *dev)
1064{
1065	struct ioc3_private *ip = netdev_priv(dev);
1066
1067	del_timer_sync(&ip->ioc3_timer);
1068
1069	netif_stop_queue(dev);
1070
1071	ioc3_stop(ip);
1072	free_irq(dev->irq, dev);
1073
1074	ioc3_free_rings(ip);
1075	return 0;
1076}
1077
1078/*
1079 * MENET cards have four IOC3 chips, which are attached to two sets of
1080 * PCI slot resources each: the primary connections are on slots
1081 * 0..3 and the secondaries are on 4..7
1082 *
1083 * All four ethernets are brought out to connectors; six serial ports
1084 * (a pair from each of the first three IOC3s) are brought out to
1085 * MiniDINs; all other subdevices are left swinging in the wind, leave
1086 * them disabled.
1087 */
1088
1089static int ioc3_adjacent_is_ioc3(struct pci_dev *pdev, int slot)
1090{
1091	struct pci_dev *dev = pci_get_slot(pdev->bus, PCI_DEVFN(slot, 0));
1092	int ret = 0;
1093
1094	if (dev) {
1095		if (dev->vendor == PCI_VENDOR_ID_SGI &&
1096			dev->device == PCI_DEVICE_ID_SGI_IOC3)
1097			ret = 1;
1098		pci_dev_put(dev);
1099	}
1100
1101	return ret;
1102}
1103
1104static int ioc3_is_menet(struct pci_dev *pdev)
1105{
1106	return pdev->bus->parent == NULL &&
1107	       ioc3_adjacent_is_ioc3(pdev, 0) &&
1108	       ioc3_adjacent_is_ioc3(pdev, 1) &&
1109	       ioc3_adjacent_is_ioc3(pdev, 2);
1110}
1111
1112#ifdef CONFIG_SERIAL_8250
1113/*
1114 * Note about serial ports and consoles:
1115 * For console output, everyone uses the IOC3 UARTA (offset 0x178)
1116 * connected to the master node (look in ip27_setup_console() and
1117 * ip27prom_console_write()).
1118 *
1119 * For serial (/dev/ttyS0 etc), we can not have hardcoded serial port
1120 * addresses on a partitioned machine. Since we currently use the ioc3
1121 * serial ports, we use dynamic serial port discovery that the serial.c
1122 * driver uses for pci/pnp ports (there is an entry for the SGI ioc3
1123 * boards in pci_boards[]). Unfortunately, UARTA's pio address is greater
1124 * than UARTB's, although UARTA on o200s has traditionally been known as
1125 * port 0. So, we just use one serial port from each ioc3 (since the
1126 * serial driver adds addresses to get to higher ports).
1127 *
1128 * The first one to do a register_console becomes the preferred console
1129 * (if there is no kernel command line console= directive). /dev/console
1130 * (ie 5, 1) is then "aliased" into the device number returned by the
1131 * "device" routine referred to in this console structure
1132 * (ip27prom_console_dev).
1133 *
1134 * Also look in ip27-pci.c:pci_fixup_ioc3() for some comments on working
1135 * around ioc3 oddities in this respect.
1136 *
1137 * The IOC3 serials use a 22MHz clock rate with an additional divider which
1138 * can be programmed in the SCR register if the DLAB bit is set.
1139 *
1140 * Register to interrupt zero because we share the interrupt with
1141 * the serial driver which we don't properly support yet.
1142 *
1143 * Can't use UPF_IOREMAP as the whole of IOC3 resources have already been
1144 * registered.
1145 */
1146static void __devinit ioc3_8250_register(struct ioc3_uartregs __iomem *uart)
1147{
1148#define COSMISC_CONSTANT 6
1149
1150	struct uart_port port = {
1151		.irq		= 0,
1152		.flags		= UPF_SKIP_TEST | UPF_BOOT_AUTOCONF,
1153		.iotype		= UPIO_MEM,
1154		.regshift	= 0,
1155		.uartclk	= (22000000 << 1) / COSMISC_CONSTANT,
1156
1157		.membase	= (unsigned char __iomem *) uart,
1158		.mapbase	= (unsigned long) uart,
1159	};
1160	unsigned char lcr;
1161
1162	lcr = uart->iu_lcr;
1163	uart->iu_lcr = lcr | UART_LCR_DLAB;
1164	uart->iu_scr = COSMISC_CONSTANT,
1165	uart->iu_lcr = lcr;
1166	uart->iu_lcr;
1167	serial8250_register_port(&port);
1168}
1169
1170static void __devinit ioc3_serial_probe(struct pci_dev *pdev, struct ioc3 *ioc3)
1171{
1172	/*
1173	 * We need to recognice and treat the fourth MENET serial as it
1174	 * does not have an SuperIO chip attached to it, therefore attempting
1175	 * to access it will result in bus errors.  We call something an
1176	 * MENET if PCI slot 0, 1, 2 and 3 of a master PCI bus all have an IOC3
1177	 * in it.  This is paranoid but we want to avoid blowing up on a
1178	 * showhorn PCI box that happens to have 4 IOC3 cards in it so it's
1179	 * not paranoid enough ...
1180	 */
1181	if (ioc3_is_menet(pdev) && PCI_SLOT(pdev->devfn) == 3)
1182		return;
1183
1184	/*
1185	 * Switch IOC3 to PIO mode.  It probably already was but let's be
1186	 * paranoid
1187	 */
1188	ioc3->gpcr_s = GPCR_UARTA_MODESEL | GPCR_UARTB_MODESEL;
1189	ioc3->gpcr_s;
1190	ioc3->gppr_6 = 0;
1191	ioc3->gppr_6;
1192	ioc3->gppr_7 = 0;
1193	ioc3->gppr_7;
1194	ioc3->sscr_a = ioc3->sscr_a & ~SSCR_DMA_EN;
1195	ioc3->sscr_a;
1196	ioc3->sscr_b = ioc3->sscr_b & ~SSCR_DMA_EN;
1197	ioc3->sscr_b;
1198	/* Disable all SA/B interrupts except for SA/B_INT in SIO_IEC. */
1199	ioc3->sio_iec &= ~ (SIO_IR_SA_TX_MT | SIO_IR_SA_RX_FULL |
1200			    SIO_IR_SA_RX_HIGH | SIO_IR_SA_RX_TIMER |
1201			    SIO_IR_SA_DELTA_DCD | SIO_IR_SA_DELTA_CTS |
1202			    SIO_IR_SA_TX_EXPLICIT | SIO_IR_SA_MEMERR);
1203	ioc3->sio_iec |= SIO_IR_SA_INT;
1204	ioc3->sscr_a = 0;
1205	ioc3->sio_iec &= ~ (SIO_IR_SB_TX_MT | SIO_IR_SB_RX_FULL |
1206			    SIO_IR_SB_RX_HIGH | SIO_IR_SB_RX_TIMER |
1207			    SIO_IR_SB_DELTA_DCD | SIO_IR_SB_DELTA_CTS |
1208			    SIO_IR_SB_TX_EXPLICIT | SIO_IR_SB_MEMERR);
1209	ioc3->sio_iec |= SIO_IR_SB_INT;
1210	ioc3->sscr_b = 0;
1211
1212	ioc3_8250_register(&ioc3->sregs.uarta);
1213	ioc3_8250_register(&ioc3->sregs.uartb);
1214}
1215#endif
1216
1217static const struct net_device_ops ioc3_netdev_ops = {
1218	.ndo_open		= ioc3_open,
1219	.ndo_stop		= ioc3_close,
1220	.ndo_start_xmit		= ioc3_start_xmit,
1221	.ndo_tx_timeout		= ioc3_timeout,
1222	.ndo_get_stats		= ioc3_get_stats,
1223	.ndo_set_rx_mode	= ioc3_set_multicast_list,
1224	.ndo_do_ioctl		= ioc3_ioctl,
1225	.ndo_validate_addr	= eth_validate_addr,
1226	.ndo_set_mac_address	= ioc3_set_mac_address,
1227	.ndo_change_mtu		= eth_change_mtu,
1228};
1229
1230static int __devinit ioc3_probe(struct pci_dev *pdev,
1231	const struct pci_device_id *ent)
1232{
1233	unsigned int sw_physid1, sw_physid2;
1234	struct net_device *dev = NULL;
1235	struct ioc3_private *ip;
1236	struct ioc3 *ioc3;
1237	unsigned long ioc3_base, ioc3_size;
1238	u32 vendor, model, rev;
1239	int err, pci_using_dac;
1240
1241	/* Configure DMA attributes. */
1242	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1243	if (!err) {
1244		pci_using_dac = 1;
1245		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1246		if (err < 0) {
1247			printk(KERN_ERR "%s: Unable to obtain 64 bit DMA "
1248			       "for consistent allocations\n", pci_name(pdev));
1249			goto out;
1250		}
1251	} else {
1252		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1253		if (err) {
1254			printk(KERN_ERR "%s: No usable DMA configuration, "
1255			       "aborting.\n", pci_name(pdev));
1256			goto out;
1257		}
1258		pci_using_dac = 0;
1259	}
1260
1261	if (pci_enable_device(pdev))
1262		return -ENODEV;
1263
1264	dev = alloc_etherdev(sizeof(struct ioc3_private));
1265	if (!dev) {
1266		err = -ENOMEM;
1267		goto out_disable;
1268	}
1269
1270	if (pci_using_dac)
1271		dev->features |= NETIF_F_HIGHDMA;
1272
1273	err = pci_request_regions(pdev, "ioc3");
1274	if (err)
1275		goto out_free;
1276
1277	SET_NETDEV_DEV(dev, &pdev->dev);
1278
1279	ip = netdev_priv(dev);
1280
1281	dev->irq = pdev->irq;
1282
1283	ioc3_base = pci_resource_start(pdev, 0);
1284	ioc3_size = pci_resource_len(pdev, 0);
1285	ioc3 = (struct ioc3 *) ioremap(ioc3_base, ioc3_size);
1286	if (!ioc3) {
1287		printk(KERN_CRIT "ioc3eth(%s): ioremap failed, goodbye.\n",
1288		       pci_name(pdev));
1289		err = -ENOMEM;
1290		goto out_res;
1291	}
1292	ip->regs = ioc3;
1293
1294#ifdef CONFIG_SERIAL_8250
1295	ioc3_serial_probe(pdev, ioc3);
1296#endif
1297
1298	spin_lock_init(&ip->ioc3_lock);
1299	init_timer(&ip->ioc3_timer);
1300
1301	ioc3_stop(ip);
1302	ioc3_init(dev);
1303
1304	ip->pdev = pdev;
1305
1306	ip->mii.phy_id_mask = 0x1f;
1307	ip->mii.reg_num_mask = 0x1f;
1308	ip->mii.dev = dev;
1309	ip->mii.mdio_read = ioc3_mdio_read;
1310	ip->mii.mdio_write = ioc3_mdio_write;
1311
1312	ioc3_mii_init(ip);
1313
1314	if (ip->mii.phy_id == -1) {
1315		printk(KERN_CRIT "ioc3-eth(%s): Didn't find a PHY, goodbye.\n",
1316		       pci_name(pdev));
1317		err = -ENODEV;
1318		goto out_stop;
1319	}
1320
1321	ioc3_mii_start(ip);
1322	ioc3_ssram_disc(ip);
1323	ioc3_get_eaddr(ip);
1324
1325	/* The IOC3-specific entries in the device structure. */
1326	dev->watchdog_timeo	= 5 * HZ;
1327	dev->netdev_ops		= &ioc3_netdev_ops;
1328	dev->ethtool_ops	= &ioc3_ethtool_ops;
1329	dev->hw_features	= NETIF_F_IP_CSUM | NETIF_F_RXCSUM;
1330	dev->features		= NETIF_F_IP_CSUM;
1331
1332	sw_physid1 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID1);
1333	sw_physid2 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID2);
1334
1335	err = register_netdev(dev);
1336	if (err)
1337		goto out_stop;
1338
1339	mii_check_media(&ip->mii, 1, 1);
1340	ioc3_setup_duplex(ip);
1341
1342	vendor = (sw_physid1 << 12) | (sw_physid2 >> 4);
1343	model  = (sw_physid2 >> 4) & 0x3f;
1344	rev    = sw_physid2 & 0xf;
1345	printk(KERN_INFO "%s: Using PHY %d, vendor 0x%x, model %d, "
1346	       "rev %d.\n", dev->name, ip->mii.phy_id, vendor, model, rev);
1347	printk(KERN_INFO "%s: IOC3 SSRAM has %d kbyte.\n", dev->name,
1348	       ip->emcr & EMCR_BUFSIZ ? 128 : 64);
1349
1350	return 0;
1351
1352out_stop:
1353	ioc3_stop(ip);
1354	del_timer_sync(&ip->ioc3_timer);
1355	ioc3_free_rings(ip);
1356out_res:
1357	pci_release_regions(pdev);
1358out_free:
1359	free_netdev(dev);
1360out_disable:
1361	/*
1362	 * We should call pci_disable_device(pdev); here if the IOC3 wasn't
1363	 * such a weird device ...
1364	 */
1365out:
1366	return err;
1367}
1368
1369static void __devexit ioc3_remove_one (struct pci_dev *pdev)
1370{
1371	struct net_device *dev = pci_get_drvdata(pdev);
1372	struct ioc3_private *ip = netdev_priv(dev);
1373	struct ioc3 *ioc3 = ip->regs;
1374
1375	unregister_netdev(dev);
1376	del_timer_sync(&ip->ioc3_timer);
1377
1378	iounmap(ioc3);
1379	pci_release_regions(pdev);
1380	free_netdev(dev);
1381	/*
1382	 * We should call pci_disable_device(pdev); here if the IOC3 wasn't
1383	 * such a weird device ...
1384	 */
1385}
1386
1387static DEFINE_PCI_DEVICE_TABLE(ioc3_pci_tbl) = {
1388	{ PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_IOC3, PCI_ANY_ID, PCI_ANY_ID },
1389	{ 0 }
1390};
1391MODULE_DEVICE_TABLE(pci, ioc3_pci_tbl);
1392
1393static struct pci_driver ioc3_driver = {
1394	.name		= "ioc3-eth",
1395	.id_table	= ioc3_pci_tbl,
1396	.probe		= ioc3_probe,
1397	.remove		= __devexit_p(ioc3_remove_one),
1398};
1399
1400static int __init ioc3_init_module(void)
1401{
1402	return pci_register_driver(&ioc3_driver);
1403}
1404
1405static void __exit ioc3_cleanup_module(void)
1406{
1407	pci_unregister_driver(&ioc3_driver);
1408}
1409
1410static int ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev)
1411{
1412	unsigned long data;
1413	struct ioc3_private *ip = netdev_priv(dev);
1414	struct ioc3 *ioc3 = ip->regs;
1415	unsigned int len;
1416	struct ioc3_etxd *desc;
1417	uint32_t w0 = 0;
1418	int produce;
1419
1420	/*
1421	 * IOC3 has a fairly simple minded checksumming hardware which simply
1422	 * adds up the 1's complement checksum for the entire packet and
1423	 * inserts it at an offset which can be specified in the descriptor
1424	 * into the transmit packet.  This means we have to compensate for the
1425	 * MAC header which should not be summed and the TCP/UDP pseudo headers
1426	 * manually.
1427	 */
1428	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1429		const struct iphdr *ih = ip_hdr(skb);
1430		const int proto = ntohs(ih->protocol);
1431		unsigned int csoff;
1432		uint32_t csum, ehsum;
1433		uint16_t *eh;
1434
1435		/* The MAC header.  skb->mac seem the logic approach
1436		   to find the MAC header - except it's a NULL pointer ...  */
1437		eh = (uint16_t *) skb->data;
1438
1439		/* Sum up dest addr, src addr and protocol  */
1440		ehsum = eh[0] + eh[1] + eh[2] + eh[3] + eh[4] + eh[5] + eh[6];
1441
1442		/* Fold ehsum.  can't use csum_fold which negates also ...  */
1443		ehsum = (ehsum & 0xffff) + (ehsum >> 16);
1444		ehsum = (ehsum & 0xffff) + (ehsum >> 16);
1445
1446		/* Skip IP header; it's sum is always zero and was
1447		   already filled in by ip_output.c */
1448		csum = csum_tcpudp_nofold(ih->saddr, ih->daddr,
1449		                          ih->tot_len - (ih->ihl << 2),
1450		                          proto, 0xffff ^ ehsum);
1451
1452		csum = (csum & 0xffff) + (csum >> 16);	/* Fold again */
1453		csum = (csum & 0xffff) + (csum >> 16);
1454
1455		csoff = ETH_HLEN + (ih->ihl << 2);
1456		if (proto == IPPROTO_UDP) {
1457			csoff += offsetof(struct udphdr, check);
1458			udp_hdr(skb)->check = csum;
1459		}
1460		if (proto == IPPROTO_TCP) {
1461			csoff += offsetof(struct tcphdr, check);
1462			tcp_hdr(skb)->check = csum;
1463		}
1464
1465		w0 = ETXD_DOCHECKSUM | (csoff << ETXD_CHKOFF_SHIFT);
1466	}
1467
1468	spin_lock_irq(&ip->ioc3_lock);
1469
1470	data = (unsigned long) skb->data;
1471	len = skb->len;
1472
1473	produce = ip->tx_pi;
1474	desc = &ip->txr[produce];
1475
1476	if (len <= 104) {
1477		/* Short packet, let's copy it directly into the ring.  */
1478		skb_copy_from_linear_data(skb, desc->data, skb->len);
1479		if (len < ETH_ZLEN) {
1480			/* Very short packet, pad with zeros at the end. */
1481			memset(desc->data + len, 0, ETH_ZLEN - len);
1482			len = ETH_ZLEN;
1483		}
1484		desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_D0V | w0);
1485		desc->bufcnt = cpu_to_be32(len);
1486	} else if ((data ^ (data + len - 1)) & 0x4000) {
1487		unsigned long b2 = (data | 0x3fffUL) + 1UL;
1488		unsigned long s1 = b2 - data;
1489		unsigned long s2 = data + len - b2;
1490
1491		desc->cmd    = cpu_to_be32(len | ETXD_INTWHENDONE |
1492		                           ETXD_B1V | ETXD_B2V | w0);
1493		desc->bufcnt = cpu_to_be32((s1 << ETXD_B1CNT_SHIFT) |
1494		                           (s2 << ETXD_B2CNT_SHIFT));
1495		desc->p1     = cpu_to_be64(ioc3_map(skb->data, 1));
1496		desc->p2     = cpu_to_be64(ioc3_map((void *) b2, 1));
1497	} else {
1498		/* Normal sized packet that doesn't cross a page boundary. */
1499		desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_B1V | w0);
1500		desc->bufcnt = cpu_to_be32(len << ETXD_B1CNT_SHIFT);
1501		desc->p1     = cpu_to_be64(ioc3_map(skb->data, 1));
1502	}
1503
1504	BARRIER();
1505
1506	ip->tx_skbs[produce] = skb;			/* Remember skb */
1507	produce = (produce + 1) & 127;
1508	ip->tx_pi = produce;
1509	ioc3_w_etpir(produce << 7);			/* Fire ... */
1510
1511	ip->txqlen++;
1512
1513	if (ip->txqlen >= 127)
1514		netif_stop_queue(dev);
1515
1516	spin_unlock_irq(&ip->ioc3_lock);
1517
1518	return NETDEV_TX_OK;
1519}
1520
1521static void ioc3_timeout(struct net_device *dev)
1522{
1523	struct ioc3_private *ip = netdev_priv(dev);
1524
1525	printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
1526
1527	spin_lock_irq(&ip->ioc3_lock);
1528
1529	ioc3_stop(ip);
1530	ioc3_init(dev);
1531	ioc3_mii_init(ip);
1532	ioc3_mii_start(ip);
1533
1534	spin_unlock_irq(&ip->ioc3_lock);
1535
1536	netif_wake_queue(dev);
1537}
1538
1539/*
1540 * Given a multicast ethernet address, this routine calculates the
1541 * address's bit index in the logical address filter mask
1542 */
1543
1544static inline unsigned int ioc3_hash(const unsigned char *addr)
1545{
1546	unsigned int temp = 0;
1547	u32 crc;
1548	int bits;
1549
1550	crc = ether_crc_le(ETH_ALEN, addr);
1551
1552	crc &= 0x3f;    /* bit reverse lowest 6 bits for hash index */
1553	for (bits = 6; --bits >= 0; ) {
1554		temp <<= 1;
1555		temp |= (crc & 0x1);
1556		crc >>= 1;
1557	}
1558
1559	return temp;
1560}
1561
1562static void ioc3_get_drvinfo (struct net_device *dev,
1563	struct ethtool_drvinfo *info)
1564{
1565	struct ioc3_private *ip = netdev_priv(dev);
1566
1567        strcpy (info->driver, IOC3_NAME);
1568        strcpy (info->version, IOC3_VERSION);
1569        strcpy (info->bus_info, pci_name(ip->pdev));
1570}
1571
1572static int ioc3_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1573{
1574	struct ioc3_private *ip = netdev_priv(dev);
1575	int rc;
1576
1577	spin_lock_irq(&ip->ioc3_lock);
1578	rc = mii_ethtool_gset(&ip->mii, cmd);
1579	spin_unlock_irq(&ip->ioc3_lock);
1580
1581	return rc;
1582}
1583
1584static int ioc3_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1585{
1586	struct ioc3_private *ip = netdev_priv(dev);
1587	int rc;
1588
1589	spin_lock_irq(&ip->ioc3_lock);
1590	rc = mii_ethtool_sset(&ip->mii, cmd);
1591	spin_unlock_irq(&ip->ioc3_lock);
1592
1593	return rc;
1594}
1595
1596static int ioc3_nway_reset(struct net_device *dev)
1597{
1598	struct ioc3_private *ip = netdev_priv(dev);
1599	int rc;
1600
1601	spin_lock_irq(&ip->ioc3_lock);
1602	rc = mii_nway_restart(&ip->mii);
1603	spin_unlock_irq(&ip->ioc3_lock);
1604
1605	return rc;
1606}
1607
1608static u32 ioc3_get_link(struct net_device *dev)
1609{
1610	struct ioc3_private *ip = netdev_priv(dev);
1611	int rc;
1612
1613	spin_lock_irq(&ip->ioc3_lock);
1614	rc = mii_link_ok(&ip->mii);
1615	spin_unlock_irq(&ip->ioc3_lock);
1616
1617	return rc;
1618}
1619
1620static const struct ethtool_ops ioc3_ethtool_ops = {
1621	.get_drvinfo		= ioc3_get_drvinfo,
1622	.get_settings		= ioc3_get_settings,
1623	.set_settings		= ioc3_set_settings,
1624	.nway_reset		= ioc3_nway_reset,
1625	.get_link		= ioc3_get_link,
1626};
1627
1628static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1629{
1630	struct ioc3_private *ip = netdev_priv(dev);
1631	int rc;
1632
1633	spin_lock_irq(&ip->ioc3_lock);
1634	rc = generic_mii_ioctl(&ip->mii, if_mii(rq), cmd, NULL);
1635	spin_unlock_irq(&ip->ioc3_lock);
1636
1637	return rc;
1638}
1639
1640static void ioc3_set_multicast_list(struct net_device *dev)
1641{
1642	struct netdev_hw_addr *ha;
1643	struct ioc3_private *ip = netdev_priv(dev);
1644	struct ioc3 *ioc3 = ip->regs;
1645	u64 ehar = 0;
1646
1647	netif_stop_queue(dev);				/* Lock out others. */
1648
1649	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous.  */
1650		ip->emcr |= EMCR_PROMISC;
1651		ioc3_w_emcr(ip->emcr);
1652		(void) ioc3_r_emcr();
1653	} else {
1654		ip->emcr &= ~EMCR_PROMISC;
1655		ioc3_w_emcr(ip->emcr);			/* Clear promiscuous. */
1656		(void) ioc3_r_emcr();
1657
1658		if ((dev->flags & IFF_ALLMULTI) ||
1659		    (netdev_mc_count(dev) > 64)) {
1660			/* Too many for hashing to make sense or we want all
1661			   multicast packets anyway,  so skip computing all the
1662			   hashes and just accept all packets.  */
1663			ip->ehar_h = 0xffffffff;
1664			ip->ehar_l = 0xffffffff;
1665		} else {
1666			netdev_for_each_mc_addr(ha, dev) {
1667				ehar |= (1UL << ioc3_hash(ha->addr));
1668			}
1669			ip->ehar_h = ehar >> 32;
1670			ip->ehar_l = ehar & 0xffffffff;
1671		}
1672		ioc3_w_ehar_h(ip->ehar_h);
1673		ioc3_w_ehar_l(ip->ehar_l);
1674	}
1675
1676	netif_wake_queue(dev);			/* Let us get going again. */
1677}
1678
1679MODULE_AUTHOR("Ralf Baechle <ralf@linux-mips.org>");
1680MODULE_DESCRIPTION("SGI IOC3 Ethernet driver");
1681MODULE_LICENSE("GPL");
1682
1683module_init(ioc3_init_module);
1684module_exit(ioc3_cleanup_module);
1685