1/* ZD1211 USB-WLAN driver for Linux 2 * 3 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de> 4 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 19 */ 20 21#include <linux/kernel.h> 22#include <linux/slab.h> 23 24#include "zd_rf.h" 25#include "zd_usb.h" 26#include "zd_chip.h" 27 28/* This RF programming code is based upon the code found in v2.16.0.0 of the 29 * ZyDAS vendor driver. Unlike other RF's, Ubec publish full technical specs 30 * for this RF on their website, so we're able to understand more than 31 * usual as to what is going on. Thumbs up for Ubec for doing that. */ 32 33/* The 3-wire serial interface provides access to 8 write-only registers. 34 * The data format is a 4 bit register address followed by a 20 bit value. */ 35#define UW2453_REGWRITE(reg, val) ((((reg) & 0xf) << 20) | ((val) & 0xfffff)) 36 37/* For channel tuning, we have to configure registers 1 (synthesizer), 2 (synth 38 * fractional divide ratio) and 3 (VCO config). 39 * 40 * We configure the RF to produce an interrupt when the PLL is locked onto 41 * the configured frequency. During initialization, we run through a variety 42 * of different VCO configurations on channel 1 until we detect a PLL lock. 43 * When this happens, we remember which VCO configuration produced the lock 44 * and use it later. Actually, we use the configuration *after* the one that 45 * produced the lock, which seems odd, but it works. 46 * 47 * If we do not see a PLL lock on any standard VCO config, we fall back on an 48 * autocal configuration, which has a fixed (as opposed to per-channel) VCO 49 * config and different synth values from the standard set (divide ratio 50 * is still shared with the standard set). */ 51 52/* The per-channel synth values for all standard VCO configurations. These get 53 * written to register 1. */ 54static const u8 uw2453_std_synth[] = { 55 RF_CHANNEL( 1) = 0x47, 56 RF_CHANNEL( 2) = 0x47, 57 RF_CHANNEL( 3) = 0x67, 58 RF_CHANNEL( 4) = 0x67, 59 RF_CHANNEL( 5) = 0x67, 60 RF_CHANNEL( 6) = 0x67, 61 RF_CHANNEL( 7) = 0x57, 62 RF_CHANNEL( 8) = 0x57, 63 RF_CHANNEL( 9) = 0x57, 64 RF_CHANNEL(10) = 0x57, 65 RF_CHANNEL(11) = 0x77, 66 RF_CHANNEL(12) = 0x77, 67 RF_CHANNEL(13) = 0x77, 68 RF_CHANNEL(14) = 0x4f, 69}; 70 71/* This table stores the synthesizer fractional divide ratio for *all* VCO 72 * configurations (both standard and autocal). These get written to register 2. 73 */ 74static const u16 uw2453_synth_divide[] = { 75 RF_CHANNEL( 1) = 0x999, 76 RF_CHANNEL( 2) = 0x99b, 77 RF_CHANNEL( 3) = 0x998, 78 RF_CHANNEL( 4) = 0x99a, 79 RF_CHANNEL( 5) = 0x999, 80 RF_CHANNEL( 6) = 0x99b, 81 RF_CHANNEL( 7) = 0x998, 82 RF_CHANNEL( 8) = 0x99a, 83 RF_CHANNEL( 9) = 0x999, 84 RF_CHANNEL(10) = 0x99b, 85 RF_CHANNEL(11) = 0x998, 86 RF_CHANNEL(12) = 0x99a, 87 RF_CHANNEL(13) = 0x999, 88 RF_CHANNEL(14) = 0xccc, 89}; 90 91/* Here is the data for all the standard VCO configurations. We shrink our 92 * table a little by observing that both channels in a consecutive pair share 93 * the same value. We also observe that the high 4 bits ([0:3] in the specs) 94 * are all 'Reserved' and are always set to 0x4 - we chop them off in the data 95 * below. */ 96#define CHAN_TO_PAIRIDX(a) ((a - 1) / 2) 97#define RF_CHANPAIR(a,b) [CHAN_TO_PAIRIDX(a)] 98static const u16 uw2453_std_vco_cfg[][7] = { 99 { /* table 1 */ 100 RF_CHANPAIR( 1, 2) = 0x664d, 101 RF_CHANPAIR( 3, 4) = 0x604d, 102 RF_CHANPAIR( 5, 6) = 0x6675, 103 RF_CHANPAIR( 7, 8) = 0x6475, 104 RF_CHANPAIR( 9, 10) = 0x6655, 105 RF_CHANPAIR(11, 12) = 0x6455, 106 RF_CHANPAIR(13, 14) = 0x6665, 107 }, 108 { /* table 2 */ 109 RF_CHANPAIR( 1, 2) = 0x666d, 110 RF_CHANPAIR( 3, 4) = 0x606d, 111 RF_CHANPAIR( 5, 6) = 0x664d, 112 RF_CHANPAIR( 7, 8) = 0x644d, 113 RF_CHANPAIR( 9, 10) = 0x6675, 114 RF_CHANPAIR(11, 12) = 0x6475, 115 RF_CHANPAIR(13, 14) = 0x6655, 116 }, 117 { /* table 3 */ 118 RF_CHANPAIR( 1, 2) = 0x665d, 119 RF_CHANPAIR( 3, 4) = 0x605d, 120 RF_CHANPAIR( 5, 6) = 0x666d, 121 RF_CHANPAIR( 7, 8) = 0x646d, 122 RF_CHANPAIR( 9, 10) = 0x664d, 123 RF_CHANPAIR(11, 12) = 0x644d, 124 RF_CHANPAIR(13, 14) = 0x6675, 125 }, 126 { /* table 4 */ 127 RF_CHANPAIR( 1, 2) = 0x667d, 128 RF_CHANPAIR( 3, 4) = 0x607d, 129 RF_CHANPAIR( 5, 6) = 0x665d, 130 RF_CHANPAIR( 7, 8) = 0x645d, 131 RF_CHANPAIR( 9, 10) = 0x666d, 132 RF_CHANPAIR(11, 12) = 0x646d, 133 RF_CHANPAIR(13, 14) = 0x664d, 134 }, 135 { /* table 5 */ 136 RF_CHANPAIR( 1, 2) = 0x6643, 137 RF_CHANPAIR( 3, 4) = 0x6043, 138 RF_CHANPAIR( 5, 6) = 0x667d, 139 RF_CHANPAIR( 7, 8) = 0x647d, 140 RF_CHANPAIR( 9, 10) = 0x665d, 141 RF_CHANPAIR(11, 12) = 0x645d, 142 RF_CHANPAIR(13, 14) = 0x666d, 143 }, 144 { /* table 6 */ 145 RF_CHANPAIR( 1, 2) = 0x6663, 146 RF_CHANPAIR( 3, 4) = 0x6063, 147 RF_CHANPAIR( 5, 6) = 0x6643, 148 RF_CHANPAIR( 7, 8) = 0x6443, 149 RF_CHANPAIR( 9, 10) = 0x667d, 150 RF_CHANPAIR(11, 12) = 0x647d, 151 RF_CHANPAIR(13, 14) = 0x665d, 152 }, 153 { /* table 7 */ 154 RF_CHANPAIR( 1, 2) = 0x6653, 155 RF_CHANPAIR( 3, 4) = 0x6053, 156 RF_CHANPAIR( 5, 6) = 0x6663, 157 RF_CHANPAIR( 7, 8) = 0x6463, 158 RF_CHANPAIR( 9, 10) = 0x6643, 159 RF_CHANPAIR(11, 12) = 0x6443, 160 RF_CHANPAIR(13, 14) = 0x667d, 161 }, 162 { /* table 8 */ 163 RF_CHANPAIR( 1, 2) = 0x6673, 164 RF_CHANPAIR( 3, 4) = 0x6073, 165 RF_CHANPAIR( 5, 6) = 0x6653, 166 RF_CHANPAIR( 7, 8) = 0x6453, 167 RF_CHANPAIR( 9, 10) = 0x6663, 168 RF_CHANPAIR(11, 12) = 0x6463, 169 RF_CHANPAIR(13, 14) = 0x6643, 170 }, 171 { /* table 9 */ 172 RF_CHANPAIR( 1, 2) = 0x664b, 173 RF_CHANPAIR( 3, 4) = 0x604b, 174 RF_CHANPAIR( 5, 6) = 0x6673, 175 RF_CHANPAIR( 7, 8) = 0x6473, 176 RF_CHANPAIR( 9, 10) = 0x6653, 177 RF_CHANPAIR(11, 12) = 0x6453, 178 RF_CHANPAIR(13, 14) = 0x6663, 179 }, 180 { /* table 10 */ 181 RF_CHANPAIR( 1, 2) = 0x666b, 182 RF_CHANPAIR( 3, 4) = 0x606b, 183 RF_CHANPAIR( 5, 6) = 0x664b, 184 RF_CHANPAIR( 7, 8) = 0x644b, 185 RF_CHANPAIR( 9, 10) = 0x6673, 186 RF_CHANPAIR(11, 12) = 0x6473, 187 RF_CHANPAIR(13, 14) = 0x6653, 188 }, 189 { /* table 11 */ 190 RF_CHANPAIR( 1, 2) = 0x665b, 191 RF_CHANPAIR( 3, 4) = 0x605b, 192 RF_CHANPAIR( 5, 6) = 0x666b, 193 RF_CHANPAIR( 7, 8) = 0x646b, 194 RF_CHANPAIR( 9, 10) = 0x664b, 195 RF_CHANPAIR(11, 12) = 0x644b, 196 RF_CHANPAIR(13, 14) = 0x6673, 197 }, 198 199}; 200 201/* The per-channel synth values for autocal. These get written to register 1. */ 202static const u16 uw2453_autocal_synth[] = { 203 RF_CHANNEL( 1) = 0x6847, 204 RF_CHANNEL( 2) = 0x6847, 205 RF_CHANNEL( 3) = 0x6867, 206 RF_CHANNEL( 4) = 0x6867, 207 RF_CHANNEL( 5) = 0x6867, 208 RF_CHANNEL( 6) = 0x6867, 209 RF_CHANNEL( 7) = 0x6857, 210 RF_CHANNEL( 8) = 0x6857, 211 RF_CHANNEL( 9) = 0x6857, 212 RF_CHANNEL(10) = 0x6857, 213 RF_CHANNEL(11) = 0x6877, 214 RF_CHANNEL(12) = 0x6877, 215 RF_CHANNEL(13) = 0x6877, 216 RF_CHANNEL(14) = 0x684f, 217}; 218 219/* The VCO configuration for autocal (all channels) */ 220static const u16 UW2453_AUTOCAL_VCO_CFG = 0x6662; 221 222/* TX gain settings. The array index corresponds to the TX power integration 223 * values found in the EEPROM. The values get written to register 7. */ 224static u32 uw2453_txgain[] = { 225 [0x00] = 0x0e313, 226 [0x01] = 0x0fb13, 227 [0x02] = 0x0e093, 228 [0x03] = 0x0f893, 229 [0x04] = 0x0ea93, 230 [0x05] = 0x1f093, 231 [0x06] = 0x1f493, 232 [0x07] = 0x1f693, 233 [0x08] = 0x1f393, 234 [0x09] = 0x1f35b, 235 [0x0a] = 0x1e6db, 236 [0x0b] = 0x1ff3f, 237 [0x0c] = 0x1ffff, 238 [0x0d] = 0x361d7, 239 [0x0e] = 0x37fbf, 240 [0x0f] = 0x3ff8b, 241 [0x10] = 0x3ff33, 242 [0x11] = 0x3fb3f, 243 [0x12] = 0x3ffff, 244}; 245 246/* RF-specific structure */ 247struct uw2453_priv { 248 /* index into synth/VCO config tables where PLL lock was found 249 * -1 means autocal */ 250 int config; 251}; 252 253#define UW2453_PRIV(rf) ((struct uw2453_priv *) (rf)->priv) 254 255static int uw2453_synth_set_channel(struct zd_chip *chip, int channel, 256 bool autocal) 257{ 258 int r; 259 int idx = channel - 1; 260 u32 val; 261 262 if (autocal) 263 val = UW2453_REGWRITE(1, uw2453_autocal_synth[idx]); 264 else 265 val = UW2453_REGWRITE(1, uw2453_std_synth[idx]); 266 267 r = zd_rfwrite_locked(chip, val, RF_RV_BITS); 268 if (r) 269 return r; 270 271 return zd_rfwrite_locked(chip, 272 UW2453_REGWRITE(2, uw2453_synth_divide[idx]), RF_RV_BITS); 273} 274 275static int uw2453_write_vco_cfg(struct zd_chip *chip, u16 value) 276{ 277 /* vendor driver always sets these upper bits even though the specs say 278 * they are reserved */ 279 u32 val = 0x40000 | value; 280 return zd_rfwrite_locked(chip, UW2453_REGWRITE(3, val), RF_RV_BITS); 281} 282 283static int uw2453_init_mode(struct zd_chip *chip) 284{ 285 static const u32 rv[] = { 286 UW2453_REGWRITE(0, 0x25f98), /* enter IDLE mode */ 287 UW2453_REGWRITE(0, 0x25f9a), /* enter CAL_VCO mode */ 288 UW2453_REGWRITE(0, 0x25f94), /* enter RX/TX mode */ 289 UW2453_REGWRITE(0, 0x27fd4), /* power down RSSI circuit */ 290 }; 291 292 return zd_rfwritev_locked(chip, rv, ARRAY_SIZE(rv), RF_RV_BITS); 293} 294 295static int uw2453_set_tx_gain_level(struct zd_chip *chip, int channel) 296{ 297 u8 int_value = chip->pwr_int_values[channel - 1]; 298 299 if (int_value >= ARRAY_SIZE(uw2453_txgain)) { 300 dev_dbg_f(zd_chip_dev(chip), "can't configure TX gain for " 301 "int value %x on channel %d\n", int_value, channel); 302 return 0; 303 } 304 305 return zd_rfwrite_locked(chip, 306 UW2453_REGWRITE(7, uw2453_txgain[int_value]), RF_RV_BITS); 307} 308 309static int uw2453_init_hw(struct zd_rf *rf) 310{ 311 int i, r; 312 int found_config = -1; 313 u16 intr_status; 314 struct zd_chip *chip = zd_rf_to_chip(rf); 315 316 static const struct zd_ioreq16 ioreqs[] = { 317 { ZD_CR10, 0x89 }, { ZD_CR15, 0x20 }, 318 { ZD_CR17, 0x28 }, /* 6112 no change */ 319 { ZD_CR23, 0x38 }, { ZD_CR24, 0x20 }, { ZD_CR26, 0x93 }, 320 { ZD_CR27, 0x15 }, { ZD_CR28, 0x3e }, { ZD_CR29, 0x00 }, 321 { ZD_CR33, 0x28 }, { ZD_CR34, 0x30 }, 322 { ZD_CR35, 0x43 }, /* 6112 3e->43 */ 323 { ZD_CR41, 0x24 }, { ZD_CR44, 0x32 }, 324 { ZD_CR46, 0x92 }, /* 6112 96->92 */ 325 { ZD_CR47, 0x1e }, 326 { ZD_CR48, 0x04 }, /* 5602 Roger */ 327 { ZD_CR49, 0xfa }, { ZD_CR79, 0x58 }, { ZD_CR80, 0x30 }, 328 { ZD_CR81, 0x30 }, { ZD_CR87, 0x0a }, { ZD_CR89, 0x04 }, 329 { ZD_CR91, 0x00 }, { ZD_CR92, 0x0a }, { ZD_CR98, 0x8d }, 330 { ZD_CR99, 0x28 }, { ZD_CR100, 0x02 }, 331 { ZD_CR101, 0x09 }, /* 6112 13->1f 6220 1f->13 6407 13->9 */ 332 { ZD_CR102, 0x27 }, 333 { ZD_CR106, 0x1c }, /* 5d07 5112 1f->1c 6220 1c->1f 334 * 6221 1f->1c 335 */ 336 { ZD_CR107, 0x1c }, /* 6220 1c->1a 5221 1a->1c */ 337 { ZD_CR109, 0x13 }, 338 { ZD_CR110, 0x1f }, /* 6112 13->1f 6221 1f->13 6407 13->0x09 */ 339 { ZD_CR111, 0x13 }, { ZD_CR112, 0x1f }, { ZD_CR113, 0x27 }, 340 { ZD_CR114, 0x23 }, /* 6221 27->23 */ 341 { ZD_CR115, 0x24 }, /* 6112 24->1c 6220 1c->24 */ 342 { ZD_CR116, 0x24 }, /* 6220 1c->24 */ 343 { ZD_CR117, 0xfa }, /* 6112 fa->f8 6220 f8->f4 6220 f4->fa */ 344 { ZD_CR118, 0xf0 }, /* 5d07 6112 f0->f2 6220 f2->f0 */ 345 { ZD_CR119, 0x1a }, /* 6112 1a->10 6220 10->14 6220 14->1a */ 346 { ZD_CR120, 0x4f }, 347 { ZD_CR121, 0x1f }, /* 6220 4f->1f */ 348 { ZD_CR122, 0xf0 }, { ZD_CR123, 0x57 }, { ZD_CR125, 0xad }, 349 { ZD_CR126, 0x6c }, { ZD_CR127, 0x03 }, 350 { ZD_CR128, 0x14 }, /* 6302 12->11 */ 351 { ZD_CR129, 0x12 }, /* 6301 10->0f */ 352 { ZD_CR130, 0x10 }, { ZD_CR137, 0x50 }, { ZD_CR138, 0xa8 }, 353 { ZD_CR144, 0xac }, { ZD_CR146, 0x20 }, { ZD_CR252, 0xff }, 354 { ZD_CR253, 0xff }, 355 }; 356 357 static const u32 rv[] = { 358 UW2453_REGWRITE(4, 0x2b), /* configure receiver gain */ 359 UW2453_REGWRITE(5, 0x19e4f), /* configure transmitter gain */ 360 UW2453_REGWRITE(6, 0xf81ad), /* enable RX/TX filter tuning */ 361 UW2453_REGWRITE(7, 0x3fffe), /* disable TX gain in test mode */ 362 363 /* enter CAL_FIL mode, TX gain set by registers, RX gain set by pins, 364 * RSSI circuit powered down, reduced RSSI range */ 365 UW2453_REGWRITE(0, 0x25f9c), /* 5d01 cal_fil */ 366 367 /* synthesizer configuration for channel 1 */ 368 UW2453_REGWRITE(1, 0x47), 369 UW2453_REGWRITE(2, 0x999), 370 371 /* disable manual VCO band selection */ 372 UW2453_REGWRITE(3, 0x7602), 373 374 /* enable manual VCO band selection, configure current level */ 375 UW2453_REGWRITE(3, 0x46063), 376 }; 377 378 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); 379 if (r) 380 return r; 381 382 r = zd_rfwritev_locked(chip, rv, ARRAY_SIZE(rv), RF_RV_BITS); 383 if (r) 384 return r; 385 386 r = uw2453_init_mode(chip); 387 if (r) 388 return r; 389 390 /* Try all standard VCO configuration settings on channel 1 */ 391 for (i = 0; i < ARRAY_SIZE(uw2453_std_vco_cfg) - 1; i++) { 392 /* Configure synthesizer for channel 1 */ 393 r = uw2453_synth_set_channel(chip, 1, false); 394 if (r) 395 return r; 396 397 /* Write VCO config */ 398 r = uw2453_write_vco_cfg(chip, uw2453_std_vco_cfg[i][0]); 399 if (r) 400 return r; 401 402 /* ack interrupt event */ 403 r = zd_iowrite16_locked(chip, 0x0f, UW2453_INTR_REG); 404 if (r) 405 return r; 406 407 /* check interrupt status */ 408 r = zd_ioread16_locked(chip, &intr_status, UW2453_INTR_REG); 409 if (r) 410 return r; 411 412 if (!(intr_status & 0xf)) { 413 dev_dbg_f(zd_chip_dev(chip), 414 "PLL locked on configuration %d\n", i); 415 found_config = i; 416 break; 417 } 418 } 419 420 if (found_config == -1) { 421 /* autocal */ 422 dev_dbg_f(zd_chip_dev(chip), 423 "PLL did not lock, using autocal\n"); 424 425 r = uw2453_synth_set_channel(chip, 1, true); 426 if (r) 427 return r; 428 429 r = uw2453_write_vco_cfg(chip, UW2453_AUTOCAL_VCO_CFG); 430 if (r) 431 return r; 432 } 433 434 /* To match the vendor driver behaviour, we use the configuration after 435 * the one that produced a lock. */ 436 UW2453_PRIV(rf)->config = found_config + 1; 437 438 return zd_iowrite16_locked(chip, 0x06, ZD_CR203); 439} 440 441static int uw2453_set_channel(struct zd_rf *rf, u8 channel) 442{ 443 int r; 444 u16 vco_cfg; 445 int config = UW2453_PRIV(rf)->config; 446 bool autocal = (config == -1); 447 struct zd_chip *chip = zd_rf_to_chip(rf); 448 449 static const struct zd_ioreq16 ioreqs[] = { 450 { ZD_CR80, 0x30 }, { ZD_CR81, 0x30 }, { ZD_CR79, 0x58 }, 451 { ZD_CR12, 0xf0 }, { ZD_CR77, 0x1b }, { ZD_CR78, 0x58 }, 452 }; 453 454 r = uw2453_synth_set_channel(chip, channel, autocal); 455 if (r) 456 return r; 457 458 if (autocal) 459 vco_cfg = UW2453_AUTOCAL_VCO_CFG; 460 else 461 vco_cfg = uw2453_std_vco_cfg[config][CHAN_TO_PAIRIDX(channel)]; 462 463 r = uw2453_write_vco_cfg(chip, vco_cfg); 464 if (r) 465 return r; 466 467 r = uw2453_init_mode(chip); 468 if (r) 469 return r; 470 471 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); 472 if (r) 473 return r; 474 475 r = uw2453_set_tx_gain_level(chip, channel); 476 if (r) 477 return r; 478 479 return zd_iowrite16_locked(chip, 0x06, ZD_CR203); 480} 481 482static int uw2453_switch_radio_on(struct zd_rf *rf) 483{ 484 int r; 485 struct zd_chip *chip = zd_rf_to_chip(rf); 486 struct zd_ioreq16 ioreqs[] = { 487 { ZD_CR11, 0x00 }, { ZD_CR251, 0x3f }, 488 }; 489 490 /* enter RXTX mode */ 491 r = zd_rfwrite_locked(chip, UW2453_REGWRITE(0, 0x25f94), RF_RV_BITS); 492 if (r) 493 return r; 494 495 if (zd_chip_is_zd1211b(chip)) 496 ioreqs[1].value = 0x7f; 497 498 return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); 499} 500 501static int uw2453_switch_radio_off(struct zd_rf *rf) 502{ 503 int r; 504 struct zd_chip *chip = zd_rf_to_chip(rf); 505 static const struct zd_ioreq16 ioreqs[] = { 506 { ZD_CR11, 0x04 }, { ZD_CR251, 0x2f }, 507 }; 508 509 /* enter IDLE mode */ 510 /* FIXME: shouldn't we go to SLEEP? sent email to zydas */ 511 r = zd_rfwrite_locked(chip, UW2453_REGWRITE(0, 0x25f90), RF_RV_BITS); 512 if (r) 513 return r; 514 515 return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); 516} 517 518static void uw2453_clear(struct zd_rf *rf) 519{ 520 kfree(rf->priv); 521} 522 523int zd_rf_init_uw2453(struct zd_rf *rf) 524{ 525 rf->init_hw = uw2453_init_hw; 526 rf->set_channel = uw2453_set_channel; 527 rf->switch_radio_on = uw2453_switch_radio_on; 528 rf->switch_radio_off = uw2453_switch_radio_off; 529 rf->patch_6m_band_edge = zd_rf_generic_patch_6m; 530 rf->clear = uw2453_clear; 531 /* we have our own TX integration code */ 532 rf->update_channel_int = 0; 533 534 rf->priv = kmalloc(sizeof(struct uw2453_priv), GFP_KERNEL); 535 if (rf->priv == NULL) 536 return -ENOMEM; 537 538 return 0; 539} 540 541