1/*
2 * Core routines and tables shareable across OS platforms.
3 *
4 * Copyright (c) 1994-2002 Justin T. Gibbs.
5 * Copyright (c) 2000-2003 Adaptec Inc.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions, and the following disclaimer,
13 *    without modification.
14 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
15 *    substantially similar to the "NO WARRANTY" disclaimer below
16 *    ("Disclaimer") and any redistribution must be conditioned upon
17 *    including a substantially similar Disclaimer requirement for further
18 *    binary redistribution.
19 * 3. Neither the names of the above-listed copyright holders nor the names
20 *    of any contributors may be used to endorse or promote products derived
21 *    from this software without specific prior written permission.
22 *
23 * Alternatively, this software may be distributed under the terms of the
24 * GNU General Public License ("GPL") version 2 as published by the Free
25 * Software Foundation.
26 *
27 * NO WARRANTY
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
36 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
37 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGES.
39 *
40 * $Id: //depot/aic7xxx/aic7xxx/aic79xx.c#250 $
41 */
42
43#ifdef __linux__
44#include "aic79xx_osm.h"
45#include "aic79xx_inline.h"
46#include "aicasm/aicasm_insformat.h"
47#else
48#include <dev/aic7xxx/aic79xx_osm.h>
49#include <dev/aic7xxx/aic79xx_inline.h>
50#include <dev/aic7xxx/aicasm/aicasm_insformat.h>
51#endif
52
53
54/***************************** Lookup Tables **********************************/
55static const char *const ahd_chip_names[] =
56{
57	"NONE",
58	"aic7901",
59	"aic7902",
60	"aic7901A"
61};
62static const u_int num_chip_names = ARRAY_SIZE(ahd_chip_names);
63
64/*
65 * Hardware error codes.
66 */
67struct ahd_hard_error_entry {
68        uint8_t errno;
69	const char *errmesg;
70};
71
72static const struct ahd_hard_error_entry ahd_hard_errors[] = {
73	{ DSCTMOUT,	"Discard Timer has timed out" },
74	{ ILLOPCODE,	"Illegal Opcode in sequencer program" },
75	{ SQPARERR,	"Sequencer Parity Error" },
76	{ DPARERR,	"Data-path Parity Error" },
77	{ MPARERR,	"Scratch or SCB Memory Parity Error" },
78	{ CIOPARERR,	"CIOBUS Parity Error" },
79};
80static const u_int num_errors = ARRAY_SIZE(ahd_hard_errors);
81
82static const struct ahd_phase_table_entry ahd_phase_table[] =
83{
84	{ P_DATAOUT,	MSG_NOOP,		"in Data-out phase"	},
85	{ P_DATAIN,	MSG_INITIATOR_DET_ERR,	"in Data-in phase"	},
86	{ P_DATAOUT_DT,	MSG_NOOP,		"in DT Data-out phase"	},
87	{ P_DATAIN_DT,	MSG_INITIATOR_DET_ERR,	"in DT Data-in phase"	},
88	{ P_COMMAND,	MSG_NOOP,		"in Command phase"	},
89	{ P_MESGOUT,	MSG_NOOP,		"in Message-out phase"	},
90	{ P_STATUS,	MSG_INITIATOR_DET_ERR,	"in Status phase"	},
91	{ P_MESGIN,	MSG_PARITY_ERROR,	"in Message-in phase"	},
92	{ P_BUSFREE,	MSG_NOOP,		"while idle"		},
93	{ 0,		MSG_NOOP,		"in unknown phase"	}
94};
95
96/*
97 * In most cases we only wish to itterate over real phases, so
98 * exclude the last element from the count.
99 */
100static const u_int num_phases = ARRAY_SIZE(ahd_phase_table) - 1;
101
102/* Our Sequencer Program */
103#include "aic79xx_seq.h"
104
105/**************************** Function Declarations ***************************/
106static void		ahd_handle_transmission_error(struct ahd_softc *ahd);
107static void		ahd_handle_lqiphase_error(struct ahd_softc *ahd,
108						  u_int lqistat1);
109static int		ahd_handle_pkt_busfree(struct ahd_softc *ahd,
110					       u_int busfreetime);
111static int		ahd_handle_nonpkt_busfree(struct ahd_softc *ahd);
112static void		ahd_handle_proto_violation(struct ahd_softc *ahd);
113static void		ahd_force_renegotiation(struct ahd_softc *ahd,
114						struct ahd_devinfo *devinfo);
115
116static struct ahd_tmode_tstate*
117			ahd_alloc_tstate(struct ahd_softc *ahd,
118					 u_int scsi_id, char channel);
119#ifdef AHD_TARGET_MODE
120static void		ahd_free_tstate(struct ahd_softc *ahd,
121					u_int scsi_id, char channel, int force);
122#endif
123static void		ahd_devlimited_syncrate(struct ahd_softc *ahd,
124					        struct ahd_initiator_tinfo *,
125						u_int *period,
126						u_int *ppr_options,
127						role_t role);
128static void		ahd_update_neg_table(struct ahd_softc *ahd,
129					     struct ahd_devinfo *devinfo,
130					     struct ahd_transinfo *tinfo);
131static void		ahd_update_pending_scbs(struct ahd_softc *ahd);
132static void		ahd_fetch_devinfo(struct ahd_softc *ahd,
133					  struct ahd_devinfo *devinfo);
134static void		ahd_scb_devinfo(struct ahd_softc *ahd,
135					struct ahd_devinfo *devinfo,
136					struct scb *scb);
137static void		ahd_setup_initiator_msgout(struct ahd_softc *ahd,
138						   struct ahd_devinfo *devinfo,
139						   struct scb *scb);
140static void		ahd_build_transfer_msg(struct ahd_softc *ahd,
141					       struct ahd_devinfo *devinfo);
142static void		ahd_construct_sdtr(struct ahd_softc *ahd,
143					   struct ahd_devinfo *devinfo,
144					   u_int period, u_int offset);
145static void		ahd_construct_wdtr(struct ahd_softc *ahd,
146					   struct ahd_devinfo *devinfo,
147					   u_int bus_width);
148static void		ahd_construct_ppr(struct ahd_softc *ahd,
149					  struct ahd_devinfo *devinfo,
150					  u_int period, u_int offset,
151					  u_int bus_width, u_int ppr_options);
152static void		ahd_clear_msg_state(struct ahd_softc *ahd);
153static void		ahd_handle_message_phase(struct ahd_softc *ahd);
154typedef enum {
155	AHDMSG_1B,
156	AHDMSG_2B,
157	AHDMSG_EXT
158} ahd_msgtype;
159static int		ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type,
160				     u_int msgval, int full);
161static int		ahd_parse_msg(struct ahd_softc *ahd,
162				      struct ahd_devinfo *devinfo);
163static int		ahd_handle_msg_reject(struct ahd_softc *ahd,
164					      struct ahd_devinfo *devinfo);
165static void		ahd_handle_ign_wide_residue(struct ahd_softc *ahd,
166						struct ahd_devinfo *devinfo);
167static void		ahd_reinitialize_dataptrs(struct ahd_softc *ahd);
168static void		ahd_handle_devreset(struct ahd_softc *ahd,
169					    struct ahd_devinfo *devinfo,
170					    u_int lun, cam_status status,
171					    char *message, int verbose_level);
172#ifdef AHD_TARGET_MODE
173static void		ahd_setup_target_msgin(struct ahd_softc *ahd,
174					       struct ahd_devinfo *devinfo,
175					       struct scb *scb);
176#endif
177
178static u_int		ahd_sglist_size(struct ahd_softc *ahd);
179static u_int		ahd_sglist_allocsize(struct ahd_softc *ahd);
180static bus_dmamap_callback_t
181			ahd_dmamap_cb;
182static void		ahd_initialize_hscbs(struct ahd_softc *ahd);
183static int		ahd_init_scbdata(struct ahd_softc *ahd);
184static void		ahd_fini_scbdata(struct ahd_softc *ahd);
185static void		ahd_setup_iocell_workaround(struct ahd_softc *ahd);
186static void		ahd_iocell_first_selection(struct ahd_softc *ahd);
187static void		ahd_add_col_list(struct ahd_softc *ahd,
188					 struct scb *scb, u_int col_idx);
189static void		ahd_rem_col_list(struct ahd_softc *ahd,
190					 struct scb *scb);
191static void		ahd_chip_init(struct ahd_softc *ahd);
192static void		ahd_qinfifo_requeue(struct ahd_softc *ahd,
193					    struct scb *prev_scb,
194					    struct scb *scb);
195static int		ahd_qinfifo_count(struct ahd_softc *ahd);
196static int		ahd_search_scb_list(struct ahd_softc *ahd, int target,
197					    char channel, int lun, u_int tag,
198					    role_t role, uint32_t status,
199					    ahd_search_action action,
200					    u_int *list_head, u_int *list_tail,
201					    u_int tid);
202static void		ahd_stitch_tid_list(struct ahd_softc *ahd,
203					    u_int tid_prev, u_int tid_cur,
204					    u_int tid_next);
205static void		ahd_add_scb_to_free_list(struct ahd_softc *ahd,
206						 u_int scbid);
207static u_int		ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid,
208				     u_int prev, u_int next, u_int tid);
209static void		ahd_reset_current_bus(struct ahd_softc *ahd);
210static ahd_callback_t	ahd_stat_timer;
211#ifdef AHD_DUMP_SEQ
212static void		ahd_dumpseq(struct ahd_softc *ahd);
213#endif
214static void		ahd_loadseq(struct ahd_softc *ahd);
215static int		ahd_check_patch(struct ahd_softc *ahd,
216					const struct patch **start_patch,
217					u_int start_instr, u_int *skip_addr);
218static u_int		ahd_resolve_seqaddr(struct ahd_softc *ahd,
219					    u_int address);
220static void		ahd_download_instr(struct ahd_softc *ahd,
221					   u_int instrptr, uint8_t *dconsts);
222static int		ahd_probe_stack_size(struct ahd_softc *ahd);
223static int		ahd_scb_active_in_fifo(struct ahd_softc *ahd,
224					       struct scb *scb);
225static void		ahd_run_data_fifo(struct ahd_softc *ahd,
226					  struct scb *scb);
227
228#ifdef AHD_TARGET_MODE
229static void		ahd_queue_lstate_event(struct ahd_softc *ahd,
230					       struct ahd_tmode_lstate *lstate,
231					       u_int initiator_id,
232					       u_int event_type,
233					       u_int event_arg);
234static void		ahd_update_scsiid(struct ahd_softc *ahd,
235					  u_int targid_mask);
236static int		ahd_handle_target_cmd(struct ahd_softc *ahd,
237					      struct target_cmd *cmd);
238#endif
239
240static int		ahd_abort_scbs(struct ahd_softc *ahd, int target,
241				       char channel, int lun, u_int tag,
242				       role_t role, uint32_t status);
243static void		ahd_alloc_scbs(struct ahd_softc *ahd);
244static void		ahd_busy_tcl(struct ahd_softc *ahd, u_int tcl,
245				     u_int scbid);
246static void		ahd_calc_residual(struct ahd_softc *ahd,
247					  struct scb *scb);
248static void		ahd_clear_critical_section(struct ahd_softc *ahd);
249static void		ahd_clear_intstat(struct ahd_softc *ahd);
250static void		ahd_enable_coalescing(struct ahd_softc *ahd,
251					      int enable);
252static u_int		ahd_find_busy_tcl(struct ahd_softc *ahd, u_int tcl);
253static void		ahd_freeze_devq(struct ahd_softc *ahd,
254					struct scb *scb);
255static void		ahd_handle_scb_status(struct ahd_softc *ahd,
256					      struct scb *scb);
257static const struct ahd_phase_table_entry* ahd_lookup_phase_entry(int phase);
258static void		ahd_shutdown(void *arg);
259static void		ahd_update_coalescing_values(struct ahd_softc *ahd,
260						     u_int timer,
261						     u_int maxcmds,
262						     u_int mincmds);
263static int		ahd_verify_vpd_cksum(struct vpd_config *vpd);
264static int		ahd_wait_seeprom(struct ahd_softc *ahd);
265static int		ahd_match_scb(struct ahd_softc *ahd, struct scb *scb,
266				      int target, char channel, int lun,
267				      u_int tag, role_t role);
268
269static void		ahd_reset_cmds_pending(struct ahd_softc *ahd);
270
271/*************************** Interrupt Services *******************************/
272static void		ahd_run_qoutfifo(struct ahd_softc *ahd);
273#ifdef AHD_TARGET_MODE
274static void		ahd_run_tqinfifo(struct ahd_softc *ahd, int paused);
275#endif
276static void		ahd_handle_hwerrint(struct ahd_softc *ahd);
277static void		ahd_handle_seqint(struct ahd_softc *ahd, u_int intstat);
278static void		ahd_handle_scsiint(struct ahd_softc *ahd,
279				           u_int intstat);
280
281/************************ Sequencer Execution Control *************************/
282void
283ahd_set_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
284{
285	if (ahd->src_mode == src && ahd->dst_mode == dst)
286		return;
287#ifdef AHD_DEBUG
288	if (ahd->src_mode == AHD_MODE_UNKNOWN
289	 || ahd->dst_mode == AHD_MODE_UNKNOWN)
290		panic("Setting mode prior to saving it.\n");
291	if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
292		printk("%s: Setting mode 0x%x\n", ahd_name(ahd),
293		       ahd_build_mode_state(ahd, src, dst));
294#endif
295	ahd_outb(ahd, MODE_PTR, ahd_build_mode_state(ahd, src, dst));
296	ahd->src_mode = src;
297	ahd->dst_mode = dst;
298}
299
300static void
301ahd_update_modes(struct ahd_softc *ahd)
302{
303	ahd_mode_state mode_ptr;
304	ahd_mode src;
305	ahd_mode dst;
306
307	mode_ptr = ahd_inb(ahd, MODE_PTR);
308#ifdef AHD_DEBUG
309	if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
310		printk("Reading mode 0x%x\n", mode_ptr);
311#endif
312	ahd_extract_mode_state(ahd, mode_ptr, &src, &dst);
313	ahd_known_modes(ahd, src, dst);
314}
315
316static void
317ahd_assert_modes(struct ahd_softc *ahd, ahd_mode srcmode,
318		 ahd_mode dstmode, const char *file, int line)
319{
320#ifdef AHD_DEBUG
321	if ((srcmode & AHD_MK_MSK(ahd->src_mode)) == 0
322	 || (dstmode & AHD_MK_MSK(ahd->dst_mode)) == 0) {
323		panic("%s:%s:%d: Mode assertion failed.\n",
324		       ahd_name(ahd), file, line);
325	}
326#endif
327}
328
329#define AHD_ASSERT_MODES(ahd, source, dest) \
330	ahd_assert_modes(ahd, source, dest, __FILE__, __LINE__);
331
332ahd_mode_state
333ahd_save_modes(struct ahd_softc *ahd)
334{
335	if (ahd->src_mode == AHD_MODE_UNKNOWN
336	 || ahd->dst_mode == AHD_MODE_UNKNOWN)
337		ahd_update_modes(ahd);
338
339	return (ahd_build_mode_state(ahd, ahd->src_mode, ahd->dst_mode));
340}
341
342void
343ahd_restore_modes(struct ahd_softc *ahd, ahd_mode_state state)
344{
345	ahd_mode src;
346	ahd_mode dst;
347
348	ahd_extract_mode_state(ahd, state, &src, &dst);
349	ahd_set_modes(ahd, src, dst);
350}
351
352/*
353 * Determine whether the sequencer has halted code execution.
354 * Returns non-zero status if the sequencer is stopped.
355 */
356int
357ahd_is_paused(struct ahd_softc *ahd)
358{
359	return ((ahd_inb(ahd, HCNTRL) & PAUSE) != 0);
360}
361
362/*
363 * Request that the sequencer stop and wait, indefinitely, for it
364 * to stop.  The sequencer will only acknowledge that it is paused
365 * once it has reached an instruction boundary and PAUSEDIS is
366 * cleared in the SEQCTL register.  The sequencer may use PAUSEDIS
367 * for critical sections.
368 */
369void
370ahd_pause(struct ahd_softc *ahd)
371{
372	ahd_outb(ahd, HCNTRL, ahd->pause);
373
374	/*
375	 * Since the sequencer can disable pausing in a critical section, we
376	 * must loop until it actually stops.
377	 */
378	while (ahd_is_paused(ahd) == 0)
379		;
380}
381
382/*
383 * Allow the sequencer to continue program execution.
384 * We check here to ensure that no additional interrupt
385 * sources that would cause the sequencer to halt have been
386 * asserted.  If, for example, a SCSI bus reset is detected
387 * while we are fielding a different, pausing, interrupt type,
388 * we don't want to release the sequencer before going back
389 * into our interrupt handler and dealing with this new
390 * condition.
391 */
392void
393ahd_unpause(struct ahd_softc *ahd)
394{
395	/*
396	 * Automatically restore our modes to those saved
397	 * prior to the first change of the mode.
398	 */
399	if (ahd->saved_src_mode != AHD_MODE_UNKNOWN
400	 && ahd->saved_dst_mode != AHD_MODE_UNKNOWN) {
401		if ((ahd->flags & AHD_UPDATE_PEND_CMDS) != 0)
402			ahd_reset_cmds_pending(ahd);
403		ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
404	}
405
406	if ((ahd_inb(ahd, INTSTAT) & ~CMDCMPLT) == 0)
407		ahd_outb(ahd, HCNTRL, ahd->unpause);
408
409	ahd_known_modes(ahd, AHD_MODE_UNKNOWN, AHD_MODE_UNKNOWN);
410}
411
412/*********************** Scatter Gather List Handling *************************/
413void *
414ahd_sg_setup(struct ahd_softc *ahd, struct scb *scb,
415	     void *sgptr, dma_addr_t addr, bus_size_t len, int last)
416{
417	scb->sg_count++;
418	if (sizeof(dma_addr_t) > 4
419	 && (ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
420		struct ahd_dma64_seg *sg;
421
422		sg = (struct ahd_dma64_seg *)sgptr;
423		sg->addr = ahd_htole64(addr);
424		sg->len = ahd_htole32(len | (last ? AHD_DMA_LAST_SEG : 0));
425		return (sg + 1);
426	} else {
427		struct ahd_dma_seg *sg;
428
429		sg = (struct ahd_dma_seg *)sgptr;
430		sg->addr = ahd_htole32(addr & 0xFFFFFFFF);
431		sg->len = ahd_htole32(len | ((addr >> 8) & 0x7F000000)
432				    | (last ? AHD_DMA_LAST_SEG : 0));
433		return (sg + 1);
434	}
435}
436
437static void
438ahd_setup_scb_common(struct ahd_softc *ahd, struct scb *scb)
439{
440	/* XXX Handle target mode SCBs. */
441	scb->crc_retry_count = 0;
442	if ((scb->flags & SCB_PACKETIZED) != 0) {
443		/* XXX what about ACA??  It is type 4, but TAG_TYPE == 0x3. */
444		scb->hscb->task_attribute = scb->hscb->control & SCB_TAG_TYPE;
445	} else {
446		if (ahd_get_transfer_length(scb) & 0x01)
447			scb->hscb->task_attribute = SCB_XFERLEN_ODD;
448		else
449			scb->hscb->task_attribute = 0;
450	}
451
452	if (scb->hscb->cdb_len <= MAX_CDB_LEN_WITH_SENSE_ADDR
453	 || (scb->hscb->cdb_len & SCB_CDB_LEN_PTR) != 0)
454		scb->hscb->shared_data.idata.cdb_plus_saddr.sense_addr =
455		    ahd_htole32(scb->sense_busaddr);
456}
457
458static void
459ahd_setup_data_scb(struct ahd_softc *ahd, struct scb *scb)
460{
461	/*
462	 * Copy the first SG into the "current" data ponter area.
463	 */
464	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
465		struct ahd_dma64_seg *sg;
466
467		sg = (struct ahd_dma64_seg *)scb->sg_list;
468		scb->hscb->dataptr = sg->addr;
469		scb->hscb->datacnt = sg->len;
470	} else {
471		struct ahd_dma_seg *sg;
472		uint32_t *dataptr_words;
473
474		sg = (struct ahd_dma_seg *)scb->sg_list;
475		dataptr_words = (uint32_t*)&scb->hscb->dataptr;
476		dataptr_words[0] = sg->addr;
477		dataptr_words[1] = 0;
478		if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) {
479			uint64_t high_addr;
480
481			high_addr = ahd_le32toh(sg->len) & 0x7F000000;
482			scb->hscb->dataptr |= ahd_htole64(high_addr << 8);
483		}
484		scb->hscb->datacnt = sg->len;
485	}
486	/*
487	 * Note where to find the SG entries in bus space.
488	 * We also set the full residual flag which the
489	 * sequencer will clear as soon as a data transfer
490	 * occurs.
491	 */
492	scb->hscb->sgptr = ahd_htole32(scb->sg_list_busaddr|SG_FULL_RESID);
493}
494
495static void
496ahd_setup_noxfer_scb(struct ahd_softc *ahd, struct scb *scb)
497{
498	scb->hscb->sgptr = ahd_htole32(SG_LIST_NULL);
499	scb->hscb->dataptr = 0;
500	scb->hscb->datacnt = 0;
501}
502
503/************************** Memory mapping routines ***************************/
504static void *
505ahd_sg_bus_to_virt(struct ahd_softc *ahd, struct scb *scb, uint32_t sg_busaddr)
506{
507	dma_addr_t sg_offset;
508
509	/* sg_list_phys points to entry 1, not 0 */
510	sg_offset = sg_busaddr - (scb->sg_list_busaddr - ahd_sg_size(ahd));
511	return ((uint8_t *)scb->sg_list + sg_offset);
512}
513
514static uint32_t
515ahd_sg_virt_to_bus(struct ahd_softc *ahd, struct scb *scb, void *sg)
516{
517	dma_addr_t sg_offset;
518
519	/* sg_list_phys points to entry 1, not 0 */
520	sg_offset = ((uint8_t *)sg - (uint8_t *)scb->sg_list)
521		  - ahd_sg_size(ahd);
522
523	return (scb->sg_list_busaddr + sg_offset);
524}
525
526static void
527ahd_sync_scb(struct ahd_softc *ahd, struct scb *scb, int op)
528{
529	ahd_dmamap_sync(ahd, ahd->scb_data.hscb_dmat,
530			scb->hscb_map->dmamap,
531			/*offset*/(uint8_t*)scb->hscb - scb->hscb_map->vaddr,
532			/*len*/sizeof(*scb->hscb), op);
533}
534
535void
536ahd_sync_sglist(struct ahd_softc *ahd, struct scb *scb, int op)
537{
538	if (scb->sg_count == 0)
539		return;
540
541	ahd_dmamap_sync(ahd, ahd->scb_data.sg_dmat,
542			scb->sg_map->dmamap,
543			/*offset*/scb->sg_list_busaddr - ahd_sg_size(ahd),
544			/*len*/ahd_sg_size(ahd) * scb->sg_count, op);
545}
546
547static void
548ahd_sync_sense(struct ahd_softc *ahd, struct scb *scb, int op)
549{
550	ahd_dmamap_sync(ahd, ahd->scb_data.sense_dmat,
551			scb->sense_map->dmamap,
552			/*offset*/scb->sense_busaddr,
553			/*len*/AHD_SENSE_BUFSIZE, op);
554}
555
556#ifdef AHD_TARGET_MODE
557static uint32_t
558ahd_targetcmd_offset(struct ahd_softc *ahd, u_int index)
559{
560	return (((uint8_t *)&ahd->targetcmds[index])
561	       - (uint8_t *)ahd->qoutfifo);
562}
563#endif
564
565/*********************** Miscellaneous Support Functions ***********************/
566/*
567 * Return pointers to the transfer negotiation information
568 * for the specified our_id/remote_id pair.
569 */
570struct ahd_initiator_tinfo *
571ahd_fetch_transinfo(struct ahd_softc *ahd, char channel, u_int our_id,
572		    u_int remote_id, struct ahd_tmode_tstate **tstate)
573{
574	/*
575	 * Transfer data structures are stored from the perspective
576	 * of the target role.  Since the parameters for a connection
577	 * in the initiator role to a given target are the same as
578	 * when the roles are reversed, we pretend we are the target.
579	 */
580	if (channel == 'B')
581		our_id += 8;
582	*tstate = ahd->enabled_targets[our_id];
583	return (&(*tstate)->transinfo[remote_id]);
584}
585
586uint16_t
587ahd_inw(struct ahd_softc *ahd, u_int port)
588{
589	/*
590	 * Read high byte first as some registers increment
591	 * or have other side effects when the low byte is
592	 * read.
593	 */
594	uint16_t r = ahd_inb(ahd, port+1) << 8;
595	return r | ahd_inb(ahd, port);
596}
597
598void
599ahd_outw(struct ahd_softc *ahd, u_int port, u_int value)
600{
601	/*
602	 * Write low byte first to accommodate registers
603	 * such as PRGMCNT where the order maters.
604	 */
605	ahd_outb(ahd, port, value & 0xFF);
606	ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
607}
608
609uint32_t
610ahd_inl(struct ahd_softc *ahd, u_int port)
611{
612	return ((ahd_inb(ahd, port))
613	      | (ahd_inb(ahd, port+1) << 8)
614	      | (ahd_inb(ahd, port+2) << 16)
615	      | (ahd_inb(ahd, port+3) << 24));
616}
617
618void
619ahd_outl(struct ahd_softc *ahd, u_int port, uint32_t value)
620{
621	ahd_outb(ahd, port, (value) & 0xFF);
622	ahd_outb(ahd, port+1, ((value) >> 8) & 0xFF);
623	ahd_outb(ahd, port+2, ((value) >> 16) & 0xFF);
624	ahd_outb(ahd, port+3, ((value) >> 24) & 0xFF);
625}
626
627uint64_t
628ahd_inq(struct ahd_softc *ahd, u_int port)
629{
630	return ((ahd_inb(ahd, port))
631	      | (ahd_inb(ahd, port+1) << 8)
632	      | (ahd_inb(ahd, port+2) << 16)
633	      | (ahd_inb(ahd, port+3) << 24)
634	      | (((uint64_t)ahd_inb(ahd, port+4)) << 32)
635	      | (((uint64_t)ahd_inb(ahd, port+5)) << 40)
636	      | (((uint64_t)ahd_inb(ahd, port+6)) << 48)
637	      | (((uint64_t)ahd_inb(ahd, port+7)) << 56));
638}
639
640void
641ahd_outq(struct ahd_softc *ahd, u_int port, uint64_t value)
642{
643	ahd_outb(ahd, port, value & 0xFF);
644	ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
645	ahd_outb(ahd, port+2, (value >> 16) & 0xFF);
646	ahd_outb(ahd, port+3, (value >> 24) & 0xFF);
647	ahd_outb(ahd, port+4, (value >> 32) & 0xFF);
648	ahd_outb(ahd, port+5, (value >> 40) & 0xFF);
649	ahd_outb(ahd, port+6, (value >> 48) & 0xFF);
650	ahd_outb(ahd, port+7, (value >> 56) & 0xFF);
651}
652
653u_int
654ahd_get_scbptr(struct ahd_softc *ahd)
655{
656	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
657			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
658	return (ahd_inb(ahd, SCBPTR) | (ahd_inb(ahd, SCBPTR + 1) << 8));
659}
660
661void
662ahd_set_scbptr(struct ahd_softc *ahd, u_int scbptr)
663{
664	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
665			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
666	ahd_outb(ahd, SCBPTR, scbptr & 0xFF);
667	ahd_outb(ahd, SCBPTR+1, (scbptr >> 8) & 0xFF);
668}
669
670#if 0 /* unused */
671static u_int
672ahd_get_hnscb_qoff(struct ahd_softc *ahd)
673{
674	return (ahd_inw_atomic(ahd, HNSCB_QOFF));
675}
676#endif
677
678static void
679ahd_set_hnscb_qoff(struct ahd_softc *ahd, u_int value)
680{
681	ahd_outw_atomic(ahd, HNSCB_QOFF, value);
682}
683
684#if 0 /* unused */
685static u_int
686ahd_get_hescb_qoff(struct ahd_softc *ahd)
687{
688	return (ahd_inb(ahd, HESCB_QOFF));
689}
690#endif
691
692static void
693ahd_set_hescb_qoff(struct ahd_softc *ahd, u_int value)
694{
695	ahd_outb(ahd, HESCB_QOFF, value);
696}
697
698static u_int
699ahd_get_snscb_qoff(struct ahd_softc *ahd)
700{
701	u_int oldvalue;
702
703	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
704	oldvalue = ahd_inw(ahd, SNSCB_QOFF);
705	ahd_outw(ahd, SNSCB_QOFF, oldvalue);
706	return (oldvalue);
707}
708
709static void
710ahd_set_snscb_qoff(struct ahd_softc *ahd, u_int value)
711{
712	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
713	ahd_outw(ahd, SNSCB_QOFF, value);
714}
715
716#if 0 /* unused */
717static u_int
718ahd_get_sescb_qoff(struct ahd_softc *ahd)
719{
720	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
721	return (ahd_inb(ahd, SESCB_QOFF));
722}
723#endif
724
725static void
726ahd_set_sescb_qoff(struct ahd_softc *ahd, u_int value)
727{
728	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
729	ahd_outb(ahd, SESCB_QOFF, value);
730}
731
732#if 0 /* unused */
733static u_int
734ahd_get_sdscb_qoff(struct ahd_softc *ahd)
735{
736	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
737	return (ahd_inb(ahd, SDSCB_QOFF) | (ahd_inb(ahd, SDSCB_QOFF + 1) << 8));
738}
739#endif
740
741static void
742ahd_set_sdscb_qoff(struct ahd_softc *ahd, u_int value)
743{
744	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
745	ahd_outb(ahd, SDSCB_QOFF, value & 0xFF);
746	ahd_outb(ahd, SDSCB_QOFF+1, (value >> 8) & 0xFF);
747}
748
749u_int
750ahd_inb_scbram(struct ahd_softc *ahd, u_int offset)
751{
752	u_int value;
753
754	/*
755	 * Workaround PCI-X Rev A. hardware bug.
756	 * After a host read of SCB memory, the chip
757	 * may become confused into thinking prefetch
758	 * was required.  This starts the discard timer
759	 * running and can cause an unexpected discard
760	 * timer interrupt.  The work around is to read
761	 * a normal register prior to the exhaustion of
762	 * the discard timer.  The mode pointer register
763	 * has no side effects and so serves well for
764	 * this purpose.
765	 *
766	 * Razor #528
767	 */
768	value = ahd_inb(ahd, offset);
769	if ((ahd->bugs & AHD_PCIX_SCBRAM_RD_BUG) != 0)
770		ahd_inb(ahd, MODE_PTR);
771	return (value);
772}
773
774u_int
775ahd_inw_scbram(struct ahd_softc *ahd, u_int offset)
776{
777	return (ahd_inb_scbram(ahd, offset)
778	      | (ahd_inb_scbram(ahd, offset+1) << 8));
779}
780
781static uint32_t
782ahd_inl_scbram(struct ahd_softc *ahd, u_int offset)
783{
784	return (ahd_inw_scbram(ahd, offset)
785	      | (ahd_inw_scbram(ahd, offset+2) << 16));
786}
787
788static uint64_t
789ahd_inq_scbram(struct ahd_softc *ahd, u_int offset)
790{
791	return (ahd_inl_scbram(ahd, offset)
792	      | ((uint64_t)ahd_inl_scbram(ahd, offset+4)) << 32);
793}
794
795struct scb *
796ahd_lookup_scb(struct ahd_softc *ahd, u_int tag)
797{
798	struct scb* scb;
799
800	if (tag >= AHD_SCB_MAX)
801		return (NULL);
802	scb = ahd->scb_data.scbindex[tag];
803	if (scb != NULL)
804		ahd_sync_scb(ahd, scb,
805			     BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
806	return (scb);
807}
808
809static void
810ahd_swap_with_next_hscb(struct ahd_softc *ahd, struct scb *scb)
811{
812	struct	 hardware_scb *q_hscb;
813	struct	 map_node *q_hscb_map;
814	uint32_t saved_hscb_busaddr;
815
816	/*
817	 * Our queuing method is a bit tricky.  The card
818	 * knows in advance which HSCB (by address) to download,
819	 * and we can't disappoint it.  To achieve this, the next
820	 * HSCB to download is saved off in ahd->next_queued_hscb.
821	 * When we are called to queue "an arbitrary scb",
822	 * we copy the contents of the incoming HSCB to the one
823	 * the sequencer knows about, swap HSCB pointers and
824	 * finally assign the SCB to the tag indexed location
825	 * in the scb_array.  This makes sure that we can still
826	 * locate the correct SCB by SCB_TAG.
827	 */
828	q_hscb = ahd->next_queued_hscb;
829	q_hscb_map = ahd->next_queued_hscb_map;
830	saved_hscb_busaddr = q_hscb->hscb_busaddr;
831	memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb));
832	q_hscb->hscb_busaddr = saved_hscb_busaddr;
833	q_hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
834
835	/* Now swap HSCB pointers. */
836	ahd->next_queued_hscb = scb->hscb;
837	ahd->next_queued_hscb_map = scb->hscb_map;
838	scb->hscb = q_hscb;
839	scb->hscb_map = q_hscb_map;
840
841	/* Now define the mapping from tag to SCB in the scbindex */
842	ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = scb;
843}
844
845/*
846 * Tell the sequencer about a new transaction to execute.
847 */
848void
849ahd_queue_scb(struct ahd_softc *ahd, struct scb *scb)
850{
851	ahd_swap_with_next_hscb(ahd, scb);
852
853	if (SCBID_IS_NULL(SCB_GET_TAG(scb)))
854		panic("Attempt to queue invalid SCB tag %x\n",
855		      SCB_GET_TAG(scb));
856
857	/*
858	 * Keep a history of SCBs we've downloaded in the qinfifo.
859	 */
860	ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
861	ahd->qinfifonext++;
862
863	if (scb->sg_count != 0)
864		ahd_setup_data_scb(ahd, scb);
865	else
866		ahd_setup_noxfer_scb(ahd, scb);
867	ahd_setup_scb_common(ahd, scb);
868
869	/*
870	 * Make sure our data is consistent from the
871	 * perspective of the adapter.
872	 */
873	ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
874
875#ifdef AHD_DEBUG
876	if ((ahd_debug & AHD_SHOW_QUEUE) != 0) {
877		uint64_t host_dataptr;
878
879		host_dataptr = ahd_le64toh(scb->hscb->dataptr);
880		printk("%s: Queueing SCB %d:0x%x bus addr 0x%x - 0x%x%x/0x%x\n",
881		       ahd_name(ahd),
882		       SCB_GET_TAG(scb), scb->hscb->scsiid,
883		       ahd_le32toh(scb->hscb->hscb_busaddr),
884		       (u_int)((host_dataptr >> 32) & 0xFFFFFFFF),
885		       (u_int)(host_dataptr & 0xFFFFFFFF),
886		       ahd_le32toh(scb->hscb->datacnt));
887	}
888#endif
889	/* Tell the adapter about the newly queued SCB */
890	ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
891}
892
893/************************** Interrupt Processing ******************************/
894static void
895ahd_sync_qoutfifo(struct ahd_softc *ahd, int op)
896{
897	ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
898			/*offset*/0,
899			/*len*/AHD_SCB_MAX * sizeof(struct ahd_completion), op);
900}
901
902static void
903ahd_sync_tqinfifo(struct ahd_softc *ahd, int op)
904{
905#ifdef AHD_TARGET_MODE
906	if ((ahd->flags & AHD_TARGETROLE) != 0) {
907		ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
908				ahd->shared_data_map.dmamap,
909				ahd_targetcmd_offset(ahd, 0),
910				sizeof(struct target_cmd) * AHD_TMODE_CMDS,
911				op);
912	}
913#endif
914}
915
916/*
917 * See if the firmware has posted any completed commands
918 * into our in-core command complete fifos.
919 */
920#define AHD_RUN_QOUTFIFO 0x1
921#define AHD_RUN_TQINFIFO 0x2
922static u_int
923ahd_check_cmdcmpltqueues(struct ahd_softc *ahd)
924{
925	u_int retval;
926
927	retval = 0;
928	ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
929			/*offset*/ahd->qoutfifonext * sizeof(*ahd->qoutfifo),
930			/*len*/sizeof(*ahd->qoutfifo), BUS_DMASYNC_POSTREAD);
931	if (ahd->qoutfifo[ahd->qoutfifonext].valid_tag
932	  == ahd->qoutfifonext_valid_tag)
933		retval |= AHD_RUN_QOUTFIFO;
934#ifdef AHD_TARGET_MODE
935	if ((ahd->flags & AHD_TARGETROLE) != 0
936	 && (ahd->flags & AHD_TQINFIFO_BLOCKED) == 0) {
937		ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
938				ahd->shared_data_map.dmamap,
939				ahd_targetcmd_offset(ahd, ahd->tqinfifofnext),
940				/*len*/sizeof(struct target_cmd),
941				BUS_DMASYNC_POSTREAD);
942		if (ahd->targetcmds[ahd->tqinfifonext].cmd_valid != 0)
943			retval |= AHD_RUN_TQINFIFO;
944	}
945#endif
946	return (retval);
947}
948
949/*
950 * Catch an interrupt from the adapter
951 */
952int
953ahd_intr(struct ahd_softc *ahd)
954{
955	u_int	intstat;
956
957	if ((ahd->pause & INTEN) == 0) {
958		/*
959		 * Our interrupt is not enabled on the chip
960		 * and may be disabled for re-entrancy reasons,
961		 * so just return.  This is likely just a shared
962		 * interrupt.
963		 */
964		return (0);
965	}
966
967	/*
968	 * Instead of directly reading the interrupt status register,
969	 * infer the cause of the interrupt by checking our in-core
970	 * completion queues.  This avoids a costly PCI bus read in
971	 * most cases.
972	 */
973	if ((ahd->flags & AHD_ALL_INTERRUPTS) == 0
974	 && (ahd_check_cmdcmpltqueues(ahd) != 0))
975		intstat = CMDCMPLT;
976	else
977		intstat = ahd_inb(ahd, INTSTAT);
978
979	if ((intstat & INT_PEND) == 0)
980		return (0);
981
982	if (intstat & CMDCMPLT) {
983		ahd_outb(ahd, CLRINT, CLRCMDINT);
984
985		/*
986		 * Ensure that the chip sees that we've cleared
987		 * this interrupt before we walk the output fifo.
988		 * Otherwise, we may, due to posted bus writes,
989		 * clear the interrupt after we finish the scan,
990		 * and after the sequencer has added new entries
991		 * and asserted the interrupt again.
992		 */
993		if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
994			if (ahd_is_paused(ahd)) {
995				/*
996				 * Potentially lost SEQINT.
997				 * If SEQINTCODE is non-zero,
998				 * simulate the SEQINT.
999				 */
1000				if (ahd_inb(ahd, SEQINTCODE) != NO_SEQINT)
1001					intstat |= SEQINT;
1002			}
1003		} else {
1004			ahd_flush_device_writes(ahd);
1005		}
1006		ahd_run_qoutfifo(ahd);
1007		ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket]++;
1008		ahd->cmdcmplt_total++;
1009#ifdef AHD_TARGET_MODE
1010		if ((ahd->flags & AHD_TARGETROLE) != 0)
1011			ahd_run_tqinfifo(ahd, /*paused*/FALSE);
1012#endif
1013	}
1014
1015	/*
1016	 * Handle statuses that may invalidate our cached
1017	 * copy of INTSTAT separately.
1018	 */
1019	if (intstat == 0xFF && (ahd->features & AHD_REMOVABLE) != 0) {
1020		/* Hot eject.  Do nothing */
1021	} else if (intstat & HWERRINT) {
1022		ahd_handle_hwerrint(ahd);
1023	} else if ((intstat & (PCIINT|SPLTINT)) != 0) {
1024		ahd->bus_intr(ahd);
1025	} else {
1026
1027		if ((intstat & SEQINT) != 0)
1028			ahd_handle_seqint(ahd, intstat);
1029
1030		if ((intstat & SCSIINT) != 0)
1031			ahd_handle_scsiint(ahd, intstat);
1032	}
1033	return (1);
1034}
1035
1036/******************************** Private Inlines *****************************/
1037static inline void
1038ahd_assert_atn(struct ahd_softc *ahd)
1039{
1040	ahd_outb(ahd, SCSISIGO, ATNO);
1041}
1042
1043/*
1044 * Determine if the current connection has a packetized
1045 * agreement.  This does not necessarily mean that we
1046 * are currently in a packetized transfer.  We could
1047 * just as easily be sending or receiving a message.
1048 */
1049static int
1050ahd_currently_packetized(struct ahd_softc *ahd)
1051{
1052	ahd_mode_state	 saved_modes;
1053	int		 packetized;
1054
1055	saved_modes = ahd_save_modes(ahd);
1056	if ((ahd->bugs & AHD_PKTIZED_STATUS_BUG) != 0) {
1057		/*
1058		 * The packetized bit refers to the last
1059		 * connection, not the current one.  Check
1060		 * for non-zero LQISTATE instead.
1061		 */
1062		ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
1063		packetized = ahd_inb(ahd, LQISTATE) != 0;
1064	} else {
1065		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1066		packetized = ahd_inb(ahd, LQISTAT2) & PACKETIZED;
1067	}
1068	ahd_restore_modes(ahd, saved_modes);
1069	return (packetized);
1070}
1071
1072static inline int
1073ahd_set_active_fifo(struct ahd_softc *ahd)
1074{
1075	u_int active_fifo;
1076
1077	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
1078	active_fifo = ahd_inb(ahd, DFFSTAT) & CURRFIFO;
1079	switch (active_fifo) {
1080	case 0:
1081	case 1:
1082		ahd_set_modes(ahd, active_fifo, active_fifo);
1083		return (1);
1084	default:
1085		return (0);
1086	}
1087}
1088
1089static inline void
1090ahd_unbusy_tcl(struct ahd_softc *ahd, u_int tcl)
1091{
1092	ahd_busy_tcl(ahd, tcl, SCB_LIST_NULL);
1093}
1094
1095/*
1096 * Determine whether the sequencer reported a residual
1097 * for this SCB/transaction.
1098 */
1099static inline void
1100ahd_update_residual(struct ahd_softc *ahd, struct scb *scb)
1101{
1102	uint32_t sgptr;
1103
1104	sgptr = ahd_le32toh(scb->hscb->sgptr);
1105	if ((sgptr & SG_STATUS_VALID) != 0)
1106		ahd_calc_residual(ahd, scb);
1107}
1108
1109static inline void
1110ahd_complete_scb(struct ahd_softc *ahd, struct scb *scb)
1111{
1112	uint32_t sgptr;
1113
1114	sgptr = ahd_le32toh(scb->hscb->sgptr);
1115	if ((sgptr & SG_STATUS_VALID) != 0)
1116		ahd_handle_scb_status(ahd, scb);
1117	else
1118		ahd_done(ahd, scb);
1119}
1120
1121
1122/************************* Sequencer Execution Control ************************/
1123/*
1124 * Restart the sequencer program from address zero
1125 */
1126static void
1127ahd_restart(struct ahd_softc *ahd)
1128{
1129
1130	ahd_pause(ahd);
1131
1132	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1133
1134	/* No more pending messages */
1135	ahd_clear_msg_state(ahd);
1136	ahd_outb(ahd, SCSISIGO, 0);		/* De-assert BSY */
1137	ahd_outb(ahd, MSG_OUT, MSG_NOOP);	/* No message to send */
1138	ahd_outb(ahd, SXFRCTL1, ahd_inb(ahd, SXFRCTL1) & ~BITBUCKET);
1139	ahd_outb(ahd, SEQINTCTL, 0);
1140	ahd_outb(ahd, LASTPHASE, P_BUSFREE);
1141	ahd_outb(ahd, SEQ_FLAGS, 0);
1142	ahd_outb(ahd, SAVED_SCSIID, 0xFF);
1143	ahd_outb(ahd, SAVED_LUN, 0xFF);
1144
1145	/*
1146	 * Ensure that the sequencer's idea of TQINPOS
1147	 * matches our own.  The sequencer increments TQINPOS
1148	 * only after it sees a DMA complete and a reset could
1149	 * occur before the increment leaving the kernel to believe
1150	 * the command arrived but the sequencer to not.
1151	 */
1152	ahd_outb(ahd, TQINPOS, ahd->tqinfifonext);
1153
1154	/* Always allow reselection */
1155	ahd_outb(ahd, SCSISEQ1,
1156		 ahd_inb(ahd, SCSISEQ_TEMPLATE) & (ENSELI|ENRSELI|ENAUTOATNP));
1157	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
1158
1159	/*
1160	 * Clear any pending sequencer interrupt.  It is no
1161	 * longer relevant since we're resetting the Program
1162	 * Counter.
1163	 */
1164	ahd_outb(ahd, CLRINT, CLRSEQINT);
1165
1166	ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET);
1167	ahd_unpause(ahd);
1168}
1169
1170static void
1171ahd_clear_fifo(struct ahd_softc *ahd, u_int fifo)
1172{
1173	ahd_mode_state	 saved_modes;
1174
1175#ifdef AHD_DEBUG
1176	if ((ahd_debug & AHD_SHOW_FIFOS) != 0)
1177		printk("%s: Clearing FIFO %d\n", ahd_name(ahd), fifo);
1178#endif
1179	saved_modes = ahd_save_modes(ahd);
1180	ahd_set_modes(ahd, fifo, fifo);
1181	ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT);
1182	if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0)
1183		ahd_outb(ahd, CCSGCTL, CCSGRESET);
1184	ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
1185	ahd_outb(ahd, SG_STATE, 0);
1186	ahd_restore_modes(ahd, saved_modes);
1187}
1188
1189/************************* Input/Output Queues ********************************/
1190/*
1191 * Flush and completed commands that are sitting in the command
1192 * complete queues down on the chip but have yet to be dma'ed back up.
1193 */
1194static void
1195ahd_flush_qoutfifo(struct ahd_softc *ahd)
1196{
1197	struct		scb *scb;
1198	ahd_mode_state	saved_modes;
1199	u_int		saved_scbptr;
1200	u_int		ccscbctl;
1201	u_int		scbid;
1202	u_int		next_scbid;
1203
1204	saved_modes = ahd_save_modes(ahd);
1205
1206	/*
1207	 * Flush the good status FIFO for completed packetized commands.
1208	 */
1209	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1210	saved_scbptr = ahd_get_scbptr(ahd);
1211	while ((ahd_inb(ahd, LQISTAT2) & LQIGSAVAIL) != 0) {
1212		u_int fifo_mode;
1213		u_int i;
1214
1215		scbid = ahd_inw(ahd, GSFIFO);
1216		scb = ahd_lookup_scb(ahd, scbid);
1217		if (scb == NULL) {
1218			printk("%s: Warning - GSFIFO SCB %d invalid\n",
1219			       ahd_name(ahd), scbid);
1220			continue;
1221		}
1222		/*
1223		 * Determine if this transaction is still active in
1224		 * any FIFO.  If it is, we must flush that FIFO to
1225		 * the host before completing the  command.
1226		 */
1227		fifo_mode = 0;
1228rescan_fifos:
1229		for (i = 0; i < 2; i++) {
1230			/* Toggle to the other mode. */
1231			fifo_mode ^= 1;
1232			ahd_set_modes(ahd, fifo_mode, fifo_mode);
1233
1234			if (ahd_scb_active_in_fifo(ahd, scb) == 0)
1235				continue;
1236
1237			ahd_run_data_fifo(ahd, scb);
1238
1239			/*
1240			 * Running this FIFO may cause a CFG4DATA for
1241			 * this same transaction to assert in the other
1242			 * FIFO or a new snapshot SAVEPTRS interrupt
1243			 * in this FIFO.  Even running a FIFO may not
1244			 * clear the transaction if we are still waiting
1245			 * for data to drain to the host. We must loop
1246			 * until the transaction is not active in either
1247			 * FIFO just to be sure.  Reset our loop counter
1248			 * so we will visit both FIFOs again before
1249			 * declaring this transaction finished.  We
1250			 * also delay a bit so that status has a chance
1251			 * to change before we look at this FIFO again.
1252			 */
1253			ahd_delay(200);
1254			goto rescan_fifos;
1255		}
1256		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1257		ahd_set_scbptr(ahd, scbid);
1258		if ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_LIST_NULL) == 0
1259		 && ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_FULL_RESID) != 0
1260		  || (ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR)
1261		      & SG_LIST_NULL) != 0)) {
1262			u_int comp_head;
1263
1264			/*
1265			 * The transfer completed with a residual.
1266			 * Place this SCB on the complete DMA list
1267			 * so that we update our in-core copy of the
1268			 * SCB before completing the command.
1269			 */
1270			ahd_outb(ahd, SCB_SCSI_STATUS, 0);
1271			ahd_outb(ahd, SCB_SGPTR,
1272				 ahd_inb_scbram(ahd, SCB_SGPTR)
1273				 | SG_STATUS_VALID);
1274			ahd_outw(ahd, SCB_TAG, scbid);
1275			ahd_outw(ahd, SCB_NEXT_COMPLETE, SCB_LIST_NULL);
1276			comp_head = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
1277			if (SCBID_IS_NULL(comp_head)) {
1278				ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, scbid);
1279				ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid);
1280			} else {
1281				u_int tail;
1282
1283				tail = ahd_inw(ahd, COMPLETE_DMA_SCB_TAIL);
1284				ahd_set_scbptr(ahd, tail);
1285				ahd_outw(ahd, SCB_NEXT_COMPLETE, scbid);
1286				ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid);
1287				ahd_set_scbptr(ahd, scbid);
1288			}
1289		} else
1290			ahd_complete_scb(ahd, scb);
1291	}
1292	ahd_set_scbptr(ahd, saved_scbptr);
1293
1294	/*
1295	 * Setup for command channel portion of flush.
1296	 */
1297	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
1298
1299	/*
1300	 * Wait for any inprogress DMA to complete and clear DMA state
1301	 * if this if for an SCB in the qinfifo.
1302	 */
1303	while (((ccscbctl = ahd_inb(ahd, CCSCBCTL)) & (CCARREN|CCSCBEN)) != 0) {
1304
1305		if ((ccscbctl & (CCSCBDIR|CCARREN)) == (CCSCBDIR|CCARREN)) {
1306			if ((ccscbctl & ARRDONE) != 0)
1307				break;
1308		} else if ((ccscbctl & CCSCBDONE) != 0)
1309			break;
1310		ahd_delay(200);
1311	}
1312	/*
1313	 * We leave the sequencer to cleanup in the case of DMA's to
1314	 * update the qoutfifo.  In all other cases (DMA's to the
1315	 * chip or a push of an SCB from the COMPLETE_DMA_SCB list),
1316	 * we disable the DMA engine so that the sequencer will not
1317	 * attempt to handle the DMA completion.
1318	 */
1319	if ((ccscbctl & CCSCBDIR) != 0 || (ccscbctl & ARRDONE) != 0)
1320		ahd_outb(ahd, CCSCBCTL, ccscbctl & ~(CCARREN|CCSCBEN));
1321
1322	/*
1323	 * Complete any SCBs that just finished
1324	 * being DMA'ed into the qoutfifo.
1325	 */
1326	ahd_run_qoutfifo(ahd);
1327
1328	saved_scbptr = ahd_get_scbptr(ahd);
1329	/*
1330	 * Manually update/complete any completed SCBs that are waiting to be
1331	 * DMA'ed back up to the host.
1332	 */
1333	scbid = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
1334	while (!SCBID_IS_NULL(scbid)) {
1335		uint8_t *hscb_ptr;
1336		u_int	 i;
1337
1338		ahd_set_scbptr(ahd, scbid);
1339		next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
1340		scb = ahd_lookup_scb(ahd, scbid);
1341		if (scb == NULL) {
1342			printk("%s: Warning - DMA-up and complete "
1343			       "SCB %d invalid\n", ahd_name(ahd), scbid);
1344			continue;
1345		}
1346		hscb_ptr = (uint8_t *)scb->hscb;
1347		for (i = 0; i < sizeof(struct hardware_scb); i++)
1348			*hscb_ptr++ = ahd_inb_scbram(ahd, SCB_BASE + i);
1349
1350		ahd_complete_scb(ahd, scb);
1351		scbid = next_scbid;
1352	}
1353	ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL);
1354	ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL);
1355
1356	scbid = ahd_inw(ahd, COMPLETE_ON_QFREEZE_HEAD);
1357	while (!SCBID_IS_NULL(scbid)) {
1358
1359		ahd_set_scbptr(ahd, scbid);
1360		next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
1361		scb = ahd_lookup_scb(ahd, scbid);
1362		if (scb == NULL) {
1363			printk("%s: Warning - Complete Qfrz SCB %d invalid\n",
1364			       ahd_name(ahd), scbid);
1365			continue;
1366		}
1367
1368		ahd_complete_scb(ahd, scb);
1369		scbid = next_scbid;
1370	}
1371	ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL);
1372
1373	scbid = ahd_inw(ahd, COMPLETE_SCB_HEAD);
1374	while (!SCBID_IS_NULL(scbid)) {
1375
1376		ahd_set_scbptr(ahd, scbid);
1377		next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
1378		scb = ahd_lookup_scb(ahd, scbid);
1379		if (scb == NULL) {
1380			printk("%s: Warning - Complete SCB %d invalid\n",
1381			       ahd_name(ahd), scbid);
1382			continue;
1383		}
1384
1385		ahd_complete_scb(ahd, scb);
1386		scbid = next_scbid;
1387	}
1388	ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL);
1389
1390	/*
1391	 * Restore state.
1392	 */
1393	ahd_set_scbptr(ahd, saved_scbptr);
1394	ahd_restore_modes(ahd, saved_modes);
1395	ahd->flags |= AHD_UPDATE_PEND_CMDS;
1396}
1397
1398/*
1399 * Determine if an SCB for a packetized transaction
1400 * is active in a FIFO.
1401 */
1402static int
1403ahd_scb_active_in_fifo(struct ahd_softc *ahd, struct scb *scb)
1404{
1405
1406	/*
1407	 * The FIFO is only active for our transaction if
1408	 * the SCBPTR matches the SCB's ID and the firmware
1409	 * has installed a handler for the FIFO or we have
1410	 * a pending SAVEPTRS or CFG4DATA interrupt.
1411	 */
1412	if (ahd_get_scbptr(ahd) != SCB_GET_TAG(scb)
1413	 || ((ahd_inb(ahd, LONGJMP_ADDR+1) & INVALID_ADDR) != 0
1414	  && (ahd_inb(ahd, SEQINTSRC) & (CFG4DATA|SAVEPTRS)) == 0))
1415		return (0);
1416
1417	return (1);
1418}
1419
1420/*
1421 * Run a data fifo to completion for a transaction we know
1422 * has completed across the SCSI bus (good status has been
1423 * received).  We are already set to the correct FIFO mode
1424 * on entry to this routine.
1425 *
1426 * This function attempts to operate exactly as the firmware
1427 * would when running this FIFO.  Care must be taken to update
1428 * this routine any time the firmware's FIFO algorithm is
1429 * changed.
1430 */
1431static void
1432ahd_run_data_fifo(struct ahd_softc *ahd, struct scb *scb)
1433{
1434	u_int seqintsrc;
1435
1436	seqintsrc = ahd_inb(ahd, SEQINTSRC);
1437	if ((seqintsrc & CFG4DATA) != 0) {
1438		uint32_t datacnt;
1439		uint32_t sgptr;
1440
1441		/*
1442		 * Clear full residual flag.
1443		 */
1444		sgptr = ahd_inl_scbram(ahd, SCB_SGPTR) & ~SG_FULL_RESID;
1445		ahd_outb(ahd, SCB_SGPTR, sgptr);
1446
1447		/*
1448		 * Load datacnt and address.
1449		 */
1450		datacnt = ahd_inl_scbram(ahd, SCB_DATACNT);
1451		if ((datacnt & AHD_DMA_LAST_SEG) != 0) {
1452			sgptr |= LAST_SEG;
1453			ahd_outb(ahd, SG_STATE, 0);
1454		} else
1455			ahd_outb(ahd, SG_STATE, LOADING_NEEDED);
1456		ahd_outq(ahd, HADDR, ahd_inq_scbram(ahd, SCB_DATAPTR));
1457		ahd_outl(ahd, HCNT, datacnt & AHD_SG_LEN_MASK);
1458		ahd_outb(ahd, SG_CACHE_PRE, sgptr);
1459		ahd_outb(ahd, DFCNTRL, PRELOADEN|SCSIEN|HDMAEN);
1460
1461		/*
1462		 * Initialize Residual Fields.
1463		 */
1464		ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, datacnt >> 24);
1465		ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr & SG_PTR_MASK);
1466
1467		/*
1468		 * Mark the SCB as having a FIFO in use.
1469		 */
1470		ahd_outb(ahd, SCB_FIFO_USE_COUNT,
1471			 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) + 1);
1472
1473		/*
1474		 * Install a "fake" handler for this FIFO.
1475		 */
1476		ahd_outw(ahd, LONGJMP_ADDR, 0);
1477
1478		/*
1479		 * Notify the hardware that we have satisfied
1480		 * this sequencer interrupt.
1481		 */
1482		ahd_outb(ahd, CLRSEQINTSRC, CLRCFG4DATA);
1483	} else if ((seqintsrc & SAVEPTRS) != 0) {
1484		uint32_t sgptr;
1485		uint32_t resid;
1486
1487		if ((ahd_inb(ahd, LONGJMP_ADDR+1)&INVALID_ADDR) != 0) {
1488			/*
1489			 * Snapshot Save Pointers.  All that
1490			 * is necessary to clear the snapshot
1491			 * is a CLRCHN.
1492			 */
1493			goto clrchn;
1494		}
1495
1496		/*
1497		 * Disable S/G fetch so the DMA engine
1498		 * is available to future users.
1499		 */
1500		if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0)
1501			ahd_outb(ahd, CCSGCTL, 0);
1502		ahd_outb(ahd, SG_STATE, 0);
1503
1504		/*
1505		 * Flush the data FIFO.  Strickly only
1506		 * necessary for Rev A parts.
1507		 */
1508		ahd_outb(ahd, DFCNTRL, ahd_inb(ahd, DFCNTRL) | FIFOFLUSH);
1509
1510		/*
1511		 * Calculate residual.
1512		 */
1513		sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
1514		resid = ahd_inl(ahd, SHCNT);
1515		resid |= ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT+3) << 24;
1516		ahd_outl(ahd, SCB_RESIDUAL_DATACNT, resid);
1517		if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG) == 0) {
1518			/*
1519			 * Must back up to the correct S/G element.
1520			 * Typically this just means resetting our
1521			 * low byte to the offset in the SG_CACHE,
1522			 * but if we wrapped, we have to correct
1523			 * the other bytes of the sgptr too.
1524			 */
1525			if ((ahd_inb(ahd, SG_CACHE_SHADOW) & 0x80) != 0
1526			 && (sgptr & 0x80) == 0)
1527				sgptr -= 0x100;
1528			sgptr &= ~0xFF;
1529			sgptr |= ahd_inb(ahd, SG_CACHE_SHADOW)
1530			       & SG_ADDR_MASK;
1531			ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
1532			ahd_outb(ahd, SCB_RESIDUAL_DATACNT + 3, 0);
1533		} else if ((resid & AHD_SG_LEN_MASK) == 0) {
1534			ahd_outb(ahd, SCB_RESIDUAL_SGPTR,
1535				 sgptr | SG_LIST_NULL);
1536		}
1537		/*
1538		 * Save Pointers.
1539		 */
1540		ahd_outq(ahd, SCB_DATAPTR, ahd_inq(ahd, SHADDR));
1541		ahd_outl(ahd, SCB_DATACNT, resid);
1542		ahd_outl(ahd, SCB_SGPTR, sgptr);
1543		ahd_outb(ahd, CLRSEQINTSRC, CLRSAVEPTRS);
1544		ahd_outb(ahd, SEQIMODE,
1545			 ahd_inb(ahd, SEQIMODE) | ENSAVEPTRS);
1546		/*
1547		 * If the data is to the SCSI bus, we are
1548		 * done, otherwise wait for FIFOEMP.
1549		 */
1550		if ((ahd_inb(ahd, DFCNTRL) & DIRECTION) != 0)
1551			goto clrchn;
1552	} else if ((ahd_inb(ahd, SG_STATE) & LOADING_NEEDED) != 0) {
1553		uint32_t sgptr;
1554		uint64_t data_addr;
1555		uint32_t data_len;
1556		u_int	 dfcntrl;
1557
1558		/*
1559		 * Disable S/G fetch so the DMA engine
1560		 * is available to future users.  We won't
1561		 * be using the DMA engine to load segments.
1562		 */
1563		if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0) {
1564			ahd_outb(ahd, CCSGCTL, 0);
1565			ahd_outb(ahd, SG_STATE, LOADING_NEEDED);
1566		}
1567
1568		/*
1569		 * Wait for the DMA engine to notice that the
1570		 * host transfer is enabled and that there is
1571		 * space in the S/G FIFO for new segments before
1572		 * loading more segments.
1573		 */
1574		if ((ahd_inb(ahd, DFSTATUS) & PRELOAD_AVAIL) != 0
1575		 && (ahd_inb(ahd, DFCNTRL) & HDMAENACK) != 0) {
1576
1577			/*
1578			 * Determine the offset of the next S/G
1579			 * element to load.
1580			 */
1581			sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
1582			sgptr &= SG_PTR_MASK;
1583			if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
1584				struct ahd_dma64_seg *sg;
1585
1586				sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
1587				data_addr = sg->addr;
1588				data_len = sg->len;
1589				sgptr += sizeof(*sg);
1590			} else {
1591				struct	ahd_dma_seg *sg;
1592
1593				sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
1594				data_addr = sg->len & AHD_SG_HIGH_ADDR_MASK;
1595				data_addr <<= 8;
1596				data_addr |= sg->addr;
1597				data_len = sg->len;
1598				sgptr += sizeof(*sg);
1599			}
1600
1601			/*
1602			 * Update residual information.
1603			 */
1604			ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, data_len >> 24);
1605			ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
1606
1607			/*
1608			 * Load the S/G.
1609			 */
1610			if (data_len & AHD_DMA_LAST_SEG) {
1611				sgptr |= LAST_SEG;
1612				ahd_outb(ahd, SG_STATE, 0);
1613			}
1614			ahd_outq(ahd, HADDR, data_addr);
1615			ahd_outl(ahd, HCNT, data_len & AHD_SG_LEN_MASK);
1616			ahd_outb(ahd, SG_CACHE_PRE, sgptr & 0xFF);
1617
1618			/*
1619			 * Advertise the segment to the hardware.
1620			 */
1621			dfcntrl = ahd_inb(ahd, DFCNTRL)|PRELOADEN|HDMAEN;
1622			if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) {
1623				/*
1624				 * Use SCSIENWRDIS so that SCSIEN
1625				 * is never modified by this
1626				 * operation.
1627				 */
1628				dfcntrl |= SCSIENWRDIS;
1629			}
1630			ahd_outb(ahd, DFCNTRL, dfcntrl);
1631		}
1632	} else if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG_DONE) != 0) {
1633
1634		/*
1635		 * Transfer completed to the end of SG list
1636		 * and has flushed to the host.
1637		 */
1638		ahd_outb(ahd, SCB_SGPTR,
1639			 ahd_inb_scbram(ahd, SCB_SGPTR) | SG_LIST_NULL);
1640		goto clrchn;
1641	} else if ((ahd_inb(ahd, DFSTATUS) & FIFOEMP) != 0) {
1642clrchn:
1643		/*
1644		 * Clear any handler for this FIFO, decrement
1645		 * the FIFO use count for the SCB, and release
1646		 * the FIFO.
1647		 */
1648		ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
1649		ahd_outb(ahd, SCB_FIFO_USE_COUNT,
1650			 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) - 1);
1651		ahd_outb(ahd, DFFSXFRCTL, CLRCHN);
1652	}
1653}
1654
1655/*
1656 * Look for entries in the QoutFIFO that have completed.
1657 * The valid_tag completion field indicates the validity
1658 * of the entry - the valid value toggles each time through
1659 * the queue. We use the sg_status field in the completion
1660 * entry to avoid referencing the hscb if the completion
1661 * occurred with no errors and no residual.  sg_status is
1662 * a copy of the first byte (little endian) of the sgptr
1663 * hscb field.
1664 */
1665static void
1666ahd_run_qoutfifo(struct ahd_softc *ahd)
1667{
1668	struct ahd_completion *completion;
1669	struct scb *scb;
1670	u_int  scb_index;
1671
1672	if ((ahd->flags & AHD_RUNNING_QOUTFIFO) != 0)
1673		panic("ahd_run_qoutfifo recursion");
1674	ahd->flags |= AHD_RUNNING_QOUTFIFO;
1675	ahd_sync_qoutfifo(ahd, BUS_DMASYNC_POSTREAD);
1676	for (;;) {
1677		completion = &ahd->qoutfifo[ahd->qoutfifonext];
1678
1679		if (completion->valid_tag != ahd->qoutfifonext_valid_tag)
1680			break;
1681
1682		scb_index = ahd_le16toh(completion->tag);
1683		scb = ahd_lookup_scb(ahd, scb_index);
1684		if (scb == NULL) {
1685			printk("%s: WARNING no command for scb %d "
1686			       "(cmdcmplt)\nQOUTPOS = %d\n",
1687			       ahd_name(ahd), scb_index,
1688			       ahd->qoutfifonext);
1689			ahd_dump_card_state(ahd);
1690		} else if ((completion->sg_status & SG_STATUS_VALID) != 0) {
1691			ahd_handle_scb_status(ahd, scb);
1692		} else {
1693			ahd_done(ahd, scb);
1694		}
1695
1696		ahd->qoutfifonext = (ahd->qoutfifonext+1) & (AHD_QOUT_SIZE-1);
1697		if (ahd->qoutfifonext == 0)
1698			ahd->qoutfifonext_valid_tag ^= QOUTFIFO_ENTRY_VALID;
1699	}
1700	ahd->flags &= ~AHD_RUNNING_QOUTFIFO;
1701}
1702
1703/************************* Interrupt Handling *********************************/
1704static void
1705ahd_handle_hwerrint(struct ahd_softc *ahd)
1706{
1707	/*
1708	 * Some catastrophic hardware error has occurred.
1709	 * Print it for the user and disable the controller.
1710	 */
1711	int i;
1712	int error;
1713
1714	error = ahd_inb(ahd, ERROR);
1715	for (i = 0; i < num_errors; i++) {
1716		if ((error & ahd_hard_errors[i].errno) != 0)
1717			printk("%s: hwerrint, %s\n",
1718			       ahd_name(ahd), ahd_hard_errors[i].errmesg);
1719	}
1720
1721	ahd_dump_card_state(ahd);
1722	panic("BRKADRINT");
1723
1724	/* Tell everyone that this HBA is no longer available */
1725	ahd_abort_scbs(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS,
1726		       CAM_LUN_WILDCARD, SCB_LIST_NULL, ROLE_UNKNOWN,
1727		       CAM_NO_HBA);
1728
1729	/* Tell the system that this controller has gone away. */
1730	ahd_free(ahd);
1731}
1732
1733#ifdef AHD_DEBUG
1734static void
1735ahd_dump_sglist(struct scb *scb)
1736{
1737	int i;
1738
1739	if (scb->sg_count > 0) {
1740		if ((scb->ahd_softc->flags & AHD_64BIT_ADDRESSING) != 0) {
1741			struct ahd_dma64_seg *sg_list;
1742
1743			sg_list = (struct ahd_dma64_seg*)scb->sg_list;
1744			for (i = 0; i < scb->sg_count; i++) {
1745				uint64_t addr;
1746				uint32_t len;
1747
1748				addr = ahd_le64toh(sg_list[i].addr);
1749				len = ahd_le32toh(sg_list[i].len);
1750				printk("sg[%d] - Addr 0x%x%x : Length %d%s\n",
1751				       i,
1752				       (uint32_t)((addr >> 32) & 0xFFFFFFFF),
1753				       (uint32_t)(addr & 0xFFFFFFFF),
1754				       sg_list[i].len & AHD_SG_LEN_MASK,
1755				       (sg_list[i].len & AHD_DMA_LAST_SEG)
1756				     ? " Last" : "");
1757			}
1758		} else {
1759			struct ahd_dma_seg *sg_list;
1760
1761			sg_list = (struct ahd_dma_seg*)scb->sg_list;
1762			for (i = 0; i < scb->sg_count; i++) {
1763				uint32_t len;
1764
1765				len = ahd_le32toh(sg_list[i].len);
1766				printk("sg[%d] - Addr 0x%x%x : Length %d%s\n",
1767				       i,
1768				       (len & AHD_SG_HIGH_ADDR_MASK) >> 24,
1769				       ahd_le32toh(sg_list[i].addr),
1770				       len & AHD_SG_LEN_MASK,
1771				       len & AHD_DMA_LAST_SEG ? " Last" : "");
1772			}
1773		}
1774	}
1775}
1776#endif  /*  AHD_DEBUG  */
1777
1778static void
1779ahd_handle_seqint(struct ahd_softc *ahd, u_int intstat)
1780{
1781	u_int seqintcode;
1782
1783	/*
1784	 * Save the sequencer interrupt code and clear the SEQINT
1785	 * bit. We will unpause the sequencer, if appropriate,
1786	 * after servicing the request.
1787	 */
1788	seqintcode = ahd_inb(ahd, SEQINTCODE);
1789	ahd_outb(ahd, CLRINT, CLRSEQINT);
1790	if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
1791		/*
1792		 * Unpause the sequencer and let it clear
1793		 * SEQINT by writing NO_SEQINT to it.  This
1794		 * will cause the sequencer to be paused again,
1795		 * which is the expected state of this routine.
1796		 */
1797		ahd_unpause(ahd);
1798		while (!ahd_is_paused(ahd))
1799			;
1800		ahd_outb(ahd, CLRINT, CLRSEQINT);
1801	}
1802	ahd_update_modes(ahd);
1803#ifdef AHD_DEBUG
1804	if ((ahd_debug & AHD_SHOW_MISC) != 0)
1805		printk("%s: Handle Seqint Called for code %d\n",
1806		       ahd_name(ahd), seqintcode);
1807#endif
1808	switch (seqintcode) {
1809	case ENTERING_NONPACK:
1810	{
1811		struct	scb *scb;
1812		u_int	scbid;
1813
1814		AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
1815				 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
1816		scbid = ahd_get_scbptr(ahd);
1817		scb = ahd_lookup_scb(ahd, scbid);
1818		if (scb == NULL) {
1819			/*
1820			 * Somehow need to know if this
1821			 * is from a selection or reselection.
1822			 * From that, we can determine target
1823			 * ID so we at least have an I_T nexus.
1824			 */
1825		} else {
1826			ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid);
1827			ahd_outb(ahd, SAVED_LUN, scb->hscb->lun);
1828			ahd_outb(ahd, SEQ_FLAGS, 0x0);
1829		}
1830		if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0
1831		 && (ahd_inb(ahd, SCSISIGO) & ATNO) != 0) {
1832			/*
1833			 * Phase change after read stream with
1834			 * CRC error with P0 asserted on last
1835			 * packet.
1836			 */
1837#ifdef AHD_DEBUG
1838			if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1839				printk("%s: Assuming LQIPHASE_NLQ with "
1840				       "P0 assertion\n", ahd_name(ahd));
1841#endif
1842		}
1843#ifdef AHD_DEBUG
1844		if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1845			printk("%s: Entering NONPACK\n", ahd_name(ahd));
1846#endif
1847		break;
1848	}
1849	case INVALID_SEQINT:
1850		printk("%s: Invalid Sequencer interrupt occurred, "
1851		       "resetting channel.\n",
1852		       ahd_name(ahd));
1853#ifdef AHD_DEBUG
1854		if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1855			ahd_dump_card_state(ahd);
1856#endif
1857		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1858		break;
1859	case STATUS_OVERRUN:
1860	{
1861		struct	scb *scb;
1862		u_int	scbid;
1863
1864		scbid = ahd_get_scbptr(ahd);
1865		scb = ahd_lookup_scb(ahd, scbid);
1866		if (scb != NULL)
1867			ahd_print_path(ahd, scb);
1868		else
1869			printk("%s: ", ahd_name(ahd));
1870		printk("SCB %d Packetized Status Overrun", scbid);
1871		ahd_dump_card_state(ahd);
1872		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1873		break;
1874	}
1875	case CFG4ISTAT_INTR:
1876	{
1877		struct	scb *scb;
1878		u_int	scbid;
1879
1880		scbid = ahd_get_scbptr(ahd);
1881		scb = ahd_lookup_scb(ahd, scbid);
1882		if (scb == NULL) {
1883			ahd_dump_card_state(ahd);
1884			printk("CFG4ISTAT: Free SCB %d referenced", scbid);
1885			panic("For safety");
1886		}
1887		ahd_outq(ahd, HADDR, scb->sense_busaddr);
1888		ahd_outw(ahd, HCNT, AHD_SENSE_BUFSIZE);
1889		ahd_outb(ahd, HCNT + 2, 0);
1890		ahd_outb(ahd, SG_CACHE_PRE, SG_LAST_SEG);
1891		ahd_outb(ahd, DFCNTRL, PRELOADEN|SCSIEN|HDMAEN);
1892		break;
1893	}
1894	case ILLEGAL_PHASE:
1895	{
1896		u_int bus_phase;
1897
1898		bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
1899		printk("%s: ILLEGAL_PHASE 0x%x\n",
1900		       ahd_name(ahd), bus_phase);
1901
1902		switch (bus_phase) {
1903		case P_DATAOUT:
1904		case P_DATAIN:
1905		case P_DATAOUT_DT:
1906		case P_DATAIN_DT:
1907		case P_MESGOUT:
1908		case P_STATUS:
1909		case P_MESGIN:
1910			ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1911			printk("%s: Issued Bus Reset.\n", ahd_name(ahd));
1912			break;
1913		case P_COMMAND:
1914		{
1915			struct	ahd_devinfo devinfo;
1916			struct	scb *scb;
1917			struct	ahd_initiator_tinfo *targ_info;
1918			struct	ahd_tmode_tstate *tstate;
1919			struct	ahd_transinfo *tinfo;
1920			u_int	scbid;
1921
1922			/*
1923			 * If a target takes us into the command phase
1924			 * assume that it has been externally reset and
1925			 * has thus lost our previous packetized negotiation
1926			 * agreement.  Since we have not sent an identify
1927			 * message and may not have fully qualified the
1928			 * connection, we change our command to TUR, assert
1929			 * ATN and ABORT the task when we go to message in
1930			 * phase.  The OSM will see the REQUEUE_REQUEST
1931			 * status and retry the command.
1932			 */
1933			scbid = ahd_get_scbptr(ahd);
1934			scb = ahd_lookup_scb(ahd, scbid);
1935			if (scb == NULL) {
1936				printk("Invalid phase with no valid SCB.  "
1937				       "Resetting bus.\n");
1938				ahd_reset_channel(ahd, 'A',
1939						  /*Initiate Reset*/TRUE);
1940				break;
1941			}
1942			ahd_compile_devinfo(&devinfo, SCB_GET_OUR_ID(scb),
1943					    SCB_GET_TARGET(ahd, scb),
1944					    SCB_GET_LUN(scb),
1945					    SCB_GET_CHANNEL(ahd, scb),
1946					    ROLE_INITIATOR);
1947			targ_info = ahd_fetch_transinfo(ahd,
1948							devinfo.channel,
1949							devinfo.our_scsiid,
1950							devinfo.target,
1951							&tstate);
1952			tinfo = &targ_info->curr;
1953			ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
1954				      AHD_TRANS_ACTIVE, /*paused*/TRUE);
1955			ahd_set_syncrate(ahd, &devinfo, /*period*/0,
1956					 /*offset*/0, /*ppr_options*/0,
1957					 AHD_TRANS_ACTIVE, /*paused*/TRUE);
1958			/* Hand-craft TUR command */
1959			ahd_outb(ahd, SCB_CDB_STORE, 0);
1960			ahd_outb(ahd, SCB_CDB_STORE+1, 0);
1961			ahd_outb(ahd, SCB_CDB_STORE+2, 0);
1962			ahd_outb(ahd, SCB_CDB_STORE+3, 0);
1963			ahd_outb(ahd, SCB_CDB_STORE+4, 0);
1964			ahd_outb(ahd, SCB_CDB_STORE+5, 0);
1965			ahd_outb(ahd, SCB_CDB_LEN, 6);
1966			scb->hscb->control &= ~(TAG_ENB|SCB_TAG_TYPE);
1967			scb->hscb->control |= MK_MESSAGE;
1968			ahd_outb(ahd, SCB_CONTROL, scb->hscb->control);
1969			ahd_outb(ahd, MSG_OUT, HOST_MSG);
1970			ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid);
1971			/*
1972			 * The lun is 0, regardless of the SCB's lun
1973			 * as we have not sent an identify message.
1974			 */
1975			ahd_outb(ahd, SAVED_LUN, 0);
1976			ahd_outb(ahd, SEQ_FLAGS, 0);
1977			ahd_assert_atn(ahd);
1978			scb->flags &= ~SCB_PACKETIZED;
1979			scb->flags |= SCB_ABORT|SCB_EXTERNAL_RESET;
1980			ahd_freeze_devq(ahd, scb);
1981			ahd_set_transaction_status(scb, CAM_REQUEUE_REQ);
1982			ahd_freeze_scb(scb);
1983
1984			/* Notify XPT */
1985			ahd_send_async(ahd, devinfo.channel, devinfo.target,
1986				       CAM_LUN_WILDCARD, AC_SENT_BDR);
1987
1988			/*
1989			 * Allow the sequencer to continue with
1990			 * non-pack processing.
1991			 */
1992			ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1993			ahd_outb(ahd, CLRLQOINT1, CLRLQOPHACHGINPKT);
1994			if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) {
1995				ahd_outb(ahd, CLRLQOINT1, 0);
1996			}
1997#ifdef AHD_DEBUG
1998			if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
1999				ahd_print_path(ahd, scb);
2000				printk("Unexpected command phase from "
2001				       "packetized target\n");
2002			}
2003#endif
2004			break;
2005		}
2006		}
2007		break;
2008	}
2009	case CFG4OVERRUN:
2010	{
2011		struct	scb *scb;
2012		u_int	scb_index;
2013
2014#ifdef AHD_DEBUG
2015		if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2016			printk("%s: CFG4OVERRUN mode = %x\n", ahd_name(ahd),
2017			       ahd_inb(ahd, MODE_PTR));
2018		}
2019#endif
2020		scb_index = ahd_get_scbptr(ahd);
2021		scb = ahd_lookup_scb(ahd, scb_index);
2022		if (scb == NULL) {
2023			/*
2024			 * Attempt to transfer to an SCB that is
2025			 * not outstanding.
2026			 */
2027			ahd_assert_atn(ahd);
2028			ahd_outb(ahd, MSG_OUT, HOST_MSG);
2029			ahd->msgout_buf[0] = MSG_ABORT_TASK;
2030			ahd->msgout_len = 1;
2031			ahd->msgout_index = 0;
2032			ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
2033			/*
2034			 * Clear status received flag to prevent any
2035			 * attempt to complete this bogus SCB.
2036			 */
2037			ahd_outb(ahd, SCB_CONTROL,
2038				 ahd_inb_scbram(ahd, SCB_CONTROL)
2039				 & ~STATUS_RCVD);
2040		}
2041		break;
2042	}
2043	case DUMP_CARD_STATE:
2044	{
2045		ahd_dump_card_state(ahd);
2046		break;
2047	}
2048	case PDATA_REINIT:
2049	{
2050#ifdef AHD_DEBUG
2051		if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2052			printk("%s: PDATA_REINIT - DFCNTRL = 0x%x "
2053			       "SG_CACHE_SHADOW = 0x%x\n",
2054			       ahd_name(ahd), ahd_inb(ahd, DFCNTRL),
2055			       ahd_inb(ahd, SG_CACHE_SHADOW));
2056		}
2057#endif
2058		ahd_reinitialize_dataptrs(ahd);
2059		break;
2060	}
2061	case HOST_MSG_LOOP:
2062	{
2063		struct ahd_devinfo devinfo;
2064
2065		/*
2066		 * The sequencer has encountered a message phase
2067		 * that requires host assistance for completion.
2068		 * While handling the message phase(s), we will be
2069		 * notified by the sequencer after each byte is
2070		 * transferred so we can track bus phase changes.
2071		 *
2072		 * If this is the first time we've seen a HOST_MSG_LOOP
2073		 * interrupt, initialize the state of the host message
2074		 * loop.
2075		 */
2076		ahd_fetch_devinfo(ahd, &devinfo);
2077		if (ahd->msg_type == MSG_TYPE_NONE) {
2078			struct scb *scb;
2079			u_int scb_index;
2080			u_int bus_phase;
2081
2082			bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
2083			if (bus_phase != P_MESGIN
2084			 && bus_phase != P_MESGOUT) {
2085				printk("ahd_intr: HOST_MSG_LOOP bad "
2086				       "phase 0x%x\n", bus_phase);
2087				/*
2088				 * Probably transitioned to bus free before
2089				 * we got here.  Just punt the message.
2090				 */
2091				ahd_dump_card_state(ahd);
2092				ahd_clear_intstat(ahd);
2093				ahd_restart(ahd);
2094				return;
2095			}
2096
2097			scb_index = ahd_get_scbptr(ahd);
2098			scb = ahd_lookup_scb(ahd, scb_index);
2099			if (devinfo.role == ROLE_INITIATOR) {
2100				if (bus_phase == P_MESGOUT)
2101					ahd_setup_initiator_msgout(ahd,
2102								   &devinfo,
2103								   scb);
2104				else {
2105					ahd->msg_type =
2106					    MSG_TYPE_INITIATOR_MSGIN;
2107					ahd->msgin_index = 0;
2108				}
2109			}
2110#ifdef AHD_TARGET_MODE
2111			else {
2112				if (bus_phase == P_MESGOUT) {
2113					ahd->msg_type =
2114					    MSG_TYPE_TARGET_MSGOUT;
2115					ahd->msgin_index = 0;
2116				}
2117				else
2118					ahd_setup_target_msgin(ahd,
2119							       &devinfo,
2120							       scb);
2121			}
2122#endif
2123		}
2124
2125		ahd_handle_message_phase(ahd);
2126		break;
2127	}
2128	case NO_MATCH:
2129	{
2130		/* Ensure we don't leave the selection hardware on */
2131		AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
2132		ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
2133
2134		printk("%s:%c:%d: no active SCB for reconnecting "
2135		       "target - issuing BUS DEVICE RESET\n",
2136		       ahd_name(ahd), 'A', ahd_inb(ahd, SELID) >> 4);
2137		printk("SAVED_SCSIID == 0x%x, SAVED_LUN == 0x%x, "
2138		       "REG0 == 0x%x ACCUM = 0x%x\n",
2139		       ahd_inb(ahd, SAVED_SCSIID), ahd_inb(ahd, SAVED_LUN),
2140		       ahd_inw(ahd, REG0), ahd_inb(ahd, ACCUM));
2141		printk("SEQ_FLAGS == 0x%x, SCBPTR == 0x%x, BTT == 0x%x, "
2142		       "SINDEX == 0x%x\n",
2143		       ahd_inb(ahd, SEQ_FLAGS), ahd_get_scbptr(ahd),
2144		       ahd_find_busy_tcl(ahd,
2145					 BUILD_TCL(ahd_inb(ahd, SAVED_SCSIID),
2146						   ahd_inb(ahd, SAVED_LUN))),
2147		       ahd_inw(ahd, SINDEX));
2148		printk("SELID == 0x%x, SCB_SCSIID == 0x%x, SCB_LUN == 0x%x, "
2149		       "SCB_CONTROL == 0x%x\n",
2150		       ahd_inb(ahd, SELID), ahd_inb_scbram(ahd, SCB_SCSIID),
2151		       ahd_inb_scbram(ahd, SCB_LUN),
2152		       ahd_inb_scbram(ahd, SCB_CONTROL));
2153		printk("SCSIBUS[0] == 0x%x, SCSISIGI == 0x%x\n",
2154		       ahd_inb(ahd, SCSIBUS), ahd_inb(ahd, SCSISIGI));
2155		printk("SXFRCTL0 == 0x%x\n", ahd_inb(ahd, SXFRCTL0));
2156		printk("SEQCTL0 == 0x%x\n", ahd_inb(ahd, SEQCTL0));
2157		ahd_dump_card_state(ahd);
2158		ahd->msgout_buf[0] = MSG_BUS_DEV_RESET;
2159		ahd->msgout_len = 1;
2160		ahd->msgout_index = 0;
2161		ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
2162		ahd_outb(ahd, MSG_OUT, HOST_MSG);
2163		ahd_assert_atn(ahd);
2164		break;
2165	}
2166	case PROTO_VIOLATION:
2167	{
2168		ahd_handle_proto_violation(ahd);
2169		break;
2170	}
2171	case IGN_WIDE_RES:
2172	{
2173		struct ahd_devinfo devinfo;
2174
2175		ahd_fetch_devinfo(ahd, &devinfo);
2176		ahd_handle_ign_wide_residue(ahd, &devinfo);
2177		break;
2178	}
2179	case BAD_PHASE:
2180	{
2181		u_int lastphase;
2182
2183		lastphase = ahd_inb(ahd, LASTPHASE);
2184		printk("%s:%c:%d: unknown scsi bus phase %x, "
2185		       "lastphase = 0x%x.  Attempting to continue\n",
2186		       ahd_name(ahd), 'A',
2187		       SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)),
2188		       lastphase, ahd_inb(ahd, SCSISIGI));
2189		break;
2190	}
2191	case MISSED_BUSFREE:
2192	{
2193		u_int lastphase;
2194
2195		lastphase = ahd_inb(ahd, LASTPHASE);
2196		printk("%s:%c:%d: Missed busfree. "
2197		       "Lastphase = 0x%x, Curphase = 0x%x\n",
2198		       ahd_name(ahd), 'A',
2199		       SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)),
2200		       lastphase, ahd_inb(ahd, SCSISIGI));
2201		ahd_restart(ahd);
2202		return;
2203	}
2204	case DATA_OVERRUN:
2205	{
2206		/*
2207		 * When the sequencer detects an overrun, it
2208		 * places the controller in "BITBUCKET" mode
2209		 * and allows the target to complete its transfer.
2210		 * Unfortunately, none of the counters get updated
2211		 * when the controller is in this mode, so we have
2212		 * no way of knowing how large the overrun was.
2213		 */
2214		struct	scb *scb;
2215		u_int	scbindex;
2216#ifdef AHD_DEBUG
2217		u_int	lastphase;
2218#endif
2219
2220		scbindex = ahd_get_scbptr(ahd);
2221		scb = ahd_lookup_scb(ahd, scbindex);
2222#ifdef AHD_DEBUG
2223		lastphase = ahd_inb(ahd, LASTPHASE);
2224		if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2225			ahd_print_path(ahd, scb);
2226			printk("data overrun detected %s.  Tag == 0x%x.\n",
2227			       ahd_lookup_phase_entry(lastphase)->phasemsg,
2228			       SCB_GET_TAG(scb));
2229			ahd_print_path(ahd, scb);
2230			printk("%s seen Data Phase.  Length = %ld.  "
2231			       "NumSGs = %d.\n",
2232			       ahd_inb(ahd, SEQ_FLAGS) & DPHASE
2233			       ? "Have" : "Haven't",
2234			       ahd_get_transfer_length(scb), scb->sg_count);
2235			ahd_dump_sglist(scb);
2236		}
2237#endif
2238
2239		/*
2240		 * Set this and it will take effect when the
2241		 * target does a command complete.
2242		 */
2243		ahd_freeze_devq(ahd, scb);
2244		ahd_set_transaction_status(scb, CAM_DATA_RUN_ERR);
2245		ahd_freeze_scb(scb);
2246		break;
2247	}
2248	case MKMSG_FAILED:
2249	{
2250		struct ahd_devinfo devinfo;
2251		struct scb *scb;
2252		u_int scbid;
2253
2254		ahd_fetch_devinfo(ahd, &devinfo);
2255		printk("%s:%c:%d:%d: Attempt to issue message failed\n",
2256		       ahd_name(ahd), devinfo.channel, devinfo.target,
2257		       devinfo.lun);
2258		scbid = ahd_get_scbptr(ahd);
2259		scb = ahd_lookup_scb(ahd, scbid);
2260		if (scb != NULL
2261		 && (scb->flags & SCB_RECOVERY_SCB) != 0)
2262			/*
2263			 * Ensure that we didn't put a second instance of this
2264			 * SCB into the QINFIFO.
2265			 */
2266			ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
2267					   SCB_GET_CHANNEL(ahd, scb),
2268					   SCB_GET_LUN(scb), SCB_GET_TAG(scb),
2269					   ROLE_INITIATOR, /*status*/0,
2270					   SEARCH_REMOVE);
2271		ahd_outb(ahd, SCB_CONTROL,
2272			 ahd_inb_scbram(ahd, SCB_CONTROL) & ~MK_MESSAGE);
2273		break;
2274	}
2275	case TASKMGMT_FUNC_COMPLETE:
2276	{
2277		u_int	scbid;
2278		struct	scb *scb;
2279
2280		scbid = ahd_get_scbptr(ahd);
2281		scb = ahd_lookup_scb(ahd, scbid);
2282		if (scb != NULL) {
2283			u_int	   lun;
2284			u_int	   tag;
2285			cam_status error;
2286
2287			ahd_print_path(ahd, scb);
2288			printk("Task Management Func 0x%x Complete\n",
2289			       scb->hscb->task_management);
2290			lun = CAM_LUN_WILDCARD;
2291			tag = SCB_LIST_NULL;
2292
2293			switch (scb->hscb->task_management) {
2294			case SIU_TASKMGMT_ABORT_TASK:
2295				tag = SCB_GET_TAG(scb);
2296			case SIU_TASKMGMT_ABORT_TASK_SET:
2297			case SIU_TASKMGMT_CLEAR_TASK_SET:
2298				lun = scb->hscb->lun;
2299				error = CAM_REQ_ABORTED;
2300				ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb),
2301					       'A', lun, tag, ROLE_INITIATOR,
2302					       error);
2303				break;
2304			case SIU_TASKMGMT_LUN_RESET:
2305				lun = scb->hscb->lun;
2306			case SIU_TASKMGMT_TARGET_RESET:
2307			{
2308				struct ahd_devinfo devinfo;
2309
2310				ahd_scb_devinfo(ahd, &devinfo, scb);
2311				error = CAM_BDR_SENT;
2312				ahd_handle_devreset(ahd, &devinfo, lun,
2313						    CAM_BDR_SENT,
2314						    lun != CAM_LUN_WILDCARD
2315						    ? "Lun Reset"
2316						    : "Target Reset",
2317						    /*verbose_level*/0);
2318				break;
2319			}
2320			default:
2321				panic("Unexpected TaskMgmt Func\n");
2322				break;
2323			}
2324		}
2325		break;
2326	}
2327	case TASKMGMT_CMD_CMPLT_OKAY:
2328	{
2329		u_int	scbid;
2330		struct	scb *scb;
2331
2332		/*
2333		 * An ABORT TASK TMF failed to be delivered before
2334		 * the targeted command completed normally.
2335		 */
2336		scbid = ahd_get_scbptr(ahd);
2337		scb = ahd_lookup_scb(ahd, scbid);
2338		if (scb != NULL) {
2339			/*
2340			 * Remove the second instance of this SCB from
2341			 * the QINFIFO if it is still there.
2342                         */
2343			ahd_print_path(ahd, scb);
2344			printk("SCB completes before TMF\n");
2345			/*
2346			 * Handle losing the race.  Wait until any
2347			 * current selection completes.  We will then
2348			 * set the TMF back to zero in this SCB so that
2349			 * the sequencer doesn't bother to issue another
2350			 * sequencer interrupt for its completion.
2351			 */
2352			while ((ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0
2353			    && (ahd_inb(ahd, SSTAT0) & SELDO) == 0
2354			    && (ahd_inb(ahd, SSTAT1) & SELTO) == 0)
2355				;
2356			ahd_outb(ahd, SCB_TASK_MANAGEMENT, 0);
2357			ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
2358					   SCB_GET_CHANNEL(ahd, scb),
2359					   SCB_GET_LUN(scb), SCB_GET_TAG(scb),
2360					   ROLE_INITIATOR, /*status*/0,
2361					   SEARCH_REMOVE);
2362		}
2363		break;
2364	}
2365	case TRACEPOINT0:
2366	case TRACEPOINT1:
2367	case TRACEPOINT2:
2368	case TRACEPOINT3:
2369		printk("%s: Tracepoint %d\n", ahd_name(ahd),
2370		       seqintcode - TRACEPOINT0);
2371		break;
2372	case NO_SEQINT:
2373		break;
2374	case SAW_HWERR:
2375		ahd_handle_hwerrint(ahd);
2376		break;
2377	default:
2378		printk("%s: Unexpected SEQINTCODE %d\n", ahd_name(ahd),
2379		       seqintcode);
2380		break;
2381	}
2382	/*
2383	 *  The sequencer is paused immediately on
2384	 *  a SEQINT, so we should restart it when
2385	 *  we're done.
2386	 */
2387	ahd_unpause(ahd);
2388}
2389
2390static void
2391ahd_handle_scsiint(struct ahd_softc *ahd, u_int intstat)
2392{
2393	struct scb	*scb;
2394	u_int		 status0;
2395	u_int		 status3;
2396	u_int		 status;
2397	u_int		 lqistat1;
2398	u_int		 lqostat0;
2399	u_int		 scbid;
2400	u_int		 busfreetime;
2401
2402	ahd_update_modes(ahd);
2403	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2404
2405	status3 = ahd_inb(ahd, SSTAT3) & (NTRAMPERR|OSRAMPERR);
2406	status0 = ahd_inb(ahd, SSTAT0) & (IOERR|OVERRUN|SELDI|SELDO);
2407	status = ahd_inb(ahd, SSTAT1) & (SELTO|SCSIRSTI|BUSFREE|SCSIPERR);
2408	lqistat1 = ahd_inb(ahd, LQISTAT1);
2409	lqostat0 = ahd_inb(ahd, LQOSTAT0);
2410	busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME;
2411
2412	/*
2413	 * Ignore external resets after a bus reset.
2414	 */
2415	if (((status & SCSIRSTI) != 0) && (ahd->flags & AHD_BUS_RESET_ACTIVE)) {
2416		ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
2417		return;
2418	}
2419
2420	/*
2421	 * Clear bus reset flag
2422	 */
2423	ahd->flags &= ~AHD_BUS_RESET_ACTIVE;
2424
2425	if ((status0 & (SELDI|SELDO)) != 0) {
2426		u_int simode0;
2427
2428		ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
2429		simode0 = ahd_inb(ahd, SIMODE0);
2430		status0 &= simode0 & (IOERR|OVERRUN|SELDI|SELDO);
2431		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2432	}
2433	scbid = ahd_get_scbptr(ahd);
2434	scb = ahd_lookup_scb(ahd, scbid);
2435	if (scb != NULL
2436	 && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0)
2437		scb = NULL;
2438
2439	if ((status0 & IOERR) != 0) {
2440		u_int now_lvd;
2441
2442		now_lvd = ahd_inb(ahd, SBLKCTL) & ENAB40;
2443		printk("%s: Transceiver State Has Changed to %s mode\n",
2444		       ahd_name(ahd), now_lvd ? "LVD" : "SE");
2445		ahd_outb(ahd, CLRSINT0, CLRIOERR);
2446		/*
2447		 * A change in I/O mode is equivalent to a bus reset.
2448		 */
2449		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2450		ahd_pause(ahd);
2451		ahd_setup_iocell_workaround(ahd);
2452		ahd_unpause(ahd);
2453	} else if ((status0 & OVERRUN) != 0) {
2454
2455		printk("%s: SCSI offset overrun detected.  Resetting bus.\n",
2456		       ahd_name(ahd));
2457		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2458	} else if ((status & SCSIRSTI) != 0) {
2459
2460		printk("%s: Someone reset channel A\n", ahd_name(ahd));
2461		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/FALSE);
2462	} else if ((status & SCSIPERR) != 0) {
2463
2464		/* Make sure the sequencer is in a safe location. */
2465		ahd_clear_critical_section(ahd);
2466
2467		ahd_handle_transmission_error(ahd);
2468	} else if (lqostat0 != 0) {
2469
2470		printk("%s: lqostat0 == 0x%x!\n", ahd_name(ahd), lqostat0);
2471		ahd_outb(ahd, CLRLQOINT0, lqostat0);
2472		if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0)
2473			ahd_outb(ahd, CLRLQOINT1, 0);
2474	} else if ((status & SELTO) != 0) {
2475		/* Stop the selection */
2476		ahd_outb(ahd, SCSISEQ0, 0);
2477
2478		/* Make sure the sequencer is in a safe location. */
2479		ahd_clear_critical_section(ahd);
2480
2481		/* No more pending messages */
2482		ahd_clear_msg_state(ahd);
2483
2484		/* Clear interrupt state */
2485		ahd_outb(ahd, CLRSINT1, CLRSELTIMEO|CLRBUSFREE|CLRSCSIPERR);
2486
2487		/*
2488		 * Although the driver does not care about the
2489		 * 'Selection in Progress' status bit, the busy
2490		 * LED does.  SELINGO is only cleared by a successful
2491		 * selection, so we must manually clear it to insure
2492		 * the LED turns off just incase no future successful
2493		 * selections occur (e.g. no devices on the bus).
2494		 */
2495		ahd_outb(ahd, CLRSINT0, CLRSELINGO);
2496
2497		scbid = ahd_inw(ahd, WAITING_TID_HEAD);
2498		scb = ahd_lookup_scb(ahd, scbid);
2499		if (scb == NULL) {
2500			printk("%s: ahd_intr - referenced scb not "
2501			       "valid during SELTO scb(0x%x)\n",
2502			       ahd_name(ahd), scbid);
2503			ahd_dump_card_state(ahd);
2504		} else {
2505			struct ahd_devinfo devinfo;
2506#ifdef AHD_DEBUG
2507			if ((ahd_debug & AHD_SHOW_SELTO) != 0) {
2508				ahd_print_path(ahd, scb);
2509				printk("Saw Selection Timeout for SCB 0x%x\n",
2510				       scbid);
2511			}
2512#endif
2513			ahd_scb_devinfo(ahd, &devinfo, scb);
2514			ahd_set_transaction_status(scb, CAM_SEL_TIMEOUT);
2515			ahd_freeze_devq(ahd, scb);
2516
2517			/*
2518			 * Cancel any pending transactions on the device
2519			 * now that it seems to be missing.  This will
2520			 * also revert us to async/narrow transfers until
2521			 * we can renegotiate with the device.
2522			 */
2523			ahd_handle_devreset(ahd, &devinfo,
2524					    CAM_LUN_WILDCARD,
2525					    CAM_SEL_TIMEOUT,
2526					    "Selection Timeout",
2527					    /*verbose_level*/1);
2528		}
2529		ahd_outb(ahd, CLRINT, CLRSCSIINT);
2530		ahd_iocell_first_selection(ahd);
2531		ahd_unpause(ahd);
2532	} else if ((status0 & (SELDI|SELDO)) != 0) {
2533
2534		ahd_iocell_first_selection(ahd);
2535		ahd_unpause(ahd);
2536	} else if (status3 != 0) {
2537		printk("%s: SCSI Cell parity error SSTAT3 == 0x%x\n",
2538		       ahd_name(ahd), status3);
2539		ahd_outb(ahd, CLRSINT3, status3);
2540	} else if ((lqistat1 & (LQIPHASE_LQ|LQIPHASE_NLQ)) != 0) {
2541
2542		/* Make sure the sequencer is in a safe location. */
2543		ahd_clear_critical_section(ahd);
2544
2545		ahd_handle_lqiphase_error(ahd, lqistat1);
2546	} else if ((lqistat1 & LQICRCI_NLQ) != 0) {
2547		/*
2548		 * This status can be delayed during some
2549		 * streaming operations.  The SCSIPHASE
2550		 * handler has already dealt with this case
2551		 * so just clear the error.
2552		 */
2553		ahd_outb(ahd, CLRLQIINT1, CLRLQICRCI_NLQ);
2554	} else if ((status & BUSFREE) != 0
2555		|| (lqistat1 & LQOBUSFREE) != 0) {
2556		u_int lqostat1;
2557		int   restart;
2558		int   clear_fifo;
2559		int   packetized;
2560		u_int mode;
2561
2562		/*
2563		 * Clear our selection hardware as soon as possible.
2564		 * We may have an entry in the waiting Q for this target,
2565		 * that is affected by this busfree and we don't want to
2566		 * go about selecting the target while we handle the event.
2567		 */
2568		ahd_outb(ahd, SCSISEQ0, 0);
2569
2570		/* Make sure the sequencer is in a safe location. */
2571		ahd_clear_critical_section(ahd);
2572
2573		/*
2574		 * Determine what we were up to at the time of
2575		 * the busfree.
2576		 */
2577		mode = AHD_MODE_SCSI;
2578		busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME;
2579		lqostat1 = ahd_inb(ahd, LQOSTAT1);
2580		switch (busfreetime) {
2581		case BUSFREE_DFF0:
2582		case BUSFREE_DFF1:
2583		{
2584			mode = busfreetime == BUSFREE_DFF0
2585			     ? AHD_MODE_DFF0 : AHD_MODE_DFF1;
2586			ahd_set_modes(ahd, mode, mode);
2587			scbid = ahd_get_scbptr(ahd);
2588			scb = ahd_lookup_scb(ahd, scbid);
2589			if (scb == NULL) {
2590				printk("%s: Invalid SCB %d in DFF%d "
2591				       "during unexpected busfree\n",
2592				       ahd_name(ahd), scbid, mode);
2593				packetized = 0;
2594			} else
2595				packetized = (scb->flags & SCB_PACKETIZED) != 0;
2596			clear_fifo = 1;
2597			break;
2598		}
2599		case BUSFREE_LQO:
2600			clear_fifo = 0;
2601			packetized = 1;
2602			break;
2603		default:
2604			clear_fifo = 0;
2605			packetized =  (lqostat1 & LQOBUSFREE) != 0;
2606			if (!packetized
2607			 && ahd_inb(ahd, LASTPHASE) == P_BUSFREE
2608			 && (ahd_inb(ahd, SSTAT0) & SELDI) == 0
2609			 && ((ahd_inb(ahd, SSTAT0) & SELDO) == 0
2610			  || (ahd_inb(ahd, SCSISEQ0) & ENSELO) == 0))
2611				/*
2612				 * Assume packetized if we are not
2613				 * on the bus in a non-packetized
2614				 * capacity and any pending selection
2615				 * was a packetized selection.
2616				 */
2617				packetized = 1;
2618			break;
2619		}
2620
2621#ifdef AHD_DEBUG
2622		if ((ahd_debug & AHD_SHOW_MISC) != 0)
2623			printk("Saw Busfree.  Busfreetime = 0x%x.\n",
2624			       busfreetime);
2625#endif
2626		/*
2627		 * Busfrees that occur in non-packetized phases are
2628		 * handled by the nonpkt_busfree handler.
2629		 */
2630		if (packetized && ahd_inb(ahd, LASTPHASE) == P_BUSFREE) {
2631			restart = ahd_handle_pkt_busfree(ahd, busfreetime);
2632		} else {
2633			packetized = 0;
2634			restart = ahd_handle_nonpkt_busfree(ahd);
2635		}
2636		/*
2637		 * Clear the busfree interrupt status.  The setting of
2638		 * the interrupt is a pulse, so in a perfect world, we
2639		 * would not need to muck with the ENBUSFREE logic.  This
2640		 * would ensure that if the bus moves on to another
2641		 * connection, busfree protection is still in force.  If
2642		 * BUSFREEREV is broken, however, we must manually clear
2643		 * the ENBUSFREE if the busfree occurred during a non-pack
2644		 * connection so that we don't get false positives during
2645		 * future, packetized, connections.
2646		 */
2647		ahd_outb(ahd, CLRSINT1, CLRBUSFREE);
2648		if (packetized == 0
2649		 && (ahd->bugs & AHD_BUSFREEREV_BUG) != 0)
2650			ahd_outb(ahd, SIMODE1,
2651				 ahd_inb(ahd, SIMODE1) & ~ENBUSFREE);
2652
2653		if (clear_fifo)
2654			ahd_clear_fifo(ahd, mode);
2655
2656		ahd_clear_msg_state(ahd);
2657		ahd_outb(ahd, CLRINT, CLRSCSIINT);
2658		if (restart) {
2659			ahd_restart(ahd);
2660		} else {
2661			ahd_unpause(ahd);
2662		}
2663	} else {
2664		printk("%s: Missing case in ahd_handle_scsiint. status = %x\n",
2665		       ahd_name(ahd), status);
2666		ahd_dump_card_state(ahd);
2667		ahd_clear_intstat(ahd);
2668		ahd_unpause(ahd);
2669	}
2670}
2671
2672static void
2673ahd_handle_transmission_error(struct ahd_softc *ahd)
2674{
2675	struct	scb *scb;
2676	u_int	scbid;
2677	u_int	lqistat1;
2678	u_int	lqistat2;
2679	u_int	msg_out;
2680	u_int	curphase;
2681	u_int	lastphase;
2682	u_int	perrdiag;
2683	u_int	cur_col;
2684	int	silent;
2685
2686	scb = NULL;
2687	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2688	lqistat1 = ahd_inb(ahd, LQISTAT1) & ~(LQIPHASE_LQ|LQIPHASE_NLQ);
2689	lqistat2 = ahd_inb(ahd, LQISTAT2);
2690	if ((lqistat1 & (LQICRCI_NLQ|LQICRCI_LQ)) == 0
2691	 && (ahd->bugs & AHD_NLQICRC_DELAYED_BUG) != 0) {
2692		u_int lqistate;
2693
2694		ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
2695		lqistate = ahd_inb(ahd, LQISTATE);
2696		if ((lqistate >= 0x1E && lqistate <= 0x24)
2697		 || (lqistate == 0x29)) {
2698#ifdef AHD_DEBUG
2699			if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2700				printk("%s: NLQCRC found via LQISTATE\n",
2701				       ahd_name(ahd));
2702			}
2703#endif
2704			lqistat1 |= LQICRCI_NLQ;
2705		}
2706		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2707	}
2708
2709	ahd_outb(ahd, CLRLQIINT1, lqistat1);
2710	lastphase = ahd_inb(ahd, LASTPHASE);
2711	curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
2712	perrdiag = ahd_inb(ahd, PERRDIAG);
2713	msg_out = MSG_INITIATOR_DET_ERR;
2714	ahd_outb(ahd, CLRSINT1, CLRSCSIPERR);
2715
2716	/*
2717	 * Try to find the SCB associated with this error.
2718	 */
2719	silent = FALSE;
2720	if (lqistat1 == 0
2721	 || (lqistat1 & LQICRCI_NLQ) != 0) {
2722	 	if ((lqistat1 & (LQICRCI_NLQ|LQIOVERI_NLQ)) != 0)
2723			ahd_set_active_fifo(ahd);
2724		scbid = ahd_get_scbptr(ahd);
2725		scb = ahd_lookup_scb(ahd, scbid);
2726		if (scb != NULL && SCB_IS_SILENT(scb))
2727			silent = TRUE;
2728	}
2729
2730	cur_col = 0;
2731	if (silent == FALSE) {
2732		printk("%s: Transmission error detected\n", ahd_name(ahd));
2733		ahd_lqistat1_print(lqistat1, &cur_col, 50);
2734		ahd_lastphase_print(lastphase, &cur_col, 50);
2735		ahd_scsisigi_print(curphase, &cur_col, 50);
2736		ahd_perrdiag_print(perrdiag, &cur_col, 50);
2737		printk("\n");
2738		ahd_dump_card_state(ahd);
2739	}
2740
2741	if ((lqistat1 & (LQIOVERI_LQ|LQIOVERI_NLQ)) != 0) {
2742		if (silent == FALSE) {
2743			printk("%s: Gross protocol error during incoming "
2744			       "packet.  lqistat1 == 0x%x.  Resetting bus.\n",
2745			       ahd_name(ahd), lqistat1);
2746		}
2747		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2748		return;
2749	} else if ((lqistat1 & LQICRCI_LQ) != 0) {
2750		/*
2751		 * A CRC error has been detected on an incoming LQ.
2752		 * The bus is currently hung on the last ACK.
2753		 * Hit LQIRETRY to release the last ack, and
2754		 * wait for the sequencer to determine that ATNO
2755		 * is asserted while in message out to take us
2756		 * to our host message loop.  No NONPACKREQ or
2757		 * LQIPHASE type errors will occur in this
2758		 * scenario.  After this first LQIRETRY, the LQI
2759		 * manager will be in ISELO where it will
2760		 * happily sit until another packet phase begins.
2761		 * Unexpected bus free detection is enabled
2762		 * through any phases that occur after we release
2763		 * this last ack until the LQI manager sees a
2764		 * packet phase.  This implies we may have to
2765		 * ignore a perfectly valid "unexected busfree"
2766		 * after our "initiator detected error" message is
2767		 * sent.  A busfree is the expected response after
2768		 * we tell the target that it's L_Q was corrupted.
2769		 * (SPI4R09 10.7.3.3.3)
2770		 */
2771		ahd_outb(ahd, LQCTL2, LQIRETRY);
2772		printk("LQIRetry for LQICRCI_LQ to release ACK\n");
2773	} else if ((lqistat1 & LQICRCI_NLQ) != 0) {
2774		/*
2775		 * We detected a CRC error in a NON-LQ packet.
2776		 * The hardware has varying behavior in this situation
2777		 * depending on whether this packet was part of a
2778		 * stream or not.
2779		 *
2780		 * PKT by PKT mode:
2781		 * The hardware has already acked the complete packet.
2782		 * If the target honors our outstanding ATN condition,
2783		 * we should be (or soon will be) in MSGOUT phase.
2784		 * This will trigger the LQIPHASE_LQ status bit as the
2785		 * hardware was expecting another LQ.  Unexpected
2786		 * busfree detection is enabled.  Once LQIPHASE_LQ is
2787		 * true (first entry into host message loop is much
2788		 * the same), we must clear LQIPHASE_LQ and hit
2789		 * LQIRETRY so the hardware is ready to handle
2790		 * a future LQ.  NONPACKREQ will not be asserted again
2791		 * once we hit LQIRETRY until another packet is
2792		 * processed.  The target may either go busfree
2793		 * or start another packet in response to our message.
2794		 *
2795		 * Read Streaming P0 asserted:
2796		 * If we raise ATN and the target completes the entire
2797		 * stream (P0 asserted during the last packet), the
2798		 * hardware will ack all data and return to the ISTART
2799		 * state.  When the target reponds to our ATN condition,
2800		 * LQIPHASE_LQ will be asserted.  We should respond to
2801		 * this with an LQIRETRY to prepare for any future
2802		 * packets.  NONPACKREQ will not be asserted again
2803		 * once we hit LQIRETRY until another packet is
2804		 * processed.  The target may either go busfree or
2805		 * start another packet in response to our message.
2806		 * Busfree detection is enabled.
2807		 *
2808		 * Read Streaming P0 not asserted:
2809		 * If we raise ATN and the target transitions to
2810		 * MSGOUT in or after a packet where P0 is not
2811		 * asserted, the hardware will assert LQIPHASE_NLQ.
2812		 * We should respond to the LQIPHASE_NLQ with an
2813		 * LQIRETRY.  Should the target stay in a non-pkt
2814		 * phase after we send our message, the hardware
2815		 * will assert LQIPHASE_LQ.  Recovery is then just as
2816		 * listed above for the read streaming with P0 asserted.
2817		 * Busfree detection is enabled.
2818		 */
2819		if (silent == FALSE)
2820			printk("LQICRC_NLQ\n");
2821		if (scb == NULL) {
2822			printk("%s: No SCB valid for LQICRC_NLQ.  "
2823			       "Resetting bus\n", ahd_name(ahd));
2824			ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2825			return;
2826		}
2827	} else if ((lqistat1 & LQIBADLQI) != 0) {
2828		printk("Need to handle BADLQI!\n");
2829		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2830		return;
2831	} else if ((perrdiag & (PARITYERR|PREVPHASE)) == PARITYERR) {
2832		if ((curphase & ~P_DATAIN_DT) != 0) {
2833			/* Ack the byte.  So we can continue. */
2834			if (silent == FALSE)
2835				printk("Acking %s to clear perror\n",
2836				    ahd_lookup_phase_entry(curphase)->phasemsg);
2837			ahd_inb(ahd, SCSIDAT);
2838		}
2839
2840		if (curphase == P_MESGIN)
2841			msg_out = MSG_PARITY_ERROR;
2842	}
2843
2844	/*
2845	 * We've set the hardware to assert ATN if we
2846	 * get a parity error on "in" phases, so all we
2847	 * need to do is stuff the message buffer with
2848	 * the appropriate message.  "In" phases have set
2849	 * mesg_out to something other than MSG_NOP.
2850	 */
2851	ahd->send_msg_perror = msg_out;
2852	if (scb != NULL && msg_out == MSG_INITIATOR_DET_ERR)
2853		scb->flags |= SCB_TRANSMISSION_ERROR;
2854	ahd_outb(ahd, MSG_OUT, HOST_MSG);
2855	ahd_outb(ahd, CLRINT, CLRSCSIINT);
2856	ahd_unpause(ahd);
2857}
2858
2859static void
2860ahd_handle_lqiphase_error(struct ahd_softc *ahd, u_int lqistat1)
2861{
2862	/*
2863	 * Clear the sources of the interrupts.
2864	 */
2865	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2866	ahd_outb(ahd, CLRLQIINT1, lqistat1);
2867
2868	/*
2869	 * If the "illegal" phase changes were in response
2870	 * to our ATN to flag a CRC error, AND we ended up
2871	 * on packet boundaries, clear the error, restart the
2872	 * LQI manager as appropriate, and go on our merry
2873	 * way toward sending the message.  Otherwise, reset
2874	 * the bus to clear the error.
2875	 */
2876	ahd_set_active_fifo(ahd);
2877	if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0
2878	 && (ahd_inb(ahd, MDFFSTAT) & DLZERO) != 0) {
2879		if ((lqistat1 & LQIPHASE_LQ) != 0) {
2880			printk("LQIRETRY for LQIPHASE_LQ\n");
2881			ahd_outb(ahd, LQCTL2, LQIRETRY);
2882		} else if ((lqistat1 & LQIPHASE_NLQ) != 0) {
2883			printk("LQIRETRY for LQIPHASE_NLQ\n");
2884			ahd_outb(ahd, LQCTL2, LQIRETRY);
2885		} else
2886			panic("ahd_handle_lqiphase_error: No phase errors\n");
2887		ahd_dump_card_state(ahd);
2888		ahd_outb(ahd, CLRINT, CLRSCSIINT);
2889		ahd_unpause(ahd);
2890	} else {
2891		printk("Reseting Channel for LQI Phase error\n");
2892		ahd_dump_card_state(ahd);
2893		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2894	}
2895}
2896
2897/*
2898 * Packetized unexpected or expected busfree.
2899 * Entered in mode based on busfreetime.
2900 */
2901static int
2902ahd_handle_pkt_busfree(struct ahd_softc *ahd, u_int busfreetime)
2903{
2904	u_int lqostat1;
2905
2906	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
2907			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
2908	lqostat1 = ahd_inb(ahd, LQOSTAT1);
2909	if ((lqostat1 & LQOBUSFREE) != 0) {
2910		struct scb *scb;
2911		u_int scbid;
2912		u_int saved_scbptr;
2913		u_int waiting_h;
2914		u_int waiting_t;
2915		u_int next;
2916
2917		/*
2918		 * The LQO manager detected an unexpected busfree
2919		 * either:
2920		 *
2921		 * 1) During an outgoing LQ.
2922		 * 2) After an outgoing LQ but before the first
2923		 *    REQ of the command packet.
2924		 * 3) During an outgoing command packet.
2925		 *
2926		 * In all cases, CURRSCB is pointing to the
2927		 * SCB that encountered the failure.  Clean
2928		 * up the queue, clear SELDO and LQOBUSFREE,
2929		 * and allow the sequencer to restart the select
2930		 * out at its lesure.
2931		 */
2932		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2933		scbid = ahd_inw(ahd, CURRSCB);
2934		scb = ahd_lookup_scb(ahd, scbid);
2935		if (scb == NULL)
2936		       panic("SCB not valid during LQOBUSFREE");
2937		/*
2938		 * Clear the status.
2939		 */
2940		ahd_outb(ahd, CLRLQOINT1, CLRLQOBUSFREE);
2941		if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0)
2942			ahd_outb(ahd, CLRLQOINT1, 0);
2943		ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
2944		ahd_flush_device_writes(ahd);
2945		ahd_outb(ahd, CLRSINT0, CLRSELDO);
2946
2947		/*
2948		 * Return the LQO manager to its idle loop.  It will
2949		 * not do this automatically if the busfree occurs
2950		 * after the first REQ of either the LQ or command
2951		 * packet or between the LQ and command packet.
2952		 */
2953		ahd_outb(ahd, LQCTL2, ahd_inb(ahd, LQCTL2) | LQOTOIDLE);
2954
2955		/*
2956		 * Update the waiting for selection queue so
2957		 * we restart on the correct SCB.
2958		 */
2959		waiting_h = ahd_inw(ahd, WAITING_TID_HEAD);
2960		saved_scbptr = ahd_get_scbptr(ahd);
2961		if (waiting_h != scbid) {
2962
2963			ahd_outw(ahd, WAITING_TID_HEAD, scbid);
2964			waiting_t = ahd_inw(ahd, WAITING_TID_TAIL);
2965			if (waiting_t == waiting_h) {
2966				ahd_outw(ahd, WAITING_TID_TAIL, scbid);
2967				next = SCB_LIST_NULL;
2968			} else {
2969				ahd_set_scbptr(ahd, waiting_h);
2970				next = ahd_inw_scbram(ahd, SCB_NEXT2);
2971			}
2972			ahd_set_scbptr(ahd, scbid);
2973			ahd_outw(ahd, SCB_NEXT2, next);
2974		}
2975		ahd_set_scbptr(ahd, saved_scbptr);
2976		if (scb->crc_retry_count < AHD_MAX_LQ_CRC_ERRORS) {
2977			if (SCB_IS_SILENT(scb) == FALSE) {
2978				ahd_print_path(ahd, scb);
2979				printk("Probable outgoing LQ CRC error.  "
2980				       "Retrying command\n");
2981			}
2982			scb->crc_retry_count++;
2983		} else {
2984			ahd_set_transaction_status(scb, CAM_UNCOR_PARITY);
2985			ahd_freeze_scb(scb);
2986			ahd_freeze_devq(ahd, scb);
2987		}
2988		/* Return unpausing the sequencer. */
2989		return (0);
2990	} else if ((ahd_inb(ahd, PERRDIAG) & PARITYERR) != 0) {
2991		/*
2992		 * Ignore what are really parity errors that
2993		 * occur on the last REQ of a free running
2994		 * clock prior to going busfree.  Some drives
2995		 * do not properly active negate just before
2996		 * going busfree resulting in a parity glitch.
2997		 */
2998		ahd_outb(ahd, CLRSINT1, CLRSCSIPERR|CLRBUSFREE);
2999#ifdef AHD_DEBUG
3000		if ((ahd_debug & AHD_SHOW_MASKED_ERRORS) != 0)
3001			printk("%s: Parity on last REQ detected "
3002			       "during busfree phase.\n",
3003			       ahd_name(ahd));
3004#endif
3005		/* Return unpausing the sequencer. */
3006		return (0);
3007	}
3008	if (ahd->src_mode != AHD_MODE_SCSI) {
3009		u_int	scbid;
3010		struct	scb *scb;
3011
3012		scbid = ahd_get_scbptr(ahd);
3013		scb = ahd_lookup_scb(ahd, scbid);
3014		ahd_print_path(ahd, scb);
3015		printk("Unexpected PKT busfree condition\n");
3016		ahd_dump_card_state(ahd);
3017		ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb), 'A',
3018			       SCB_GET_LUN(scb), SCB_GET_TAG(scb),
3019			       ROLE_INITIATOR, CAM_UNEXP_BUSFREE);
3020
3021		/* Return restarting the sequencer. */
3022		return (1);
3023	}
3024	printk("%s: Unexpected PKT busfree condition\n", ahd_name(ahd));
3025	ahd_dump_card_state(ahd);
3026	/* Restart the sequencer. */
3027	return (1);
3028}
3029
3030/*
3031 * Non-packetized unexpected or expected busfree.
3032 */
3033static int
3034ahd_handle_nonpkt_busfree(struct ahd_softc *ahd)
3035{
3036	struct	ahd_devinfo devinfo;
3037	struct	scb *scb;
3038	u_int	lastphase;
3039	u_int	saved_scsiid;
3040	u_int	saved_lun;
3041	u_int	target;
3042	u_int	initiator_role_id;
3043	u_int	scbid;
3044	u_int	ppr_busfree;
3045	int	printerror;
3046
3047	/*
3048	 * Look at what phase we were last in.  If its message out,
3049	 * chances are pretty good that the busfree was in response
3050	 * to one of our abort requests.
3051	 */
3052	lastphase = ahd_inb(ahd, LASTPHASE);
3053	saved_scsiid = ahd_inb(ahd, SAVED_SCSIID);
3054	saved_lun = ahd_inb(ahd, SAVED_LUN);
3055	target = SCSIID_TARGET(ahd, saved_scsiid);
3056	initiator_role_id = SCSIID_OUR_ID(saved_scsiid);
3057	ahd_compile_devinfo(&devinfo, initiator_role_id,
3058			    target, saved_lun, 'A', ROLE_INITIATOR);
3059	printerror = 1;
3060
3061	scbid = ahd_get_scbptr(ahd);
3062	scb = ahd_lookup_scb(ahd, scbid);
3063	if (scb != NULL
3064	 && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0)
3065		scb = NULL;
3066
3067	ppr_busfree = (ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0;
3068	if (lastphase == P_MESGOUT) {
3069		u_int tag;
3070
3071		tag = SCB_LIST_NULL;
3072		if (ahd_sent_msg(ahd, AHDMSG_1B, MSG_ABORT_TAG, TRUE)
3073		 || ahd_sent_msg(ahd, AHDMSG_1B, MSG_ABORT, TRUE)) {
3074			int found;
3075			int sent_msg;
3076
3077			if (scb == NULL) {
3078				ahd_print_devinfo(ahd, &devinfo);
3079				printk("Abort for unidentified "
3080				       "connection completed.\n");
3081				/* restart the sequencer. */
3082				return (1);
3083			}
3084			sent_msg = ahd->msgout_buf[ahd->msgout_index - 1];
3085			ahd_print_path(ahd, scb);
3086			printk("SCB %d - Abort%s Completed.\n",
3087			       SCB_GET_TAG(scb),
3088			       sent_msg == MSG_ABORT_TAG ? "" : " Tag");
3089
3090			if (sent_msg == MSG_ABORT_TAG)
3091				tag = SCB_GET_TAG(scb);
3092
3093			if ((scb->flags & SCB_EXTERNAL_RESET) != 0) {
3094				/*
3095				 * This abort is in response to an
3096				 * unexpected switch to command phase
3097				 * for a packetized connection.  Since
3098				 * the identify message was never sent,
3099				 * "saved lun" is 0.  We really want to
3100				 * abort only the SCB that encountered
3101				 * this error, which could have a different
3102				 * lun.  The SCB will be retried so the OS
3103				 * will see the UA after renegotiating to
3104				 * packetized.
3105				 */
3106				tag = SCB_GET_TAG(scb);
3107				saved_lun = scb->hscb->lun;
3108			}
3109			found = ahd_abort_scbs(ahd, target, 'A', saved_lun,
3110					       tag, ROLE_INITIATOR,
3111					       CAM_REQ_ABORTED);
3112			printk("found == 0x%x\n", found);
3113			printerror = 0;
3114		} else if (ahd_sent_msg(ahd, AHDMSG_1B,
3115					MSG_BUS_DEV_RESET, TRUE)) {
3116#ifdef __FreeBSD__
3117			/*
3118			 * Don't mark the user's request for this BDR
3119			 * as completing with CAM_BDR_SENT.  CAM3
3120			 * specifies CAM_REQ_CMP.
3121			 */
3122			if (scb != NULL
3123			 && scb->io_ctx->ccb_h.func_code== XPT_RESET_DEV
3124			 && ahd_match_scb(ahd, scb, target, 'A',
3125					  CAM_LUN_WILDCARD, SCB_LIST_NULL,
3126					  ROLE_INITIATOR))
3127				ahd_set_transaction_status(scb, CAM_REQ_CMP);
3128#endif
3129			ahd_handle_devreset(ahd, &devinfo, CAM_LUN_WILDCARD,
3130					    CAM_BDR_SENT, "Bus Device Reset",
3131					    /*verbose_level*/0);
3132			printerror = 0;
3133		} else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, FALSE)
3134			&& ppr_busfree == 0) {
3135			struct ahd_initiator_tinfo *tinfo;
3136			struct ahd_tmode_tstate *tstate;
3137
3138			/*
3139			 * PPR Rejected.
3140			 *
3141			 * If the previous negotiation was packetized,
3142			 * this could be because the device has been
3143			 * reset without our knowledge.  Force our
3144			 * current negotiation to async and retry the
3145			 * negotiation.  Otherwise retry the command
3146			 * with non-ppr negotiation.
3147			 */
3148#ifdef AHD_DEBUG
3149			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3150				printk("PPR negotiation rejected busfree.\n");
3151#endif
3152			tinfo = ahd_fetch_transinfo(ahd, devinfo.channel,
3153						    devinfo.our_scsiid,
3154						    devinfo.target, &tstate);
3155			if ((tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ)!=0) {
3156				ahd_set_width(ahd, &devinfo,
3157					      MSG_EXT_WDTR_BUS_8_BIT,
3158					      AHD_TRANS_CUR,
3159					      /*paused*/TRUE);
3160				ahd_set_syncrate(ahd, &devinfo,
3161						/*period*/0, /*offset*/0,
3162						/*ppr_options*/0,
3163						AHD_TRANS_CUR,
3164						/*paused*/TRUE);
3165				/*
3166				 * The expect PPR busfree handler below
3167				 * will effect the retry and necessary
3168				 * abort.
3169				 */
3170			} else {
3171				tinfo->curr.transport_version = 2;
3172				tinfo->goal.transport_version = 2;
3173				tinfo->goal.ppr_options = 0;
3174				if (scb != NULL) {
3175					/*
3176					 * Remove any SCBs in the waiting
3177					 * for selection queue that may
3178					 * also be for this target so that
3179					 * command ordering is preserved.
3180					 */
3181					ahd_freeze_devq(ahd, scb);
3182					ahd_qinfifo_requeue_tail(ahd, scb);
3183				}
3184				printerror = 0;
3185			}
3186		} else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, FALSE)
3187			&& ppr_busfree == 0) {
3188			/*
3189			 * Negotiation Rejected.  Go-narrow and
3190			 * retry command.
3191			 */
3192#ifdef AHD_DEBUG
3193			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3194				printk("WDTR negotiation rejected busfree.\n");
3195#endif
3196			ahd_set_width(ahd, &devinfo,
3197				      MSG_EXT_WDTR_BUS_8_BIT,
3198				      AHD_TRANS_CUR|AHD_TRANS_GOAL,
3199				      /*paused*/TRUE);
3200			if (scb != NULL) {
3201				/*
3202				 * Remove any SCBs in the waiting for
3203				 * selection queue that may also be for
3204				 * this target so that command ordering
3205				 * is preserved.
3206				 */
3207				ahd_freeze_devq(ahd, scb);
3208				ahd_qinfifo_requeue_tail(ahd, scb);
3209			}
3210			printerror = 0;
3211		} else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, FALSE)
3212			&& ppr_busfree == 0) {
3213			/*
3214			 * Negotiation Rejected.  Go-async and
3215			 * retry command.
3216			 */
3217#ifdef AHD_DEBUG
3218			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3219				printk("SDTR negotiation rejected busfree.\n");
3220#endif
3221			ahd_set_syncrate(ahd, &devinfo,
3222					/*period*/0, /*offset*/0,
3223					/*ppr_options*/0,
3224					AHD_TRANS_CUR|AHD_TRANS_GOAL,
3225					/*paused*/TRUE);
3226			if (scb != NULL) {
3227				/*
3228				 * Remove any SCBs in the waiting for
3229				 * selection queue that may also be for
3230				 * this target so that command ordering
3231				 * is preserved.
3232				 */
3233				ahd_freeze_devq(ahd, scb);
3234				ahd_qinfifo_requeue_tail(ahd, scb);
3235			}
3236			printerror = 0;
3237		} else if ((ahd->msg_flags & MSG_FLAG_EXPECT_IDE_BUSFREE) != 0
3238			&& ahd_sent_msg(ahd, AHDMSG_1B,
3239					 MSG_INITIATOR_DET_ERR, TRUE)) {
3240
3241#ifdef AHD_DEBUG
3242			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3243				printk("Expected IDE Busfree\n");
3244#endif
3245			printerror = 0;
3246		} else if ((ahd->msg_flags & MSG_FLAG_EXPECT_QASREJ_BUSFREE)
3247			&& ahd_sent_msg(ahd, AHDMSG_1B,
3248					MSG_MESSAGE_REJECT, TRUE)) {
3249
3250#ifdef AHD_DEBUG
3251			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3252				printk("Expected QAS Reject Busfree\n");
3253#endif
3254			printerror = 0;
3255		}
3256	}
3257
3258	/*
3259	 * The busfree required flag is honored at the end of
3260	 * the message phases.  We check it last in case we
3261	 * had to send some other message that caused a busfree.
3262	 */
3263	if (scb != NULL && printerror != 0
3264	 && (lastphase == P_MESGIN || lastphase == P_MESGOUT)
3265	 && ((ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0)) {
3266
3267		ahd_freeze_devq(ahd, scb);
3268		ahd_set_transaction_status(scb, CAM_REQUEUE_REQ);
3269		ahd_freeze_scb(scb);
3270		if ((ahd->msg_flags & MSG_FLAG_IU_REQ_CHANGED) != 0) {
3271			ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb),
3272				       SCB_GET_CHANNEL(ahd, scb),
3273				       SCB_GET_LUN(scb), SCB_LIST_NULL,
3274				       ROLE_INITIATOR, CAM_REQ_ABORTED);
3275		} else {
3276#ifdef AHD_DEBUG
3277			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3278				printk("PPR Negotiation Busfree.\n");
3279#endif
3280			ahd_done(ahd, scb);
3281		}
3282		printerror = 0;
3283	}
3284	if (printerror != 0) {
3285		int aborted;
3286
3287		aborted = 0;
3288		if (scb != NULL) {
3289			u_int tag;
3290
3291			if ((scb->hscb->control & TAG_ENB) != 0)
3292				tag = SCB_GET_TAG(scb);
3293			else
3294				tag = SCB_LIST_NULL;
3295			ahd_print_path(ahd, scb);
3296			aborted = ahd_abort_scbs(ahd, target, 'A',
3297				       SCB_GET_LUN(scb), tag,
3298				       ROLE_INITIATOR,
3299				       CAM_UNEXP_BUSFREE);
3300		} else {
3301			/*
3302			 * We had not fully identified this connection,
3303			 * so we cannot abort anything.
3304			 */
3305			printk("%s: ", ahd_name(ahd));
3306		}
3307		printk("Unexpected busfree %s, %d SCBs aborted, "
3308		       "PRGMCNT == 0x%x\n",
3309		       ahd_lookup_phase_entry(lastphase)->phasemsg,
3310		       aborted,
3311		       ahd_inw(ahd, PRGMCNT));
3312		ahd_dump_card_state(ahd);
3313		if (lastphase != P_BUSFREE)
3314			ahd_force_renegotiation(ahd, &devinfo);
3315	}
3316	/* Always restart the sequencer. */
3317	return (1);
3318}
3319
3320static void
3321ahd_handle_proto_violation(struct ahd_softc *ahd)
3322{
3323	struct	ahd_devinfo devinfo;
3324	struct	scb *scb;
3325	u_int	scbid;
3326	u_int	seq_flags;
3327	u_int	curphase;
3328	u_int	lastphase;
3329	int	found;
3330
3331	ahd_fetch_devinfo(ahd, &devinfo);
3332	scbid = ahd_get_scbptr(ahd);
3333	scb = ahd_lookup_scb(ahd, scbid);
3334	seq_flags = ahd_inb(ahd, SEQ_FLAGS);
3335	curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
3336	lastphase = ahd_inb(ahd, LASTPHASE);
3337	if ((seq_flags & NOT_IDENTIFIED) != 0) {
3338
3339		/*
3340		 * The reconnecting target either did not send an
3341		 * identify message, or did, but we didn't find an SCB
3342		 * to match.
3343		 */
3344		ahd_print_devinfo(ahd, &devinfo);
3345		printk("Target did not send an IDENTIFY message. "
3346		       "LASTPHASE = 0x%x.\n", lastphase);
3347		scb = NULL;
3348	} else if (scb == NULL) {
3349		/*
3350		 * We don't seem to have an SCB active for this
3351		 * transaction.  Print an error and reset the bus.
3352		 */
3353		ahd_print_devinfo(ahd, &devinfo);
3354		printk("No SCB found during protocol violation\n");
3355		goto proto_violation_reset;
3356	} else {
3357		ahd_set_transaction_status(scb, CAM_SEQUENCE_FAIL);
3358		if ((seq_flags & NO_CDB_SENT) != 0) {
3359			ahd_print_path(ahd, scb);
3360			printk("No or incomplete CDB sent to device.\n");
3361		} else if ((ahd_inb_scbram(ahd, SCB_CONTROL)
3362			  & STATUS_RCVD) == 0) {
3363			/*
3364			 * The target never bothered to provide status to
3365			 * us prior to completing the command.  Since we don't
3366			 * know the disposition of this command, we must attempt
3367			 * to abort it.  Assert ATN and prepare to send an abort
3368			 * message.
3369			 */
3370			ahd_print_path(ahd, scb);
3371			printk("Completed command without status.\n");
3372		} else {
3373			ahd_print_path(ahd, scb);
3374			printk("Unknown protocol violation.\n");
3375			ahd_dump_card_state(ahd);
3376		}
3377	}
3378	if ((lastphase & ~P_DATAIN_DT) == 0
3379	 || lastphase == P_COMMAND) {
3380proto_violation_reset:
3381		/*
3382		 * Target either went directly to data
3383		 * phase or didn't respond to our ATN.
3384		 * The only safe thing to do is to blow
3385		 * it away with a bus reset.
3386		 */
3387		found = ahd_reset_channel(ahd, 'A', TRUE);
3388		printk("%s: Issued Channel %c Bus Reset. "
3389		       "%d SCBs aborted\n", ahd_name(ahd), 'A', found);
3390	} else {
3391		/*
3392		 * Leave the selection hardware off in case
3393		 * this abort attempt will affect yet to
3394		 * be sent commands.
3395		 */
3396		ahd_outb(ahd, SCSISEQ0,
3397			 ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
3398		ahd_assert_atn(ahd);
3399		ahd_outb(ahd, MSG_OUT, HOST_MSG);
3400		if (scb == NULL) {
3401			ahd_print_devinfo(ahd, &devinfo);
3402			ahd->msgout_buf[0] = MSG_ABORT_TASK;
3403			ahd->msgout_len = 1;
3404			ahd->msgout_index = 0;
3405			ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
3406		} else {
3407			ahd_print_path(ahd, scb);
3408			scb->flags |= SCB_ABORT;
3409		}
3410		printk("Protocol violation %s.  Attempting to abort.\n",
3411		       ahd_lookup_phase_entry(curphase)->phasemsg);
3412	}
3413}
3414
3415/*
3416 * Force renegotiation to occur the next time we initiate
3417 * a command to the current device.
3418 */
3419static void
3420ahd_force_renegotiation(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
3421{
3422	struct	ahd_initiator_tinfo *targ_info;
3423	struct	ahd_tmode_tstate *tstate;
3424
3425#ifdef AHD_DEBUG
3426	if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
3427		ahd_print_devinfo(ahd, devinfo);
3428		printk("Forcing renegotiation\n");
3429	}
3430#endif
3431	targ_info = ahd_fetch_transinfo(ahd,
3432					devinfo->channel,
3433					devinfo->our_scsiid,
3434					devinfo->target,
3435					&tstate);
3436	ahd_update_neg_request(ahd, devinfo, tstate,
3437			       targ_info, AHD_NEG_IF_NON_ASYNC);
3438}
3439
3440#define AHD_MAX_STEPS 2000
3441static void
3442ahd_clear_critical_section(struct ahd_softc *ahd)
3443{
3444	ahd_mode_state	saved_modes;
3445	int		stepping;
3446	int		steps;
3447	int		first_instr;
3448	u_int		simode0;
3449	u_int		simode1;
3450	u_int		simode3;
3451	u_int		lqimode0;
3452	u_int		lqimode1;
3453	u_int		lqomode0;
3454	u_int		lqomode1;
3455
3456	if (ahd->num_critical_sections == 0)
3457		return;
3458
3459	stepping = FALSE;
3460	steps = 0;
3461	first_instr = 0;
3462	simode0 = 0;
3463	simode1 = 0;
3464	simode3 = 0;
3465	lqimode0 = 0;
3466	lqimode1 = 0;
3467	lqomode0 = 0;
3468	lqomode1 = 0;
3469	saved_modes = ahd_save_modes(ahd);
3470	for (;;) {
3471		struct	cs *cs;
3472		u_int	seqaddr;
3473		u_int	i;
3474
3475		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
3476		seqaddr = ahd_inw(ahd, CURADDR);
3477
3478		cs = ahd->critical_sections;
3479		for (i = 0; i < ahd->num_critical_sections; i++, cs++) {
3480
3481			if (cs->begin < seqaddr && cs->end >= seqaddr)
3482				break;
3483		}
3484
3485		if (i == ahd->num_critical_sections)
3486			break;
3487
3488		if (steps > AHD_MAX_STEPS) {
3489			printk("%s: Infinite loop in critical section\n"
3490			       "%s: First Instruction 0x%x now 0x%x\n",
3491			       ahd_name(ahd), ahd_name(ahd), first_instr,
3492			       seqaddr);
3493			ahd_dump_card_state(ahd);
3494			panic("critical section loop");
3495		}
3496
3497		steps++;
3498#ifdef AHD_DEBUG
3499		if ((ahd_debug & AHD_SHOW_MISC) != 0)
3500			printk("%s: Single stepping at 0x%x\n", ahd_name(ahd),
3501			       seqaddr);
3502#endif
3503		if (stepping == FALSE) {
3504
3505			first_instr = seqaddr;
3506  			ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
3507  			simode0 = ahd_inb(ahd, SIMODE0);
3508			simode3 = ahd_inb(ahd, SIMODE3);
3509			lqimode0 = ahd_inb(ahd, LQIMODE0);
3510			lqimode1 = ahd_inb(ahd, LQIMODE1);
3511			lqomode0 = ahd_inb(ahd, LQOMODE0);
3512			lqomode1 = ahd_inb(ahd, LQOMODE1);
3513			ahd_outb(ahd, SIMODE0, 0);
3514			ahd_outb(ahd, SIMODE3, 0);
3515			ahd_outb(ahd, LQIMODE0, 0);
3516			ahd_outb(ahd, LQIMODE1, 0);
3517			ahd_outb(ahd, LQOMODE0, 0);
3518			ahd_outb(ahd, LQOMODE1, 0);
3519			ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
3520			simode1 = ahd_inb(ahd, SIMODE1);
3521			/*
3522			 * We don't clear ENBUSFREE.  Unfortunately
3523			 * we cannot re-enable busfree detection within
3524			 * the current connection, so we must leave it
3525			 * on while single stepping.
3526			 */
3527			ahd_outb(ahd, SIMODE1, simode1 & ENBUSFREE);
3528			ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) | STEP);
3529			stepping = TRUE;
3530		}
3531		ahd_outb(ahd, CLRSINT1, CLRBUSFREE);
3532		ahd_outb(ahd, CLRINT, CLRSCSIINT);
3533		ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
3534		ahd_outb(ahd, HCNTRL, ahd->unpause);
3535		while (!ahd_is_paused(ahd))
3536			ahd_delay(200);
3537		ahd_update_modes(ahd);
3538	}
3539	if (stepping) {
3540		ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
3541		ahd_outb(ahd, SIMODE0, simode0);
3542		ahd_outb(ahd, SIMODE3, simode3);
3543		ahd_outb(ahd, LQIMODE0, lqimode0);
3544		ahd_outb(ahd, LQIMODE1, lqimode1);
3545		ahd_outb(ahd, LQOMODE0, lqomode0);
3546		ahd_outb(ahd, LQOMODE1, lqomode1);
3547		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
3548		ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) & ~STEP);
3549  		ahd_outb(ahd, SIMODE1, simode1);
3550		/*
3551		 * SCSIINT seems to glitch occasionally when
3552		 * the interrupt masks are restored.  Clear SCSIINT
3553		 * one more time so that only persistent errors
3554		 * are seen as a real interrupt.
3555		 */
3556		ahd_outb(ahd, CLRINT, CLRSCSIINT);
3557	}
3558	ahd_restore_modes(ahd, saved_modes);
3559}
3560
3561/*
3562 * Clear any pending interrupt status.
3563 */
3564static void
3565ahd_clear_intstat(struct ahd_softc *ahd)
3566{
3567	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
3568			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
3569	/* Clear any interrupt conditions this may have caused */
3570	ahd_outb(ahd, CLRLQIINT0, CLRLQIATNQAS|CLRLQICRCT1|CLRLQICRCT2
3571				 |CLRLQIBADLQT|CLRLQIATNLQ|CLRLQIATNCMD);
3572	ahd_outb(ahd, CLRLQIINT1, CLRLQIPHASE_LQ|CLRLQIPHASE_NLQ|CLRLIQABORT
3573				 |CLRLQICRCI_LQ|CLRLQICRCI_NLQ|CLRLQIBADLQI
3574				 |CLRLQIOVERI_LQ|CLRLQIOVERI_NLQ|CLRNONPACKREQ);
3575	ahd_outb(ahd, CLRLQOINT0, CLRLQOTARGSCBPERR|CLRLQOSTOPT2|CLRLQOATNLQ
3576				 |CLRLQOATNPKT|CLRLQOTCRC);
3577	ahd_outb(ahd, CLRLQOINT1, CLRLQOINITSCBPERR|CLRLQOSTOPI2|CLRLQOBADQAS
3578				 |CLRLQOBUSFREE|CLRLQOPHACHGINPKT);
3579	if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) {
3580		ahd_outb(ahd, CLRLQOINT0, 0);
3581		ahd_outb(ahd, CLRLQOINT1, 0);
3582	}
3583	ahd_outb(ahd, CLRSINT3, CLRNTRAMPERR|CLROSRAMPERR);
3584	ahd_outb(ahd, CLRSINT1, CLRSELTIMEO|CLRATNO|CLRSCSIRSTI
3585				|CLRBUSFREE|CLRSCSIPERR|CLRREQINIT);
3586	ahd_outb(ahd, CLRSINT0, CLRSELDO|CLRSELDI|CLRSELINGO
3587			        |CLRIOERR|CLROVERRUN);
3588	ahd_outb(ahd, CLRINT, CLRSCSIINT);
3589}
3590
3591/**************************** Debugging Routines ******************************/
3592#ifdef AHD_DEBUG
3593uint32_t ahd_debug = AHD_DEBUG_OPTS;
3594#endif
3595
3596#if 0
3597void
3598ahd_print_scb(struct scb *scb)
3599{
3600	struct hardware_scb *hscb;
3601	int i;
3602
3603	hscb = scb->hscb;
3604	printk("scb:%p control:0x%x scsiid:0x%x lun:%d cdb_len:%d\n",
3605	       (void *)scb,
3606	       hscb->control,
3607	       hscb->scsiid,
3608	       hscb->lun,
3609	       hscb->cdb_len);
3610	printk("Shared Data: ");
3611	for (i = 0; i < sizeof(hscb->shared_data.idata.cdb); i++)
3612		printk("%#02x", hscb->shared_data.idata.cdb[i]);
3613	printk("        dataptr:%#x%x datacnt:%#x sgptr:%#x tag:%#x\n",
3614	       (uint32_t)((ahd_le64toh(hscb->dataptr) >> 32) & 0xFFFFFFFF),
3615	       (uint32_t)(ahd_le64toh(hscb->dataptr) & 0xFFFFFFFF),
3616	       ahd_le32toh(hscb->datacnt),
3617	       ahd_le32toh(hscb->sgptr),
3618	       SCB_GET_TAG(scb));
3619	ahd_dump_sglist(scb);
3620}
3621#endif  /*  0  */
3622
3623/************************* Transfer Negotiation *******************************/
3624/*
3625 * Allocate per target mode instance (ID we respond to as a target)
3626 * transfer negotiation data structures.
3627 */
3628static struct ahd_tmode_tstate *
3629ahd_alloc_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel)
3630{
3631	struct ahd_tmode_tstate *master_tstate;
3632	struct ahd_tmode_tstate *tstate;
3633	int i;
3634
3635	master_tstate = ahd->enabled_targets[ahd->our_id];
3636	if (ahd->enabled_targets[scsi_id] != NULL
3637	 && ahd->enabled_targets[scsi_id] != master_tstate)
3638		panic("%s: ahd_alloc_tstate - Target already allocated",
3639		      ahd_name(ahd));
3640	tstate = kmalloc(sizeof(*tstate), GFP_ATOMIC);
3641	if (tstate == NULL)
3642		return (NULL);
3643
3644	/*
3645	 * If we have allocated a master tstate, copy user settings from
3646	 * the master tstate (taken from SRAM or the EEPROM) for this
3647	 * channel, but reset our current and goal settings to async/narrow
3648	 * until an initiator talks to us.
3649	 */
3650	if (master_tstate != NULL) {
3651		memcpy(tstate, master_tstate, sizeof(*tstate));
3652		memset(tstate->enabled_luns, 0, sizeof(tstate->enabled_luns));
3653		for (i = 0; i < 16; i++) {
3654			memset(&tstate->transinfo[i].curr, 0,
3655			      sizeof(tstate->transinfo[i].curr));
3656			memset(&tstate->transinfo[i].goal, 0,
3657			      sizeof(tstate->transinfo[i].goal));
3658		}
3659	} else
3660		memset(tstate, 0, sizeof(*tstate));
3661	ahd->enabled_targets[scsi_id] = tstate;
3662	return (tstate);
3663}
3664
3665#ifdef AHD_TARGET_MODE
3666/*
3667 * Free per target mode instance (ID we respond to as a target)
3668 * transfer negotiation data structures.
3669 */
3670static void
3671ahd_free_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel, int force)
3672{
3673	struct ahd_tmode_tstate *tstate;
3674
3675	/*
3676	 * Don't clean up our "master" tstate.
3677	 * It has our default user settings.
3678	 */
3679	if (scsi_id == ahd->our_id
3680	 && force == FALSE)
3681		return;
3682
3683	tstate = ahd->enabled_targets[scsi_id];
3684	if (tstate != NULL)
3685		kfree(tstate);
3686	ahd->enabled_targets[scsi_id] = NULL;
3687}
3688#endif
3689
3690/*
3691 * Called when we have an active connection to a target on the bus,
3692 * this function finds the nearest period to the input period limited
3693 * by the capabilities of the bus connectivity of and sync settings for
3694 * the target.
3695 */
3696static void
3697ahd_devlimited_syncrate(struct ahd_softc *ahd,
3698			struct ahd_initiator_tinfo *tinfo,
3699			u_int *period, u_int *ppr_options, role_t role)
3700{
3701	struct	ahd_transinfo *transinfo;
3702	u_int	maxsync;
3703
3704	if ((ahd_inb(ahd, SBLKCTL) & ENAB40) != 0
3705	 && (ahd_inb(ahd, SSTAT2) & EXP_ACTIVE) == 0) {
3706		maxsync = AHD_SYNCRATE_PACED;
3707	} else {
3708		maxsync = AHD_SYNCRATE_ULTRA;
3709		/* Can't do DT related options on an SE bus */
3710		*ppr_options &= MSG_EXT_PPR_QAS_REQ;
3711	}
3712	/*
3713	 * Never allow a value higher than our current goal
3714	 * period otherwise we may allow a target initiated
3715	 * negotiation to go above the limit as set by the
3716	 * user.  In the case of an initiator initiated
3717	 * sync negotiation, we limit based on the user
3718	 * setting.  This allows the system to still accept
3719	 * incoming negotiations even if target initiated
3720	 * negotiation is not performed.
3721	 */
3722	if (role == ROLE_TARGET)
3723		transinfo = &tinfo->user;
3724	else
3725		transinfo = &tinfo->goal;
3726	*ppr_options &= (transinfo->ppr_options|MSG_EXT_PPR_PCOMP_EN);
3727	if (transinfo->width == MSG_EXT_WDTR_BUS_8_BIT) {
3728		maxsync = max(maxsync, (u_int)AHD_SYNCRATE_ULTRA2);
3729		*ppr_options &= ~MSG_EXT_PPR_DT_REQ;
3730	}
3731	if (transinfo->period == 0) {
3732		*period = 0;
3733		*ppr_options = 0;
3734	} else {
3735		*period = max(*period, (u_int)transinfo->period);
3736		ahd_find_syncrate(ahd, period, ppr_options, maxsync);
3737	}
3738}
3739
3740/*
3741 * Look up the valid period to SCSIRATE conversion in our table.
3742 * Return the period and offset that should be sent to the target
3743 * if this was the beginning of an SDTR.
3744 */
3745void
3746ahd_find_syncrate(struct ahd_softc *ahd, u_int *period,
3747		  u_int *ppr_options, u_int maxsync)
3748{
3749	if (*period < maxsync)
3750		*period = maxsync;
3751
3752	if ((*ppr_options & MSG_EXT_PPR_DT_REQ) != 0
3753	 && *period > AHD_SYNCRATE_MIN_DT)
3754		*ppr_options &= ~MSG_EXT_PPR_DT_REQ;
3755
3756	if (*period > AHD_SYNCRATE_MIN)
3757		*period = 0;
3758
3759	/* Honor PPR option conformance rules. */
3760	if (*period > AHD_SYNCRATE_PACED)
3761		*ppr_options &= ~MSG_EXT_PPR_RTI;
3762
3763	if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0)
3764		*ppr_options &= (MSG_EXT_PPR_DT_REQ|MSG_EXT_PPR_QAS_REQ);
3765
3766	if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0)
3767		*ppr_options &= MSG_EXT_PPR_QAS_REQ;
3768
3769	/* Skip all PACED only entries if IU is not available */
3770	if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0
3771	 && *period < AHD_SYNCRATE_DT)
3772		*period = AHD_SYNCRATE_DT;
3773
3774	/* Skip all DT only entries if DT is not available */
3775	if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0
3776	 && *period < AHD_SYNCRATE_ULTRA2)
3777		*period = AHD_SYNCRATE_ULTRA2;
3778}
3779
3780/*
3781 * Truncate the given synchronous offset to a value the
3782 * current adapter type and syncrate are capable of.
3783 */
3784static void
3785ahd_validate_offset(struct ahd_softc *ahd,
3786		    struct ahd_initiator_tinfo *tinfo,
3787		    u_int period, u_int *offset, int wide,
3788		    role_t role)
3789{
3790	u_int maxoffset;
3791
3792	/* Limit offset to what we can do */
3793	if (period == 0)
3794		maxoffset = 0;
3795	else if (period <= AHD_SYNCRATE_PACED) {
3796		if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0)
3797			maxoffset = MAX_OFFSET_PACED_BUG;
3798		else
3799			maxoffset = MAX_OFFSET_PACED;
3800	} else
3801		maxoffset = MAX_OFFSET_NON_PACED;
3802	*offset = min(*offset, maxoffset);
3803	if (tinfo != NULL) {
3804		if (role == ROLE_TARGET)
3805			*offset = min(*offset, (u_int)tinfo->user.offset);
3806		else
3807			*offset = min(*offset, (u_int)tinfo->goal.offset);
3808	}
3809}
3810
3811/*
3812 * Truncate the given transfer width parameter to a value the
3813 * current adapter type is capable of.
3814 */
3815static void
3816ahd_validate_width(struct ahd_softc *ahd, struct ahd_initiator_tinfo *tinfo,
3817		   u_int *bus_width, role_t role)
3818{
3819	switch (*bus_width) {
3820	default:
3821		if (ahd->features & AHD_WIDE) {
3822			/* Respond Wide */
3823			*bus_width = MSG_EXT_WDTR_BUS_16_BIT;
3824			break;
3825		}
3826		/* FALLTHROUGH */
3827	case MSG_EXT_WDTR_BUS_8_BIT:
3828		*bus_width = MSG_EXT_WDTR_BUS_8_BIT;
3829		break;
3830	}
3831	if (tinfo != NULL) {
3832		if (role == ROLE_TARGET)
3833			*bus_width = min((u_int)tinfo->user.width, *bus_width);
3834		else
3835			*bus_width = min((u_int)tinfo->goal.width, *bus_width);
3836	}
3837}
3838
3839/*
3840 * Update the bitmask of targets for which the controller should
3841 * negotiate with at the next convenient opportunity.  This currently
3842 * means the next time we send the initial identify messages for
3843 * a new transaction.
3844 */
3845int
3846ahd_update_neg_request(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3847		       struct ahd_tmode_tstate *tstate,
3848		       struct ahd_initiator_tinfo *tinfo, ahd_neg_type neg_type)
3849{
3850	u_int auto_negotiate_orig;
3851
3852	auto_negotiate_orig = tstate->auto_negotiate;
3853	if (neg_type == AHD_NEG_ALWAYS) {
3854		/*
3855		 * Force our "current" settings to be
3856		 * unknown so that unless a bus reset
3857		 * occurs the need to renegotiate is
3858		 * recorded persistently.
3859		 */
3860		if ((ahd->features & AHD_WIDE) != 0)
3861			tinfo->curr.width = AHD_WIDTH_UNKNOWN;
3862		tinfo->curr.period = AHD_PERIOD_UNKNOWN;
3863		tinfo->curr.offset = AHD_OFFSET_UNKNOWN;
3864	}
3865	if (tinfo->curr.period != tinfo->goal.period
3866	 || tinfo->curr.width != tinfo->goal.width
3867	 || tinfo->curr.offset != tinfo->goal.offset
3868	 || tinfo->curr.ppr_options != tinfo->goal.ppr_options
3869	 || (neg_type == AHD_NEG_IF_NON_ASYNC
3870	  && (tinfo->goal.offset != 0
3871	   || tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT
3872	   || tinfo->goal.ppr_options != 0)))
3873		tstate->auto_negotiate |= devinfo->target_mask;
3874	else
3875		tstate->auto_negotiate &= ~devinfo->target_mask;
3876
3877	return (auto_negotiate_orig != tstate->auto_negotiate);
3878}
3879
3880/*
3881 * Update the user/goal/curr tables of synchronous negotiation
3882 * parameters as well as, in the case of a current or active update,
3883 * any data structures on the host controller.  In the case of an
3884 * active update, the specified target is currently talking to us on
3885 * the bus, so the transfer parameter update must take effect
3886 * immediately.
3887 */
3888void
3889ahd_set_syncrate(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3890		 u_int period, u_int offset, u_int ppr_options,
3891		 u_int type, int paused)
3892{
3893	struct	ahd_initiator_tinfo *tinfo;
3894	struct	ahd_tmode_tstate *tstate;
3895	u_int	old_period;
3896	u_int	old_offset;
3897	u_int	old_ppr;
3898	int	active;
3899	int	update_needed;
3900
3901	active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE;
3902	update_needed = 0;
3903
3904	if (period == 0 || offset == 0) {
3905		period = 0;
3906		offset = 0;
3907	}
3908
3909	tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
3910				    devinfo->target, &tstate);
3911
3912	if ((type & AHD_TRANS_USER) != 0) {
3913		tinfo->user.period = period;
3914		tinfo->user.offset = offset;
3915		tinfo->user.ppr_options = ppr_options;
3916	}
3917
3918	if ((type & AHD_TRANS_GOAL) != 0) {
3919		tinfo->goal.period = period;
3920		tinfo->goal.offset = offset;
3921		tinfo->goal.ppr_options = ppr_options;
3922	}
3923
3924	old_period = tinfo->curr.period;
3925	old_offset = tinfo->curr.offset;
3926	old_ppr	   = tinfo->curr.ppr_options;
3927
3928	if ((type & AHD_TRANS_CUR) != 0
3929	 && (old_period != period
3930	  || old_offset != offset
3931	  || old_ppr != ppr_options)) {
3932
3933		update_needed++;
3934
3935		tinfo->curr.period = period;
3936		tinfo->curr.offset = offset;
3937		tinfo->curr.ppr_options = ppr_options;
3938
3939		ahd_send_async(ahd, devinfo->channel, devinfo->target,
3940			       CAM_LUN_WILDCARD, AC_TRANSFER_NEG);
3941		if (bootverbose) {
3942			if (offset != 0) {
3943				int options;
3944
3945				printk("%s: target %d synchronous with "
3946				       "period = 0x%x, offset = 0x%x",
3947				       ahd_name(ahd), devinfo->target,
3948				       period, offset);
3949				options = 0;
3950				if ((ppr_options & MSG_EXT_PPR_RD_STRM) != 0) {
3951					printk("(RDSTRM");
3952					options++;
3953				}
3954				if ((ppr_options & MSG_EXT_PPR_DT_REQ) != 0) {
3955					printk("%s", options ? "|DT" : "(DT");
3956					options++;
3957				}
3958				if ((ppr_options & MSG_EXT_PPR_IU_REQ) != 0) {
3959					printk("%s", options ? "|IU" : "(IU");
3960					options++;
3961				}
3962				if ((ppr_options & MSG_EXT_PPR_RTI) != 0) {
3963					printk("%s", options ? "|RTI" : "(RTI");
3964					options++;
3965				}
3966				if ((ppr_options & MSG_EXT_PPR_QAS_REQ) != 0) {
3967					printk("%s", options ? "|QAS" : "(QAS");
3968					options++;
3969				}
3970				if (options != 0)
3971					printk(")\n");
3972				else
3973					printk("\n");
3974			} else {
3975				printk("%s: target %d using "
3976				       "asynchronous transfers%s\n",
3977				       ahd_name(ahd), devinfo->target,
3978				       (ppr_options & MSG_EXT_PPR_QAS_REQ) != 0
3979				     ?  "(QAS)" : "");
3980			}
3981		}
3982	}
3983	/*
3984	 * Always refresh the neg-table to handle the case of the
3985	 * sequencer setting the ENATNO bit for a MK_MESSAGE request.
3986	 * We will always renegotiate in that case if this is a
3987	 * packetized request.  Also manage the busfree expected flag
3988	 * from this common routine so that we catch changes due to
3989	 * WDTR or SDTR messages.
3990	 */
3991	if ((type & AHD_TRANS_CUR) != 0) {
3992		if (!paused)
3993			ahd_pause(ahd);
3994		ahd_update_neg_table(ahd, devinfo, &tinfo->curr);
3995		if (!paused)
3996			ahd_unpause(ahd);
3997		if (ahd->msg_type != MSG_TYPE_NONE) {
3998			if ((old_ppr & MSG_EXT_PPR_IU_REQ)
3999			 != (ppr_options & MSG_EXT_PPR_IU_REQ)) {
4000#ifdef AHD_DEBUG
4001				if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4002					ahd_print_devinfo(ahd, devinfo);
4003					printk("Expecting IU Change busfree\n");
4004				}
4005#endif
4006				ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE
4007					       |  MSG_FLAG_IU_REQ_CHANGED;
4008			}
4009			if ((old_ppr & MSG_EXT_PPR_IU_REQ) != 0) {
4010#ifdef AHD_DEBUG
4011				if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4012					printk("PPR with IU_REQ outstanding\n");
4013#endif
4014				ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE;
4015			}
4016		}
4017	}
4018
4019	update_needed += ahd_update_neg_request(ahd, devinfo, tstate,
4020						tinfo, AHD_NEG_TO_GOAL);
4021
4022	if (update_needed && active)
4023		ahd_update_pending_scbs(ahd);
4024}
4025
4026/*
4027 * Update the user/goal/curr tables of wide negotiation
4028 * parameters as well as, in the case of a current or active update,
4029 * any data structures on the host controller.  In the case of an
4030 * active update, the specified target is currently talking to us on
4031 * the bus, so the transfer parameter update must take effect
4032 * immediately.
4033 */
4034void
4035ahd_set_width(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4036	      u_int width, u_int type, int paused)
4037{
4038	struct	ahd_initiator_tinfo *tinfo;
4039	struct	ahd_tmode_tstate *tstate;
4040	u_int	oldwidth;
4041	int	active;
4042	int	update_needed;
4043
4044	active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE;
4045	update_needed = 0;
4046	tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
4047				    devinfo->target, &tstate);
4048
4049	if ((type & AHD_TRANS_USER) != 0)
4050		tinfo->user.width = width;
4051
4052	if ((type & AHD_TRANS_GOAL) != 0)
4053		tinfo->goal.width = width;
4054
4055	oldwidth = tinfo->curr.width;
4056	if ((type & AHD_TRANS_CUR) != 0 && oldwidth != width) {
4057
4058		update_needed++;
4059
4060		tinfo->curr.width = width;
4061		ahd_send_async(ahd, devinfo->channel, devinfo->target,
4062			       CAM_LUN_WILDCARD, AC_TRANSFER_NEG);
4063		if (bootverbose) {
4064			printk("%s: target %d using %dbit transfers\n",
4065			       ahd_name(ahd), devinfo->target,
4066			       8 * (0x01 << width));
4067		}
4068	}
4069
4070	if ((type & AHD_TRANS_CUR) != 0) {
4071		if (!paused)
4072			ahd_pause(ahd);
4073		ahd_update_neg_table(ahd, devinfo, &tinfo->curr);
4074		if (!paused)
4075			ahd_unpause(ahd);
4076	}
4077
4078	update_needed += ahd_update_neg_request(ahd, devinfo, tstate,
4079						tinfo, AHD_NEG_TO_GOAL);
4080	if (update_needed && active)
4081		ahd_update_pending_scbs(ahd);
4082
4083}
4084
4085/*
4086 * Update the current state of tagged queuing for a given target.
4087 */
4088static void
4089ahd_set_tags(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
4090	     struct ahd_devinfo *devinfo, ahd_queue_alg alg)
4091{
4092	struct scsi_device *sdev = cmd->device;
4093
4094	ahd_platform_set_tags(ahd, sdev, devinfo, alg);
4095	ahd_send_async(ahd, devinfo->channel, devinfo->target,
4096		       devinfo->lun, AC_TRANSFER_NEG);
4097}
4098
4099static void
4100ahd_update_neg_table(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4101		     struct ahd_transinfo *tinfo)
4102{
4103	ahd_mode_state	saved_modes;
4104	u_int		period;
4105	u_int		ppr_opts;
4106	u_int		con_opts;
4107	u_int		offset;
4108	u_int		saved_negoaddr;
4109	uint8_t		iocell_opts[sizeof(ahd->iocell_opts)];
4110
4111	saved_modes = ahd_save_modes(ahd);
4112	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4113
4114	saved_negoaddr = ahd_inb(ahd, NEGOADDR);
4115	ahd_outb(ahd, NEGOADDR, devinfo->target);
4116	period = tinfo->period;
4117	offset = tinfo->offset;
4118	memcpy(iocell_opts, ahd->iocell_opts, sizeof(ahd->iocell_opts));
4119	ppr_opts = tinfo->ppr_options & (MSG_EXT_PPR_QAS_REQ|MSG_EXT_PPR_DT_REQ
4120					|MSG_EXT_PPR_IU_REQ|MSG_EXT_PPR_RTI);
4121	con_opts = 0;
4122	if (period == 0)
4123		period = AHD_SYNCRATE_ASYNC;
4124	if (period == AHD_SYNCRATE_160) {
4125
4126		if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) {
4127			/*
4128			 * When the SPI4 spec was finalized, PACE transfers
4129			 * was not made a configurable option in the PPR
4130			 * message.  Instead it is assumed to be enabled for
4131			 * any syncrate faster than 80MHz.  Nevertheless,
4132			 * Harpoon2A4 allows this to be configurable.
4133			 *
4134			 * Harpoon2A4 also assumes at most 2 data bytes per
4135			 * negotiated REQ/ACK offset.  Paced transfers take
4136			 * 4, so we must adjust our offset.
4137			 */
4138			ppr_opts |= PPROPT_PACE;
4139			offset *= 2;
4140
4141			/*
4142			 * Harpoon2A assumed that there would be a
4143			 * fallback rate between 160MHz and 80MHz,
4144			 * so 7 is used as the period factor rather
4145			 * than 8 for 160MHz.
4146			 */
4147			period = AHD_SYNCRATE_REVA_160;
4148		}
4149		if ((tinfo->ppr_options & MSG_EXT_PPR_PCOMP_EN) == 0)
4150			iocell_opts[AHD_PRECOMP_SLEW_INDEX] &=
4151			    ~AHD_PRECOMP_MASK;
4152	} else {
4153		/*
4154		 * Precomp should be disabled for non-paced transfers.
4155		 */
4156		iocell_opts[AHD_PRECOMP_SLEW_INDEX] &= ~AHD_PRECOMP_MASK;
4157
4158		if ((ahd->features & AHD_NEW_IOCELL_OPTS) != 0
4159		 && (ppr_opts & MSG_EXT_PPR_DT_REQ) != 0
4160		 && (ppr_opts & MSG_EXT_PPR_IU_REQ) == 0) {
4161			/*
4162			 * Slow down our CRC interval to be
4163			 * compatible with non-packetized
4164			 * U160 devices that can't handle a
4165			 * CRC at full speed.
4166			 */
4167			con_opts |= ENSLOWCRC;
4168		}
4169
4170		if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) {
4171			/*
4172			 * On H2A4, revert to a slower slewrate
4173			 * on non-paced transfers.
4174			 */
4175			iocell_opts[AHD_PRECOMP_SLEW_INDEX] &=
4176			    ~AHD_SLEWRATE_MASK;
4177		}
4178	}
4179
4180	ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PRECOMP_SLEW);
4181	ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_PRECOMP_SLEW_INDEX]);
4182	ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_AMPLITUDE);
4183	ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_AMPLITUDE_INDEX]);
4184
4185	ahd_outb(ahd, NEGPERIOD, period);
4186	ahd_outb(ahd, NEGPPROPTS, ppr_opts);
4187	ahd_outb(ahd, NEGOFFSET, offset);
4188
4189	if (tinfo->width == MSG_EXT_WDTR_BUS_16_BIT)
4190		con_opts |= WIDEXFER;
4191
4192	/*
4193	 * Slow down our CRC interval to be
4194	 * compatible with packetized U320 devices
4195	 * that can't handle a CRC at full speed
4196	 */
4197	if (ahd->features & AHD_AIC79XXB_SLOWCRC) {
4198		con_opts |= ENSLOWCRC;
4199	}
4200
4201	/*
4202	 * During packetized transfers, the target will
4203	 * give us the opportunity to send command packets
4204	 * without us asserting attention.
4205	 */
4206	if ((tinfo->ppr_options & MSG_EXT_PPR_IU_REQ) == 0)
4207		con_opts |= ENAUTOATNO;
4208	ahd_outb(ahd, NEGCONOPTS, con_opts);
4209	ahd_outb(ahd, NEGOADDR, saved_negoaddr);
4210	ahd_restore_modes(ahd, saved_modes);
4211}
4212
4213/*
4214 * When the transfer settings for a connection change, setup for
4215 * negotiation in pending SCBs to effect the change as quickly as
4216 * possible.  We also cancel any negotiations that are scheduled
4217 * for inflight SCBs that have not been started yet.
4218 */
4219static void
4220ahd_update_pending_scbs(struct ahd_softc *ahd)
4221{
4222	struct		scb *pending_scb;
4223	int		pending_scb_count;
4224	int		paused;
4225	u_int		saved_scbptr;
4226	ahd_mode_state	saved_modes;
4227
4228	/*
4229	 * Traverse the pending SCB list and ensure that all of the
4230	 * SCBs there have the proper settings.  We can only safely
4231	 * clear the negotiation required flag (setting requires the
4232	 * execution queue to be modified) and this is only possible
4233	 * if we are not already attempting to select out for this
4234	 * SCB.  For this reason, all callers only call this routine
4235	 * if we are changing the negotiation settings for the currently
4236	 * active transaction on the bus.
4237	 */
4238	pending_scb_count = 0;
4239	LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) {
4240		struct ahd_devinfo devinfo;
4241		struct ahd_initiator_tinfo *tinfo;
4242		struct ahd_tmode_tstate *tstate;
4243
4244		ahd_scb_devinfo(ahd, &devinfo, pending_scb);
4245		tinfo = ahd_fetch_transinfo(ahd, devinfo.channel,
4246					    devinfo.our_scsiid,
4247					    devinfo.target, &tstate);
4248		if ((tstate->auto_negotiate & devinfo.target_mask) == 0
4249		 && (pending_scb->flags & SCB_AUTO_NEGOTIATE) != 0) {
4250			pending_scb->flags &= ~SCB_AUTO_NEGOTIATE;
4251			pending_scb->hscb->control &= ~MK_MESSAGE;
4252		}
4253		ahd_sync_scb(ahd, pending_scb,
4254			     BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
4255		pending_scb_count++;
4256	}
4257
4258	if (pending_scb_count == 0)
4259		return;
4260
4261	if (ahd_is_paused(ahd)) {
4262		paused = 1;
4263	} else {
4264		paused = 0;
4265		ahd_pause(ahd);
4266	}
4267
4268	/*
4269	 * Force the sequencer to reinitialize the selection for
4270	 * the command at the head of the execution queue if it
4271	 * has already been setup.  The negotiation changes may
4272	 * effect whether we select-out with ATN.  It is only
4273	 * safe to clear ENSELO when the bus is not free and no
4274	 * selection is in progres or completed.
4275	 */
4276	saved_modes = ahd_save_modes(ahd);
4277	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4278	if ((ahd_inb(ahd, SCSISIGI) & BSYI) != 0
4279	 && (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) == 0)
4280		ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
4281	saved_scbptr = ahd_get_scbptr(ahd);
4282	/* Ensure that the hscbs down on the card match the new information */
4283	LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) {
4284		u_int	scb_tag;
4285		u_int	control;
4286
4287		scb_tag = SCB_GET_TAG(pending_scb);
4288		ahd_set_scbptr(ahd, scb_tag);
4289		control = ahd_inb_scbram(ahd, SCB_CONTROL);
4290		control &= ~MK_MESSAGE;
4291		control |= pending_scb->hscb->control & MK_MESSAGE;
4292		ahd_outb(ahd, SCB_CONTROL, control);
4293	}
4294	ahd_set_scbptr(ahd, saved_scbptr);
4295	ahd_restore_modes(ahd, saved_modes);
4296
4297	if (paused == 0)
4298		ahd_unpause(ahd);
4299}
4300
4301/**************************** Pathing Information *****************************/
4302static void
4303ahd_fetch_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4304{
4305	ahd_mode_state	saved_modes;
4306	u_int		saved_scsiid;
4307	role_t		role;
4308	int		our_id;
4309
4310	saved_modes = ahd_save_modes(ahd);
4311	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4312
4313	if (ahd_inb(ahd, SSTAT0) & TARGET)
4314		role = ROLE_TARGET;
4315	else
4316		role = ROLE_INITIATOR;
4317
4318	if (role == ROLE_TARGET
4319	 && (ahd_inb(ahd, SEQ_FLAGS) & CMDPHASE_PENDING) != 0) {
4320		/* We were selected, so pull our id from TARGIDIN */
4321		our_id = ahd_inb(ahd, TARGIDIN) & OID;
4322	} else if (role == ROLE_TARGET)
4323		our_id = ahd_inb(ahd, TOWNID);
4324	else
4325		our_id = ahd_inb(ahd, IOWNID);
4326
4327	saved_scsiid = ahd_inb(ahd, SAVED_SCSIID);
4328	ahd_compile_devinfo(devinfo,
4329			    our_id,
4330			    SCSIID_TARGET(ahd, saved_scsiid),
4331			    ahd_inb(ahd, SAVED_LUN),
4332			    SCSIID_CHANNEL(ahd, saved_scsiid),
4333			    role);
4334	ahd_restore_modes(ahd, saved_modes);
4335}
4336
4337void
4338ahd_print_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4339{
4340	printk("%s:%c:%d:%d: ", ahd_name(ahd), 'A',
4341	       devinfo->target, devinfo->lun);
4342}
4343
4344static const struct ahd_phase_table_entry*
4345ahd_lookup_phase_entry(int phase)
4346{
4347	const struct ahd_phase_table_entry *entry;
4348	const struct ahd_phase_table_entry *last_entry;
4349
4350	/*
4351	 * num_phases doesn't include the default entry which
4352	 * will be returned if the phase doesn't match.
4353	 */
4354	last_entry = &ahd_phase_table[num_phases];
4355	for (entry = ahd_phase_table; entry < last_entry; entry++) {
4356		if (phase == entry->phase)
4357			break;
4358	}
4359	return (entry);
4360}
4361
4362void
4363ahd_compile_devinfo(struct ahd_devinfo *devinfo, u_int our_id, u_int target,
4364		    u_int lun, char channel, role_t role)
4365{
4366	devinfo->our_scsiid = our_id;
4367	devinfo->target = target;
4368	devinfo->lun = lun;
4369	devinfo->target_offset = target;
4370	devinfo->channel = channel;
4371	devinfo->role = role;
4372	if (channel == 'B')
4373		devinfo->target_offset += 8;
4374	devinfo->target_mask = (0x01 << devinfo->target_offset);
4375}
4376
4377static void
4378ahd_scb_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4379		struct scb *scb)
4380{
4381	role_t	role;
4382	int	our_id;
4383
4384	our_id = SCSIID_OUR_ID(scb->hscb->scsiid);
4385	role = ROLE_INITIATOR;
4386	if ((scb->hscb->control & TARGET_SCB) != 0)
4387		role = ROLE_TARGET;
4388	ahd_compile_devinfo(devinfo, our_id, SCB_GET_TARGET(ahd, scb),
4389			    SCB_GET_LUN(scb), SCB_GET_CHANNEL(ahd, scb), role);
4390}
4391
4392
4393/************************ Message Phase Processing ****************************/
4394/*
4395 * When an initiator transaction with the MK_MESSAGE flag either reconnects
4396 * or enters the initial message out phase, we are interrupted.  Fill our
4397 * outgoing message buffer with the appropriate message and beging handing
4398 * the message phase(s) manually.
4399 */
4400static void
4401ahd_setup_initiator_msgout(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4402			   struct scb *scb)
4403{
4404	/*
4405	 * To facilitate adding multiple messages together,
4406	 * each routine should increment the index and len
4407	 * variables instead of setting them explicitly.
4408	 */
4409	ahd->msgout_index = 0;
4410	ahd->msgout_len = 0;
4411
4412	if (ahd_currently_packetized(ahd))
4413		ahd->msg_flags |= MSG_FLAG_PACKETIZED;
4414
4415	if (ahd->send_msg_perror
4416	 && ahd_inb(ahd, MSG_OUT) == HOST_MSG) {
4417		ahd->msgout_buf[ahd->msgout_index++] = ahd->send_msg_perror;
4418		ahd->msgout_len++;
4419		ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4420#ifdef AHD_DEBUG
4421		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4422			printk("Setting up for Parity Error delivery\n");
4423#endif
4424		return;
4425	} else if (scb == NULL) {
4426		printk("%s: WARNING. No pending message for "
4427		       "I_T msgin.  Issuing NO-OP\n", ahd_name(ahd));
4428		ahd->msgout_buf[ahd->msgout_index++] = MSG_NOOP;
4429		ahd->msgout_len++;
4430		ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4431		return;
4432	}
4433
4434	if ((scb->flags & SCB_DEVICE_RESET) == 0
4435	 && (scb->flags & SCB_PACKETIZED) == 0
4436	 && ahd_inb(ahd, MSG_OUT) == MSG_IDENTIFYFLAG) {
4437		u_int identify_msg;
4438
4439		identify_msg = MSG_IDENTIFYFLAG | SCB_GET_LUN(scb);
4440		if ((scb->hscb->control & DISCENB) != 0)
4441			identify_msg |= MSG_IDENTIFY_DISCFLAG;
4442		ahd->msgout_buf[ahd->msgout_index++] = identify_msg;
4443		ahd->msgout_len++;
4444
4445		if ((scb->hscb->control & TAG_ENB) != 0) {
4446			ahd->msgout_buf[ahd->msgout_index++] =
4447			    scb->hscb->control & (TAG_ENB|SCB_TAG_TYPE);
4448			ahd->msgout_buf[ahd->msgout_index++] = SCB_GET_TAG(scb);
4449			ahd->msgout_len += 2;
4450		}
4451	}
4452
4453	if (scb->flags & SCB_DEVICE_RESET) {
4454		ahd->msgout_buf[ahd->msgout_index++] = MSG_BUS_DEV_RESET;
4455		ahd->msgout_len++;
4456		ahd_print_path(ahd, scb);
4457		printk("Bus Device Reset Message Sent\n");
4458		/*
4459		 * Clear our selection hardware in advance of
4460		 * the busfree.  We may have an entry in the waiting
4461		 * Q for this target, and we don't want to go about
4462		 * selecting while we handle the busfree and blow it
4463		 * away.
4464		 */
4465		ahd_outb(ahd, SCSISEQ0, 0);
4466	} else if ((scb->flags & SCB_ABORT) != 0) {
4467
4468		if ((scb->hscb->control & TAG_ENB) != 0) {
4469			ahd->msgout_buf[ahd->msgout_index++] = MSG_ABORT_TAG;
4470		} else {
4471			ahd->msgout_buf[ahd->msgout_index++] = MSG_ABORT;
4472		}
4473		ahd->msgout_len++;
4474		ahd_print_path(ahd, scb);
4475		printk("Abort%s Message Sent\n",
4476		       (scb->hscb->control & TAG_ENB) != 0 ? " Tag" : "");
4477		/*
4478		 * Clear our selection hardware in advance of
4479		 * the busfree.  We may have an entry in the waiting
4480		 * Q for this target, and we don't want to go about
4481		 * selecting while we handle the busfree and blow it
4482		 * away.
4483		 */
4484		ahd_outb(ahd, SCSISEQ0, 0);
4485	} else if ((scb->flags & (SCB_AUTO_NEGOTIATE|SCB_NEGOTIATE)) != 0) {
4486		ahd_build_transfer_msg(ahd, devinfo);
4487		/*
4488		 * Clear our selection hardware in advance of potential
4489		 * PPR IU status change busfree.  We may have an entry in
4490		 * the waiting Q for this target, and we don't want to go
4491		 * about selecting while we handle the busfree and blow
4492		 * it away.
4493		 */
4494		ahd_outb(ahd, SCSISEQ0, 0);
4495	} else {
4496		printk("ahd_intr: AWAITING_MSG for an SCB that "
4497		       "does not have a waiting message\n");
4498		printk("SCSIID = %x, target_mask = %x\n", scb->hscb->scsiid,
4499		       devinfo->target_mask);
4500		panic("SCB = %d, SCB Control = %x:%x, MSG_OUT = %x "
4501		      "SCB flags = %x", SCB_GET_TAG(scb), scb->hscb->control,
4502		      ahd_inb_scbram(ahd, SCB_CONTROL), ahd_inb(ahd, MSG_OUT),
4503		      scb->flags);
4504	}
4505
4506	/*
4507	 * Clear the MK_MESSAGE flag from the SCB so we aren't
4508	 * asked to send this message again.
4509	 */
4510	ahd_outb(ahd, SCB_CONTROL,
4511		 ahd_inb_scbram(ahd, SCB_CONTROL) & ~MK_MESSAGE);
4512	scb->hscb->control &= ~MK_MESSAGE;
4513	ahd->msgout_index = 0;
4514	ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4515}
4516
4517/*
4518 * Build an appropriate transfer negotiation message for the
4519 * currently active target.
4520 */
4521static void
4522ahd_build_transfer_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4523{
4524	/*
4525	 * We need to initiate transfer negotiations.
4526	 * If our current and goal settings are identical,
4527	 * we want to renegotiate due to a check condition.
4528	 */
4529	struct	ahd_initiator_tinfo *tinfo;
4530	struct	ahd_tmode_tstate *tstate;
4531	int	dowide;
4532	int	dosync;
4533	int	doppr;
4534	u_int	period;
4535	u_int	ppr_options;
4536	u_int	offset;
4537
4538	tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
4539				    devinfo->target, &tstate);
4540	/*
4541	 * Filter our period based on the current connection.
4542	 * If we can't perform DT transfers on this segment (not in LVD
4543	 * mode for instance), then our decision to issue a PPR message
4544	 * may change.
4545	 */
4546	period = tinfo->goal.period;
4547	offset = tinfo->goal.offset;
4548	ppr_options = tinfo->goal.ppr_options;
4549	/* Target initiated PPR is not allowed in the SCSI spec */
4550	if (devinfo->role == ROLE_TARGET)
4551		ppr_options = 0;
4552	ahd_devlimited_syncrate(ahd, tinfo, &period,
4553				&ppr_options, devinfo->role);
4554	dowide = tinfo->curr.width != tinfo->goal.width;
4555	dosync = tinfo->curr.offset != offset || tinfo->curr.period != period;
4556	/*
4557	 * Only use PPR if we have options that need it, even if the device
4558	 * claims to support it.  There might be an expander in the way
4559	 * that doesn't.
4560	 */
4561	doppr = ppr_options != 0;
4562
4563	if (!dowide && !dosync && !doppr) {
4564		dowide = tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT;
4565		dosync = tinfo->goal.offset != 0;
4566	}
4567
4568	if (!dowide && !dosync && !doppr) {
4569		/*
4570		 * Force async with a WDTR message if we have a wide bus,
4571		 * or just issue an SDTR with a 0 offset.
4572		 */
4573		if ((ahd->features & AHD_WIDE) != 0)
4574			dowide = 1;
4575		else
4576			dosync = 1;
4577
4578		if (bootverbose) {
4579			ahd_print_devinfo(ahd, devinfo);
4580			printk("Ensuring async\n");
4581		}
4582	}
4583	/* Target initiated PPR is not allowed in the SCSI spec */
4584	if (devinfo->role == ROLE_TARGET)
4585		doppr = 0;
4586
4587	/*
4588	 * Both the PPR message and SDTR message require the
4589	 * goal syncrate to be limited to what the target device
4590	 * is capable of handling (based on whether an LVD->SE
4591	 * expander is on the bus), so combine these two cases.
4592	 * Regardless, guarantee that if we are using WDTR and SDTR
4593	 * messages that WDTR comes first.
4594	 */
4595	if (doppr || (dosync && !dowide)) {
4596
4597		offset = tinfo->goal.offset;
4598		ahd_validate_offset(ahd, tinfo, period, &offset,
4599				    doppr ? tinfo->goal.width
4600					  : tinfo->curr.width,
4601				    devinfo->role);
4602		if (doppr) {
4603			ahd_construct_ppr(ahd, devinfo, period, offset,
4604					  tinfo->goal.width, ppr_options);
4605		} else {
4606			ahd_construct_sdtr(ahd, devinfo, period, offset);
4607		}
4608	} else {
4609		ahd_construct_wdtr(ahd, devinfo, tinfo->goal.width);
4610	}
4611}
4612
4613/*
4614 * Build a synchronous negotiation message in our message
4615 * buffer based on the input parameters.
4616 */
4617static void
4618ahd_construct_sdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4619		   u_int period, u_int offset)
4620{
4621	if (offset == 0)
4622		period = AHD_ASYNC_XFER_PERIOD;
4623	ahd->msgout_index += spi_populate_sync_msg(
4624			ahd->msgout_buf + ahd->msgout_index, period, offset);
4625	ahd->msgout_len += 5;
4626	if (bootverbose) {
4627		printk("(%s:%c:%d:%d): Sending SDTR period %x, offset %x\n",
4628		       ahd_name(ahd), devinfo->channel, devinfo->target,
4629		       devinfo->lun, period, offset);
4630	}
4631}
4632
4633/*
4634 * Build a wide negotiateion message in our message
4635 * buffer based on the input parameters.
4636 */
4637static void
4638ahd_construct_wdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4639		   u_int bus_width)
4640{
4641	ahd->msgout_index += spi_populate_width_msg(
4642			ahd->msgout_buf + ahd->msgout_index, bus_width);
4643	ahd->msgout_len += 4;
4644	if (bootverbose) {
4645		printk("(%s:%c:%d:%d): Sending WDTR %x\n",
4646		       ahd_name(ahd), devinfo->channel, devinfo->target,
4647		       devinfo->lun, bus_width);
4648	}
4649}
4650
4651/*
4652 * Build a parallel protocol request message in our message
4653 * buffer based on the input parameters.
4654 */
4655static void
4656ahd_construct_ppr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4657		  u_int period, u_int offset, u_int bus_width,
4658		  u_int ppr_options)
4659{
4660	/*
4661	 * Always request precompensation from
4662	 * the other target if we are running
4663	 * at paced syncrates.
4664	 */
4665	if (period <= AHD_SYNCRATE_PACED)
4666		ppr_options |= MSG_EXT_PPR_PCOMP_EN;
4667	if (offset == 0)
4668		period = AHD_ASYNC_XFER_PERIOD;
4669	ahd->msgout_index += spi_populate_ppr_msg(
4670			ahd->msgout_buf + ahd->msgout_index, period, offset,
4671			bus_width, ppr_options);
4672	ahd->msgout_len += 8;
4673	if (bootverbose) {
4674		printk("(%s:%c:%d:%d): Sending PPR bus_width %x, period %x, "
4675		       "offset %x, ppr_options %x\n", ahd_name(ahd),
4676		       devinfo->channel, devinfo->target, devinfo->lun,
4677		       bus_width, period, offset, ppr_options);
4678	}
4679}
4680
4681/*
4682 * Clear any active message state.
4683 */
4684static void
4685ahd_clear_msg_state(struct ahd_softc *ahd)
4686{
4687	ahd_mode_state saved_modes;
4688
4689	saved_modes = ahd_save_modes(ahd);
4690	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4691	ahd->send_msg_perror = 0;
4692	ahd->msg_flags = MSG_FLAG_NONE;
4693	ahd->msgout_len = 0;
4694	ahd->msgin_index = 0;
4695	ahd->msg_type = MSG_TYPE_NONE;
4696	if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0) {
4697		/*
4698		 * The target didn't care to respond to our
4699		 * message request, so clear ATN.
4700		 */
4701		ahd_outb(ahd, CLRSINT1, CLRATNO);
4702	}
4703	ahd_outb(ahd, MSG_OUT, MSG_NOOP);
4704	ahd_outb(ahd, SEQ_FLAGS2,
4705		 ahd_inb(ahd, SEQ_FLAGS2) & ~TARGET_MSG_PENDING);
4706	ahd_restore_modes(ahd, saved_modes);
4707}
4708
4709/*
4710 * Manual message loop handler.
4711 */
4712static void
4713ahd_handle_message_phase(struct ahd_softc *ahd)
4714{
4715	struct	ahd_devinfo devinfo;
4716	u_int	bus_phase;
4717	int	end_session;
4718
4719	ahd_fetch_devinfo(ahd, &devinfo);
4720	end_session = FALSE;
4721	bus_phase = ahd_inb(ahd, LASTPHASE);
4722
4723	if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0) {
4724		printk("LQIRETRY for LQIPHASE_OUTPKT\n");
4725		ahd_outb(ahd, LQCTL2, LQIRETRY);
4726	}
4727reswitch:
4728	switch (ahd->msg_type) {
4729	case MSG_TYPE_INITIATOR_MSGOUT:
4730	{
4731		int lastbyte;
4732		int phasemis;
4733		int msgdone;
4734
4735		if (ahd->msgout_len == 0 && ahd->send_msg_perror == 0)
4736			panic("HOST_MSG_LOOP interrupt with no active message");
4737
4738#ifdef AHD_DEBUG
4739		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4740			ahd_print_devinfo(ahd, &devinfo);
4741			printk("INITIATOR_MSG_OUT");
4742		}
4743#endif
4744		phasemis = bus_phase != P_MESGOUT;
4745		if (phasemis) {
4746#ifdef AHD_DEBUG
4747			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4748				printk(" PHASEMIS %s\n",
4749				       ahd_lookup_phase_entry(bus_phase)
4750							     ->phasemsg);
4751			}
4752#endif
4753			if (bus_phase == P_MESGIN) {
4754				/*
4755				 * Change gears and see if
4756				 * this messages is of interest to
4757				 * us or should be passed back to
4758				 * the sequencer.
4759				 */
4760				ahd_outb(ahd, CLRSINT1, CLRATNO);
4761				ahd->send_msg_perror = 0;
4762				ahd->msg_type = MSG_TYPE_INITIATOR_MSGIN;
4763				ahd->msgin_index = 0;
4764				goto reswitch;
4765			}
4766			end_session = TRUE;
4767			break;
4768		}
4769
4770		if (ahd->send_msg_perror) {
4771			ahd_outb(ahd, CLRSINT1, CLRATNO);
4772			ahd_outb(ahd, CLRSINT1, CLRREQINIT);
4773#ifdef AHD_DEBUG
4774			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4775				printk(" byte 0x%x\n", ahd->send_msg_perror);
4776#endif
4777			/*
4778			 * If we are notifying the target of a CRC error
4779			 * during packetized operations, the target is
4780			 * within its rights to acknowledge our message
4781			 * with a busfree.
4782			 */
4783			if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0
4784			 && ahd->send_msg_perror == MSG_INITIATOR_DET_ERR)
4785				ahd->msg_flags |= MSG_FLAG_EXPECT_IDE_BUSFREE;
4786
4787			ahd_outb(ahd, RETURN_2, ahd->send_msg_perror);
4788			ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE);
4789			break;
4790		}
4791
4792		msgdone	= ahd->msgout_index == ahd->msgout_len;
4793		if (msgdone) {
4794			/*
4795			 * The target has requested a retry.
4796			 * Re-assert ATN, reset our message index to
4797			 * 0, and try again.
4798			 */
4799			ahd->msgout_index = 0;
4800			ahd_assert_atn(ahd);
4801		}
4802
4803		lastbyte = ahd->msgout_index == (ahd->msgout_len - 1);
4804		if (lastbyte) {
4805			/* Last byte is signified by dropping ATN */
4806			ahd_outb(ahd, CLRSINT1, CLRATNO);
4807		}
4808
4809		/*
4810		 * Clear our interrupt status and present
4811		 * the next byte on the bus.
4812		 */
4813		ahd_outb(ahd, CLRSINT1, CLRREQINIT);
4814#ifdef AHD_DEBUG
4815		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4816			printk(" byte 0x%x\n",
4817			       ahd->msgout_buf[ahd->msgout_index]);
4818#endif
4819		ahd_outb(ahd, RETURN_2, ahd->msgout_buf[ahd->msgout_index++]);
4820		ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE);
4821		break;
4822	}
4823	case MSG_TYPE_INITIATOR_MSGIN:
4824	{
4825		int phasemis;
4826		int message_done;
4827
4828#ifdef AHD_DEBUG
4829		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4830			ahd_print_devinfo(ahd, &devinfo);
4831			printk("INITIATOR_MSG_IN");
4832		}
4833#endif
4834		phasemis = bus_phase != P_MESGIN;
4835		if (phasemis) {
4836#ifdef AHD_DEBUG
4837			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4838				printk(" PHASEMIS %s\n",
4839				       ahd_lookup_phase_entry(bus_phase)
4840							     ->phasemsg);
4841			}
4842#endif
4843			ahd->msgin_index = 0;
4844			if (bus_phase == P_MESGOUT
4845			 && (ahd->send_msg_perror != 0
4846			  || (ahd->msgout_len != 0
4847			   && ahd->msgout_index == 0))) {
4848				ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4849				goto reswitch;
4850			}
4851			end_session = TRUE;
4852			break;
4853		}
4854
4855		/* Pull the byte in without acking it */
4856		ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIBUS);
4857#ifdef AHD_DEBUG
4858		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4859			printk(" byte 0x%x\n",
4860			       ahd->msgin_buf[ahd->msgin_index]);
4861#endif
4862
4863		message_done = ahd_parse_msg(ahd, &devinfo);
4864
4865		if (message_done) {
4866			/*
4867			 * Clear our incoming message buffer in case there
4868			 * is another message following this one.
4869			 */
4870			ahd->msgin_index = 0;
4871
4872			/*
4873			 * If this message illicited a response,
4874			 * assert ATN so the target takes us to the
4875			 * message out phase.
4876			 */
4877			if (ahd->msgout_len != 0) {
4878#ifdef AHD_DEBUG
4879				if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4880					ahd_print_devinfo(ahd, &devinfo);
4881					printk("Asserting ATN for response\n");
4882				}
4883#endif
4884				ahd_assert_atn(ahd);
4885			}
4886		} else
4887			ahd->msgin_index++;
4888
4889		if (message_done == MSGLOOP_TERMINATED) {
4890			end_session = TRUE;
4891		} else {
4892			/* Ack the byte */
4893			ahd_outb(ahd, CLRSINT1, CLRREQINIT);
4894			ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_READ);
4895		}
4896		break;
4897	}
4898	case MSG_TYPE_TARGET_MSGIN:
4899	{
4900		int msgdone;
4901		int msgout_request;
4902
4903		/*
4904		 * By default, the message loop will continue.
4905		 */
4906		ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG);
4907
4908		if (ahd->msgout_len == 0)
4909			panic("Target MSGIN with no active message");
4910
4911		/*
4912		 * If we interrupted a mesgout session, the initiator
4913		 * will not know this until our first REQ.  So, we
4914		 * only honor mesgout requests after we've sent our
4915		 * first byte.
4916		 */
4917		if ((ahd_inb(ahd, SCSISIGI) & ATNI) != 0
4918		 && ahd->msgout_index > 0)
4919			msgout_request = TRUE;
4920		else
4921			msgout_request = FALSE;
4922
4923		if (msgout_request) {
4924
4925			/*
4926			 * Change gears and see if
4927			 * this messages is of interest to
4928			 * us or should be passed back to
4929			 * the sequencer.
4930			 */
4931			ahd->msg_type = MSG_TYPE_TARGET_MSGOUT;
4932			ahd_outb(ahd, SCSISIGO, P_MESGOUT | BSYO);
4933			ahd->msgin_index = 0;
4934			/* Dummy read to REQ for first byte */
4935			ahd_inb(ahd, SCSIDAT);
4936			ahd_outb(ahd, SXFRCTL0,
4937				 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4938			break;
4939		}
4940
4941		msgdone = ahd->msgout_index == ahd->msgout_len;
4942		if (msgdone) {
4943			ahd_outb(ahd, SXFRCTL0,
4944				 ahd_inb(ahd, SXFRCTL0) & ~SPIOEN);
4945			end_session = TRUE;
4946			break;
4947		}
4948
4949		/*
4950		 * Present the next byte on the bus.
4951		 */
4952		ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4953		ahd_outb(ahd, SCSIDAT, ahd->msgout_buf[ahd->msgout_index++]);
4954		break;
4955	}
4956	case MSG_TYPE_TARGET_MSGOUT:
4957	{
4958		int lastbyte;
4959		int msgdone;
4960
4961		/*
4962		 * By default, the message loop will continue.
4963		 */
4964		ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG);
4965
4966		/*
4967		 * The initiator signals that this is
4968		 * the last byte by dropping ATN.
4969		 */
4970		lastbyte = (ahd_inb(ahd, SCSISIGI) & ATNI) == 0;
4971
4972		/*
4973		 * Read the latched byte, but turn off SPIOEN first
4974		 * so that we don't inadvertently cause a REQ for the
4975		 * next byte.
4976		 */
4977		ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) & ~SPIOEN);
4978		ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIDAT);
4979		msgdone = ahd_parse_msg(ahd, &devinfo);
4980		if (msgdone == MSGLOOP_TERMINATED) {
4981			/*
4982			 * The message is *really* done in that it caused
4983			 * us to go to bus free.  The sequencer has already
4984			 * been reset at this point, so pull the ejection
4985			 * handle.
4986			 */
4987			return;
4988		}
4989
4990		ahd->msgin_index++;
4991
4992		/*
4993		 * XXX Read spec about initiator dropping ATN too soon
4994		 *     and use msgdone to detect it.
4995		 */
4996		if (msgdone == MSGLOOP_MSGCOMPLETE) {
4997			ahd->msgin_index = 0;
4998
4999			/*
5000			 * If this message illicited a response, transition
5001			 * to the Message in phase and send it.
5002			 */
5003			if (ahd->msgout_len != 0) {
5004				ahd_outb(ahd, SCSISIGO, P_MESGIN | BSYO);
5005				ahd_outb(ahd, SXFRCTL0,
5006					 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
5007				ahd->msg_type = MSG_TYPE_TARGET_MSGIN;
5008				ahd->msgin_index = 0;
5009				break;
5010			}
5011		}
5012
5013		if (lastbyte)
5014			end_session = TRUE;
5015		else {
5016			/* Ask for the next byte. */
5017			ahd_outb(ahd, SXFRCTL0,
5018				 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
5019		}
5020
5021		break;
5022	}
5023	default:
5024		panic("Unknown REQINIT message type");
5025	}
5026
5027	if (end_session) {
5028		if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0) {
5029			printk("%s: Returning to Idle Loop\n",
5030			       ahd_name(ahd));
5031			ahd_clear_msg_state(ahd);
5032
5033			/*
5034			 * Perform the equivalent of a clear_target_state.
5035			 */
5036			ahd_outb(ahd, LASTPHASE, P_BUSFREE);
5037			ahd_outb(ahd, SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT);
5038			ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET);
5039		} else {
5040			ahd_clear_msg_state(ahd);
5041			ahd_outb(ahd, RETURN_1, EXIT_MSG_LOOP);
5042		}
5043	}
5044}
5045
5046/*
5047 * See if we sent a particular extended message to the target.
5048 * If "full" is true, return true only if the target saw the full
5049 * message.  If "full" is false, return true if the target saw at
5050 * least the first byte of the message.
5051 */
5052static int
5053ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type, u_int msgval, int full)
5054{
5055	int found;
5056	u_int index;
5057
5058	found = FALSE;
5059	index = 0;
5060
5061	while (index < ahd->msgout_len) {
5062		if (ahd->msgout_buf[index] == MSG_EXTENDED) {
5063			u_int end_index;
5064
5065			end_index = index + 1 + ahd->msgout_buf[index + 1];
5066			if (ahd->msgout_buf[index+2] == msgval
5067			 && type == AHDMSG_EXT) {
5068
5069				if (full) {
5070					if (ahd->msgout_index > end_index)
5071						found = TRUE;
5072				} else if (ahd->msgout_index > index)
5073					found = TRUE;
5074			}
5075			index = end_index;
5076		} else if (ahd->msgout_buf[index] >= MSG_SIMPLE_TASK
5077			&& ahd->msgout_buf[index] <= MSG_IGN_WIDE_RESIDUE) {
5078
5079			/* Skip tag type and tag id or residue param*/
5080			index += 2;
5081		} else {
5082			/* Single byte message */
5083			if (type == AHDMSG_1B
5084			 && ahd->msgout_index > index
5085			 && (ahd->msgout_buf[index] == msgval
5086			  || ((ahd->msgout_buf[index] & MSG_IDENTIFYFLAG) != 0
5087			   && msgval == MSG_IDENTIFYFLAG)))
5088				found = TRUE;
5089			index++;
5090		}
5091
5092		if (found)
5093			break;
5094	}
5095	return (found);
5096}
5097
5098/*
5099 * Wait for a complete incoming message, parse it, and respond accordingly.
5100 */
5101static int
5102ahd_parse_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
5103{
5104	struct	ahd_initiator_tinfo *tinfo;
5105	struct	ahd_tmode_tstate *tstate;
5106	int	reject;
5107	int	done;
5108	int	response;
5109
5110	done = MSGLOOP_IN_PROG;
5111	response = FALSE;
5112	reject = FALSE;
5113	tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
5114				    devinfo->target, &tstate);
5115
5116	/*
5117	 * Parse as much of the message as is available,
5118	 * rejecting it if we don't support it.  When
5119	 * the entire message is available and has been
5120	 * handled, return MSGLOOP_MSGCOMPLETE, indicating
5121	 * that we have parsed an entire message.
5122	 *
5123	 * In the case of extended messages, we accept the length
5124	 * byte outright and perform more checking once we know the
5125	 * extended message type.
5126	 */
5127	switch (ahd->msgin_buf[0]) {
5128	case MSG_DISCONNECT:
5129	case MSG_SAVEDATAPOINTER:
5130	case MSG_CMDCOMPLETE:
5131	case MSG_RESTOREPOINTERS:
5132	case MSG_IGN_WIDE_RESIDUE:
5133		/*
5134		 * End our message loop as these are messages
5135		 * the sequencer handles on its own.
5136		 */
5137		done = MSGLOOP_TERMINATED;
5138		break;
5139	case MSG_MESSAGE_REJECT:
5140		response = ahd_handle_msg_reject(ahd, devinfo);
5141		/* FALLTHROUGH */
5142	case MSG_NOOP:
5143		done = MSGLOOP_MSGCOMPLETE;
5144		break;
5145	case MSG_EXTENDED:
5146	{
5147		/* Wait for enough of the message to begin validation */
5148		if (ahd->msgin_index < 2)
5149			break;
5150		switch (ahd->msgin_buf[2]) {
5151		case MSG_EXT_SDTR:
5152		{
5153			u_int	 period;
5154			u_int	 ppr_options;
5155			u_int	 offset;
5156			u_int	 saved_offset;
5157
5158			if (ahd->msgin_buf[1] != MSG_EXT_SDTR_LEN) {
5159				reject = TRUE;
5160				break;
5161			}
5162
5163			/*
5164			 * Wait until we have both args before validating
5165			 * and acting on this message.
5166			 *
5167			 * Add one to MSG_EXT_SDTR_LEN to account for
5168			 * the extended message preamble.
5169			 */
5170			if (ahd->msgin_index < (MSG_EXT_SDTR_LEN + 1))
5171				break;
5172
5173			period = ahd->msgin_buf[3];
5174			ppr_options = 0;
5175			saved_offset = offset = ahd->msgin_buf[4];
5176			ahd_devlimited_syncrate(ahd, tinfo, &period,
5177						&ppr_options, devinfo->role);
5178			ahd_validate_offset(ahd, tinfo, period, &offset,
5179					    tinfo->curr.width, devinfo->role);
5180			if (bootverbose) {
5181				printk("(%s:%c:%d:%d): Received "
5182				       "SDTR period %x, offset %x\n\t"
5183				       "Filtered to period %x, offset %x\n",
5184				       ahd_name(ahd), devinfo->channel,
5185				       devinfo->target, devinfo->lun,
5186				       ahd->msgin_buf[3], saved_offset,
5187				       period, offset);
5188			}
5189			ahd_set_syncrate(ahd, devinfo, period,
5190					 offset, ppr_options,
5191					 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5192					 /*paused*/TRUE);
5193
5194			/*
5195			 * See if we initiated Sync Negotiation
5196			 * and didn't have to fall down to async
5197			 * transfers.
5198			 */
5199			if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, TRUE)) {
5200				/* We started it */
5201				if (saved_offset != offset) {
5202					/* Went too low - force async */
5203					reject = TRUE;
5204				}
5205			} else {
5206				/*
5207				 * Send our own SDTR in reply
5208				 */
5209				if (bootverbose
5210				 && devinfo->role == ROLE_INITIATOR) {
5211					printk("(%s:%c:%d:%d): Target "
5212					       "Initiated SDTR\n",
5213					       ahd_name(ahd), devinfo->channel,
5214					       devinfo->target, devinfo->lun);
5215				}
5216				ahd->msgout_index = 0;
5217				ahd->msgout_len = 0;
5218				ahd_construct_sdtr(ahd, devinfo,
5219						   period, offset);
5220				ahd->msgout_index = 0;
5221				response = TRUE;
5222			}
5223			done = MSGLOOP_MSGCOMPLETE;
5224			break;
5225		}
5226		case MSG_EXT_WDTR:
5227		{
5228			u_int bus_width;
5229			u_int saved_width;
5230			u_int sending_reply;
5231
5232			sending_reply = FALSE;
5233			if (ahd->msgin_buf[1] != MSG_EXT_WDTR_LEN) {
5234				reject = TRUE;
5235				break;
5236			}
5237
5238			/*
5239			 * Wait until we have our arg before validating
5240			 * and acting on this message.
5241			 *
5242			 * Add one to MSG_EXT_WDTR_LEN to account for
5243			 * the extended message preamble.
5244			 */
5245			if (ahd->msgin_index < (MSG_EXT_WDTR_LEN + 1))
5246				break;
5247
5248			bus_width = ahd->msgin_buf[3];
5249			saved_width = bus_width;
5250			ahd_validate_width(ahd, tinfo, &bus_width,
5251					   devinfo->role);
5252			if (bootverbose) {
5253				printk("(%s:%c:%d:%d): Received WDTR "
5254				       "%x filtered to %x\n",
5255				       ahd_name(ahd), devinfo->channel,
5256				       devinfo->target, devinfo->lun,
5257				       saved_width, bus_width);
5258			}
5259
5260			if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, TRUE)) {
5261				/*
5262				 * Don't send a WDTR back to the
5263				 * target, since we asked first.
5264				 * If the width went higher than our
5265				 * request, reject it.
5266				 */
5267				if (saved_width > bus_width) {
5268					reject = TRUE;
5269					printk("(%s:%c:%d:%d): requested %dBit "
5270					       "transfers.  Rejecting...\n",
5271					       ahd_name(ahd), devinfo->channel,
5272					       devinfo->target, devinfo->lun,
5273					       8 * (0x01 << bus_width));
5274					bus_width = 0;
5275				}
5276			} else {
5277				/*
5278				 * Send our own WDTR in reply
5279				 */
5280				if (bootverbose
5281				 && devinfo->role == ROLE_INITIATOR) {
5282					printk("(%s:%c:%d:%d): Target "
5283					       "Initiated WDTR\n",
5284					       ahd_name(ahd), devinfo->channel,
5285					       devinfo->target, devinfo->lun);
5286				}
5287				ahd->msgout_index = 0;
5288				ahd->msgout_len = 0;
5289				ahd_construct_wdtr(ahd, devinfo, bus_width);
5290				ahd->msgout_index = 0;
5291				response = TRUE;
5292				sending_reply = TRUE;
5293			}
5294			/*
5295			 * After a wide message, we are async, but
5296			 * some devices don't seem to honor this portion
5297			 * of the spec.  Force a renegotiation of the
5298			 * sync component of our transfer agreement even
5299			 * if our goal is async.  By updating our width
5300			 * after forcing the negotiation, we avoid
5301			 * renegotiating for width.
5302			 */
5303			ahd_update_neg_request(ahd, devinfo, tstate,
5304					       tinfo, AHD_NEG_ALWAYS);
5305			ahd_set_width(ahd, devinfo, bus_width,
5306				      AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5307				      /*paused*/TRUE);
5308			if (sending_reply == FALSE && reject == FALSE) {
5309
5310				/*
5311				 * We will always have an SDTR to send.
5312				 */
5313				ahd->msgout_index = 0;
5314				ahd->msgout_len = 0;
5315				ahd_build_transfer_msg(ahd, devinfo);
5316				ahd->msgout_index = 0;
5317				response = TRUE;
5318			}
5319			done = MSGLOOP_MSGCOMPLETE;
5320			break;
5321		}
5322		case MSG_EXT_PPR:
5323		{
5324			u_int	period;
5325			u_int	offset;
5326			u_int	bus_width;
5327			u_int	ppr_options;
5328			u_int	saved_width;
5329			u_int	saved_offset;
5330			u_int	saved_ppr_options;
5331
5332			if (ahd->msgin_buf[1] != MSG_EXT_PPR_LEN) {
5333				reject = TRUE;
5334				break;
5335			}
5336
5337			/*
5338			 * Wait until we have all args before validating
5339			 * and acting on this message.
5340			 *
5341			 * Add one to MSG_EXT_PPR_LEN to account for
5342			 * the extended message preamble.
5343			 */
5344			if (ahd->msgin_index < (MSG_EXT_PPR_LEN + 1))
5345				break;
5346
5347			period = ahd->msgin_buf[3];
5348			offset = ahd->msgin_buf[5];
5349			bus_width = ahd->msgin_buf[6];
5350			saved_width = bus_width;
5351			ppr_options = ahd->msgin_buf[7];
5352			/*
5353			 * According to the spec, a DT only
5354			 * period factor with no DT option
5355			 * set implies async.
5356			 */
5357			if ((ppr_options & MSG_EXT_PPR_DT_REQ) == 0
5358			 && period <= 9)
5359				offset = 0;
5360			saved_ppr_options = ppr_options;
5361			saved_offset = offset;
5362
5363			/*
5364			 * Transfer options are only available if we
5365			 * are negotiating wide.
5366			 */
5367			if (bus_width == 0)
5368				ppr_options &= MSG_EXT_PPR_QAS_REQ;
5369
5370			ahd_validate_width(ahd, tinfo, &bus_width,
5371					   devinfo->role);
5372			ahd_devlimited_syncrate(ahd, tinfo, &period,
5373						&ppr_options, devinfo->role);
5374			ahd_validate_offset(ahd, tinfo, period, &offset,
5375					    bus_width, devinfo->role);
5376
5377			if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, TRUE)) {
5378				/*
5379				 * If we are unable to do any of the
5380				 * requested options (we went too low),
5381				 * then we'll have to reject the message.
5382				 */
5383				if (saved_width > bus_width
5384				 || saved_offset != offset
5385				 || saved_ppr_options != ppr_options) {
5386					reject = TRUE;
5387					period = 0;
5388					offset = 0;
5389					bus_width = 0;
5390					ppr_options = 0;
5391				}
5392			} else {
5393				if (devinfo->role != ROLE_TARGET)
5394					printk("(%s:%c:%d:%d): Target "
5395					       "Initiated PPR\n",
5396					       ahd_name(ahd), devinfo->channel,
5397					       devinfo->target, devinfo->lun);
5398				else
5399					printk("(%s:%c:%d:%d): Initiator "
5400					       "Initiated PPR\n",
5401					       ahd_name(ahd), devinfo->channel,
5402					       devinfo->target, devinfo->lun);
5403				ahd->msgout_index = 0;
5404				ahd->msgout_len = 0;
5405				ahd_construct_ppr(ahd, devinfo, period, offset,
5406						  bus_width, ppr_options);
5407				ahd->msgout_index = 0;
5408				response = TRUE;
5409			}
5410			if (bootverbose) {
5411				printk("(%s:%c:%d:%d): Received PPR width %x, "
5412				       "period %x, offset %x,options %x\n"
5413				       "\tFiltered to width %x, period %x, "
5414				       "offset %x, options %x\n",
5415				       ahd_name(ahd), devinfo->channel,
5416				       devinfo->target, devinfo->lun,
5417				       saved_width, ahd->msgin_buf[3],
5418				       saved_offset, saved_ppr_options,
5419				       bus_width, period, offset, ppr_options);
5420			}
5421			ahd_set_width(ahd, devinfo, bus_width,
5422				      AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5423				      /*paused*/TRUE);
5424			ahd_set_syncrate(ahd, devinfo, period,
5425					 offset, ppr_options,
5426					 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5427					 /*paused*/TRUE);
5428
5429			done = MSGLOOP_MSGCOMPLETE;
5430			break;
5431		}
5432		default:
5433			/* Unknown extended message.  Reject it. */
5434			reject = TRUE;
5435			break;
5436		}
5437		break;
5438	}
5439#ifdef AHD_TARGET_MODE
5440	case MSG_BUS_DEV_RESET:
5441		ahd_handle_devreset(ahd, devinfo, CAM_LUN_WILDCARD,
5442				    CAM_BDR_SENT,
5443				    "Bus Device Reset Received",
5444				    /*verbose_level*/0);
5445		ahd_restart(ahd);
5446		done = MSGLOOP_TERMINATED;
5447		break;
5448	case MSG_ABORT_TAG:
5449	case MSG_ABORT:
5450	case MSG_CLEAR_QUEUE:
5451	{
5452		int tag;
5453
5454		/* Target mode messages */
5455		if (devinfo->role != ROLE_TARGET) {
5456			reject = TRUE;
5457			break;
5458		}
5459		tag = SCB_LIST_NULL;
5460		if (ahd->msgin_buf[0] == MSG_ABORT_TAG)
5461			tag = ahd_inb(ahd, INITIATOR_TAG);
5462		ahd_abort_scbs(ahd, devinfo->target, devinfo->channel,
5463			       devinfo->lun, tag, ROLE_TARGET,
5464			       CAM_REQ_ABORTED);
5465
5466		tstate = ahd->enabled_targets[devinfo->our_scsiid];
5467		if (tstate != NULL) {
5468			struct ahd_tmode_lstate* lstate;
5469
5470			lstate = tstate->enabled_luns[devinfo->lun];
5471			if (lstate != NULL) {
5472				ahd_queue_lstate_event(ahd, lstate,
5473						       devinfo->our_scsiid,
5474						       ahd->msgin_buf[0],
5475						       /*arg*/tag);
5476				ahd_send_lstate_events(ahd, lstate);
5477			}
5478		}
5479		ahd_restart(ahd);
5480		done = MSGLOOP_TERMINATED;
5481		break;
5482	}
5483#endif
5484	case MSG_QAS_REQUEST:
5485#ifdef AHD_DEBUG
5486		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
5487			printk("%s: QAS request.  SCSISIGI == 0x%x\n",
5488			       ahd_name(ahd), ahd_inb(ahd, SCSISIGI));
5489#endif
5490		ahd->msg_flags |= MSG_FLAG_EXPECT_QASREJ_BUSFREE;
5491		/* FALLTHROUGH */
5492	case MSG_TERM_IO_PROC:
5493	default:
5494		reject = TRUE;
5495		break;
5496	}
5497
5498	if (reject) {
5499		/*
5500		 * Setup to reject the message.
5501		 */
5502		ahd->msgout_index = 0;
5503		ahd->msgout_len = 1;
5504		ahd->msgout_buf[0] = MSG_MESSAGE_REJECT;
5505		done = MSGLOOP_MSGCOMPLETE;
5506		response = TRUE;
5507	}
5508
5509	if (done != MSGLOOP_IN_PROG && !response)
5510		/* Clear the outgoing message buffer */
5511		ahd->msgout_len = 0;
5512
5513	return (done);
5514}
5515
5516/*
5517 * Process a message reject message.
5518 */
5519static int
5520ahd_handle_msg_reject(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
5521{
5522	/*
5523	 * What we care about here is if we had an
5524	 * outstanding SDTR or WDTR message for this
5525	 * target.  If we did, this is a signal that
5526	 * the target is refusing negotiation.
5527	 */
5528	struct scb *scb;
5529	struct ahd_initiator_tinfo *tinfo;
5530	struct ahd_tmode_tstate *tstate;
5531	u_int scb_index;
5532	u_int last_msg;
5533	int   response = 0;
5534
5535	scb_index = ahd_get_scbptr(ahd);
5536	scb = ahd_lookup_scb(ahd, scb_index);
5537	tinfo = ahd_fetch_transinfo(ahd, devinfo->channel,
5538				    devinfo->our_scsiid,
5539				    devinfo->target, &tstate);
5540	/* Might be necessary */
5541	last_msg = ahd_inb(ahd, LAST_MSG);
5542
5543	if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, /*full*/FALSE)) {
5544		if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, /*full*/TRUE)
5545		 && tinfo->goal.period <= AHD_SYNCRATE_PACED) {
5546			/*
5547			 * Target may not like our SPI-4 PPR Options.
5548			 * Attempt to negotiate 80MHz which will turn
5549			 * off these options.
5550			 */
5551			if (bootverbose) {
5552				printk("(%s:%c:%d:%d): PPR Rejected. "
5553				       "Trying simple U160 PPR\n",
5554				       ahd_name(ahd), devinfo->channel,
5555				       devinfo->target, devinfo->lun);
5556			}
5557			tinfo->goal.period = AHD_SYNCRATE_DT;
5558			tinfo->goal.ppr_options &= MSG_EXT_PPR_IU_REQ
5559						|  MSG_EXT_PPR_QAS_REQ
5560						|  MSG_EXT_PPR_DT_REQ;
5561		} else {
5562			/*
5563			 * Target does not support the PPR message.
5564			 * Attempt to negotiate SPI-2 style.
5565			 */
5566			if (bootverbose) {
5567				printk("(%s:%c:%d:%d): PPR Rejected. "
5568				       "Trying WDTR/SDTR\n",
5569				       ahd_name(ahd), devinfo->channel,
5570				       devinfo->target, devinfo->lun);
5571			}
5572			tinfo->goal.ppr_options = 0;
5573			tinfo->curr.transport_version = 2;
5574			tinfo->goal.transport_version = 2;
5575		}
5576		ahd->msgout_index = 0;
5577		ahd->msgout_len = 0;
5578		ahd_build_transfer_msg(ahd, devinfo);
5579		ahd->msgout_index = 0;
5580		response = 1;
5581	} else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, /*full*/FALSE)) {
5582
5583		/* note 8bit xfers */
5584		printk("(%s:%c:%d:%d): refuses WIDE negotiation.  Using "
5585		       "8bit transfers\n", ahd_name(ahd),
5586		       devinfo->channel, devinfo->target, devinfo->lun);
5587		ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
5588			      AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5589			      /*paused*/TRUE);
5590		/*
5591		 * No need to clear the sync rate.  If the target
5592		 * did not accept the command, our syncrate is
5593		 * unaffected.  If the target started the negotiation,
5594		 * but rejected our response, we already cleared the
5595		 * sync rate before sending our WDTR.
5596		 */
5597		if (tinfo->goal.offset != tinfo->curr.offset) {
5598
5599			/* Start the sync negotiation */
5600			ahd->msgout_index = 0;
5601			ahd->msgout_len = 0;
5602			ahd_build_transfer_msg(ahd, devinfo);
5603			ahd->msgout_index = 0;
5604			response = 1;
5605		}
5606	} else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, /*full*/FALSE)) {
5607		/* note asynch xfers and clear flag */
5608		ahd_set_syncrate(ahd, devinfo, /*period*/0,
5609				 /*offset*/0, /*ppr_options*/0,
5610				 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5611				 /*paused*/TRUE);
5612		printk("(%s:%c:%d:%d): refuses synchronous negotiation. "
5613		       "Using asynchronous transfers\n",
5614		       ahd_name(ahd), devinfo->channel,
5615		       devinfo->target, devinfo->lun);
5616	} else if ((scb->hscb->control & MSG_SIMPLE_TASK) != 0) {
5617		int tag_type;
5618		int mask;
5619
5620		tag_type = (scb->hscb->control & MSG_SIMPLE_TASK);
5621
5622		if (tag_type == MSG_SIMPLE_TASK) {
5623			printk("(%s:%c:%d:%d): refuses tagged commands.  "
5624			       "Performing non-tagged I/O\n", ahd_name(ahd),
5625			       devinfo->channel, devinfo->target, devinfo->lun);
5626			ahd_set_tags(ahd, scb->io_ctx, devinfo, AHD_QUEUE_NONE);
5627			mask = ~0x23;
5628		} else {
5629			printk("(%s:%c:%d:%d): refuses %s tagged commands.  "
5630			       "Performing simple queue tagged I/O only\n",
5631			       ahd_name(ahd), devinfo->channel, devinfo->target,
5632			       devinfo->lun, tag_type == MSG_ORDERED_TASK
5633			       ? "ordered" : "head of queue");
5634			ahd_set_tags(ahd, scb->io_ctx, devinfo, AHD_QUEUE_BASIC);
5635			mask = ~0x03;
5636		}
5637
5638		/*
5639		 * Resend the identify for this CCB as the target
5640		 * may believe that the selection is invalid otherwise.
5641		 */
5642		ahd_outb(ahd, SCB_CONTROL,
5643			 ahd_inb_scbram(ahd, SCB_CONTROL) & mask);
5644	 	scb->hscb->control &= mask;
5645		ahd_set_transaction_tag(scb, /*enabled*/FALSE,
5646					/*type*/MSG_SIMPLE_TASK);
5647		ahd_outb(ahd, MSG_OUT, MSG_IDENTIFYFLAG);
5648		ahd_assert_atn(ahd);
5649		ahd_busy_tcl(ahd, BUILD_TCL(scb->hscb->scsiid, devinfo->lun),
5650			     SCB_GET_TAG(scb));
5651
5652		/*
5653		 * Requeue all tagged commands for this target
5654		 * currently in our possession so they can be
5655		 * converted to untagged commands.
5656		 */
5657		ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
5658				   SCB_GET_CHANNEL(ahd, scb),
5659				   SCB_GET_LUN(scb), /*tag*/SCB_LIST_NULL,
5660				   ROLE_INITIATOR, CAM_REQUEUE_REQ,
5661				   SEARCH_COMPLETE);
5662	} else if (ahd_sent_msg(ahd, AHDMSG_1B, MSG_IDENTIFYFLAG, TRUE)) {
5663		/*
5664		 * Most likely the device believes that we had
5665		 * previously negotiated packetized.
5666		 */
5667		ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE
5668			       |  MSG_FLAG_IU_REQ_CHANGED;
5669
5670		ahd_force_renegotiation(ahd, devinfo);
5671		ahd->msgout_index = 0;
5672		ahd->msgout_len = 0;
5673		ahd_build_transfer_msg(ahd, devinfo);
5674		ahd->msgout_index = 0;
5675		response = 1;
5676	} else {
5677		/*
5678		 * Otherwise, we ignore it.
5679		 */
5680		printk("%s:%c:%d: Message reject for %x -- ignored\n",
5681		       ahd_name(ahd), devinfo->channel, devinfo->target,
5682		       last_msg);
5683	}
5684	return (response);
5685}
5686
5687/*
5688 * Process an ingnore wide residue message.
5689 */
5690static void
5691ahd_handle_ign_wide_residue(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
5692{
5693	u_int scb_index;
5694	struct scb *scb;
5695
5696	scb_index = ahd_get_scbptr(ahd);
5697	scb = ahd_lookup_scb(ahd, scb_index);
5698	/*
5699	 * XXX Actually check data direction in the sequencer?
5700	 * Perhaps add datadir to some spare bits in the hscb?
5701	 */
5702	if ((ahd_inb(ahd, SEQ_FLAGS) & DPHASE) == 0
5703	 || ahd_get_transfer_dir(scb) != CAM_DIR_IN) {
5704		/*
5705		 * Ignore the message if we haven't
5706		 * seen an appropriate data phase yet.
5707		 */
5708	} else {
5709		/*
5710		 * If the residual occurred on the last
5711		 * transfer and the transfer request was
5712		 * expected to end on an odd count, do
5713		 * nothing.  Otherwise, subtract a byte
5714		 * and update the residual count accordingly.
5715		 */
5716		uint32_t sgptr;
5717
5718		sgptr = ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR);
5719		if ((sgptr & SG_LIST_NULL) != 0
5720		 && (ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE)
5721		     & SCB_XFERLEN_ODD) != 0) {
5722			/*
5723			 * If the residual occurred on the last
5724			 * transfer and the transfer request was
5725			 * expected to end on an odd count, do
5726			 * nothing.
5727			 */
5728		} else {
5729			uint32_t data_cnt;
5730			uint64_t data_addr;
5731			uint32_t sglen;
5732
5733			/* Pull in the rest of the sgptr */
5734			sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
5735			data_cnt = ahd_inl_scbram(ahd, SCB_RESIDUAL_DATACNT);
5736			if ((sgptr & SG_LIST_NULL) != 0) {
5737				/*
5738				 * The residual data count is not updated
5739				 * for the command run to completion case.
5740				 * Explicitly zero the count.
5741				 */
5742				data_cnt &= ~AHD_SG_LEN_MASK;
5743			}
5744			data_addr = ahd_inq(ahd, SHADDR);
5745			data_cnt += 1;
5746			data_addr -= 1;
5747			sgptr &= SG_PTR_MASK;
5748			if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
5749				struct ahd_dma64_seg *sg;
5750
5751				sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5752
5753				/*
5754				 * The residual sg ptr points to the next S/G
5755				 * to load so we must go back one.
5756				 */
5757				sg--;
5758				sglen = ahd_le32toh(sg->len) & AHD_SG_LEN_MASK;
5759				if (sg != scb->sg_list
5760				 && sglen < (data_cnt & AHD_SG_LEN_MASK)) {
5761
5762					sg--;
5763					sglen = ahd_le32toh(sg->len);
5764					/*
5765					 * Preserve High Address and SG_LIST
5766					 * bits while setting the count to 1.
5767					 */
5768					data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK));
5769					data_addr = ahd_le64toh(sg->addr)
5770						  + (sglen & AHD_SG_LEN_MASK)
5771						  - 1;
5772
5773					/*
5774					 * Increment sg so it points to the
5775					 * "next" sg.
5776					 */
5777					sg++;
5778					sgptr = ahd_sg_virt_to_bus(ahd, scb,
5779								   sg);
5780				}
5781			} else {
5782				struct ahd_dma_seg *sg;
5783
5784				sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5785
5786				/*
5787				 * The residual sg ptr points to the next S/G
5788				 * to load so we must go back one.
5789				 */
5790				sg--;
5791				sglen = ahd_le32toh(sg->len) & AHD_SG_LEN_MASK;
5792				if (sg != scb->sg_list
5793				 && sglen < (data_cnt & AHD_SG_LEN_MASK)) {
5794
5795					sg--;
5796					sglen = ahd_le32toh(sg->len);
5797					/*
5798					 * Preserve High Address and SG_LIST
5799					 * bits while setting the count to 1.
5800					 */
5801					data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK));
5802					data_addr = ahd_le32toh(sg->addr)
5803						  + (sglen & AHD_SG_LEN_MASK)
5804						  - 1;
5805
5806					/*
5807					 * Increment sg so it points to the
5808					 * "next" sg.
5809					 */
5810					sg++;
5811					sgptr = ahd_sg_virt_to_bus(ahd, scb,
5812								  sg);
5813				}
5814			}
5815			/*
5816			 * Toggle the "oddness" of the transfer length
5817			 * to handle this mid-transfer ignore wide
5818			 * residue.  This ensures that the oddness is
5819			 * correct for subsequent data transfers.
5820			 */
5821			ahd_outb(ahd, SCB_TASK_ATTRIBUTE,
5822			    ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE)
5823			    ^ SCB_XFERLEN_ODD);
5824
5825			ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
5826			ahd_outl(ahd, SCB_RESIDUAL_DATACNT, data_cnt);
5827			/*
5828			 * The FIFO's pointers will be updated if/when the
5829			 * sequencer re-enters a data phase.
5830			 */
5831		}
5832	}
5833}
5834
5835
5836/*
5837 * Reinitialize the data pointers for the active transfer
5838 * based on its current residual.
5839 */
5840static void
5841ahd_reinitialize_dataptrs(struct ahd_softc *ahd)
5842{
5843	struct		 scb *scb;
5844	ahd_mode_state	 saved_modes;
5845	u_int		 scb_index;
5846	u_int		 wait;
5847	uint32_t	 sgptr;
5848	uint32_t	 resid;
5849	uint64_t	 dataptr;
5850
5851	AHD_ASSERT_MODES(ahd, AHD_MODE_DFF0_MSK|AHD_MODE_DFF1_MSK,
5852			 AHD_MODE_DFF0_MSK|AHD_MODE_DFF1_MSK);
5853
5854	scb_index = ahd_get_scbptr(ahd);
5855	scb = ahd_lookup_scb(ahd, scb_index);
5856
5857	/*
5858	 * Release and reacquire the FIFO so we
5859	 * have a clean slate.
5860	 */
5861	ahd_outb(ahd, DFFSXFRCTL, CLRCHN);
5862	wait = 1000;
5863	while (--wait && !(ahd_inb(ahd, MDFFSTAT) & FIFOFREE))
5864		ahd_delay(100);
5865	if (wait == 0) {
5866		ahd_print_path(ahd, scb);
5867		printk("ahd_reinitialize_dataptrs: Forcing FIFO free.\n");
5868		ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT);
5869	}
5870	saved_modes = ahd_save_modes(ahd);
5871	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
5872	ahd_outb(ahd, DFFSTAT,
5873		 ahd_inb(ahd, DFFSTAT)
5874		| (saved_modes == 0x11 ? CURRFIFO_1 : CURRFIFO_0));
5875
5876	/*
5877	 * Determine initial values for data_addr and data_cnt
5878	 * for resuming the data phase.
5879	 */
5880	sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
5881	sgptr &= SG_PTR_MASK;
5882
5883	resid = (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 2) << 16)
5884	      | (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 1) << 8)
5885	      | ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT);
5886
5887	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
5888		struct ahd_dma64_seg *sg;
5889
5890		sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5891
5892		/* The residual sg_ptr always points to the next sg */
5893		sg--;
5894
5895		dataptr = ahd_le64toh(sg->addr)
5896			+ (ahd_le32toh(sg->len) & AHD_SG_LEN_MASK)
5897			- resid;
5898		ahd_outl(ahd, HADDR + 4, dataptr >> 32);
5899	} else {
5900		struct	 ahd_dma_seg *sg;
5901
5902		sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5903
5904		/* The residual sg_ptr always points to the next sg */
5905		sg--;
5906
5907		dataptr = ahd_le32toh(sg->addr)
5908			+ (ahd_le32toh(sg->len) & AHD_SG_LEN_MASK)
5909			- resid;
5910		ahd_outb(ahd, HADDR + 4,
5911			 (ahd_le32toh(sg->len) & ~AHD_SG_LEN_MASK) >> 24);
5912	}
5913	ahd_outl(ahd, HADDR, dataptr);
5914	ahd_outb(ahd, HCNT + 2, resid >> 16);
5915	ahd_outb(ahd, HCNT + 1, resid >> 8);
5916	ahd_outb(ahd, HCNT, resid);
5917}
5918
5919/*
5920 * Handle the effects of issuing a bus device reset message.
5921 */
5922static void
5923ahd_handle_devreset(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
5924		    u_int lun, cam_status status, char *message,
5925		    int verbose_level)
5926{
5927#ifdef AHD_TARGET_MODE
5928	struct ahd_tmode_tstate* tstate;
5929#endif
5930	int found;
5931
5932	found = ahd_abort_scbs(ahd, devinfo->target, devinfo->channel,
5933			       lun, SCB_LIST_NULL, devinfo->role,
5934			       status);
5935
5936#ifdef AHD_TARGET_MODE
5937	/*
5938	 * Send an immediate notify ccb to all target mord peripheral
5939	 * drivers affected by this action.
5940	 */
5941	tstate = ahd->enabled_targets[devinfo->our_scsiid];
5942	if (tstate != NULL) {
5943		u_int cur_lun;
5944		u_int max_lun;
5945
5946		if (lun != CAM_LUN_WILDCARD) {
5947			cur_lun = 0;
5948			max_lun = AHD_NUM_LUNS - 1;
5949		} else {
5950			cur_lun = lun;
5951			max_lun = lun;
5952		}
5953		for (;cur_lun <= max_lun; cur_lun++) {
5954			struct ahd_tmode_lstate* lstate;
5955
5956			lstate = tstate->enabled_luns[cur_lun];
5957			if (lstate == NULL)
5958				continue;
5959
5960			ahd_queue_lstate_event(ahd, lstate, devinfo->our_scsiid,
5961					       MSG_BUS_DEV_RESET, /*arg*/0);
5962			ahd_send_lstate_events(ahd, lstate);
5963		}
5964	}
5965#endif
5966
5967	/*
5968	 * Go back to async/narrow transfers and renegotiate.
5969	 */
5970	ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
5971		      AHD_TRANS_CUR, /*paused*/TRUE);
5972	ahd_set_syncrate(ahd, devinfo, /*period*/0, /*offset*/0,
5973			 /*ppr_options*/0, AHD_TRANS_CUR,
5974			 /*paused*/TRUE);
5975
5976	if (status != CAM_SEL_TIMEOUT)
5977		ahd_send_async(ahd, devinfo->channel, devinfo->target,
5978			       CAM_LUN_WILDCARD, AC_SENT_BDR);
5979
5980	if (message != NULL && bootverbose)
5981		printk("%s: %s on %c:%d. %d SCBs aborted\n", ahd_name(ahd),
5982		       message, devinfo->channel, devinfo->target, found);
5983}
5984
5985#ifdef AHD_TARGET_MODE
5986static void
5987ahd_setup_target_msgin(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
5988		       struct scb *scb)
5989{
5990
5991	/*
5992	 * To facilitate adding multiple messages together,
5993	 * each routine should increment the index and len
5994	 * variables instead of setting them explicitly.
5995	 */
5996	ahd->msgout_index = 0;
5997	ahd->msgout_len = 0;
5998
5999	if (scb != NULL && (scb->flags & SCB_AUTO_NEGOTIATE) != 0)
6000		ahd_build_transfer_msg(ahd, devinfo);
6001	else
6002		panic("ahd_intr: AWAITING target message with no message");
6003
6004	ahd->msgout_index = 0;
6005	ahd->msg_type = MSG_TYPE_TARGET_MSGIN;
6006}
6007#endif
6008/**************************** Initialization **********************************/
6009static u_int
6010ahd_sglist_size(struct ahd_softc *ahd)
6011{
6012	bus_size_t list_size;
6013
6014	list_size = sizeof(struct ahd_dma_seg) * AHD_NSEG;
6015	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
6016		list_size = sizeof(struct ahd_dma64_seg) * AHD_NSEG;
6017	return (list_size);
6018}
6019
6020/*
6021 * Calculate the optimum S/G List allocation size.  S/G elements used
6022 * for a given transaction must be physically contiguous.  Assume the
6023 * OS will allocate full pages to us, so it doesn't make sense to request
6024 * less than a page.
6025 */
6026static u_int
6027ahd_sglist_allocsize(struct ahd_softc *ahd)
6028{
6029	bus_size_t sg_list_increment;
6030	bus_size_t sg_list_size;
6031	bus_size_t max_list_size;
6032	bus_size_t best_list_size;
6033
6034	/* Start out with the minimum required for AHD_NSEG. */
6035	sg_list_increment = ahd_sglist_size(ahd);
6036	sg_list_size = sg_list_increment;
6037
6038	/* Get us as close as possible to a page in size. */
6039	while ((sg_list_size + sg_list_increment) <= PAGE_SIZE)
6040		sg_list_size += sg_list_increment;
6041
6042	/*
6043	 * Try to reduce the amount of wastage by allocating
6044	 * multiple pages.
6045	 */
6046	best_list_size = sg_list_size;
6047	max_list_size = roundup(sg_list_increment, PAGE_SIZE);
6048	if (max_list_size < 4 * PAGE_SIZE)
6049		max_list_size = 4 * PAGE_SIZE;
6050	if (max_list_size > (AHD_SCB_MAX_ALLOC * sg_list_increment))
6051		max_list_size = (AHD_SCB_MAX_ALLOC * sg_list_increment);
6052	while ((sg_list_size + sg_list_increment) <= max_list_size
6053	   &&  (sg_list_size % PAGE_SIZE) != 0) {
6054		bus_size_t new_mod;
6055		bus_size_t best_mod;
6056
6057		sg_list_size += sg_list_increment;
6058		new_mod = sg_list_size % PAGE_SIZE;
6059		best_mod = best_list_size % PAGE_SIZE;
6060		if (new_mod > best_mod || new_mod == 0) {
6061			best_list_size = sg_list_size;
6062		}
6063	}
6064	return (best_list_size);
6065}
6066
6067/*
6068 * Allocate a controller structure for a new device
6069 * and perform initial initializion.
6070 */
6071struct ahd_softc *
6072ahd_alloc(void *platform_arg, char *name)
6073{
6074	struct  ahd_softc *ahd;
6075
6076#ifndef	__FreeBSD__
6077	ahd = kmalloc(sizeof(*ahd), GFP_ATOMIC);
6078	if (!ahd) {
6079		printk("aic7xxx: cannot malloc softc!\n");
6080		kfree(name);
6081		return NULL;
6082	}
6083#else
6084	ahd = device_get_softc((device_t)platform_arg);
6085#endif
6086	memset(ahd, 0, sizeof(*ahd));
6087	ahd->seep_config = kmalloc(sizeof(*ahd->seep_config), GFP_ATOMIC);
6088	if (ahd->seep_config == NULL) {
6089#ifndef	__FreeBSD__
6090		kfree(ahd);
6091#endif
6092		kfree(name);
6093		return (NULL);
6094	}
6095	LIST_INIT(&ahd->pending_scbs);
6096	/* We don't know our unit number until the OSM sets it */
6097	ahd->name = name;
6098	ahd->unit = -1;
6099	ahd->description = NULL;
6100	ahd->bus_description = NULL;
6101	ahd->channel = 'A';
6102	ahd->chip = AHD_NONE;
6103	ahd->features = AHD_FENONE;
6104	ahd->bugs = AHD_BUGNONE;
6105	ahd->flags = AHD_SPCHK_ENB_A|AHD_RESET_BUS_A|AHD_TERM_ENB_A
6106		   | AHD_EXTENDED_TRANS_A|AHD_STPWLEVEL_A;
6107	ahd_timer_init(&ahd->reset_timer);
6108	ahd_timer_init(&ahd->stat_timer);
6109	ahd->int_coalescing_timer = AHD_INT_COALESCING_TIMER_DEFAULT;
6110	ahd->int_coalescing_maxcmds = AHD_INT_COALESCING_MAXCMDS_DEFAULT;
6111	ahd->int_coalescing_mincmds = AHD_INT_COALESCING_MINCMDS_DEFAULT;
6112	ahd->int_coalescing_threshold = AHD_INT_COALESCING_THRESHOLD_DEFAULT;
6113	ahd->int_coalescing_stop_threshold =
6114	    AHD_INT_COALESCING_STOP_THRESHOLD_DEFAULT;
6115
6116	if (ahd_platform_alloc(ahd, platform_arg) != 0) {
6117		ahd_free(ahd);
6118		ahd = NULL;
6119	}
6120#ifdef AHD_DEBUG
6121	if ((ahd_debug & AHD_SHOW_MEMORY) != 0) {
6122		printk("%s: scb size = 0x%x, hscb size = 0x%x\n",
6123		       ahd_name(ahd), (u_int)sizeof(struct scb),
6124		       (u_int)sizeof(struct hardware_scb));
6125	}
6126#endif
6127	return (ahd);
6128}
6129
6130int
6131ahd_softc_init(struct ahd_softc *ahd)
6132{
6133
6134	ahd->unpause = 0;
6135	ahd->pause = PAUSE;
6136	return (0);
6137}
6138
6139void
6140ahd_set_unit(struct ahd_softc *ahd, int unit)
6141{
6142	ahd->unit = unit;
6143}
6144
6145void
6146ahd_set_name(struct ahd_softc *ahd, char *name)
6147{
6148	if (ahd->name != NULL)
6149		kfree(ahd->name);
6150	ahd->name = name;
6151}
6152
6153void
6154ahd_free(struct ahd_softc *ahd)
6155{
6156	int i;
6157
6158	switch (ahd->init_level) {
6159	default:
6160	case 5:
6161		ahd_shutdown(ahd);
6162		/* FALLTHROUGH */
6163	case 4:
6164		ahd_dmamap_unload(ahd, ahd->shared_data_dmat,
6165				  ahd->shared_data_map.dmamap);
6166		/* FALLTHROUGH */
6167	case 3:
6168		ahd_dmamem_free(ahd, ahd->shared_data_dmat, ahd->qoutfifo,
6169				ahd->shared_data_map.dmamap);
6170		ahd_dmamap_destroy(ahd, ahd->shared_data_dmat,
6171				   ahd->shared_data_map.dmamap);
6172		/* FALLTHROUGH */
6173	case 2:
6174		ahd_dma_tag_destroy(ahd, ahd->shared_data_dmat);
6175	case 1:
6176#ifndef __linux__
6177		ahd_dma_tag_destroy(ahd, ahd->buffer_dmat);
6178#endif
6179		break;
6180	case 0:
6181		break;
6182	}
6183
6184#ifndef __linux__
6185	ahd_dma_tag_destroy(ahd, ahd->parent_dmat);
6186#endif
6187	ahd_platform_free(ahd);
6188	ahd_fini_scbdata(ahd);
6189	for (i = 0; i < AHD_NUM_TARGETS; i++) {
6190		struct ahd_tmode_tstate *tstate;
6191
6192		tstate = ahd->enabled_targets[i];
6193		if (tstate != NULL) {
6194#ifdef AHD_TARGET_MODE
6195			int j;
6196
6197			for (j = 0; j < AHD_NUM_LUNS; j++) {
6198				struct ahd_tmode_lstate *lstate;
6199
6200				lstate = tstate->enabled_luns[j];
6201				if (lstate != NULL) {
6202					xpt_free_path(lstate->path);
6203					kfree(lstate);
6204				}
6205			}
6206#endif
6207			kfree(tstate);
6208		}
6209	}
6210#ifdef AHD_TARGET_MODE
6211	if (ahd->black_hole != NULL) {
6212		xpt_free_path(ahd->black_hole->path);
6213		kfree(ahd->black_hole);
6214	}
6215#endif
6216	if (ahd->name != NULL)
6217		kfree(ahd->name);
6218	if (ahd->seep_config != NULL)
6219		kfree(ahd->seep_config);
6220	if (ahd->saved_stack != NULL)
6221		kfree(ahd->saved_stack);
6222#ifndef __FreeBSD__
6223	kfree(ahd);
6224#endif
6225	return;
6226}
6227
6228static void
6229ahd_shutdown(void *arg)
6230{
6231	struct	ahd_softc *ahd;
6232
6233	ahd = (struct ahd_softc *)arg;
6234
6235	/*
6236	 * Stop periodic timer callbacks.
6237	 */
6238	ahd_timer_stop(&ahd->reset_timer);
6239	ahd_timer_stop(&ahd->stat_timer);
6240
6241	/* This will reset most registers to 0, but not all */
6242	ahd_reset(ahd, /*reinit*/FALSE);
6243}
6244
6245/*
6246 * Reset the controller and record some information about it
6247 * that is only available just after a reset.  If "reinit" is
6248 * non-zero, this reset occurred after initial configuration
6249 * and the caller requests that the chip be fully reinitialized
6250 * to a runable state.  Chip interrupts are *not* enabled after
6251 * a reinitialization.  The caller must enable interrupts via
6252 * ahd_intr_enable().
6253 */
6254int
6255ahd_reset(struct ahd_softc *ahd, int reinit)
6256{
6257	u_int	 sxfrctl1;
6258	int	 wait;
6259	uint32_t cmd;
6260
6261	/*
6262	 * Preserve the value of the SXFRCTL1 register for all channels.
6263	 * It contains settings that affect termination and we don't want
6264	 * to disturb the integrity of the bus.
6265	 */
6266	ahd_pause(ahd);
6267	ahd_update_modes(ahd);
6268	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
6269	sxfrctl1 = ahd_inb(ahd, SXFRCTL1);
6270
6271	cmd = ahd_pci_read_config(ahd->dev_softc, PCIR_COMMAND, /*bytes*/2);
6272	if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) {
6273		uint32_t mod_cmd;
6274
6275		/*
6276		 * A4 Razor #632
6277		 * During the assertion of CHIPRST, the chip
6278		 * does not disable its parity logic prior to
6279		 * the start of the reset.  This may cause a
6280		 * parity error to be detected and thus a
6281		 * spurious SERR or PERR assertion.  Disble
6282		 * PERR and SERR responses during the CHIPRST.
6283		 */
6284		mod_cmd = cmd & ~(PCIM_CMD_PERRESPEN|PCIM_CMD_SERRESPEN);
6285		ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND,
6286				     mod_cmd, /*bytes*/2);
6287	}
6288	ahd_outb(ahd, HCNTRL, CHIPRST | ahd->pause);
6289
6290	/*
6291	 * Ensure that the reset has finished.  We delay 1000us
6292	 * prior to reading the register to make sure the chip
6293	 * has sufficiently completed its reset to handle register
6294	 * accesses.
6295	 */
6296	wait = 1000;
6297	do {
6298		ahd_delay(1000);
6299	} while (--wait && !(ahd_inb(ahd, HCNTRL) & CHIPRSTACK));
6300
6301	if (wait == 0) {
6302		printk("%s: WARNING - Failed chip reset!  "
6303		       "Trying to initialize anyway.\n", ahd_name(ahd));
6304	}
6305	ahd_outb(ahd, HCNTRL, ahd->pause);
6306
6307	if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) {
6308		/*
6309		 * Clear any latched PCI error status and restore
6310		 * previous SERR and PERR response enables.
6311		 */
6312		ahd_pci_write_config(ahd->dev_softc, PCIR_STATUS + 1,
6313				     0xFF, /*bytes*/1);
6314		ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND,
6315				     cmd, /*bytes*/2);
6316	}
6317
6318	/*
6319	 * Mode should be SCSI after a chip reset, but lets
6320	 * set it just to be safe.  We touch the MODE_PTR
6321	 * register directly so as to bypass the lazy update
6322	 * code in ahd_set_modes().
6323	 */
6324	ahd_known_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
6325	ahd_outb(ahd, MODE_PTR,
6326		 ahd_build_mode_state(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI));
6327
6328	/*
6329	 * Restore SXFRCTL1.
6330	 *
6331	 * We must always initialize STPWEN to 1 before we
6332	 * restore the saved values.  STPWEN is initialized
6333	 * to a tri-state condition which can only be cleared
6334	 * by turning it on.
6335	 */
6336	ahd_outb(ahd, SXFRCTL1, sxfrctl1|STPWEN);
6337	ahd_outb(ahd, SXFRCTL1, sxfrctl1);
6338
6339	/* Determine chip configuration */
6340	ahd->features &= ~AHD_WIDE;
6341	if ((ahd_inb(ahd, SBLKCTL) & SELWIDE) != 0)
6342		ahd->features |= AHD_WIDE;
6343
6344	/*
6345	 * If a recovery action has forced a chip reset,
6346	 * re-initialize the chip to our liking.
6347	 */
6348	if (reinit != 0)
6349		ahd_chip_init(ahd);
6350
6351	return (0);
6352}
6353
6354/*
6355 * Determine the number of SCBs available on the controller
6356 */
6357static int
6358ahd_probe_scbs(struct ahd_softc *ahd) {
6359	int i;
6360
6361	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
6362			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
6363	for (i = 0; i < AHD_SCB_MAX; i++) {
6364		int j;
6365
6366		ahd_set_scbptr(ahd, i);
6367		ahd_outw(ahd, SCB_BASE, i);
6368		for (j = 2; j < 64; j++)
6369			ahd_outb(ahd, SCB_BASE+j, 0);
6370		/* Start out life as unallocated (needing an abort) */
6371		ahd_outb(ahd, SCB_CONTROL, MK_MESSAGE);
6372		if (ahd_inw_scbram(ahd, SCB_BASE) != i)
6373			break;
6374		ahd_set_scbptr(ahd, 0);
6375		if (ahd_inw_scbram(ahd, SCB_BASE) != 0)
6376			break;
6377	}
6378	return (i);
6379}
6380
6381static void
6382ahd_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
6383{
6384	dma_addr_t *baddr;
6385
6386	baddr = (dma_addr_t *)arg;
6387	*baddr = segs->ds_addr;
6388}
6389
6390static void
6391ahd_initialize_hscbs(struct ahd_softc *ahd)
6392{
6393	int i;
6394
6395	for (i = 0; i < ahd->scb_data.maxhscbs; i++) {
6396		ahd_set_scbptr(ahd, i);
6397
6398		/* Clear the control byte. */
6399		ahd_outb(ahd, SCB_CONTROL, 0);
6400
6401		/* Set the next pointer */
6402		ahd_outw(ahd, SCB_NEXT, SCB_LIST_NULL);
6403	}
6404}
6405
6406static int
6407ahd_init_scbdata(struct ahd_softc *ahd)
6408{
6409	struct	scb_data *scb_data;
6410	int	i;
6411
6412	scb_data = &ahd->scb_data;
6413	TAILQ_INIT(&scb_data->free_scbs);
6414	for (i = 0; i < AHD_NUM_TARGETS * AHD_NUM_LUNS_NONPKT; i++)
6415		LIST_INIT(&scb_data->free_scb_lists[i]);
6416	LIST_INIT(&scb_data->any_dev_free_scb_list);
6417	SLIST_INIT(&scb_data->hscb_maps);
6418	SLIST_INIT(&scb_data->sg_maps);
6419	SLIST_INIT(&scb_data->sense_maps);
6420
6421	/* Determine the number of hardware SCBs and initialize them */
6422	scb_data->maxhscbs = ahd_probe_scbs(ahd);
6423	if (scb_data->maxhscbs == 0) {
6424		printk("%s: No SCB space found\n", ahd_name(ahd));
6425		return (ENXIO);
6426	}
6427
6428	ahd_initialize_hscbs(ahd);
6429
6430	/*
6431	 * Create our DMA tags.  These tags define the kinds of device
6432	 * accessible memory allocations and memory mappings we will
6433	 * need to perform during normal operation.
6434	 *
6435	 * Unless we need to further restrict the allocation, we rely
6436	 * on the restrictions of the parent dmat, hence the common
6437	 * use of MAXADDR and MAXSIZE.
6438	 */
6439
6440	/* DMA tag for our hardware scb structures */
6441	if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
6442			       /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
6443			       /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
6444			       /*highaddr*/BUS_SPACE_MAXADDR,
6445			       /*filter*/NULL, /*filterarg*/NULL,
6446			       PAGE_SIZE, /*nsegments*/1,
6447			       /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
6448			       /*flags*/0, &scb_data->hscb_dmat) != 0) {
6449		goto error_exit;
6450	}
6451
6452	scb_data->init_level++;
6453
6454	/* DMA tag for our S/G structures. */
6455	if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/8,
6456			       /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
6457			       /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
6458			       /*highaddr*/BUS_SPACE_MAXADDR,
6459			       /*filter*/NULL, /*filterarg*/NULL,
6460			       ahd_sglist_allocsize(ahd), /*nsegments*/1,
6461			       /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
6462			       /*flags*/0, &scb_data->sg_dmat) != 0) {
6463		goto error_exit;
6464	}
6465#ifdef AHD_DEBUG
6466	if ((ahd_debug & AHD_SHOW_MEMORY) != 0)
6467		printk("%s: ahd_sglist_allocsize = 0x%x\n", ahd_name(ahd),
6468		       ahd_sglist_allocsize(ahd));
6469#endif
6470
6471	scb_data->init_level++;
6472
6473	/* DMA tag for our sense buffers.  We allocate in page sized chunks */
6474	if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
6475			       /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
6476			       /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
6477			       /*highaddr*/BUS_SPACE_MAXADDR,
6478			       /*filter*/NULL, /*filterarg*/NULL,
6479			       PAGE_SIZE, /*nsegments*/1,
6480			       /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
6481			       /*flags*/0, &scb_data->sense_dmat) != 0) {
6482		goto error_exit;
6483	}
6484
6485	scb_data->init_level++;
6486
6487	/* Perform initial CCB allocation */
6488	ahd_alloc_scbs(ahd);
6489
6490	if (scb_data->numscbs == 0) {
6491		printk("%s: ahd_init_scbdata - "
6492		       "Unable to allocate initial scbs\n",
6493		       ahd_name(ahd));
6494		goto error_exit;
6495	}
6496
6497	/*
6498	 * Note that we were successful
6499	 */
6500	return (0);
6501
6502error_exit:
6503
6504	return (ENOMEM);
6505}
6506
6507static struct scb *
6508ahd_find_scb_by_tag(struct ahd_softc *ahd, u_int tag)
6509{
6510	struct scb *scb;
6511
6512	/*
6513	 * Look on the pending list.
6514	 */
6515	LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
6516		if (SCB_GET_TAG(scb) == tag)
6517			return (scb);
6518	}
6519
6520	/*
6521	 * Then on all of the collision free lists.
6522	 */
6523	TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
6524		struct scb *list_scb;
6525
6526		list_scb = scb;
6527		do {
6528			if (SCB_GET_TAG(list_scb) == tag)
6529				return (list_scb);
6530			list_scb = LIST_NEXT(list_scb, collision_links);
6531		} while (list_scb);
6532	}
6533
6534	/*
6535	 * And finally on the generic free list.
6536	 */
6537	LIST_FOREACH(scb, &ahd->scb_data.any_dev_free_scb_list, links.le) {
6538		if (SCB_GET_TAG(scb) == tag)
6539			return (scb);
6540	}
6541
6542	return (NULL);
6543}
6544
6545static void
6546ahd_fini_scbdata(struct ahd_softc *ahd)
6547{
6548	struct scb_data *scb_data;
6549
6550	scb_data = &ahd->scb_data;
6551	if (scb_data == NULL)
6552		return;
6553
6554	switch (scb_data->init_level) {
6555	default:
6556	case 7:
6557	{
6558		struct map_node *sns_map;
6559
6560		while ((sns_map = SLIST_FIRST(&scb_data->sense_maps)) != NULL) {
6561			SLIST_REMOVE_HEAD(&scb_data->sense_maps, links);
6562			ahd_dmamap_unload(ahd, scb_data->sense_dmat,
6563					  sns_map->dmamap);
6564			ahd_dmamem_free(ahd, scb_data->sense_dmat,
6565					sns_map->vaddr, sns_map->dmamap);
6566			kfree(sns_map);
6567		}
6568		ahd_dma_tag_destroy(ahd, scb_data->sense_dmat);
6569		/* FALLTHROUGH */
6570	}
6571	case 6:
6572	{
6573		struct map_node *sg_map;
6574
6575		while ((sg_map = SLIST_FIRST(&scb_data->sg_maps)) != NULL) {
6576			SLIST_REMOVE_HEAD(&scb_data->sg_maps, links);
6577			ahd_dmamap_unload(ahd, scb_data->sg_dmat,
6578					  sg_map->dmamap);
6579			ahd_dmamem_free(ahd, scb_data->sg_dmat,
6580					sg_map->vaddr, sg_map->dmamap);
6581			kfree(sg_map);
6582		}
6583		ahd_dma_tag_destroy(ahd, scb_data->sg_dmat);
6584		/* FALLTHROUGH */
6585	}
6586	case 5:
6587	{
6588		struct map_node *hscb_map;
6589
6590		while ((hscb_map = SLIST_FIRST(&scb_data->hscb_maps)) != NULL) {
6591			SLIST_REMOVE_HEAD(&scb_data->hscb_maps, links);
6592			ahd_dmamap_unload(ahd, scb_data->hscb_dmat,
6593					  hscb_map->dmamap);
6594			ahd_dmamem_free(ahd, scb_data->hscb_dmat,
6595					hscb_map->vaddr, hscb_map->dmamap);
6596			kfree(hscb_map);
6597		}
6598		ahd_dma_tag_destroy(ahd, scb_data->hscb_dmat);
6599		/* FALLTHROUGH */
6600	}
6601	case 4:
6602	case 3:
6603	case 2:
6604	case 1:
6605	case 0:
6606		break;
6607	}
6608}
6609
6610/*
6611 * DSP filter Bypass must be enabled until the first selection
6612 * after a change in bus mode (Razor #491 and #493).
6613 */
6614static void
6615ahd_setup_iocell_workaround(struct ahd_softc *ahd)
6616{
6617	ahd_mode_state saved_modes;
6618
6619	saved_modes = ahd_save_modes(ahd);
6620	ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
6621	ahd_outb(ahd, DSPDATACTL, ahd_inb(ahd, DSPDATACTL)
6622	       | BYPASSENAB | RCVROFFSTDIS | XMITOFFSTDIS);
6623	ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) | (ENSELDO|ENSELDI));
6624#ifdef AHD_DEBUG
6625	if ((ahd_debug & AHD_SHOW_MISC) != 0)
6626		printk("%s: Setting up iocell workaround\n", ahd_name(ahd));
6627#endif
6628	ahd_restore_modes(ahd, saved_modes);
6629	ahd->flags &= ~AHD_HAD_FIRST_SEL;
6630}
6631
6632static void
6633ahd_iocell_first_selection(struct ahd_softc *ahd)
6634{
6635	ahd_mode_state	saved_modes;
6636	u_int		sblkctl;
6637
6638	if ((ahd->flags & AHD_HAD_FIRST_SEL) != 0)
6639		return;
6640	saved_modes = ahd_save_modes(ahd);
6641	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
6642	sblkctl = ahd_inb(ahd, SBLKCTL);
6643	ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
6644#ifdef AHD_DEBUG
6645	if ((ahd_debug & AHD_SHOW_MISC) != 0)
6646		printk("%s: iocell first selection\n", ahd_name(ahd));
6647#endif
6648	if ((sblkctl & ENAB40) != 0) {
6649		ahd_outb(ahd, DSPDATACTL,
6650			 ahd_inb(ahd, DSPDATACTL) & ~BYPASSENAB);
6651#ifdef AHD_DEBUG
6652		if ((ahd_debug & AHD_SHOW_MISC) != 0)
6653			printk("%s: BYPASS now disabled\n", ahd_name(ahd));
6654#endif
6655	}
6656	ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) & ~(ENSELDO|ENSELDI));
6657	ahd_outb(ahd, CLRINT, CLRSCSIINT);
6658	ahd_restore_modes(ahd, saved_modes);
6659	ahd->flags |= AHD_HAD_FIRST_SEL;
6660}
6661
6662/*************************** SCB Management ***********************************/
6663static void
6664ahd_add_col_list(struct ahd_softc *ahd, struct scb *scb, u_int col_idx)
6665{
6666	struct	scb_list *free_list;
6667	struct	scb_tailq *free_tailq;
6668	struct	scb *first_scb;
6669
6670	scb->flags |= SCB_ON_COL_LIST;
6671	AHD_SET_SCB_COL_IDX(scb, col_idx);
6672	free_list = &ahd->scb_data.free_scb_lists[col_idx];
6673	free_tailq = &ahd->scb_data.free_scbs;
6674	first_scb = LIST_FIRST(free_list);
6675	if (first_scb != NULL) {
6676		LIST_INSERT_AFTER(first_scb, scb, collision_links);
6677	} else {
6678		LIST_INSERT_HEAD(free_list, scb, collision_links);
6679		TAILQ_INSERT_TAIL(free_tailq, scb, links.tqe);
6680	}
6681}
6682
6683static void
6684ahd_rem_col_list(struct ahd_softc *ahd, struct scb *scb)
6685{
6686	struct	scb_list *free_list;
6687	struct	scb_tailq *free_tailq;
6688	struct	scb *first_scb;
6689	u_int	col_idx;
6690
6691	scb->flags &= ~SCB_ON_COL_LIST;
6692	col_idx = AHD_GET_SCB_COL_IDX(ahd, scb);
6693	free_list = &ahd->scb_data.free_scb_lists[col_idx];
6694	free_tailq = &ahd->scb_data.free_scbs;
6695	first_scb = LIST_FIRST(free_list);
6696	if (first_scb == scb) {
6697		struct scb *next_scb;
6698
6699		/*
6700		 * Maintain order in the collision free
6701		 * lists for fairness if this device has
6702		 * other colliding tags active.
6703		 */
6704		next_scb = LIST_NEXT(scb, collision_links);
6705		if (next_scb != NULL) {
6706			TAILQ_INSERT_AFTER(free_tailq, scb,
6707					   next_scb, links.tqe);
6708		}
6709		TAILQ_REMOVE(free_tailq, scb, links.tqe);
6710	}
6711	LIST_REMOVE(scb, collision_links);
6712}
6713
6714/*
6715 * Get a free scb. If there are none, see if we can allocate a new SCB.
6716 */
6717struct scb *
6718ahd_get_scb(struct ahd_softc *ahd, u_int col_idx)
6719{
6720	struct scb *scb;
6721	int tries;
6722
6723	tries = 0;
6724look_again:
6725	TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
6726		if (AHD_GET_SCB_COL_IDX(ahd, scb) != col_idx) {
6727			ahd_rem_col_list(ahd, scb);
6728			goto found;
6729		}
6730	}
6731	if ((scb = LIST_FIRST(&ahd->scb_data.any_dev_free_scb_list)) == NULL) {
6732
6733		if (tries++ != 0)
6734			return (NULL);
6735		ahd_alloc_scbs(ahd);
6736		goto look_again;
6737	}
6738	LIST_REMOVE(scb, links.le);
6739	if (col_idx != AHD_NEVER_COL_IDX
6740	 && (scb->col_scb != NULL)
6741	 && (scb->col_scb->flags & SCB_ACTIVE) == 0) {
6742		LIST_REMOVE(scb->col_scb, links.le);
6743		ahd_add_col_list(ahd, scb->col_scb, col_idx);
6744	}
6745found:
6746	scb->flags |= SCB_ACTIVE;
6747	return (scb);
6748}
6749
6750/*
6751 * Return an SCB resource to the free list.
6752 */
6753void
6754ahd_free_scb(struct ahd_softc *ahd, struct scb *scb)
6755{
6756	/* Clean up for the next user */
6757	scb->flags = SCB_FLAG_NONE;
6758	scb->hscb->control = 0;
6759	ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = NULL;
6760
6761	if (scb->col_scb == NULL) {
6762
6763		/*
6764		 * No collision possible.  Just free normally.
6765		 */
6766		LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6767				 scb, links.le);
6768	} else if ((scb->col_scb->flags & SCB_ON_COL_LIST) != 0) {
6769
6770		/*
6771		 * The SCB we might have collided with is on
6772		 * a free collision list.  Put both SCBs on
6773		 * the generic list.
6774		 */
6775		ahd_rem_col_list(ahd, scb->col_scb);
6776		LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6777				 scb, links.le);
6778		LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6779				 scb->col_scb, links.le);
6780	} else if ((scb->col_scb->flags
6781		  & (SCB_PACKETIZED|SCB_ACTIVE)) == SCB_ACTIVE
6782		&& (scb->col_scb->hscb->control & TAG_ENB) != 0) {
6783
6784		/*
6785		 * The SCB we might collide with on the next allocation
6786		 * is still active in a non-packetized, tagged, context.
6787		 * Put us on the SCB collision list.
6788		 */
6789		ahd_add_col_list(ahd, scb,
6790				 AHD_GET_SCB_COL_IDX(ahd, scb->col_scb));
6791	} else {
6792		/*
6793		 * The SCB we might collide with on the next allocation
6794		 * is either active in a packetized context, or free.
6795		 * Since we can't collide, put this SCB on the generic
6796		 * free list.
6797		 */
6798		LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6799				 scb, links.le);
6800	}
6801
6802	ahd_platform_scb_free(ahd, scb);
6803}
6804
6805static void
6806ahd_alloc_scbs(struct ahd_softc *ahd)
6807{
6808	struct scb_data *scb_data;
6809	struct scb	*next_scb;
6810	struct hardware_scb *hscb;
6811	struct map_node *hscb_map;
6812	struct map_node *sg_map;
6813	struct map_node *sense_map;
6814	uint8_t		*segs;
6815	uint8_t		*sense_data;
6816	dma_addr_t	 hscb_busaddr;
6817	dma_addr_t	 sg_busaddr;
6818	dma_addr_t	 sense_busaddr;
6819	int		 newcount;
6820	int		 i;
6821
6822	scb_data = &ahd->scb_data;
6823	if (scb_data->numscbs >= AHD_SCB_MAX_ALLOC)
6824		/* Can't allocate any more */
6825		return;
6826
6827	if (scb_data->scbs_left != 0) {
6828		int offset;
6829
6830		offset = (PAGE_SIZE / sizeof(*hscb)) - scb_data->scbs_left;
6831		hscb_map = SLIST_FIRST(&scb_data->hscb_maps);
6832		hscb = &((struct hardware_scb *)hscb_map->vaddr)[offset];
6833		hscb_busaddr = hscb_map->physaddr + (offset * sizeof(*hscb));
6834	} else {
6835		hscb_map = kmalloc(sizeof(*hscb_map), GFP_ATOMIC);
6836
6837		if (hscb_map == NULL)
6838			return;
6839
6840		/* Allocate the next batch of hardware SCBs */
6841		if (ahd_dmamem_alloc(ahd, scb_data->hscb_dmat,
6842				     (void **)&hscb_map->vaddr,
6843				     BUS_DMA_NOWAIT, &hscb_map->dmamap) != 0) {
6844			kfree(hscb_map);
6845			return;
6846		}
6847
6848		SLIST_INSERT_HEAD(&scb_data->hscb_maps, hscb_map, links);
6849
6850		ahd_dmamap_load(ahd, scb_data->hscb_dmat, hscb_map->dmamap,
6851				hscb_map->vaddr, PAGE_SIZE, ahd_dmamap_cb,
6852				&hscb_map->physaddr, /*flags*/0);
6853
6854		hscb = (struct hardware_scb *)hscb_map->vaddr;
6855		hscb_busaddr = hscb_map->physaddr;
6856		scb_data->scbs_left = PAGE_SIZE / sizeof(*hscb);
6857	}
6858
6859	if (scb_data->sgs_left != 0) {
6860		int offset;
6861
6862		offset = ((ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd))
6863		       - scb_data->sgs_left) * ahd_sglist_size(ahd);
6864		sg_map = SLIST_FIRST(&scb_data->sg_maps);
6865		segs = sg_map->vaddr + offset;
6866		sg_busaddr = sg_map->physaddr + offset;
6867	} else {
6868		sg_map = kmalloc(sizeof(*sg_map), GFP_ATOMIC);
6869
6870		if (sg_map == NULL)
6871			return;
6872
6873		/* Allocate the next batch of S/G lists */
6874		if (ahd_dmamem_alloc(ahd, scb_data->sg_dmat,
6875				     (void **)&sg_map->vaddr,
6876				     BUS_DMA_NOWAIT, &sg_map->dmamap) != 0) {
6877			kfree(sg_map);
6878			return;
6879		}
6880
6881		SLIST_INSERT_HEAD(&scb_data->sg_maps, sg_map, links);
6882
6883		ahd_dmamap_load(ahd, scb_data->sg_dmat, sg_map->dmamap,
6884				sg_map->vaddr, ahd_sglist_allocsize(ahd),
6885				ahd_dmamap_cb, &sg_map->physaddr, /*flags*/0);
6886
6887		segs = sg_map->vaddr;
6888		sg_busaddr = sg_map->physaddr;
6889		scb_data->sgs_left =
6890		    ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd);
6891#ifdef AHD_DEBUG
6892		if (ahd_debug & AHD_SHOW_MEMORY)
6893			printk("Mapped SG data\n");
6894#endif
6895	}
6896
6897	if (scb_data->sense_left != 0) {
6898		int offset;
6899
6900		offset = PAGE_SIZE - (AHD_SENSE_BUFSIZE * scb_data->sense_left);
6901		sense_map = SLIST_FIRST(&scb_data->sense_maps);
6902		sense_data = sense_map->vaddr + offset;
6903		sense_busaddr = sense_map->physaddr + offset;
6904	} else {
6905		sense_map = kmalloc(sizeof(*sense_map), GFP_ATOMIC);
6906
6907		if (sense_map == NULL)
6908			return;
6909
6910		/* Allocate the next batch of sense buffers */
6911		if (ahd_dmamem_alloc(ahd, scb_data->sense_dmat,
6912				     (void **)&sense_map->vaddr,
6913				     BUS_DMA_NOWAIT, &sense_map->dmamap) != 0) {
6914			kfree(sense_map);
6915			return;
6916		}
6917
6918		SLIST_INSERT_HEAD(&scb_data->sense_maps, sense_map, links);
6919
6920		ahd_dmamap_load(ahd, scb_data->sense_dmat, sense_map->dmamap,
6921				sense_map->vaddr, PAGE_SIZE, ahd_dmamap_cb,
6922				&sense_map->physaddr, /*flags*/0);
6923
6924		sense_data = sense_map->vaddr;
6925		sense_busaddr = sense_map->physaddr;
6926		scb_data->sense_left = PAGE_SIZE / AHD_SENSE_BUFSIZE;
6927#ifdef AHD_DEBUG
6928		if (ahd_debug & AHD_SHOW_MEMORY)
6929			printk("Mapped sense data\n");
6930#endif
6931	}
6932
6933	newcount = min(scb_data->sense_left, scb_data->scbs_left);
6934	newcount = min(newcount, scb_data->sgs_left);
6935	newcount = min(newcount, (AHD_SCB_MAX_ALLOC - scb_data->numscbs));
6936	for (i = 0; i < newcount; i++) {
6937		struct scb_platform_data *pdata;
6938		u_int col_tag;
6939#ifndef __linux__
6940		int error;
6941#endif
6942
6943		next_scb = kmalloc(sizeof(*next_scb), GFP_ATOMIC);
6944		if (next_scb == NULL)
6945			break;
6946
6947		pdata = kmalloc(sizeof(*pdata), GFP_ATOMIC);
6948		if (pdata == NULL) {
6949			kfree(next_scb);
6950			break;
6951		}
6952		next_scb->platform_data = pdata;
6953		next_scb->hscb_map = hscb_map;
6954		next_scb->sg_map = sg_map;
6955		next_scb->sense_map = sense_map;
6956		next_scb->sg_list = segs;
6957		next_scb->sense_data = sense_data;
6958		next_scb->sense_busaddr = sense_busaddr;
6959		memset(hscb, 0, sizeof(*hscb));
6960		next_scb->hscb = hscb;
6961		hscb->hscb_busaddr = ahd_htole32(hscb_busaddr);
6962
6963		/*
6964		 * The sequencer always starts with the second entry.
6965		 * The first entry is embedded in the scb.
6966		 */
6967		next_scb->sg_list_busaddr = sg_busaddr;
6968		if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
6969			next_scb->sg_list_busaddr
6970			    += sizeof(struct ahd_dma64_seg);
6971		else
6972			next_scb->sg_list_busaddr += sizeof(struct ahd_dma_seg);
6973		next_scb->ahd_softc = ahd;
6974		next_scb->flags = SCB_FLAG_NONE;
6975#ifndef __linux__
6976		error = ahd_dmamap_create(ahd, ahd->buffer_dmat, /*flags*/0,
6977					  &next_scb->dmamap);
6978		if (error != 0) {
6979			kfree(next_scb);
6980			kfree(pdata);
6981			break;
6982		}
6983#endif
6984		next_scb->hscb->tag = ahd_htole16(scb_data->numscbs);
6985		col_tag = scb_data->numscbs ^ 0x100;
6986		next_scb->col_scb = ahd_find_scb_by_tag(ahd, col_tag);
6987		if (next_scb->col_scb != NULL)
6988			next_scb->col_scb->col_scb = next_scb;
6989		ahd_free_scb(ahd, next_scb);
6990		hscb++;
6991		hscb_busaddr += sizeof(*hscb);
6992		segs += ahd_sglist_size(ahd);
6993		sg_busaddr += ahd_sglist_size(ahd);
6994		sense_data += AHD_SENSE_BUFSIZE;
6995		sense_busaddr += AHD_SENSE_BUFSIZE;
6996		scb_data->numscbs++;
6997		scb_data->sense_left--;
6998		scb_data->scbs_left--;
6999		scb_data->sgs_left--;
7000	}
7001}
7002
7003void
7004ahd_controller_info(struct ahd_softc *ahd, char *buf)
7005{
7006	const char *speed;
7007	const char *type;
7008	int len;
7009
7010	len = sprintf(buf, "%s: ", ahd_chip_names[ahd->chip & AHD_CHIPID_MASK]);
7011	buf += len;
7012
7013	speed = "Ultra320 ";
7014	if ((ahd->features & AHD_WIDE) != 0) {
7015		type = "Wide ";
7016	} else {
7017		type = "Single ";
7018	}
7019	len = sprintf(buf, "%s%sChannel %c, SCSI Id=%d, ",
7020		      speed, type, ahd->channel, ahd->our_id);
7021	buf += len;
7022
7023	sprintf(buf, "%s, %d SCBs", ahd->bus_description,
7024		ahd->scb_data.maxhscbs);
7025}
7026
7027static const char *channel_strings[] = {
7028	"Primary Low",
7029	"Primary High",
7030	"Secondary Low",
7031	"Secondary High"
7032};
7033
7034static const char *termstat_strings[] = {
7035	"Terminated Correctly",
7036	"Over Terminated",
7037	"Under Terminated",
7038	"Not Configured"
7039};
7040
7041/***************************** Timer Facilities *******************************/
7042#define ahd_timer_init init_timer
7043#define ahd_timer_stop del_timer_sync
7044typedef void ahd_linux_callback_t (u_long);
7045
7046static void
7047ahd_timer_reset(ahd_timer_t *timer, int usec, ahd_callback_t *func, void *arg)
7048{
7049	struct ahd_softc *ahd;
7050
7051	ahd = (struct ahd_softc *)arg;
7052	del_timer(timer);
7053	timer->data = (u_long)arg;
7054	timer->expires = jiffies + (usec * HZ)/1000000;
7055	timer->function = (ahd_linux_callback_t*)func;
7056	add_timer(timer);
7057}
7058
7059/*
7060 * Start the board, ready for normal operation
7061 */
7062int
7063ahd_init(struct ahd_softc *ahd)
7064{
7065	uint8_t		*next_vaddr;
7066	dma_addr_t	 next_baddr;
7067	size_t		 driver_data_size;
7068	int		 i;
7069	int		 error;
7070	u_int		 warn_user;
7071	uint8_t		 current_sensing;
7072	uint8_t		 fstat;
7073
7074	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
7075
7076	ahd->stack_size = ahd_probe_stack_size(ahd);
7077	ahd->saved_stack = kmalloc(ahd->stack_size * sizeof(uint16_t), GFP_ATOMIC);
7078	if (ahd->saved_stack == NULL)
7079		return (ENOMEM);
7080
7081	/*
7082	 * Verify that the compiler hasn't over-aggressively
7083	 * padded important structures.
7084	 */
7085	if (sizeof(struct hardware_scb) != 64)
7086		panic("Hardware SCB size is incorrect");
7087
7088#ifdef AHD_DEBUG
7089	if ((ahd_debug & AHD_DEBUG_SEQUENCER) != 0)
7090		ahd->flags |= AHD_SEQUENCER_DEBUG;
7091#endif
7092
7093	/*
7094	 * Default to allowing initiator operations.
7095	 */
7096	ahd->flags |= AHD_INITIATORROLE;
7097
7098	/*
7099	 * Only allow target mode features if this unit has them enabled.
7100	 */
7101	if ((AHD_TMODE_ENABLE & (0x1 << ahd->unit)) == 0)
7102		ahd->features &= ~AHD_TARGETMODE;
7103
7104#ifndef __linux__
7105	/* DMA tag for mapping buffers into device visible space. */
7106	if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
7107			       /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
7108			       /*lowaddr*/ahd->flags & AHD_39BIT_ADDRESSING
7109					? (dma_addr_t)0x7FFFFFFFFFULL
7110					: BUS_SPACE_MAXADDR_32BIT,
7111			       /*highaddr*/BUS_SPACE_MAXADDR,
7112			       /*filter*/NULL, /*filterarg*/NULL,
7113			       /*maxsize*/(AHD_NSEG - 1) * PAGE_SIZE,
7114			       /*nsegments*/AHD_NSEG,
7115			       /*maxsegsz*/AHD_MAXTRANSFER_SIZE,
7116			       /*flags*/BUS_DMA_ALLOCNOW,
7117			       &ahd->buffer_dmat) != 0) {
7118		return (ENOMEM);
7119	}
7120#endif
7121
7122	ahd->init_level++;
7123
7124	/*
7125	 * DMA tag for our command fifos and other data in system memory
7126	 * the card's sequencer must be able to access.  For initiator
7127	 * roles, we need to allocate space for the qoutfifo.  When providing
7128	 * for the target mode role, we must additionally provide space for
7129	 * the incoming target command fifo.
7130	 */
7131	driver_data_size = AHD_SCB_MAX * sizeof(*ahd->qoutfifo)
7132			 + sizeof(struct hardware_scb);
7133	if ((ahd->features & AHD_TARGETMODE) != 0)
7134		driver_data_size += AHD_TMODE_CMDS * sizeof(struct target_cmd);
7135	if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0)
7136		driver_data_size += PKT_OVERRUN_BUFSIZE;
7137	if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
7138			       /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
7139			       /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
7140			       /*highaddr*/BUS_SPACE_MAXADDR,
7141			       /*filter*/NULL, /*filterarg*/NULL,
7142			       driver_data_size,
7143			       /*nsegments*/1,
7144			       /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
7145			       /*flags*/0, &ahd->shared_data_dmat) != 0) {
7146		return (ENOMEM);
7147	}
7148
7149	ahd->init_level++;
7150
7151	/* Allocation of driver data */
7152	if (ahd_dmamem_alloc(ahd, ahd->shared_data_dmat,
7153			     (void **)&ahd->shared_data_map.vaddr,
7154			     BUS_DMA_NOWAIT,
7155			     &ahd->shared_data_map.dmamap) != 0) {
7156		return (ENOMEM);
7157	}
7158
7159	ahd->init_level++;
7160
7161	/* And permanently map it in */
7162	ahd_dmamap_load(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
7163			ahd->shared_data_map.vaddr, driver_data_size,
7164			ahd_dmamap_cb, &ahd->shared_data_map.physaddr,
7165			/*flags*/0);
7166	ahd->qoutfifo = (struct ahd_completion *)ahd->shared_data_map.vaddr;
7167	next_vaddr = (uint8_t *)&ahd->qoutfifo[AHD_QOUT_SIZE];
7168	next_baddr = ahd->shared_data_map.physaddr
7169		   + AHD_QOUT_SIZE*sizeof(struct ahd_completion);
7170	if ((ahd->features & AHD_TARGETMODE) != 0) {
7171		ahd->targetcmds = (struct target_cmd *)next_vaddr;
7172		next_vaddr += AHD_TMODE_CMDS * sizeof(struct target_cmd);
7173		next_baddr += AHD_TMODE_CMDS * sizeof(struct target_cmd);
7174	}
7175
7176	if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
7177		ahd->overrun_buf = next_vaddr;
7178		next_vaddr += PKT_OVERRUN_BUFSIZE;
7179		next_baddr += PKT_OVERRUN_BUFSIZE;
7180	}
7181
7182	/*
7183	 * We need one SCB to serve as the "next SCB".  Since the
7184	 * tag identifier in this SCB will never be used, there is
7185	 * no point in using a valid HSCB tag from an SCB pulled from
7186	 * the standard free pool.  So, we allocate this "sentinel"
7187	 * specially from the DMA safe memory chunk used for the QOUTFIFO.
7188	 */
7189	ahd->next_queued_hscb = (struct hardware_scb *)next_vaddr;
7190	ahd->next_queued_hscb_map = &ahd->shared_data_map;
7191	ahd->next_queued_hscb->hscb_busaddr = ahd_htole32(next_baddr);
7192
7193	ahd->init_level++;
7194
7195	/* Allocate SCB data now that buffer_dmat is initialized */
7196	if (ahd_init_scbdata(ahd) != 0)
7197		return (ENOMEM);
7198
7199	if ((ahd->flags & AHD_INITIATORROLE) == 0)
7200		ahd->flags &= ~AHD_RESET_BUS_A;
7201
7202	/*
7203	 * Before committing these settings to the chip, give
7204	 * the OSM one last chance to modify our configuration.
7205	 */
7206	ahd_platform_init(ahd);
7207
7208	/* Bring up the chip. */
7209	ahd_chip_init(ahd);
7210
7211	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
7212
7213	if ((ahd->flags & AHD_CURRENT_SENSING) == 0)
7214		goto init_done;
7215
7216	/*
7217	 * Verify termination based on current draw and
7218	 * warn user if the bus is over/under terminated.
7219	 */
7220	error = ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL,
7221				   CURSENSE_ENB);
7222	if (error != 0) {
7223		printk("%s: current sensing timeout 1\n", ahd_name(ahd));
7224		goto init_done;
7225	}
7226	for (i = 20, fstat = FLX_FSTAT_BUSY;
7227	     (fstat & FLX_FSTAT_BUSY) != 0 && i; i--) {
7228		error = ahd_read_flexport(ahd, FLXADDR_FLEXSTAT, &fstat);
7229		if (error != 0) {
7230			printk("%s: current sensing timeout 2\n",
7231			       ahd_name(ahd));
7232			goto init_done;
7233		}
7234	}
7235	if (i == 0) {
7236		printk("%s: Timedout during current-sensing test\n",
7237		       ahd_name(ahd));
7238		goto init_done;
7239	}
7240
7241	/* Latch Current Sensing status. */
7242	error = ahd_read_flexport(ahd, FLXADDR_CURRENT_STAT, &current_sensing);
7243	if (error != 0) {
7244		printk("%s: current sensing timeout 3\n", ahd_name(ahd));
7245		goto init_done;
7246	}
7247
7248	/* Diable current sensing. */
7249	ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, 0);
7250
7251#ifdef AHD_DEBUG
7252	if ((ahd_debug & AHD_SHOW_TERMCTL) != 0) {
7253		printk("%s: current_sensing == 0x%x\n",
7254		       ahd_name(ahd), current_sensing);
7255	}
7256#endif
7257	warn_user = 0;
7258	for (i = 0; i < 4; i++, current_sensing >>= FLX_CSTAT_SHIFT) {
7259		u_int term_stat;
7260
7261		term_stat = (current_sensing & FLX_CSTAT_MASK);
7262		switch (term_stat) {
7263		case FLX_CSTAT_OVER:
7264		case FLX_CSTAT_UNDER:
7265			warn_user++;
7266		case FLX_CSTAT_INVALID:
7267		case FLX_CSTAT_OKAY:
7268			if (warn_user == 0 && bootverbose == 0)
7269				break;
7270			printk("%s: %s Channel %s\n", ahd_name(ahd),
7271			       channel_strings[i], termstat_strings[term_stat]);
7272			break;
7273		}
7274	}
7275	if (warn_user) {
7276		printk("%s: WARNING. Termination is not configured correctly.\n"
7277		       "%s: WARNING. SCSI bus operations may FAIL.\n",
7278		       ahd_name(ahd), ahd_name(ahd));
7279	}
7280init_done:
7281	ahd_restart(ahd);
7282	ahd_timer_reset(&ahd->stat_timer, AHD_STAT_UPDATE_US,
7283			ahd_stat_timer, ahd);
7284	return (0);
7285}
7286
7287/*
7288 * (Re)initialize chip state after a chip reset.
7289 */
7290static void
7291ahd_chip_init(struct ahd_softc *ahd)
7292{
7293	uint32_t busaddr;
7294	u_int	 sxfrctl1;
7295	u_int	 scsiseq_template;
7296	u_int	 wait;
7297	u_int	 i;
7298	u_int	 target;
7299
7300	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7301	/*
7302	 * Take the LED out of diagnostic mode
7303	 */
7304	ahd_outb(ahd, SBLKCTL, ahd_inb(ahd, SBLKCTL) & ~(DIAGLEDEN|DIAGLEDON));
7305
7306	/*
7307	 * Return HS_MAILBOX to its default value.
7308	 */
7309	ahd->hs_mailbox = 0;
7310	ahd_outb(ahd, HS_MAILBOX, 0);
7311
7312	/* Set the SCSI Id, SXFRCTL0, SXFRCTL1, and SIMODE1. */
7313	ahd_outb(ahd, IOWNID, ahd->our_id);
7314	ahd_outb(ahd, TOWNID, ahd->our_id);
7315	sxfrctl1 = (ahd->flags & AHD_TERM_ENB_A) != 0 ? STPWEN : 0;
7316	sxfrctl1 |= (ahd->flags & AHD_SPCHK_ENB_A) != 0 ? ENSPCHK : 0;
7317	if ((ahd->bugs & AHD_LONG_SETIMO_BUG)
7318	 && (ahd->seltime != STIMESEL_MIN)) {
7319		/*
7320		 * The selection timer duration is twice as long
7321		 * as it should be.  Halve it by adding "1" to
7322		 * the user specified setting.
7323		 */
7324		sxfrctl1 |= ahd->seltime + STIMESEL_BUG_ADJ;
7325	} else {
7326		sxfrctl1 |= ahd->seltime;
7327	}
7328
7329	ahd_outb(ahd, SXFRCTL0, DFON);
7330	ahd_outb(ahd, SXFRCTL1, sxfrctl1|ahd->seltime|ENSTIMER|ACTNEGEN);
7331	ahd_outb(ahd, SIMODE1, ENSELTIMO|ENSCSIRST|ENSCSIPERR);
7332
7333	/*
7334	 * Now that termination is set, wait for up
7335	 * to 500ms for our transceivers to settle.  If
7336	 * the adapter does not have a cable attached,
7337	 * the transceivers may never settle, so don't
7338	 * complain if we fail here.
7339	 */
7340	for (wait = 10000;
7341	     (ahd_inb(ahd, SBLKCTL) & (ENAB40|ENAB20)) == 0 && wait;
7342	     wait--)
7343		ahd_delay(100);
7344
7345	/* Clear any false bus resets due to the transceivers settling */
7346	ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
7347	ahd_outb(ahd, CLRINT, CLRSCSIINT);
7348
7349	/* Initialize mode specific S/G state. */
7350	for (i = 0; i < 2; i++) {
7351		ahd_set_modes(ahd, AHD_MODE_DFF0 + i, AHD_MODE_DFF0 + i);
7352		ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
7353		ahd_outb(ahd, SG_STATE, 0);
7354		ahd_outb(ahd, CLRSEQINTSRC, 0xFF);
7355		ahd_outb(ahd, SEQIMODE,
7356			 ENSAVEPTRS|ENCFG4DATA|ENCFG4ISTAT
7357			|ENCFG4TSTAT|ENCFG4ICMD|ENCFG4TCMD);
7358	}
7359
7360	ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
7361	ahd_outb(ahd, DSCOMMAND0, ahd_inb(ahd, DSCOMMAND0)|MPARCKEN|CACHETHEN);
7362	ahd_outb(ahd, DFF_THRSH, RD_DFTHRSH_75|WR_DFTHRSH_75);
7363	ahd_outb(ahd, SIMODE0, ENIOERR|ENOVERRUN);
7364	ahd_outb(ahd, SIMODE3, ENNTRAMPERR|ENOSRAMPERR);
7365	if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
7366		ahd_outb(ahd, OPTIONMODE, AUTOACKEN|AUTO_MSGOUT_DE);
7367	} else {
7368		ahd_outb(ahd, OPTIONMODE, AUTOACKEN|BUSFREEREV|AUTO_MSGOUT_DE);
7369	}
7370	ahd_outb(ahd, SCSCHKN, CURRFIFODEF|WIDERESEN|SHVALIDSTDIS);
7371	if ((ahd->chip & AHD_BUS_MASK) == AHD_PCIX)
7372		/*
7373		 * Do not issue a target abort when a split completion
7374		 * error occurs.  Let our PCIX interrupt handler deal
7375		 * with it instead. H2A4 Razor #625
7376		 */
7377		ahd_outb(ahd, PCIXCTL, ahd_inb(ahd, PCIXCTL) | SPLTSTADIS);
7378
7379	if ((ahd->bugs & AHD_LQOOVERRUN_BUG) != 0)
7380		ahd_outb(ahd, LQOSCSCTL, LQONOCHKOVER);
7381
7382	/*
7383	 * Tweak IOCELL settings.
7384	 */
7385	if ((ahd->flags & AHD_HP_BOARD) != 0) {
7386		for (i = 0; i < NUMDSPS; i++) {
7387			ahd_outb(ahd, DSPSELECT, i);
7388			ahd_outb(ahd, WRTBIASCTL, WRTBIASCTL_HP_DEFAULT);
7389		}
7390#ifdef AHD_DEBUG
7391		if ((ahd_debug & AHD_SHOW_MISC) != 0)
7392			printk("%s: WRTBIASCTL now 0x%x\n", ahd_name(ahd),
7393			       WRTBIASCTL_HP_DEFAULT);
7394#endif
7395	}
7396	ahd_setup_iocell_workaround(ahd);
7397
7398	/*
7399	 * Enable LQI Manager interrupts.
7400	 */
7401	ahd_outb(ahd, LQIMODE1, ENLQIPHASE_LQ|ENLQIPHASE_NLQ|ENLIQABORT
7402			      | ENLQICRCI_LQ|ENLQICRCI_NLQ|ENLQIBADLQI
7403			      | ENLQIOVERI_LQ|ENLQIOVERI_NLQ);
7404	ahd_outb(ahd, LQOMODE0, ENLQOATNLQ|ENLQOATNPKT|ENLQOTCRC);
7405	/*
7406	 * We choose to have the sequencer catch LQOPHCHGINPKT errors
7407	 * manually for the command phase at the start of a packetized
7408	 * selection case.  ENLQOBUSFREE should be made redundant by
7409	 * the BUSFREE interrupt, but it seems that some LQOBUSFREE
7410	 * events fail to assert the BUSFREE interrupt so we must
7411	 * also enable LQOBUSFREE interrupts.
7412	 */
7413	ahd_outb(ahd, LQOMODE1, ENLQOBUSFREE);
7414
7415	/*
7416	 * Setup sequencer interrupt handlers.
7417	 */
7418	ahd_outw(ahd, INTVEC1_ADDR, ahd_resolve_seqaddr(ahd, LABEL_seq_isr));
7419	ahd_outw(ahd, INTVEC2_ADDR, ahd_resolve_seqaddr(ahd, LABEL_timer_isr));
7420
7421	/*
7422	 * Setup SCB Offset registers.
7423	 */
7424	if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
7425		ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb,
7426			 pkt_long_lun));
7427	} else {
7428		ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb, lun));
7429	}
7430	ahd_outb(ahd, CMDLENPTR, offsetof(struct hardware_scb, cdb_len));
7431	ahd_outb(ahd, ATTRPTR, offsetof(struct hardware_scb, task_attribute));
7432	ahd_outb(ahd, FLAGPTR, offsetof(struct hardware_scb, task_management));
7433	ahd_outb(ahd, CMDPTR, offsetof(struct hardware_scb,
7434				       shared_data.idata.cdb));
7435	ahd_outb(ahd, QNEXTPTR,
7436		 offsetof(struct hardware_scb, next_hscb_busaddr));
7437	ahd_outb(ahd, ABRTBITPTR, MK_MESSAGE_BIT_OFFSET);
7438	ahd_outb(ahd, ABRTBYTEPTR, offsetof(struct hardware_scb, control));
7439	if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
7440		ahd_outb(ahd, LUNLEN,
7441			 sizeof(ahd->next_queued_hscb->pkt_long_lun) - 1);
7442	} else {
7443		ahd_outb(ahd, LUNLEN, LUNLEN_SINGLE_LEVEL_LUN);
7444	}
7445	ahd_outb(ahd, CDBLIMIT, SCB_CDB_LEN_PTR - 1);
7446	ahd_outb(ahd, MAXCMD, 0xFF);
7447	ahd_outb(ahd, SCBAUTOPTR,
7448		 AUSCBPTR_EN | offsetof(struct hardware_scb, tag));
7449
7450	/* We haven't been enabled for target mode yet. */
7451	ahd_outb(ahd, MULTARGID, 0);
7452	ahd_outb(ahd, MULTARGID + 1, 0);
7453
7454	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7455	/* Initialize the negotiation table. */
7456	if ((ahd->features & AHD_NEW_IOCELL_OPTS) == 0) {
7457		/*
7458		 * Clear the spare bytes in the neg table to avoid
7459		 * spurious parity errors.
7460		 */
7461		for (target = 0; target < AHD_NUM_TARGETS; target++) {
7462			ahd_outb(ahd, NEGOADDR, target);
7463			ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PER_DEV0);
7464			for (i = 0; i < AHD_NUM_PER_DEV_ANNEXCOLS; i++)
7465				ahd_outb(ahd, ANNEXDAT, 0);
7466		}
7467	}
7468	for (target = 0; target < AHD_NUM_TARGETS; target++) {
7469		struct	 ahd_devinfo devinfo;
7470		struct	 ahd_initiator_tinfo *tinfo;
7471		struct	 ahd_tmode_tstate *tstate;
7472
7473		tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
7474					    target, &tstate);
7475		ahd_compile_devinfo(&devinfo, ahd->our_id,
7476				    target, CAM_LUN_WILDCARD,
7477				    'A', ROLE_INITIATOR);
7478		ahd_update_neg_table(ahd, &devinfo, &tinfo->curr);
7479	}
7480
7481	ahd_outb(ahd, CLRSINT3, NTRAMPERR|OSRAMPERR);
7482	ahd_outb(ahd, CLRINT, CLRSCSIINT);
7483
7484#ifdef NEEDS_MORE_TESTING
7485	/*
7486	 * Always enable abort on incoming L_Qs if this feature is
7487	 * supported.  We use this to catch invalid SCB references.
7488	 */
7489	if ((ahd->bugs & AHD_ABORT_LQI_BUG) == 0)
7490		ahd_outb(ahd, LQCTL1, ABORTPENDING);
7491	else
7492#endif
7493		ahd_outb(ahd, LQCTL1, 0);
7494
7495	/* All of our queues are empty */
7496	ahd->qoutfifonext = 0;
7497	ahd->qoutfifonext_valid_tag = QOUTFIFO_ENTRY_VALID;
7498	ahd_outb(ahd, QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID);
7499	for (i = 0; i < AHD_QOUT_SIZE; i++)
7500		ahd->qoutfifo[i].valid_tag = 0;
7501	ahd_sync_qoutfifo(ahd, BUS_DMASYNC_PREREAD);
7502
7503	ahd->qinfifonext = 0;
7504	for (i = 0; i < AHD_QIN_SIZE; i++)
7505		ahd->qinfifo[i] = SCB_LIST_NULL;
7506
7507	if ((ahd->features & AHD_TARGETMODE) != 0) {
7508		/* All target command blocks start out invalid. */
7509		for (i = 0; i < AHD_TMODE_CMDS; i++)
7510			ahd->targetcmds[i].cmd_valid = 0;
7511		ahd_sync_tqinfifo(ahd, BUS_DMASYNC_PREREAD);
7512		ahd->tqinfifonext = 1;
7513		ahd_outb(ahd, KERNEL_TQINPOS, ahd->tqinfifonext - 1);
7514		ahd_outb(ahd, TQINPOS, ahd->tqinfifonext);
7515	}
7516
7517	/* Initialize Scratch Ram. */
7518	ahd_outb(ahd, SEQ_FLAGS, 0);
7519	ahd_outb(ahd, SEQ_FLAGS2, 0);
7520
7521	/* We don't have any waiting selections */
7522	ahd_outw(ahd, WAITING_TID_HEAD, SCB_LIST_NULL);
7523	ahd_outw(ahd, WAITING_TID_TAIL, SCB_LIST_NULL);
7524	ahd_outw(ahd, MK_MESSAGE_SCB, SCB_LIST_NULL);
7525	ahd_outw(ahd, MK_MESSAGE_SCSIID, 0xFF);
7526	for (i = 0; i < AHD_NUM_TARGETS; i++)
7527		ahd_outw(ahd, WAITING_SCB_TAILS + (2 * i), SCB_LIST_NULL);
7528
7529	/*
7530	 * Nobody is waiting to be DMAed into the QOUTFIFO.
7531	 */
7532	ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL);
7533	ahd_outw(ahd, COMPLETE_SCB_DMAINPROG_HEAD, SCB_LIST_NULL);
7534	ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL);
7535	ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL);
7536	ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL);
7537
7538	/*
7539	 * The Freeze Count is 0.
7540	 */
7541	ahd->qfreeze_cnt = 0;
7542	ahd_outw(ahd, QFREEZE_COUNT, 0);
7543	ahd_outw(ahd, KERNEL_QFREEZE_COUNT, 0);
7544
7545	/*
7546	 * Tell the sequencer where it can find our arrays in memory.
7547	 */
7548	busaddr = ahd->shared_data_map.physaddr;
7549	ahd_outl(ahd, SHARED_DATA_ADDR, busaddr);
7550	ahd_outl(ahd, QOUTFIFO_NEXT_ADDR, busaddr);
7551
7552	/*
7553	 * Setup the allowed SCSI Sequences based on operational mode.
7554	 * If we are a target, we'll enable select in operations once
7555	 * we've had a lun enabled.
7556	 */
7557	scsiseq_template = ENAUTOATNP;
7558	if ((ahd->flags & AHD_INITIATORROLE) != 0)
7559		scsiseq_template |= ENRSELI;
7560	ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq_template);
7561
7562	/* There are no busy SCBs yet. */
7563	for (target = 0; target < AHD_NUM_TARGETS; target++) {
7564		int lun;
7565
7566		for (lun = 0; lun < AHD_NUM_LUNS_NONPKT; lun++)
7567			ahd_unbusy_tcl(ahd, BUILD_TCL_RAW(target, 'A', lun));
7568	}
7569
7570	/*
7571	 * Initialize the group code to command length table.
7572	 * Vendor Unique codes are set to 0 so we only capture
7573	 * the first byte of the cdb.  These can be overridden
7574	 * when target mode is enabled.
7575	 */
7576	ahd_outb(ahd, CMDSIZE_TABLE, 5);
7577	ahd_outb(ahd, CMDSIZE_TABLE + 1, 9);
7578	ahd_outb(ahd, CMDSIZE_TABLE + 2, 9);
7579	ahd_outb(ahd, CMDSIZE_TABLE + 3, 0);
7580	ahd_outb(ahd, CMDSIZE_TABLE + 4, 15);
7581	ahd_outb(ahd, CMDSIZE_TABLE + 5, 11);
7582	ahd_outb(ahd, CMDSIZE_TABLE + 6, 0);
7583	ahd_outb(ahd, CMDSIZE_TABLE + 7, 0);
7584
7585	/* Tell the sequencer of our initial queue positions */
7586	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
7587	ahd_outb(ahd, QOFF_CTLSTA, SCB_QSIZE_512);
7588	ahd->qinfifonext = 0;
7589	ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
7590	ahd_set_hescb_qoff(ahd, 0);
7591	ahd_set_snscb_qoff(ahd, 0);
7592	ahd_set_sescb_qoff(ahd, 0);
7593	ahd_set_sdscb_qoff(ahd, 0);
7594
7595	/*
7596	 * Tell the sequencer which SCB will be the next one it receives.
7597	 */
7598	busaddr = ahd_le32toh(ahd->next_queued_hscb->hscb_busaddr);
7599	ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
7600
7601	/*
7602	 * Default to coalescing disabled.
7603	 */
7604	ahd_outw(ahd, INT_COALESCING_CMDCOUNT, 0);
7605	ahd_outw(ahd, CMDS_PENDING, 0);
7606	ahd_update_coalescing_values(ahd, ahd->int_coalescing_timer,
7607				     ahd->int_coalescing_maxcmds,
7608				     ahd->int_coalescing_mincmds);
7609	ahd_enable_coalescing(ahd, FALSE);
7610
7611	ahd_loadseq(ahd);
7612	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7613
7614	if (ahd->features & AHD_AIC79XXB_SLOWCRC) {
7615		u_int negodat3 = ahd_inb(ahd, NEGCONOPTS);
7616
7617		negodat3 |= ENSLOWCRC;
7618		ahd_outb(ahd, NEGCONOPTS, negodat3);
7619		negodat3 = ahd_inb(ahd, NEGCONOPTS);
7620		if (!(negodat3 & ENSLOWCRC))
7621			printk("aic79xx: failed to set the SLOWCRC bit\n");
7622		else
7623			printk("aic79xx: SLOWCRC bit set\n");
7624	}
7625}
7626
7627/*
7628 * Setup default device and controller settings.
7629 * This should only be called if our probe has
7630 * determined that no configuration data is available.
7631 */
7632int
7633ahd_default_config(struct ahd_softc *ahd)
7634{
7635	int	targ;
7636
7637	ahd->our_id = 7;
7638
7639	/*
7640	 * Allocate a tstate to house information for our
7641	 * initiator presence on the bus as well as the user
7642	 * data for any target mode initiator.
7643	 */
7644	if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) {
7645		printk("%s: unable to allocate ahd_tmode_tstate.  "
7646		       "Failing attach\n", ahd_name(ahd));
7647		return (ENOMEM);
7648	}
7649
7650	for (targ = 0; targ < AHD_NUM_TARGETS; targ++) {
7651		struct	 ahd_devinfo devinfo;
7652		struct	 ahd_initiator_tinfo *tinfo;
7653		struct	 ahd_tmode_tstate *tstate;
7654		uint16_t target_mask;
7655
7656		tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
7657					    targ, &tstate);
7658		/*
7659		 * We support SPC2 and SPI4.
7660		 */
7661		tinfo->user.protocol_version = 4;
7662		tinfo->user.transport_version = 4;
7663
7664		target_mask = 0x01 << targ;
7665		ahd->user_discenable |= target_mask;
7666		tstate->discenable |= target_mask;
7667		ahd->user_tagenable |= target_mask;
7668#ifdef AHD_FORCE_160
7669		tinfo->user.period = AHD_SYNCRATE_DT;
7670#else
7671		tinfo->user.period = AHD_SYNCRATE_160;
7672#endif
7673		tinfo->user.offset = MAX_OFFSET;
7674		tinfo->user.ppr_options = MSG_EXT_PPR_RD_STRM
7675					| MSG_EXT_PPR_WR_FLOW
7676					| MSG_EXT_PPR_HOLD_MCS
7677					| MSG_EXT_PPR_IU_REQ
7678					| MSG_EXT_PPR_QAS_REQ
7679					| MSG_EXT_PPR_DT_REQ;
7680		if ((ahd->features & AHD_RTI) != 0)
7681			tinfo->user.ppr_options |= MSG_EXT_PPR_RTI;
7682
7683		tinfo->user.width = MSG_EXT_WDTR_BUS_16_BIT;
7684
7685		/*
7686		 * Start out Async/Narrow/Untagged and with
7687		 * conservative protocol support.
7688		 */
7689		tinfo->goal.protocol_version = 2;
7690		tinfo->goal.transport_version = 2;
7691		tinfo->curr.protocol_version = 2;
7692		tinfo->curr.transport_version = 2;
7693		ahd_compile_devinfo(&devinfo, ahd->our_id,
7694				    targ, CAM_LUN_WILDCARD,
7695				    'A', ROLE_INITIATOR);
7696		tstate->tagenable &= ~target_mask;
7697		ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
7698			      AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE);
7699		ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0,
7700				 /*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL,
7701				 /*paused*/TRUE);
7702	}
7703	return (0);
7704}
7705
7706/*
7707 * Parse device configuration information.
7708 */
7709int
7710ahd_parse_cfgdata(struct ahd_softc *ahd, struct seeprom_config *sc)
7711{
7712	int targ;
7713	int max_targ;
7714
7715	max_targ = sc->max_targets & CFMAXTARG;
7716	ahd->our_id = sc->brtime_id & CFSCSIID;
7717
7718	/*
7719	 * Allocate a tstate to house information for our
7720	 * initiator presence on the bus as well as the user
7721	 * data for any target mode initiator.
7722	 */
7723	if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) {
7724		printk("%s: unable to allocate ahd_tmode_tstate.  "
7725		       "Failing attach\n", ahd_name(ahd));
7726		return (ENOMEM);
7727	}
7728
7729	for (targ = 0; targ < max_targ; targ++) {
7730		struct	 ahd_devinfo devinfo;
7731		struct	 ahd_initiator_tinfo *tinfo;
7732		struct	 ahd_transinfo *user_tinfo;
7733		struct	 ahd_tmode_tstate *tstate;
7734		uint16_t target_mask;
7735
7736		tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
7737					    targ, &tstate);
7738		user_tinfo = &tinfo->user;
7739
7740		/*
7741		 * We support SPC2 and SPI4.
7742		 */
7743		tinfo->user.protocol_version = 4;
7744		tinfo->user.transport_version = 4;
7745
7746		target_mask = 0x01 << targ;
7747		ahd->user_discenable &= ~target_mask;
7748		tstate->discenable &= ~target_mask;
7749		ahd->user_tagenable &= ~target_mask;
7750		if (sc->device_flags[targ] & CFDISC) {
7751			tstate->discenable |= target_mask;
7752			ahd->user_discenable |= target_mask;
7753			ahd->user_tagenable |= target_mask;
7754		} else {
7755			/*
7756			 * Cannot be packetized without disconnection.
7757			 */
7758			sc->device_flags[targ] &= ~CFPACKETIZED;
7759		}
7760
7761		user_tinfo->ppr_options = 0;
7762		user_tinfo->period = (sc->device_flags[targ] & CFXFER);
7763		if (user_tinfo->period < CFXFER_ASYNC) {
7764			if (user_tinfo->period <= AHD_PERIOD_10MHz)
7765				user_tinfo->ppr_options |= MSG_EXT_PPR_DT_REQ;
7766			user_tinfo->offset = MAX_OFFSET;
7767		} else  {
7768			user_tinfo->offset = 0;
7769			user_tinfo->period = AHD_ASYNC_XFER_PERIOD;
7770		}
7771#ifdef AHD_FORCE_160
7772		if (user_tinfo->period <= AHD_SYNCRATE_160)
7773			user_tinfo->period = AHD_SYNCRATE_DT;
7774#endif
7775
7776		if ((sc->device_flags[targ] & CFPACKETIZED) != 0) {
7777			user_tinfo->ppr_options |= MSG_EXT_PPR_RD_STRM
7778						|  MSG_EXT_PPR_WR_FLOW
7779						|  MSG_EXT_PPR_HOLD_MCS
7780						|  MSG_EXT_PPR_IU_REQ;
7781			if ((ahd->features & AHD_RTI) != 0)
7782				user_tinfo->ppr_options |= MSG_EXT_PPR_RTI;
7783		}
7784
7785		if ((sc->device_flags[targ] & CFQAS) != 0)
7786			user_tinfo->ppr_options |= MSG_EXT_PPR_QAS_REQ;
7787
7788		if ((sc->device_flags[targ] & CFWIDEB) != 0)
7789			user_tinfo->width = MSG_EXT_WDTR_BUS_16_BIT;
7790		else
7791			user_tinfo->width = MSG_EXT_WDTR_BUS_8_BIT;
7792#ifdef AHD_DEBUG
7793		if ((ahd_debug & AHD_SHOW_MISC) != 0)
7794			printk("(%d): %x:%x:%x:%x\n", targ, user_tinfo->width,
7795			       user_tinfo->period, user_tinfo->offset,
7796			       user_tinfo->ppr_options);
7797#endif
7798		/*
7799		 * Start out Async/Narrow/Untagged and with
7800		 * conservative protocol support.
7801		 */
7802		tstate->tagenable &= ~target_mask;
7803		tinfo->goal.protocol_version = 2;
7804		tinfo->goal.transport_version = 2;
7805		tinfo->curr.protocol_version = 2;
7806		tinfo->curr.transport_version = 2;
7807		ahd_compile_devinfo(&devinfo, ahd->our_id,
7808				    targ, CAM_LUN_WILDCARD,
7809				    'A', ROLE_INITIATOR);
7810		ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
7811			      AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE);
7812		ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0,
7813				 /*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL,
7814				 /*paused*/TRUE);
7815	}
7816
7817	ahd->flags &= ~AHD_SPCHK_ENB_A;
7818	if (sc->bios_control & CFSPARITY)
7819		ahd->flags |= AHD_SPCHK_ENB_A;
7820
7821	ahd->flags &= ~AHD_RESET_BUS_A;
7822	if (sc->bios_control & CFRESETB)
7823		ahd->flags |= AHD_RESET_BUS_A;
7824
7825	ahd->flags &= ~AHD_EXTENDED_TRANS_A;
7826	if (sc->bios_control & CFEXTEND)
7827		ahd->flags |= AHD_EXTENDED_TRANS_A;
7828
7829	ahd->flags &= ~AHD_BIOS_ENABLED;
7830	if ((sc->bios_control & CFBIOSSTATE) == CFBS_ENABLED)
7831		ahd->flags |= AHD_BIOS_ENABLED;
7832
7833	ahd->flags &= ~AHD_STPWLEVEL_A;
7834	if ((sc->adapter_control & CFSTPWLEVEL) != 0)
7835		ahd->flags |= AHD_STPWLEVEL_A;
7836
7837	return (0);
7838}
7839
7840/*
7841 * Parse device configuration information.
7842 */
7843int
7844ahd_parse_vpddata(struct ahd_softc *ahd, struct vpd_config *vpd)
7845{
7846	int error;
7847
7848	error = ahd_verify_vpd_cksum(vpd);
7849	if (error == 0)
7850		return (EINVAL);
7851	if ((vpd->bios_flags & VPDBOOTHOST) != 0)
7852		ahd->flags |= AHD_BOOT_CHANNEL;
7853	return (0);
7854}
7855
7856void
7857ahd_intr_enable(struct ahd_softc *ahd, int enable)
7858{
7859	u_int hcntrl;
7860
7861	hcntrl = ahd_inb(ahd, HCNTRL);
7862	hcntrl &= ~INTEN;
7863	ahd->pause &= ~INTEN;
7864	ahd->unpause &= ~INTEN;
7865	if (enable) {
7866		hcntrl |= INTEN;
7867		ahd->pause |= INTEN;
7868		ahd->unpause |= INTEN;
7869	}
7870	ahd_outb(ahd, HCNTRL, hcntrl);
7871}
7872
7873static void
7874ahd_update_coalescing_values(struct ahd_softc *ahd, u_int timer, u_int maxcmds,
7875			     u_int mincmds)
7876{
7877	if (timer > AHD_TIMER_MAX_US)
7878		timer = AHD_TIMER_MAX_US;
7879	ahd->int_coalescing_timer = timer;
7880
7881	if (maxcmds > AHD_INT_COALESCING_MAXCMDS_MAX)
7882		maxcmds = AHD_INT_COALESCING_MAXCMDS_MAX;
7883	if (mincmds > AHD_INT_COALESCING_MINCMDS_MAX)
7884		mincmds = AHD_INT_COALESCING_MINCMDS_MAX;
7885	ahd->int_coalescing_maxcmds = maxcmds;
7886	ahd_outw(ahd, INT_COALESCING_TIMER, timer / AHD_TIMER_US_PER_TICK);
7887	ahd_outb(ahd, INT_COALESCING_MAXCMDS, -maxcmds);
7888	ahd_outb(ahd, INT_COALESCING_MINCMDS, -mincmds);
7889}
7890
7891static void
7892ahd_enable_coalescing(struct ahd_softc *ahd, int enable)
7893{
7894
7895	ahd->hs_mailbox &= ~ENINT_COALESCE;
7896	if (enable)
7897		ahd->hs_mailbox |= ENINT_COALESCE;
7898	ahd_outb(ahd, HS_MAILBOX, ahd->hs_mailbox);
7899	ahd_flush_device_writes(ahd);
7900	ahd_run_qoutfifo(ahd);
7901}
7902
7903/*
7904 * Ensure that the card is paused in a location
7905 * outside of all critical sections and that all
7906 * pending work is completed prior to returning.
7907 * This routine should only be called from outside
7908 * an interrupt context.
7909 */
7910void
7911ahd_pause_and_flushwork(struct ahd_softc *ahd)
7912{
7913	u_int intstat;
7914	u_int maxloops;
7915
7916	maxloops = 1000;
7917	ahd->flags |= AHD_ALL_INTERRUPTS;
7918	ahd_pause(ahd);
7919	/*
7920	 * Freeze the outgoing selections.  We do this only
7921	 * until we are safely paused without further selections
7922	 * pending.
7923	 */
7924	ahd->qfreeze_cnt--;
7925	ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
7926	ahd_outb(ahd, SEQ_FLAGS2, ahd_inb(ahd, SEQ_FLAGS2) | SELECTOUT_QFROZEN);
7927	do {
7928
7929		ahd_unpause(ahd);
7930		/*
7931		 * Give the sequencer some time to service
7932		 * any active selections.
7933		 */
7934		ahd_delay(500);
7935
7936		ahd_intr(ahd);
7937		ahd_pause(ahd);
7938		intstat = ahd_inb(ahd, INTSTAT);
7939		if ((intstat & INT_PEND) == 0) {
7940			ahd_clear_critical_section(ahd);
7941			intstat = ahd_inb(ahd, INTSTAT);
7942		}
7943	} while (--maxloops
7944	      && (intstat != 0xFF || (ahd->features & AHD_REMOVABLE) == 0)
7945	      && ((intstat & INT_PEND) != 0
7946	       || (ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0
7947	       || (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) != 0));
7948
7949	if (maxloops == 0) {
7950		printk("Infinite interrupt loop, INTSTAT = %x",
7951		      ahd_inb(ahd, INTSTAT));
7952	}
7953	ahd->qfreeze_cnt++;
7954	ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
7955
7956	ahd_flush_qoutfifo(ahd);
7957
7958	ahd->flags &= ~AHD_ALL_INTERRUPTS;
7959}
7960
7961#ifdef CONFIG_PM
7962int
7963ahd_suspend(struct ahd_softc *ahd)
7964{
7965
7966	ahd_pause_and_flushwork(ahd);
7967
7968	if (LIST_FIRST(&ahd->pending_scbs) != NULL) {
7969		ahd_unpause(ahd);
7970		return (EBUSY);
7971	}
7972	ahd_shutdown(ahd);
7973	return (0);
7974}
7975
7976void
7977ahd_resume(struct ahd_softc *ahd)
7978{
7979
7980	ahd_reset(ahd, /*reinit*/TRUE);
7981	ahd_intr_enable(ahd, TRUE);
7982	ahd_restart(ahd);
7983}
7984#endif
7985
7986/************************** Busy Target Table *********************************/
7987/*
7988 * Set SCBPTR to the SCB that contains the busy
7989 * table entry for TCL.  Return the offset into
7990 * the SCB that contains the entry for TCL.
7991 * saved_scbid is dereferenced and set to the
7992 * scbid that should be restored once manipualtion
7993 * of the TCL entry is complete.
7994 */
7995static inline u_int
7996ahd_index_busy_tcl(struct ahd_softc *ahd, u_int *saved_scbid, u_int tcl)
7997{
7998	/*
7999	 * Index to the SCB that contains the busy entry.
8000	 */
8001	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8002	*saved_scbid = ahd_get_scbptr(ahd);
8003	ahd_set_scbptr(ahd, TCL_LUN(tcl)
8004		     | ((TCL_TARGET_OFFSET(tcl) & 0xC) << 4));
8005
8006	/*
8007	 * And now calculate the SCB offset to the entry.
8008	 * Each entry is 2 bytes wide, hence the
8009	 * multiplication by 2.
8010	 */
8011	return (((TCL_TARGET_OFFSET(tcl) & 0x3) << 1) + SCB_DISCONNECTED_LISTS);
8012}
8013
8014/*
8015 * Return the untagged transaction id for a given target/channel lun.
8016 */
8017static u_int
8018ahd_find_busy_tcl(struct ahd_softc *ahd, u_int tcl)
8019{
8020	u_int scbid;
8021	u_int scb_offset;
8022	u_int saved_scbptr;
8023
8024	scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl);
8025	scbid = ahd_inw_scbram(ahd, scb_offset);
8026	ahd_set_scbptr(ahd, saved_scbptr);
8027	return (scbid);
8028}
8029
8030static void
8031ahd_busy_tcl(struct ahd_softc *ahd, u_int tcl, u_int scbid)
8032{
8033	u_int scb_offset;
8034	u_int saved_scbptr;
8035
8036	scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl);
8037	ahd_outw(ahd, scb_offset, scbid);
8038	ahd_set_scbptr(ahd, saved_scbptr);
8039}
8040
8041/************************** SCB and SCB queue management **********************/
8042static int
8043ahd_match_scb(struct ahd_softc *ahd, struct scb *scb, int target,
8044	      char channel, int lun, u_int tag, role_t role)
8045{
8046	int targ = SCB_GET_TARGET(ahd, scb);
8047	char chan = SCB_GET_CHANNEL(ahd, scb);
8048	int slun = SCB_GET_LUN(scb);
8049	int match;
8050
8051	match = ((chan == channel) || (channel == ALL_CHANNELS));
8052	if (match != 0)
8053		match = ((targ == target) || (target == CAM_TARGET_WILDCARD));
8054	if (match != 0)
8055		match = ((lun == slun) || (lun == CAM_LUN_WILDCARD));
8056	if (match != 0) {
8057#ifdef AHD_TARGET_MODE
8058		int group;
8059
8060		group = XPT_FC_GROUP(scb->io_ctx->ccb_h.func_code);
8061		if (role == ROLE_INITIATOR) {
8062			match = (group != XPT_FC_GROUP_TMODE)
8063			      && ((tag == SCB_GET_TAG(scb))
8064			       || (tag == SCB_LIST_NULL));
8065		} else if (role == ROLE_TARGET) {
8066			match = (group == XPT_FC_GROUP_TMODE)
8067			      && ((tag == scb->io_ctx->csio.tag_id)
8068			       || (tag == SCB_LIST_NULL));
8069		}
8070#else /* !AHD_TARGET_MODE */
8071		match = ((tag == SCB_GET_TAG(scb)) || (tag == SCB_LIST_NULL));
8072#endif /* AHD_TARGET_MODE */
8073	}
8074
8075	return match;
8076}
8077
8078static void
8079ahd_freeze_devq(struct ahd_softc *ahd, struct scb *scb)
8080{
8081	int	target;
8082	char	channel;
8083	int	lun;
8084
8085	target = SCB_GET_TARGET(ahd, scb);
8086	lun = SCB_GET_LUN(scb);
8087	channel = SCB_GET_CHANNEL(ahd, scb);
8088
8089	ahd_search_qinfifo(ahd, target, channel, lun,
8090			   /*tag*/SCB_LIST_NULL, ROLE_UNKNOWN,
8091			   CAM_REQUEUE_REQ, SEARCH_COMPLETE);
8092
8093	ahd_platform_freeze_devq(ahd, scb);
8094}
8095
8096void
8097ahd_qinfifo_requeue_tail(struct ahd_softc *ahd, struct scb *scb)
8098{
8099	struct scb	*prev_scb;
8100	ahd_mode_state	 saved_modes;
8101
8102	saved_modes = ahd_save_modes(ahd);
8103	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
8104	prev_scb = NULL;
8105	if (ahd_qinfifo_count(ahd) != 0) {
8106		u_int prev_tag;
8107		u_int prev_pos;
8108
8109		prev_pos = AHD_QIN_WRAP(ahd->qinfifonext - 1);
8110		prev_tag = ahd->qinfifo[prev_pos];
8111		prev_scb = ahd_lookup_scb(ahd, prev_tag);
8112	}
8113	ahd_qinfifo_requeue(ahd, prev_scb, scb);
8114	ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
8115	ahd_restore_modes(ahd, saved_modes);
8116}
8117
8118static void
8119ahd_qinfifo_requeue(struct ahd_softc *ahd, struct scb *prev_scb,
8120		    struct scb *scb)
8121{
8122	if (prev_scb == NULL) {
8123		uint32_t busaddr;
8124
8125		busaddr = ahd_le32toh(scb->hscb->hscb_busaddr);
8126		ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
8127	} else {
8128		prev_scb->hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
8129		ahd_sync_scb(ahd, prev_scb,
8130			     BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
8131	}
8132	ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
8133	ahd->qinfifonext++;
8134	scb->hscb->next_hscb_busaddr = ahd->next_queued_hscb->hscb_busaddr;
8135	ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
8136}
8137
8138static int
8139ahd_qinfifo_count(struct ahd_softc *ahd)
8140{
8141	u_int qinpos;
8142	u_int wrap_qinpos;
8143	u_int wrap_qinfifonext;
8144
8145	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
8146	qinpos = ahd_get_snscb_qoff(ahd);
8147	wrap_qinpos = AHD_QIN_WRAP(qinpos);
8148	wrap_qinfifonext = AHD_QIN_WRAP(ahd->qinfifonext);
8149	if (wrap_qinfifonext >= wrap_qinpos)
8150		return (wrap_qinfifonext - wrap_qinpos);
8151	else
8152		return (wrap_qinfifonext
8153		      + ARRAY_SIZE(ahd->qinfifo) - wrap_qinpos);
8154}
8155
8156static void
8157ahd_reset_cmds_pending(struct ahd_softc *ahd)
8158{
8159	struct		scb *scb;
8160	ahd_mode_state	saved_modes;
8161	u_int		pending_cmds;
8162
8163	saved_modes = ahd_save_modes(ahd);
8164	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
8165
8166	/*
8167	 * Don't count any commands as outstanding that the
8168	 * sequencer has already marked for completion.
8169	 */
8170	ahd_flush_qoutfifo(ahd);
8171
8172	pending_cmds = 0;
8173	LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
8174		pending_cmds++;
8175	}
8176	ahd_outw(ahd, CMDS_PENDING, pending_cmds - ahd_qinfifo_count(ahd));
8177	ahd_restore_modes(ahd, saved_modes);
8178	ahd->flags &= ~AHD_UPDATE_PEND_CMDS;
8179}
8180
8181static void
8182ahd_done_with_status(struct ahd_softc *ahd, struct scb *scb, uint32_t status)
8183{
8184	cam_status ostat;
8185	cam_status cstat;
8186
8187	ostat = ahd_get_transaction_status(scb);
8188	if (ostat == CAM_REQ_INPROG)
8189		ahd_set_transaction_status(scb, status);
8190	cstat = ahd_get_transaction_status(scb);
8191	if (cstat != CAM_REQ_CMP)
8192		ahd_freeze_scb(scb);
8193	ahd_done(ahd, scb);
8194}
8195
8196int
8197ahd_search_qinfifo(struct ahd_softc *ahd, int target, char channel,
8198		   int lun, u_int tag, role_t role, uint32_t status,
8199		   ahd_search_action action)
8200{
8201	struct scb	*scb;
8202	struct scb	*mk_msg_scb;
8203	struct scb	*prev_scb;
8204	ahd_mode_state	 saved_modes;
8205	u_int		 qinstart;
8206	u_int		 qinpos;
8207	u_int		 qintail;
8208	u_int		 tid_next;
8209	u_int		 tid_prev;
8210	u_int		 scbid;
8211	u_int		 seq_flags2;
8212	u_int		 savedscbptr;
8213	uint32_t	 busaddr;
8214	int		 found;
8215	int		 targets;
8216
8217	/* Must be in CCHAN mode */
8218	saved_modes = ahd_save_modes(ahd);
8219	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
8220
8221	/*
8222	 * Halt any pending SCB DMA.  The sequencer will reinitiate
8223	 * this dma if the qinfifo is not empty once we unpause.
8224	 */
8225	if ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN|CCSCBDIR))
8226	 == (CCARREN|CCSCBEN|CCSCBDIR)) {
8227		ahd_outb(ahd, CCSCBCTL,
8228			 ahd_inb(ahd, CCSCBCTL) & ~(CCARREN|CCSCBEN));
8229		while ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN)) != 0)
8230			;
8231	}
8232	/* Determine sequencer's position in the qinfifo. */
8233	qintail = AHD_QIN_WRAP(ahd->qinfifonext);
8234	qinstart = ahd_get_snscb_qoff(ahd);
8235	qinpos = AHD_QIN_WRAP(qinstart);
8236	found = 0;
8237	prev_scb = NULL;
8238
8239	if (action == SEARCH_PRINT) {
8240		printk("qinstart = %d qinfifonext = %d\nQINFIFO:",
8241		       qinstart, ahd->qinfifonext);
8242	}
8243
8244	/*
8245	 * Start with an empty queue.  Entries that are not chosen
8246	 * for removal will be re-added to the queue as we go.
8247	 */
8248	ahd->qinfifonext = qinstart;
8249	busaddr = ahd_le32toh(ahd->next_queued_hscb->hscb_busaddr);
8250	ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
8251
8252	while (qinpos != qintail) {
8253		scb = ahd_lookup_scb(ahd, ahd->qinfifo[qinpos]);
8254		if (scb == NULL) {
8255			printk("qinpos = %d, SCB index = %d\n",
8256				qinpos, ahd->qinfifo[qinpos]);
8257			panic("Loop 1\n");
8258		}
8259
8260		if (ahd_match_scb(ahd, scb, target, channel, lun, tag, role)) {
8261			/*
8262			 * We found an scb that needs to be acted on.
8263			 */
8264			found++;
8265			switch (action) {
8266			case SEARCH_COMPLETE:
8267				if ((scb->flags & SCB_ACTIVE) == 0)
8268					printk("Inactive SCB in qinfifo\n");
8269				ahd_done_with_status(ahd, scb, status);
8270				/* FALLTHROUGH */
8271			case SEARCH_REMOVE:
8272				break;
8273			case SEARCH_PRINT:
8274				printk(" 0x%x", ahd->qinfifo[qinpos]);
8275				/* FALLTHROUGH */
8276			case SEARCH_COUNT:
8277				ahd_qinfifo_requeue(ahd, prev_scb, scb);
8278				prev_scb = scb;
8279				break;
8280			}
8281		} else {
8282			ahd_qinfifo_requeue(ahd, prev_scb, scb);
8283			prev_scb = scb;
8284		}
8285		qinpos = AHD_QIN_WRAP(qinpos+1);
8286	}
8287
8288	ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
8289
8290	if (action == SEARCH_PRINT)
8291		printk("\nWAITING_TID_QUEUES:\n");
8292
8293	/*
8294	 * Search waiting for selection lists.  We traverse the
8295	 * list of "their ids" waiting for selection and, if
8296	 * appropriate, traverse the SCBs of each "their id"
8297	 * looking for matches.
8298	 */
8299	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8300	seq_flags2 = ahd_inb(ahd, SEQ_FLAGS2);
8301	if ((seq_flags2 & PENDING_MK_MESSAGE) != 0) {
8302		scbid = ahd_inw(ahd, MK_MESSAGE_SCB);
8303		mk_msg_scb = ahd_lookup_scb(ahd, scbid);
8304	} else
8305		mk_msg_scb = NULL;
8306	savedscbptr = ahd_get_scbptr(ahd);
8307	tid_next = ahd_inw(ahd, WAITING_TID_HEAD);
8308	tid_prev = SCB_LIST_NULL;
8309	targets = 0;
8310	for (scbid = tid_next; !SCBID_IS_NULL(scbid); scbid = tid_next) {
8311		u_int tid_head;
8312		u_int tid_tail;
8313
8314		targets++;
8315		if (targets > AHD_NUM_TARGETS)
8316			panic("TID LIST LOOP");
8317
8318		if (scbid >= ahd->scb_data.numscbs) {
8319			printk("%s: Waiting TID List inconsistency. "
8320			       "SCB index == 0x%x, yet numscbs == 0x%x.",
8321			       ahd_name(ahd), scbid, ahd->scb_data.numscbs);
8322			ahd_dump_card_state(ahd);
8323			panic("for safety");
8324		}
8325		scb = ahd_lookup_scb(ahd, scbid);
8326		if (scb == NULL) {
8327			printk("%s: SCB = 0x%x Not Active!\n",
8328			       ahd_name(ahd), scbid);
8329			panic("Waiting TID List traversal\n");
8330		}
8331		ahd_set_scbptr(ahd, scbid);
8332		tid_next = ahd_inw_scbram(ahd, SCB_NEXT2);
8333		if (ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD,
8334				  SCB_LIST_NULL, ROLE_UNKNOWN) == 0) {
8335			tid_prev = scbid;
8336			continue;
8337		}
8338
8339		/*
8340		 * We found a list of scbs that needs to be searched.
8341		 */
8342		if (action == SEARCH_PRINT)
8343			printk("       %d ( ", SCB_GET_TARGET(ahd, scb));
8344		tid_head = scbid;
8345		found += ahd_search_scb_list(ahd, target, channel,
8346					     lun, tag, role, status,
8347					     action, &tid_head, &tid_tail,
8348					     SCB_GET_TARGET(ahd, scb));
8349		/*
8350		 * Check any MK_MESSAGE SCB that is still waiting to
8351		 * enter this target's waiting for selection queue.
8352		 */
8353		if (mk_msg_scb != NULL
8354		 && ahd_match_scb(ahd, mk_msg_scb, target, channel,
8355				  lun, tag, role)) {
8356
8357			/*
8358			 * We found an scb that needs to be acted on.
8359			 */
8360			found++;
8361			switch (action) {
8362			case SEARCH_COMPLETE:
8363				if ((mk_msg_scb->flags & SCB_ACTIVE) == 0)
8364					printk("Inactive SCB pending MK_MSG\n");
8365				ahd_done_with_status(ahd, mk_msg_scb, status);
8366				/* FALLTHROUGH */
8367			case SEARCH_REMOVE:
8368			{
8369				u_int tail_offset;
8370
8371				printk("Removing MK_MSG scb\n");
8372
8373				/*
8374				 * Reset our tail to the tail of the
8375				 * main per-target list.
8376				 */
8377				tail_offset = WAITING_SCB_TAILS
8378				    + (2 * SCB_GET_TARGET(ahd, mk_msg_scb));
8379				ahd_outw(ahd, tail_offset, tid_tail);
8380
8381				seq_flags2 &= ~PENDING_MK_MESSAGE;
8382				ahd_outb(ahd, SEQ_FLAGS2, seq_flags2);
8383				ahd_outw(ahd, CMDS_PENDING,
8384					 ahd_inw(ahd, CMDS_PENDING)-1);
8385				mk_msg_scb = NULL;
8386				break;
8387			}
8388			case SEARCH_PRINT:
8389				printk(" 0x%x", SCB_GET_TAG(scb));
8390				/* FALLTHROUGH */
8391			case SEARCH_COUNT:
8392				break;
8393			}
8394		}
8395
8396		if (mk_msg_scb != NULL
8397		 && SCBID_IS_NULL(tid_head)
8398		 && ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD,
8399				  SCB_LIST_NULL, ROLE_UNKNOWN)) {
8400
8401			/*
8402			 * When removing the last SCB for a target
8403			 * queue with a pending MK_MESSAGE scb, we
8404			 * must queue the MK_MESSAGE scb.
8405			 */
8406			printk("Queueing mk_msg_scb\n");
8407			tid_head = ahd_inw(ahd, MK_MESSAGE_SCB);
8408			seq_flags2 &= ~PENDING_MK_MESSAGE;
8409			ahd_outb(ahd, SEQ_FLAGS2, seq_flags2);
8410			mk_msg_scb = NULL;
8411		}
8412		if (tid_head != scbid)
8413			ahd_stitch_tid_list(ahd, tid_prev, tid_head, tid_next);
8414		if (!SCBID_IS_NULL(tid_head))
8415			tid_prev = tid_head;
8416		if (action == SEARCH_PRINT)
8417			printk(")\n");
8418	}
8419
8420	/* Restore saved state. */
8421	ahd_set_scbptr(ahd, savedscbptr);
8422	ahd_restore_modes(ahd, saved_modes);
8423	return (found);
8424}
8425
8426static int
8427ahd_search_scb_list(struct ahd_softc *ahd, int target, char channel,
8428		    int lun, u_int tag, role_t role, uint32_t status,
8429		    ahd_search_action action, u_int *list_head,
8430		    u_int *list_tail, u_int tid)
8431{
8432	struct	scb *scb;
8433	u_int	scbid;
8434	u_int	next;
8435	u_int	prev;
8436	int	found;
8437
8438	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8439	found = 0;
8440	prev = SCB_LIST_NULL;
8441	next = *list_head;
8442	*list_tail = SCB_LIST_NULL;
8443	for (scbid = next; !SCBID_IS_NULL(scbid); scbid = next) {
8444		if (scbid >= ahd->scb_data.numscbs) {
8445			printk("%s:SCB List inconsistency. "
8446			       "SCB == 0x%x, yet numscbs == 0x%x.",
8447			       ahd_name(ahd), scbid, ahd->scb_data.numscbs);
8448			ahd_dump_card_state(ahd);
8449			panic("for safety");
8450		}
8451		scb = ahd_lookup_scb(ahd, scbid);
8452		if (scb == NULL) {
8453			printk("%s: SCB = %d Not Active!\n",
8454			       ahd_name(ahd), scbid);
8455			panic("Waiting List traversal\n");
8456		}
8457		ahd_set_scbptr(ahd, scbid);
8458		*list_tail = scbid;
8459		next = ahd_inw_scbram(ahd, SCB_NEXT);
8460		if (ahd_match_scb(ahd, scb, target, channel,
8461				  lun, SCB_LIST_NULL, role) == 0) {
8462			prev = scbid;
8463			continue;
8464		}
8465		found++;
8466		switch (action) {
8467		case SEARCH_COMPLETE:
8468			if ((scb->flags & SCB_ACTIVE) == 0)
8469				printk("Inactive SCB in Waiting List\n");
8470			ahd_done_with_status(ahd, scb, status);
8471			/* FALLTHROUGH */
8472		case SEARCH_REMOVE:
8473			ahd_rem_wscb(ahd, scbid, prev, next, tid);
8474			*list_tail = prev;
8475			if (SCBID_IS_NULL(prev))
8476				*list_head = next;
8477			break;
8478		case SEARCH_PRINT:
8479			printk("0x%x ", scbid);
8480		case SEARCH_COUNT:
8481			prev = scbid;
8482			break;
8483		}
8484		if (found > AHD_SCB_MAX)
8485			panic("SCB LIST LOOP");
8486	}
8487	if (action == SEARCH_COMPLETE
8488	 || action == SEARCH_REMOVE)
8489		ahd_outw(ahd, CMDS_PENDING, ahd_inw(ahd, CMDS_PENDING) - found);
8490	return (found);
8491}
8492
8493static void
8494ahd_stitch_tid_list(struct ahd_softc *ahd, u_int tid_prev,
8495		    u_int tid_cur, u_int tid_next)
8496{
8497	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8498
8499	if (SCBID_IS_NULL(tid_cur)) {
8500
8501		/* Bypass current TID list */
8502		if (SCBID_IS_NULL(tid_prev)) {
8503			ahd_outw(ahd, WAITING_TID_HEAD, tid_next);
8504		} else {
8505			ahd_set_scbptr(ahd, tid_prev);
8506			ahd_outw(ahd, SCB_NEXT2, tid_next);
8507		}
8508		if (SCBID_IS_NULL(tid_next))
8509			ahd_outw(ahd, WAITING_TID_TAIL, tid_prev);
8510	} else {
8511
8512		/* Stitch through tid_cur */
8513		if (SCBID_IS_NULL(tid_prev)) {
8514			ahd_outw(ahd, WAITING_TID_HEAD, tid_cur);
8515		} else {
8516			ahd_set_scbptr(ahd, tid_prev);
8517			ahd_outw(ahd, SCB_NEXT2, tid_cur);
8518		}
8519		ahd_set_scbptr(ahd, tid_cur);
8520		ahd_outw(ahd, SCB_NEXT2, tid_next);
8521
8522		if (SCBID_IS_NULL(tid_next))
8523			ahd_outw(ahd, WAITING_TID_TAIL, tid_cur);
8524	}
8525}
8526
8527/*
8528 * Manipulate the waiting for selection list and return the
8529 * scb that follows the one that we remove.
8530 */
8531static u_int
8532ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid,
8533	     u_int prev, u_int next, u_int tid)
8534{
8535	u_int tail_offset;
8536
8537	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8538	if (!SCBID_IS_NULL(prev)) {
8539		ahd_set_scbptr(ahd, prev);
8540		ahd_outw(ahd, SCB_NEXT, next);
8541	}
8542
8543	/*
8544	 * SCBs that have MK_MESSAGE set in them may
8545	 * cause the tail pointer to be updated without
8546	 * setting the next pointer of the previous tail.
8547	 * Only clear the tail if the removed SCB was
8548	 * the tail.
8549	 */
8550	tail_offset = WAITING_SCB_TAILS + (2 * tid);
8551	if (SCBID_IS_NULL(next)
8552	 && ahd_inw(ahd, tail_offset) == scbid)
8553		ahd_outw(ahd, tail_offset, prev);
8554
8555	ahd_add_scb_to_free_list(ahd, scbid);
8556	return (next);
8557}
8558
8559/*
8560 * Add the SCB as selected by SCBPTR onto the on chip list of
8561 * free hardware SCBs.  This list is empty/unused if we are not
8562 * performing SCB paging.
8563 */
8564static void
8565ahd_add_scb_to_free_list(struct ahd_softc *ahd, u_int scbid)
8566{
8567/* XXX Need some other mechanism to designate "free". */
8568	/*
8569	 * Invalidate the tag so that our abort
8570	 * routines don't think it's active.
8571	ahd_outb(ahd, SCB_TAG, SCB_LIST_NULL);
8572	 */
8573}
8574
8575/******************************** Error Handling ******************************/
8576/*
8577 * Abort all SCBs that match the given description (target/channel/lun/tag),
8578 * setting their status to the passed in status if the status has not already
8579 * been modified from CAM_REQ_INPROG.  This routine assumes that the sequencer
8580 * is paused before it is called.
8581 */
8582static int
8583ahd_abort_scbs(struct ahd_softc *ahd, int target, char channel,
8584	       int lun, u_int tag, role_t role, uint32_t status)
8585{
8586	struct		scb *scbp;
8587	struct		scb *scbp_next;
8588	u_int		i, j;
8589	u_int		maxtarget;
8590	u_int		minlun;
8591	u_int		maxlun;
8592	int		found;
8593	ahd_mode_state	saved_modes;
8594
8595	/* restore this when we're done */
8596	saved_modes = ahd_save_modes(ahd);
8597	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8598
8599	found = ahd_search_qinfifo(ahd, target, channel, lun, SCB_LIST_NULL,
8600				   role, CAM_REQUEUE_REQ, SEARCH_COMPLETE);
8601
8602	/*
8603	 * Clean out the busy target table for any untagged commands.
8604	 */
8605	i = 0;
8606	maxtarget = 16;
8607	if (target != CAM_TARGET_WILDCARD) {
8608		i = target;
8609		if (channel == 'B')
8610			i += 8;
8611		maxtarget = i + 1;
8612	}
8613
8614	if (lun == CAM_LUN_WILDCARD) {
8615		minlun = 0;
8616		maxlun = AHD_NUM_LUNS_NONPKT;
8617	} else if (lun >= AHD_NUM_LUNS_NONPKT) {
8618		minlun = maxlun = 0;
8619	} else {
8620		minlun = lun;
8621		maxlun = lun + 1;
8622	}
8623
8624	if (role != ROLE_TARGET) {
8625		for (;i < maxtarget; i++) {
8626			for (j = minlun;j < maxlun; j++) {
8627				u_int scbid;
8628				u_int tcl;
8629
8630				tcl = BUILD_TCL_RAW(i, 'A', j);
8631				scbid = ahd_find_busy_tcl(ahd, tcl);
8632				scbp = ahd_lookup_scb(ahd, scbid);
8633				if (scbp == NULL
8634				 || ahd_match_scb(ahd, scbp, target, channel,
8635						  lun, tag, role) == 0)
8636					continue;
8637				ahd_unbusy_tcl(ahd, BUILD_TCL_RAW(i, 'A', j));
8638			}
8639		}
8640	}
8641
8642	/*
8643	 * Don't abort commands that have already completed,
8644	 * but haven't quite made it up to the host yet.
8645	 */
8646	ahd_flush_qoutfifo(ahd);
8647
8648	/*
8649	 * Go through the pending CCB list and look for
8650	 * commands for this target that are still active.
8651	 * These are other tagged commands that were
8652	 * disconnected when the reset occurred.
8653	 */
8654	scbp_next = LIST_FIRST(&ahd->pending_scbs);
8655	while (scbp_next != NULL) {
8656		scbp = scbp_next;
8657		scbp_next = LIST_NEXT(scbp, pending_links);
8658		if (ahd_match_scb(ahd, scbp, target, channel, lun, tag, role)) {
8659			cam_status ostat;
8660
8661			ostat = ahd_get_transaction_status(scbp);
8662			if (ostat == CAM_REQ_INPROG)
8663				ahd_set_transaction_status(scbp, status);
8664			if (ahd_get_transaction_status(scbp) != CAM_REQ_CMP)
8665				ahd_freeze_scb(scbp);
8666			if ((scbp->flags & SCB_ACTIVE) == 0)
8667				printk("Inactive SCB on pending list\n");
8668			ahd_done(ahd, scbp);
8669			found++;
8670		}
8671	}
8672	ahd_restore_modes(ahd, saved_modes);
8673	ahd_platform_abort_scbs(ahd, target, channel, lun, tag, role, status);
8674	ahd->flags |= AHD_UPDATE_PEND_CMDS;
8675	return found;
8676}
8677
8678static void
8679ahd_reset_current_bus(struct ahd_softc *ahd)
8680{
8681	uint8_t scsiseq;
8682
8683	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8684	ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) & ~ENSCSIRST);
8685	scsiseq = ahd_inb(ahd, SCSISEQ0) & ~(ENSELO|ENARBO|SCSIRSTO);
8686	ahd_outb(ahd, SCSISEQ0, scsiseq | SCSIRSTO);
8687	ahd_flush_device_writes(ahd);
8688	ahd_delay(AHD_BUSRESET_DELAY);
8689	/* Turn off the bus reset */
8690	ahd_outb(ahd, SCSISEQ0, scsiseq);
8691	ahd_flush_device_writes(ahd);
8692	ahd_delay(AHD_BUSRESET_DELAY);
8693	if ((ahd->bugs & AHD_SCSIRST_BUG) != 0) {
8694		/*
8695		 * 2A Razor #474
8696		 * Certain chip state is not cleared for
8697		 * SCSI bus resets that we initiate, so
8698		 * we must reset the chip.
8699		 */
8700		ahd_reset(ahd, /*reinit*/TRUE);
8701		ahd_intr_enable(ahd, /*enable*/TRUE);
8702		AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8703	}
8704
8705	ahd_clear_intstat(ahd);
8706}
8707
8708int
8709ahd_reset_channel(struct ahd_softc *ahd, char channel, int initiate_reset)
8710{
8711	struct	ahd_devinfo caminfo;
8712	u_int	initiator;
8713	u_int	target;
8714	u_int	max_scsiid;
8715	int	found;
8716	u_int	fifo;
8717	u_int	next_fifo;
8718	uint8_t scsiseq;
8719
8720	/*
8721	 * Check if the last bus reset is cleared
8722	 */
8723	if (ahd->flags & AHD_BUS_RESET_ACTIVE) {
8724		printk("%s: bus reset still active\n",
8725		       ahd_name(ahd));
8726		return 0;
8727	}
8728	ahd->flags |= AHD_BUS_RESET_ACTIVE;
8729
8730	ahd->pending_device = NULL;
8731
8732	ahd_compile_devinfo(&caminfo,
8733			    CAM_TARGET_WILDCARD,
8734			    CAM_TARGET_WILDCARD,
8735			    CAM_LUN_WILDCARD,
8736			    channel, ROLE_UNKNOWN);
8737	ahd_pause(ahd);
8738
8739	/* Make sure the sequencer is in a safe location. */
8740	ahd_clear_critical_section(ahd);
8741
8742	/*
8743	 * Run our command complete fifos to ensure that we perform
8744	 * completion processing on any commands that 'completed'
8745	 * before the reset occurred.
8746	 */
8747	ahd_run_qoutfifo(ahd);
8748#ifdef AHD_TARGET_MODE
8749	if ((ahd->flags & AHD_TARGETROLE) != 0) {
8750		ahd_run_tqinfifo(ahd, /*paused*/TRUE);
8751	}
8752#endif
8753	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8754
8755	/*
8756	 * Disable selections so no automatic hardware
8757	 * functions will modify chip state.
8758	 */
8759	ahd_outb(ahd, SCSISEQ0, 0);
8760	ahd_outb(ahd, SCSISEQ1, 0);
8761
8762	/*
8763	 * Safely shut down our DMA engines.  Always start with
8764	 * the FIFO that is not currently active (if any are
8765	 * actively connected).
8766	 */
8767	next_fifo = fifo = ahd_inb(ahd, DFFSTAT) & CURRFIFO;
8768	if (next_fifo > CURRFIFO_1)
8769		/* If disconneced, arbitrarily start with FIFO1. */
8770		next_fifo = fifo = 0;
8771	do {
8772		next_fifo ^= CURRFIFO_1;
8773		ahd_set_modes(ahd, next_fifo, next_fifo);
8774		ahd_outb(ahd, DFCNTRL,
8775			 ahd_inb(ahd, DFCNTRL) & ~(SCSIEN|HDMAEN));
8776		while ((ahd_inb(ahd, DFCNTRL) & HDMAENACK) != 0)
8777			ahd_delay(10);
8778		/*
8779		 * Set CURRFIFO to the now inactive channel.
8780		 */
8781		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8782		ahd_outb(ahd, DFFSTAT, next_fifo);
8783	} while (next_fifo != fifo);
8784
8785	/*
8786	 * Reset the bus if we are initiating this reset
8787	 */
8788	ahd_clear_msg_state(ahd);
8789	ahd_outb(ahd, SIMODE1,
8790		 ahd_inb(ahd, SIMODE1) & ~(ENBUSFREE|ENSCSIRST));
8791
8792	if (initiate_reset)
8793		ahd_reset_current_bus(ahd);
8794
8795	ahd_clear_intstat(ahd);
8796
8797	/*
8798	 * Clean up all the state information for the
8799	 * pending transactions on this bus.
8800	 */
8801	found = ahd_abort_scbs(ahd, CAM_TARGET_WILDCARD, channel,
8802			       CAM_LUN_WILDCARD, SCB_LIST_NULL,
8803			       ROLE_UNKNOWN, CAM_SCSI_BUS_RESET);
8804
8805	/*
8806	 * Cleanup anything left in the FIFOs.
8807	 */
8808	ahd_clear_fifo(ahd, 0);
8809	ahd_clear_fifo(ahd, 1);
8810
8811	/*
8812	 * Clear SCSI interrupt status
8813	 */
8814	ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
8815
8816	/*
8817	 * Reenable selections
8818	 */
8819	ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) | ENSCSIRST);
8820	scsiseq = ahd_inb(ahd, SCSISEQ_TEMPLATE);
8821	ahd_outb(ahd, SCSISEQ1, scsiseq & (ENSELI|ENRSELI|ENAUTOATNP));
8822
8823	max_scsiid = (ahd->features & AHD_WIDE) ? 15 : 7;
8824#ifdef AHD_TARGET_MODE
8825	/*
8826	 * Send an immediate notify ccb to all target more peripheral
8827	 * drivers affected by this action.
8828	 */
8829	for (target = 0; target <= max_scsiid; target++) {
8830		struct ahd_tmode_tstate* tstate;
8831		u_int lun;
8832
8833		tstate = ahd->enabled_targets[target];
8834		if (tstate == NULL)
8835			continue;
8836		for (lun = 0; lun < AHD_NUM_LUNS; lun++) {
8837			struct ahd_tmode_lstate* lstate;
8838
8839			lstate = tstate->enabled_luns[lun];
8840			if (lstate == NULL)
8841				continue;
8842
8843			ahd_queue_lstate_event(ahd, lstate, CAM_TARGET_WILDCARD,
8844					       EVENT_TYPE_BUS_RESET, /*arg*/0);
8845			ahd_send_lstate_events(ahd, lstate);
8846		}
8847	}
8848#endif
8849	/*
8850	 * Revert to async/narrow transfers until we renegotiate.
8851	 */
8852	for (target = 0; target <= max_scsiid; target++) {
8853
8854		if (ahd->enabled_targets[target] == NULL)
8855			continue;
8856		for (initiator = 0; initiator <= max_scsiid; initiator++) {
8857			struct ahd_devinfo devinfo;
8858
8859			ahd_compile_devinfo(&devinfo, target, initiator,
8860					    CAM_LUN_WILDCARD,
8861					    'A', ROLE_UNKNOWN);
8862			ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
8863				      AHD_TRANS_CUR, /*paused*/TRUE);
8864			ahd_set_syncrate(ahd, &devinfo, /*period*/0,
8865					 /*offset*/0, /*ppr_options*/0,
8866					 AHD_TRANS_CUR, /*paused*/TRUE);
8867		}
8868	}
8869
8870	/* Notify the XPT that a bus reset occurred */
8871	ahd_send_async(ahd, caminfo.channel, CAM_TARGET_WILDCARD,
8872		       CAM_LUN_WILDCARD, AC_BUS_RESET);
8873
8874	ahd_restart(ahd);
8875
8876	return (found);
8877}
8878
8879/**************************** Statistics Processing ***************************/
8880static void
8881ahd_stat_timer(void *arg)
8882{
8883	struct	ahd_softc *ahd = arg;
8884	u_long	s;
8885	int	enint_coal;
8886
8887	ahd_lock(ahd, &s);
8888
8889	enint_coal = ahd->hs_mailbox & ENINT_COALESCE;
8890	if (ahd->cmdcmplt_total > ahd->int_coalescing_threshold)
8891		enint_coal |= ENINT_COALESCE;
8892	else if (ahd->cmdcmplt_total < ahd->int_coalescing_stop_threshold)
8893		enint_coal &= ~ENINT_COALESCE;
8894
8895	if (enint_coal != (ahd->hs_mailbox & ENINT_COALESCE)) {
8896		ahd_enable_coalescing(ahd, enint_coal);
8897#ifdef AHD_DEBUG
8898		if ((ahd_debug & AHD_SHOW_INT_COALESCING) != 0)
8899			printk("%s: Interrupt coalescing "
8900			       "now %sabled. Cmds %d\n",
8901			       ahd_name(ahd),
8902			       (enint_coal & ENINT_COALESCE) ? "en" : "dis",
8903			       ahd->cmdcmplt_total);
8904#endif
8905	}
8906
8907	ahd->cmdcmplt_bucket = (ahd->cmdcmplt_bucket+1) & (AHD_STAT_BUCKETS-1);
8908	ahd->cmdcmplt_total -= ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket];
8909	ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket] = 0;
8910	ahd_timer_reset(&ahd->stat_timer, AHD_STAT_UPDATE_US,
8911			ahd_stat_timer, ahd);
8912	ahd_unlock(ahd, &s);
8913}
8914
8915/****************************** Status Processing *****************************/
8916
8917static void
8918ahd_handle_scsi_status(struct ahd_softc *ahd, struct scb *scb)
8919{
8920	struct	hardware_scb *hscb;
8921	int	paused;
8922
8923	/*
8924	 * The sequencer freezes its select-out queue
8925	 * anytime a SCSI status error occurs.  We must
8926	 * handle the error and increment our qfreeze count
8927	 * to allow the sequencer to continue.  We don't
8928	 * bother clearing critical sections here since all
8929	 * operations are on data structures that the sequencer
8930	 * is not touching once the queue is frozen.
8931	 */
8932	hscb = scb->hscb;
8933
8934	if (ahd_is_paused(ahd)) {
8935		paused = 1;
8936	} else {
8937		paused = 0;
8938		ahd_pause(ahd);
8939	}
8940
8941	/* Freeze the queue until the client sees the error. */
8942	ahd_freeze_devq(ahd, scb);
8943	ahd_freeze_scb(scb);
8944	ahd->qfreeze_cnt++;
8945	ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
8946
8947	if (paused == 0)
8948		ahd_unpause(ahd);
8949
8950	/* Don't want to clobber the original sense code */
8951	if ((scb->flags & SCB_SENSE) != 0) {
8952		/*
8953		 * Clear the SCB_SENSE Flag and perform
8954		 * a normal command completion.
8955		 */
8956		scb->flags &= ~SCB_SENSE;
8957		ahd_set_transaction_status(scb, CAM_AUTOSENSE_FAIL);
8958		ahd_done(ahd, scb);
8959		return;
8960	}
8961	ahd_set_transaction_status(scb, CAM_SCSI_STATUS_ERROR);
8962	ahd_set_scsi_status(scb, hscb->shared_data.istatus.scsi_status);
8963	switch (hscb->shared_data.istatus.scsi_status) {
8964	case STATUS_PKT_SENSE:
8965	{
8966		struct scsi_status_iu_header *siu;
8967
8968		ahd_sync_sense(ahd, scb, BUS_DMASYNC_POSTREAD);
8969		siu = (struct scsi_status_iu_header *)scb->sense_data;
8970		ahd_set_scsi_status(scb, siu->status);
8971#ifdef AHD_DEBUG
8972		if ((ahd_debug & AHD_SHOW_SENSE) != 0) {
8973			ahd_print_path(ahd, scb);
8974			printk("SCB 0x%x Received PKT Status of 0x%x\n",
8975			       SCB_GET_TAG(scb), siu->status);
8976			printk("\tflags = 0x%x, sense len = 0x%x, "
8977			       "pktfail = 0x%x\n",
8978			       siu->flags, scsi_4btoul(siu->sense_length),
8979			       scsi_4btoul(siu->pkt_failures_length));
8980		}
8981#endif
8982		if ((siu->flags & SIU_RSPVALID) != 0) {
8983			ahd_print_path(ahd, scb);
8984			if (scsi_4btoul(siu->pkt_failures_length) < 4) {
8985				printk("Unable to parse pkt_failures\n");
8986			} else {
8987
8988				switch (SIU_PKTFAIL_CODE(siu)) {
8989				case SIU_PFC_NONE:
8990					printk("No packet failure found\n");
8991					break;
8992				case SIU_PFC_CIU_FIELDS_INVALID:
8993					printk("Invalid Command IU Field\n");
8994					break;
8995				case SIU_PFC_TMF_NOT_SUPPORTED:
8996					printk("TMF not supportd\n");
8997					break;
8998				case SIU_PFC_TMF_FAILED:
8999					printk("TMF failed\n");
9000					break;
9001				case SIU_PFC_INVALID_TYPE_CODE:
9002					printk("Invalid L_Q Type code\n");
9003					break;
9004				case SIU_PFC_ILLEGAL_REQUEST:
9005					printk("Illegal request\n");
9006				default:
9007					break;
9008				}
9009			}
9010			if (siu->status == SCSI_STATUS_OK)
9011				ahd_set_transaction_status(scb,
9012							   CAM_REQ_CMP_ERR);
9013		}
9014		if ((siu->flags & SIU_SNSVALID) != 0) {
9015			scb->flags |= SCB_PKT_SENSE;
9016#ifdef AHD_DEBUG
9017			if ((ahd_debug & AHD_SHOW_SENSE) != 0)
9018				printk("Sense data available\n");
9019#endif
9020		}
9021		ahd_done(ahd, scb);
9022		break;
9023	}
9024	case SCSI_STATUS_CMD_TERMINATED:
9025	case SCSI_STATUS_CHECK_COND:
9026	{
9027		struct ahd_devinfo devinfo;
9028		struct ahd_dma_seg *sg;
9029		struct scsi_sense *sc;
9030		struct ahd_initiator_tinfo *targ_info;
9031		struct ahd_tmode_tstate *tstate;
9032		struct ahd_transinfo *tinfo;
9033#ifdef AHD_DEBUG
9034		if (ahd_debug & AHD_SHOW_SENSE) {
9035			ahd_print_path(ahd, scb);
9036			printk("SCB %d: requests Check Status\n",
9037			       SCB_GET_TAG(scb));
9038		}
9039#endif
9040
9041		if (ahd_perform_autosense(scb) == 0)
9042			break;
9043
9044		ahd_compile_devinfo(&devinfo, SCB_GET_OUR_ID(scb),
9045				    SCB_GET_TARGET(ahd, scb),
9046				    SCB_GET_LUN(scb),
9047				    SCB_GET_CHANNEL(ahd, scb),
9048				    ROLE_INITIATOR);
9049		targ_info = ahd_fetch_transinfo(ahd,
9050						devinfo.channel,
9051						devinfo.our_scsiid,
9052						devinfo.target,
9053						&tstate);
9054		tinfo = &targ_info->curr;
9055		sg = scb->sg_list;
9056		sc = (struct scsi_sense *)hscb->shared_data.idata.cdb;
9057		/*
9058		 * Save off the residual if there is one.
9059		 */
9060		ahd_update_residual(ahd, scb);
9061#ifdef AHD_DEBUG
9062		if (ahd_debug & AHD_SHOW_SENSE) {
9063			ahd_print_path(ahd, scb);
9064			printk("Sending Sense\n");
9065		}
9066#endif
9067		scb->sg_count = 0;
9068		sg = ahd_sg_setup(ahd, scb, sg, ahd_get_sense_bufaddr(ahd, scb),
9069				  ahd_get_sense_bufsize(ahd, scb),
9070				  /*last*/TRUE);
9071		sc->opcode = REQUEST_SENSE;
9072		sc->byte2 = 0;
9073		if (tinfo->protocol_version <= SCSI_REV_2
9074		 && SCB_GET_LUN(scb) < 8)
9075			sc->byte2 = SCB_GET_LUN(scb) << 5;
9076		sc->unused[0] = 0;
9077		sc->unused[1] = 0;
9078		sc->length = ahd_get_sense_bufsize(ahd, scb);
9079		sc->control = 0;
9080
9081		/*
9082		 * We can't allow the target to disconnect.
9083		 * This will be an untagged transaction and
9084		 * having the target disconnect will make this
9085		 * transaction indestinguishable from outstanding
9086		 * tagged transactions.
9087		 */
9088		hscb->control = 0;
9089
9090		/*
9091		 * This request sense could be because the
9092		 * the device lost power or in some other
9093		 * way has lost our transfer negotiations.
9094		 * Renegotiate if appropriate.  Unit attention
9095		 * errors will be reported before any data
9096		 * phases occur.
9097		 */
9098		if (ahd_get_residual(scb) == ahd_get_transfer_length(scb)) {
9099			ahd_update_neg_request(ahd, &devinfo,
9100					       tstate, targ_info,
9101					       AHD_NEG_IF_NON_ASYNC);
9102		}
9103		if (tstate->auto_negotiate & devinfo.target_mask) {
9104			hscb->control |= MK_MESSAGE;
9105			scb->flags &=
9106			    ~(SCB_NEGOTIATE|SCB_ABORT|SCB_DEVICE_RESET);
9107			scb->flags |= SCB_AUTO_NEGOTIATE;
9108		}
9109		hscb->cdb_len = sizeof(*sc);
9110		ahd_setup_data_scb(ahd, scb);
9111		scb->flags |= SCB_SENSE;
9112		ahd_queue_scb(ahd, scb);
9113		break;
9114	}
9115	case SCSI_STATUS_OK:
9116		printk("%s: Interrupted for staus of 0???\n",
9117		       ahd_name(ahd));
9118		/* FALLTHROUGH */
9119	default:
9120		ahd_done(ahd, scb);
9121		break;
9122	}
9123}
9124
9125static void
9126ahd_handle_scb_status(struct ahd_softc *ahd, struct scb *scb)
9127{
9128	if (scb->hscb->shared_data.istatus.scsi_status != 0) {
9129		ahd_handle_scsi_status(ahd, scb);
9130	} else {
9131		ahd_calc_residual(ahd, scb);
9132		ahd_done(ahd, scb);
9133	}
9134}
9135
9136/*
9137 * Calculate the residual for a just completed SCB.
9138 */
9139static void
9140ahd_calc_residual(struct ahd_softc *ahd, struct scb *scb)
9141{
9142	struct hardware_scb *hscb;
9143	struct initiator_status *spkt;
9144	uint32_t sgptr;
9145	uint32_t resid_sgptr;
9146	uint32_t resid;
9147
9148	/*
9149	 * 5 cases.
9150	 * 1) No residual.
9151	 *    SG_STATUS_VALID clear in sgptr.
9152	 * 2) Transferless command
9153	 * 3) Never performed any transfers.
9154	 *    sgptr has SG_FULL_RESID set.
9155	 * 4) No residual but target did not
9156	 *    save data pointers after the
9157	 *    last transfer, so sgptr was
9158	 *    never updated.
9159	 * 5) We have a partial residual.
9160	 *    Use residual_sgptr to determine
9161	 *    where we are.
9162	 */
9163
9164	hscb = scb->hscb;
9165	sgptr = ahd_le32toh(hscb->sgptr);
9166	if ((sgptr & SG_STATUS_VALID) == 0)
9167		/* Case 1 */
9168		return;
9169	sgptr &= ~SG_STATUS_VALID;
9170
9171	if ((sgptr & SG_LIST_NULL) != 0)
9172		/* Case 2 */
9173		return;
9174
9175	/*
9176	 * Residual fields are the same in both
9177	 * target and initiator status packets,
9178	 * so we can always use the initiator fields
9179	 * regardless of the role for this SCB.
9180	 */
9181	spkt = &hscb->shared_data.istatus;
9182	resid_sgptr = ahd_le32toh(spkt->residual_sgptr);
9183	if ((sgptr & SG_FULL_RESID) != 0) {
9184		/* Case 3 */
9185		resid = ahd_get_transfer_length(scb);
9186	} else if ((resid_sgptr & SG_LIST_NULL) != 0) {
9187		/* Case 4 */
9188		return;
9189	} else if ((resid_sgptr & SG_OVERRUN_RESID) != 0) {
9190		ahd_print_path(ahd, scb);
9191		printk("data overrun detected Tag == 0x%x.\n",
9192		       SCB_GET_TAG(scb));
9193		ahd_freeze_devq(ahd, scb);
9194		ahd_set_transaction_status(scb, CAM_DATA_RUN_ERR);
9195		ahd_freeze_scb(scb);
9196		return;
9197	} else if ((resid_sgptr & ~SG_PTR_MASK) != 0) {
9198		panic("Bogus resid sgptr value 0x%x\n", resid_sgptr);
9199		/* NOTREACHED */
9200	} else {
9201		struct ahd_dma_seg *sg;
9202
9203		/*
9204		 * Remainder of the SG where the transfer
9205		 * stopped.
9206		 */
9207		resid = ahd_le32toh(spkt->residual_datacnt) & AHD_SG_LEN_MASK;
9208		sg = ahd_sg_bus_to_virt(ahd, scb, resid_sgptr & SG_PTR_MASK);
9209
9210		/* The residual sg_ptr always points to the next sg */
9211		sg--;
9212
9213		/*
9214		 * Add up the contents of all residual
9215		 * SG segments that are after the SG where
9216		 * the transfer stopped.
9217		 */
9218		while ((ahd_le32toh(sg->len) & AHD_DMA_LAST_SEG) == 0) {
9219			sg++;
9220			resid += ahd_le32toh(sg->len) & AHD_SG_LEN_MASK;
9221		}
9222	}
9223	if ((scb->flags & SCB_SENSE) == 0)
9224		ahd_set_residual(scb, resid);
9225	else
9226		ahd_set_sense_residual(scb, resid);
9227
9228#ifdef AHD_DEBUG
9229	if ((ahd_debug & AHD_SHOW_MISC) != 0) {
9230		ahd_print_path(ahd, scb);
9231		printk("Handled %sResidual of %d bytes\n",
9232		       (scb->flags & SCB_SENSE) ? "Sense " : "", resid);
9233	}
9234#endif
9235}
9236
9237/******************************* Target Mode **********************************/
9238#ifdef AHD_TARGET_MODE
9239/*
9240 * Add a target mode event to this lun's queue
9241 */
9242static void
9243ahd_queue_lstate_event(struct ahd_softc *ahd, struct ahd_tmode_lstate *lstate,
9244		       u_int initiator_id, u_int event_type, u_int event_arg)
9245{
9246	struct ahd_tmode_event *event;
9247	int pending;
9248
9249	xpt_freeze_devq(lstate->path, /*count*/1);
9250	if (lstate->event_w_idx >= lstate->event_r_idx)
9251		pending = lstate->event_w_idx - lstate->event_r_idx;
9252	else
9253		pending = AHD_TMODE_EVENT_BUFFER_SIZE + 1
9254			- (lstate->event_r_idx - lstate->event_w_idx);
9255
9256	if (event_type == EVENT_TYPE_BUS_RESET
9257	 || event_type == MSG_BUS_DEV_RESET) {
9258		/*
9259		 * Any earlier events are irrelevant, so reset our buffer.
9260		 * This has the effect of allowing us to deal with reset
9261		 * floods (an external device holding down the reset line)
9262		 * without losing the event that is really interesting.
9263		 */
9264		lstate->event_r_idx = 0;
9265		lstate->event_w_idx = 0;
9266		xpt_release_devq(lstate->path, pending, /*runqueue*/FALSE);
9267	}
9268
9269	if (pending == AHD_TMODE_EVENT_BUFFER_SIZE) {
9270		xpt_print_path(lstate->path);
9271		printk("immediate event %x:%x lost\n",
9272		       lstate->event_buffer[lstate->event_r_idx].event_type,
9273		       lstate->event_buffer[lstate->event_r_idx].event_arg);
9274		lstate->event_r_idx++;
9275		if (lstate->event_r_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
9276			lstate->event_r_idx = 0;
9277		xpt_release_devq(lstate->path, /*count*/1, /*runqueue*/FALSE);
9278	}
9279
9280	event = &lstate->event_buffer[lstate->event_w_idx];
9281	event->initiator_id = initiator_id;
9282	event->event_type = event_type;
9283	event->event_arg = event_arg;
9284	lstate->event_w_idx++;
9285	if (lstate->event_w_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
9286		lstate->event_w_idx = 0;
9287}
9288
9289/*
9290 * Send any target mode events queued up waiting
9291 * for immediate notify resources.
9292 */
9293void
9294ahd_send_lstate_events(struct ahd_softc *ahd, struct ahd_tmode_lstate *lstate)
9295{
9296	struct ccb_hdr *ccbh;
9297	struct ccb_immed_notify *inot;
9298
9299	while (lstate->event_r_idx != lstate->event_w_idx
9300	    && (ccbh = SLIST_FIRST(&lstate->immed_notifies)) != NULL) {
9301		struct ahd_tmode_event *event;
9302
9303		event = &lstate->event_buffer[lstate->event_r_idx];
9304		SLIST_REMOVE_HEAD(&lstate->immed_notifies, sim_links.sle);
9305		inot = (struct ccb_immed_notify *)ccbh;
9306		switch (event->event_type) {
9307		case EVENT_TYPE_BUS_RESET:
9308			ccbh->status = CAM_SCSI_BUS_RESET|CAM_DEV_QFRZN;
9309			break;
9310		default:
9311			ccbh->status = CAM_MESSAGE_RECV|CAM_DEV_QFRZN;
9312			inot->message_args[0] = event->event_type;
9313			inot->message_args[1] = event->event_arg;
9314			break;
9315		}
9316		inot->initiator_id = event->initiator_id;
9317		inot->sense_len = 0;
9318		xpt_done((union ccb *)inot);
9319		lstate->event_r_idx++;
9320		if (lstate->event_r_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
9321			lstate->event_r_idx = 0;
9322	}
9323}
9324#endif
9325
9326/******************** Sequencer Program Patching/Download *********************/
9327
9328#ifdef AHD_DUMP_SEQ
9329void
9330ahd_dumpseq(struct ahd_softc* ahd)
9331{
9332	int i;
9333	int max_prog;
9334
9335	max_prog = 2048;
9336
9337	ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
9338	ahd_outw(ahd, PRGMCNT, 0);
9339	for (i = 0; i < max_prog; i++) {
9340		uint8_t ins_bytes[4];
9341
9342		ahd_insb(ahd, SEQRAM, ins_bytes, 4);
9343		printk("0x%08x\n", ins_bytes[0] << 24
9344				 | ins_bytes[1] << 16
9345				 | ins_bytes[2] << 8
9346				 | ins_bytes[3]);
9347	}
9348}
9349#endif
9350
9351static void
9352ahd_loadseq(struct ahd_softc *ahd)
9353{
9354	struct	cs cs_table[num_critical_sections];
9355	u_int	begin_set[num_critical_sections];
9356	u_int	end_set[num_critical_sections];
9357	const struct patch *cur_patch;
9358	u_int	cs_count;
9359	u_int	cur_cs;
9360	u_int	i;
9361	int	downloaded;
9362	u_int	skip_addr;
9363	u_int	sg_prefetch_cnt;
9364	u_int	sg_prefetch_cnt_limit;
9365	u_int	sg_prefetch_align;
9366	u_int	sg_size;
9367	u_int	cacheline_mask;
9368	uint8_t	download_consts[DOWNLOAD_CONST_COUNT];
9369
9370	if (bootverbose)
9371		printk("%s: Downloading Sequencer Program...",
9372		       ahd_name(ahd));
9373
9374#if DOWNLOAD_CONST_COUNT != 8
9375#error "Download Const Mismatch"
9376#endif
9377	/*
9378	 * Start out with 0 critical sections
9379	 * that apply to this firmware load.
9380	 */
9381	cs_count = 0;
9382	cur_cs = 0;
9383	memset(begin_set, 0, sizeof(begin_set));
9384	memset(end_set, 0, sizeof(end_set));
9385
9386	/*
9387	 * Setup downloadable constant table.
9388	 *
9389	 * The computation for the S/G prefetch variables is
9390	 * a bit complicated.  We would like to always fetch
9391	 * in terms of cachelined sized increments.  However,
9392	 * if the cacheline is not an even multiple of the
9393	 * SG element size or is larger than our SG RAM, using
9394	 * just the cache size might leave us with only a portion
9395	 * of an SG element at the tail of a prefetch.  If the
9396	 * cacheline is larger than our S/G prefetch buffer less
9397	 * the size of an SG element, we may round down to a cacheline
9398	 * that doesn't contain any or all of the S/G of interest
9399	 * within the bounds of our S/G ram.  Provide variables to
9400	 * the sequencer that will allow it to handle these edge
9401	 * cases.
9402	 */
9403	/* Start by aligning to the nearest cacheline. */
9404	sg_prefetch_align = ahd->pci_cachesize;
9405	if (sg_prefetch_align == 0)
9406		sg_prefetch_align = 8;
9407	/* Round down to the nearest power of 2. */
9408	while (powerof2(sg_prefetch_align) == 0)
9409		sg_prefetch_align--;
9410
9411	cacheline_mask = sg_prefetch_align - 1;
9412
9413	/*
9414	 * If the cacheline boundary is greater than half our prefetch RAM
9415	 * we risk not being able to fetch even a single complete S/G
9416	 * segment if we align to that boundary.
9417	 */
9418	if (sg_prefetch_align > CCSGADDR_MAX/2)
9419		sg_prefetch_align = CCSGADDR_MAX/2;
9420	/* Start by fetching a single cacheline. */
9421	sg_prefetch_cnt = sg_prefetch_align;
9422	/*
9423	 * Increment the prefetch count by cachelines until
9424	 * at least one S/G element will fit.
9425	 */
9426	sg_size = sizeof(struct ahd_dma_seg);
9427	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
9428		sg_size = sizeof(struct ahd_dma64_seg);
9429	while (sg_prefetch_cnt < sg_size)
9430		sg_prefetch_cnt += sg_prefetch_align;
9431	/*
9432	 * If the cacheline is not an even multiple of
9433	 * the S/G size, we may only get a partial S/G when
9434	 * we align. Add a cacheline if this is the case.
9435	 */
9436	if ((sg_prefetch_align % sg_size) != 0
9437	 && (sg_prefetch_cnt < CCSGADDR_MAX))
9438		sg_prefetch_cnt += sg_prefetch_align;
9439	/*
9440	 * Lastly, compute a value that the sequencer can use
9441	 * to determine if the remainder of the CCSGRAM buffer
9442	 * has a full S/G element in it.
9443	 */
9444	sg_prefetch_cnt_limit = -(sg_prefetch_cnt - sg_size + 1);
9445	download_consts[SG_PREFETCH_CNT] = sg_prefetch_cnt;
9446	download_consts[SG_PREFETCH_CNT_LIMIT] = sg_prefetch_cnt_limit;
9447	download_consts[SG_PREFETCH_ALIGN_MASK] = ~(sg_prefetch_align - 1);
9448	download_consts[SG_PREFETCH_ADDR_MASK] = (sg_prefetch_align - 1);
9449	download_consts[SG_SIZEOF] = sg_size;
9450	download_consts[PKT_OVERRUN_BUFOFFSET] =
9451		(ahd->overrun_buf - (uint8_t *)ahd->qoutfifo) / 256;
9452	download_consts[SCB_TRANSFER_SIZE] = SCB_TRANSFER_SIZE_1BYTE_LUN;
9453	download_consts[CACHELINE_MASK] = cacheline_mask;
9454	cur_patch = patches;
9455	downloaded = 0;
9456	skip_addr = 0;
9457	ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
9458	ahd_outw(ahd, PRGMCNT, 0);
9459
9460	for (i = 0; i < sizeof(seqprog)/4; i++) {
9461		if (ahd_check_patch(ahd, &cur_patch, i, &skip_addr) == 0) {
9462			/*
9463			 * Don't download this instruction as it
9464			 * is in a patch that was removed.
9465			 */
9466			continue;
9467		}
9468		/*
9469		 * Move through the CS table until we find a CS
9470		 * that might apply to this instruction.
9471		 */
9472		for (; cur_cs < num_critical_sections; cur_cs++) {
9473			if (critical_sections[cur_cs].end <= i) {
9474				if (begin_set[cs_count] == TRUE
9475				 && end_set[cs_count] == FALSE) {
9476					cs_table[cs_count].end = downloaded;
9477				 	end_set[cs_count] = TRUE;
9478					cs_count++;
9479				}
9480				continue;
9481			}
9482			if (critical_sections[cur_cs].begin <= i
9483			 && begin_set[cs_count] == FALSE) {
9484				cs_table[cs_count].begin = downloaded;
9485				begin_set[cs_count] = TRUE;
9486			}
9487			break;
9488		}
9489		ahd_download_instr(ahd, i, download_consts);
9490		downloaded++;
9491	}
9492
9493	ahd->num_critical_sections = cs_count;
9494	if (cs_count != 0) {
9495
9496		cs_count *= sizeof(struct cs);
9497		ahd->critical_sections = kmalloc(cs_count, GFP_ATOMIC);
9498		if (ahd->critical_sections == NULL)
9499			panic("ahd_loadseq: Could not malloc");
9500		memcpy(ahd->critical_sections, cs_table, cs_count);
9501	}
9502	ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE);
9503
9504	if (bootverbose) {
9505		printk(" %d instructions downloaded\n", downloaded);
9506		printk("%s: Features 0x%x, Bugs 0x%x, Flags 0x%x\n",
9507		       ahd_name(ahd), ahd->features, ahd->bugs, ahd->flags);
9508	}
9509}
9510
9511static int
9512ahd_check_patch(struct ahd_softc *ahd, const struct patch **start_patch,
9513		u_int start_instr, u_int *skip_addr)
9514{
9515	const struct patch *cur_patch;
9516	const struct patch *last_patch;
9517	u_int	num_patches;
9518
9519	num_patches = ARRAY_SIZE(patches);
9520	last_patch = &patches[num_patches];
9521	cur_patch = *start_patch;
9522
9523	while (cur_patch < last_patch && start_instr == cur_patch->begin) {
9524
9525		if (cur_patch->patch_func(ahd) == 0) {
9526
9527			/* Start rejecting code */
9528			*skip_addr = start_instr + cur_patch->skip_instr;
9529			cur_patch += cur_patch->skip_patch;
9530		} else {
9531			/* Accepted this patch.  Advance to the next
9532			 * one and wait for our intruction pointer to
9533			 * hit this point.
9534			 */
9535			cur_patch++;
9536		}
9537	}
9538
9539	*start_patch = cur_patch;
9540	if (start_instr < *skip_addr)
9541		/* Still skipping */
9542		return (0);
9543
9544	return (1);
9545}
9546
9547static u_int
9548ahd_resolve_seqaddr(struct ahd_softc *ahd, u_int address)
9549{
9550	const struct patch *cur_patch;
9551	int address_offset;
9552	u_int skip_addr;
9553	u_int i;
9554
9555	address_offset = 0;
9556	cur_patch = patches;
9557	skip_addr = 0;
9558
9559	for (i = 0; i < address;) {
9560
9561		ahd_check_patch(ahd, &cur_patch, i, &skip_addr);
9562
9563		if (skip_addr > i) {
9564			int end_addr;
9565
9566			end_addr = min(address, skip_addr);
9567			address_offset += end_addr - i;
9568			i = skip_addr;
9569		} else {
9570			i++;
9571		}
9572	}
9573	return (address - address_offset);
9574}
9575
9576static void
9577ahd_download_instr(struct ahd_softc *ahd, u_int instrptr, uint8_t *dconsts)
9578{
9579	union	ins_formats instr;
9580	struct	ins_format1 *fmt1_ins;
9581	struct	ins_format3 *fmt3_ins;
9582	u_int	opcode;
9583
9584	/*
9585	 * The firmware is always compiled into a little endian format.
9586	 */
9587	instr.integer = ahd_le32toh(*(uint32_t*)&seqprog[instrptr * 4]);
9588
9589	fmt1_ins = &instr.format1;
9590	fmt3_ins = NULL;
9591
9592	/* Pull the opcode */
9593	opcode = instr.format1.opcode;
9594	switch (opcode) {
9595	case AIC_OP_JMP:
9596	case AIC_OP_JC:
9597	case AIC_OP_JNC:
9598	case AIC_OP_CALL:
9599	case AIC_OP_JNE:
9600	case AIC_OP_JNZ:
9601	case AIC_OP_JE:
9602	case AIC_OP_JZ:
9603	{
9604		fmt3_ins = &instr.format3;
9605		fmt3_ins->address = ahd_resolve_seqaddr(ahd, fmt3_ins->address);
9606		/* FALLTHROUGH */
9607	}
9608	case AIC_OP_OR:
9609	case AIC_OP_AND:
9610	case AIC_OP_XOR:
9611	case AIC_OP_ADD:
9612	case AIC_OP_ADC:
9613	case AIC_OP_BMOV:
9614		if (fmt1_ins->parity != 0) {
9615			fmt1_ins->immediate = dconsts[fmt1_ins->immediate];
9616		}
9617		fmt1_ins->parity = 0;
9618		/* FALLTHROUGH */
9619	case AIC_OP_ROL:
9620	{
9621		int i, count;
9622
9623		/* Calculate odd parity for the instruction */
9624		for (i = 0, count = 0; i < 31; i++) {
9625			uint32_t mask;
9626
9627			mask = 0x01 << i;
9628			if ((instr.integer & mask) != 0)
9629				count++;
9630		}
9631		if ((count & 0x01) == 0)
9632			instr.format1.parity = 1;
9633
9634		/* The sequencer is a little endian cpu */
9635		instr.integer = ahd_htole32(instr.integer);
9636		ahd_outsb(ahd, SEQRAM, instr.bytes, 4);
9637		break;
9638	}
9639	default:
9640		panic("Unknown opcode encountered in seq program");
9641		break;
9642	}
9643}
9644
9645static int
9646ahd_probe_stack_size(struct ahd_softc *ahd)
9647{
9648	int last_probe;
9649
9650	last_probe = 0;
9651	while (1) {
9652		int i;
9653
9654		/*
9655		 * We avoid using 0 as a pattern to avoid
9656		 * confusion if the stack implementation
9657		 * "back-fills" with zeros when "poping'
9658		 * entries.
9659		 */
9660		for (i = 1; i <= last_probe+1; i++) {
9661		       ahd_outb(ahd, STACK, i & 0xFF);
9662		       ahd_outb(ahd, STACK, (i >> 8) & 0xFF);
9663		}
9664
9665		/* Verify */
9666		for (i = last_probe+1; i > 0; i--) {
9667			u_int stack_entry;
9668
9669			stack_entry = ahd_inb(ahd, STACK)
9670				    |(ahd_inb(ahd, STACK) << 8);
9671			if (stack_entry != i)
9672				goto sized;
9673		}
9674		last_probe++;
9675	}
9676sized:
9677	return (last_probe);
9678}
9679
9680int
9681ahd_print_register(const ahd_reg_parse_entry_t *table, u_int num_entries,
9682		   const char *name, u_int address, u_int value,
9683		   u_int *cur_column, u_int wrap_point)
9684{
9685	int	printed;
9686	u_int	printed_mask;
9687
9688	if (cur_column != NULL && *cur_column >= wrap_point) {
9689		printk("\n");
9690		*cur_column = 0;
9691	}
9692	printed = printk("%s[0x%x]", name, value);
9693	if (table == NULL) {
9694		printed += printk(" ");
9695		*cur_column += printed;
9696		return (printed);
9697	}
9698	printed_mask = 0;
9699	while (printed_mask != 0xFF) {
9700		int entry;
9701
9702		for (entry = 0; entry < num_entries; entry++) {
9703			if (((value & table[entry].mask)
9704			  != table[entry].value)
9705			 || ((printed_mask & table[entry].mask)
9706			  == table[entry].mask))
9707				continue;
9708
9709			printed += printk("%s%s",
9710					  printed_mask == 0 ? ":(" : "|",
9711					  table[entry].name);
9712			printed_mask |= table[entry].mask;
9713
9714			break;
9715		}
9716		if (entry >= num_entries)
9717			break;
9718	}
9719	if (printed_mask != 0)
9720		printed += printk(") ");
9721	else
9722		printed += printk(" ");
9723	if (cur_column != NULL)
9724		*cur_column += printed;
9725	return (printed);
9726}
9727
9728void
9729ahd_dump_card_state(struct ahd_softc *ahd)
9730{
9731	struct scb	*scb;
9732	ahd_mode_state	 saved_modes;
9733	u_int		 dffstat;
9734	int		 paused;
9735	u_int		 scb_index;
9736	u_int		 saved_scb_index;
9737	u_int		 cur_col;
9738	int		 i;
9739
9740	if (ahd_is_paused(ahd)) {
9741		paused = 1;
9742	} else {
9743		paused = 0;
9744		ahd_pause(ahd);
9745	}
9746	saved_modes = ahd_save_modes(ahd);
9747	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
9748	printk(">>>>>>>>>>>>>>>>>> Dump Card State Begins <<<<<<<<<<<<<<<<<\n"
9749	       "%s: Dumping Card State at program address 0x%x Mode 0x%x\n",
9750	       ahd_name(ahd),
9751	       ahd_inw(ahd, CURADDR),
9752	       ahd_build_mode_state(ahd, ahd->saved_src_mode,
9753				    ahd->saved_dst_mode));
9754	if (paused)
9755		printk("Card was paused\n");
9756
9757	if (ahd_check_cmdcmpltqueues(ahd))
9758		printk("Completions are pending\n");
9759
9760	/*
9761	 * Mode independent registers.
9762	 */
9763	cur_col = 0;
9764	ahd_intstat_print(ahd_inb(ahd, INTSTAT), &cur_col, 50);
9765	ahd_seloid_print(ahd_inb(ahd, SELOID), &cur_col, 50);
9766	ahd_selid_print(ahd_inb(ahd, SELID), &cur_col, 50);
9767	ahd_hs_mailbox_print(ahd_inb(ahd, LOCAL_HS_MAILBOX), &cur_col, 50);
9768	ahd_intctl_print(ahd_inb(ahd, INTCTL), &cur_col, 50);
9769	ahd_seqintstat_print(ahd_inb(ahd, SEQINTSTAT), &cur_col, 50);
9770	ahd_saved_mode_print(ahd_inb(ahd, SAVED_MODE), &cur_col, 50);
9771	ahd_dffstat_print(ahd_inb(ahd, DFFSTAT), &cur_col, 50);
9772	ahd_scsisigi_print(ahd_inb(ahd, SCSISIGI), &cur_col, 50);
9773	ahd_scsiphase_print(ahd_inb(ahd, SCSIPHASE), &cur_col, 50);
9774	ahd_scsibus_print(ahd_inb(ahd, SCSIBUS), &cur_col, 50);
9775	ahd_lastphase_print(ahd_inb(ahd, LASTPHASE), &cur_col, 50);
9776	ahd_scsiseq0_print(ahd_inb(ahd, SCSISEQ0), &cur_col, 50);
9777	ahd_scsiseq1_print(ahd_inb(ahd, SCSISEQ1), &cur_col, 50);
9778	ahd_seqctl0_print(ahd_inb(ahd, SEQCTL0), &cur_col, 50);
9779	ahd_seqintctl_print(ahd_inb(ahd, SEQINTCTL), &cur_col, 50);
9780	ahd_seq_flags_print(ahd_inb(ahd, SEQ_FLAGS), &cur_col, 50);
9781	ahd_seq_flags2_print(ahd_inb(ahd, SEQ_FLAGS2), &cur_col, 50);
9782	ahd_qfreeze_count_print(ahd_inw(ahd, QFREEZE_COUNT), &cur_col, 50);
9783	ahd_kernel_qfreeze_count_print(ahd_inw(ahd, KERNEL_QFREEZE_COUNT),
9784				       &cur_col, 50);
9785	ahd_mk_message_scb_print(ahd_inw(ahd, MK_MESSAGE_SCB), &cur_col, 50);
9786	ahd_mk_message_scsiid_print(ahd_inb(ahd, MK_MESSAGE_SCSIID),
9787				    &cur_col, 50);
9788	ahd_sstat0_print(ahd_inb(ahd, SSTAT0), &cur_col, 50);
9789	ahd_sstat1_print(ahd_inb(ahd, SSTAT1), &cur_col, 50);
9790	ahd_sstat2_print(ahd_inb(ahd, SSTAT2), &cur_col, 50);
9791	ahd_sstat3_print(ahd_inb(ahd, SSTAT3), &cur_col, 50);
9792	ahd_perrdiag_print(ahd_inb(ahd, PERRDIAG), &cur_col, 50);
9793	ahd_simode1_print(ahd_inb(ahd, SIMODE1), &cur_col, 50);
9794	ahd_lqistat0_print(ahd_inb(ahd, LQISTAT0), &cur_col, 50);
9795	ahd_lqistat1_print(ahd_inb(ahd, LQISTAT1), &cur_col, 50);
9796	ahd_lqistat2_print(ahd_inb(ahd, LQISTAT2), &cur_col, 50);
9797	ahd_lqostat0_print(ahd_inb(ahd, LQOSTAT0), &cur_col, 50);
9798	ahd_lqostat1_print(ahd_inb(ahd, LQOSTAT1), &cur_col, 50);
9799	ahd_lqostat2_print(ahd_inb(ahd, LQOSTAT2), &cur_col, 50);
9800	printk("\n");
9801	printk("\nSCB Count = %d CMDS_PENDING = %d LASTSCB 0x%x "
9802	       "CURRSCB 0x%x NEXTSCB 0x%x\n",
9803	       ahd->scb_data.numscbs, ahd_inw(ahd, CMDS_PENDING),
9804	       ahd_inw(ahd, LASTSCB), ahd_inw(ahd, CURRSCB),
9805	       ahd_inw(ahd, NEXTSCB));
9806	cur_col = 0;
9807	/* QINFIFO */
9808	ahd_search_qinfifo(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS,
9809			   CAM_LUN_WILDCARD, SCB_LIST_NULL,
9810			   ROLE_UNKNOWN, /*status*/0, SEARCH_PRINT);
9811	saved_scb_index = ahd_get_scbptr(ahd);
9812	printk("Pending list:");
9813	i = 0;
9814	LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
9815		if (i++ > AHD_SCB_MAX)
9816			break;
9817		cur_col = printk("\n%3d FIFO_USE[0x%x] ", SCB_GET_TAG(scb),
9818				 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT));
9819		ahd_set_scbptr(ahd, SCB_GET_TAG(scb));
9820		ahd_scb_control_print(ahd_inb_scbram(ahd, SCB_CONTROL),
9821				      &cur_col, 60);
9822		ahd_scb_scsiid_print(ahd_inb_scbram(ahd, SCB_SCSIID),
9823				     &cur_col, 60);
9824	}
9825	printk("\nTotal %d\n", i);
9826
9827	printk("Kernel Free SCB list: ");
9828	i = 0;
9829	TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
9830		struct scb *list_scb;
9831
9832		list_scb = scb;
9833		do {
9834			printk("%d ", SCB_GET_TAG(list_scb));
9835			list_scb = LIST_NEXT(list_scb, collision_links);
9836		} while (list_scb && i++ < AHD_SCB_MAX);
9837	}
9838
9839	LIST_FOREACH(scb, &ahd->scb_data.any_dev_free_scb_list, links.le) {
9840		if (i++ > AHD_SCB_MAX)
9841			break;
9842		printk("%d ", SCB_GET_TAG(scb));
9843	}
9844	printk("\n");
9845
9846	printk("Sequencer Complete DMA-inprog list: ");
9847	scb_index = ahd_inw(ahd, COMPLETE_SCB_DMAINPROG_HEAD);
9848	i = 0;
9849	while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9850		ahd_set_scbptr(ahd, scb_index);
9851		printk("%d ", scb_index);
9852		scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9853	}
9854	printk("\n");
9855
9856	printk("Sequencer Complete list: ");
9857	scb_index = ahd_inw(ahd, COMPLETE_SCB_HEAD);
9858	i = 0;
9859	while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9860		ahd_set_scbptr(ahd, scb_index);
9861		printk("%d ", scb_index);
9862		scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9863	}
9864	printk("\n");
9865
9866
9867	printk("Sequencer DMA-Up and Complete list: ");
9868	scb_index = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
9869	i = 0;
9870	while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9871		ahd_set_scbptr(ahd, scb_index);
9872		printk("%d ", scb_index);
9873		scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9874	}
9875	printk("\n");
9876	printk("Sequencer On QFreeze and Complete list: ");
9877	scb_index = ahd_inw(ahd, COMPLETE_ON_QFREEZE_HEAD);
9878	i = 0;
9879	while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9880		ahd_set_scbptr(ahd, scb_index);
9881		printk("%d ", scb_index);
9882		scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9883	}
9884	printk("\n");
9885	ahd_set_scbptr(ahd, saved_scb_index);
9886	dffstat = ahd_inb(ahd, DFFSTAT);
9887	for (i = 0; i < 2; i++) {
9888#ifdef AHD_DEBUG
9889		struct scb *fifo_scb;
9890#endif
9891		u_int	    fifo_scbptr;
9892
9893		ahd_set_modes(ahd, AHD_MODE_DFF0 + i, AHD_MODE_DFF0 + i);
9894		fifo_scbptr = ahd_get_scbptr(ahd);
9895		printk("\n\n%s: FIFO%d %s, LONGJMP == 0x%x, SCB 0x%x\n",
9896		       ahd_name(ahd), i,
9897		       (dffstat & (FIFO0FREE << i)) ? "Free" : "Active",
9898		       ahd_inw(ahd, LONGJMP_ADDR), fifo_scbptr);
9899		cur_col = 0;
9900		ahd_seqimode_print(ahd_inb(ahd, SEQIMODE), &cur_col, 50);
9901		ahd_seqintsrc_print(ahd_inb(ahd, SEQINTSRC), &cur_col, 50);
9902		ahd_dfcntrl_print(ahd_inb(ahd, DFCNTRL), &cur_col, 50);
9903		ahd_dfstatus_print(ahd_inb(ahd, DFSTATUS), &cur_col, 50);
9904		ahd_sg_cache_shadow_print(ahd_inb(ahd, SG_CACHE_SHADOW),
9905					  &cur_col, 50);
9906		ahd_sg_state_print(ahd_inb(ahd, SG_STATE), &cur_col, 50);
9907		ahd_dffsxfrctl_print(ahd_inb(ahd, DFFSXFRCTL), &cur_col, 50);
9908		ahd_soffcnt_print(ahd_inb(ahd, SOFFCNT), &cur_col, 50);
9909		ahd_mdffstat_print(ahd_inb(ahd, MDFFSTAT), &cur_col, 50);
9910		if (cur_col > 50) {
9911			printk("\n");
9912			cur_col = 0;
9913		}
9914		cur_col += printk("SHADDR = 0x%x%x, SHCNT = 0x%x ",
9915				  ahd_inl(ahd, SHADDR+4),
9916				  ahd_inl(ahd, SHADDR),
9917				  (ahd_inb(ahd, SHCNT)
9918				| (ahd_inb(ahd, SHCNT + 1) << 8)
9919				| (ahd_inb(ahd, SHCNT + 2) << 16)));
9920		if (cur_col > 50) {
9921			printk("\n");
9922			cur_col = 0;
9923		}
9924		cur_col += printk("HADDR = 0x%x%x, HCNT = 0x%x ",
9925				  ahd_inl(ahd, HADDR+4),
9926				  ahd_inl(ahd, HADDR),
9927				  (ahd_inb(ahd, HCNT)
9928				| (ahd_inb(ahd, HCNT + 1) << 8)
9929				| (ahd_inb(ahd, HCNT + 2) << 16)));
9930		ahd_ccsgctl_print(ahd_inb(ahd, CCSGCTL), &cur_col, 50);
9931#ifdef AHD_DEBUG
9932		if ((ahd_debug & AHD_SHOW_SG) != 0) {
9933			fifo_scb = ahd_lookup_scb(ahd, fifo_scbptr);
9934			if (fifo_scb != NULL)
9935				ahd_dump_sglist(fifo_scb);
9936		}
9937#endif
9938	}
9939	printk("\nLQIN: ");
9940	for (i = 0; i < 20; i++)
9941		printk("0x%x ", ahd_inb(ahd, LQIN + i));
9942	printk("\n");
9943	ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
9944	printk("%s: LQISTATE = 0x%x, LQOSTATE = 0x%x, OPTIONMODE = 0x%x\n",
9945	       ahd_name(ahd), ahd_inb(ahd, LQISTATE), ahd_inb(ahd, LQOSTATE),
9946	       ahd_inb(ahd, OPTIONMODE));
9947	printk("%s: OS_SPACE_CNT = 0x%x MAXCMDCNT = 0x%x\n",
9948	       ahd_name(ahd), ahd_inb(ahd, OS_SPACE_CNT),
9949	       ahd_inb(ahd, MAXCMDCNT));
9950	printk("%s: SAVED_SCSIID = 0x%x SAVED_LUN = 0x%x\n",
9951	       ahd_name(ahd), ahd_inb(ahd, SAVED_SCSIID),
9952	       ahd_inb(ahd, SAVED_LUN));
9953	ahd_simode0_print(ahd_inb(ahd, SIMODE0), &cur_col, 50);
9954	printk("\n");
9955	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
9956	cur_col = 0;
9957	ahd_ccscbctl_print(ahd_inb(ahd, CCSCBCTL), &cur_col, 50);
9958	printk("\n");
9959	ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
9960	printk("%s: REG0 == 0x%x, SINDEX = 0x%x, DINDEX = 0x%x\n",
9961	       ahd_name(ahd), ahd_inw(ahd, REG0), ahd_inw(ahd, SINDEX),
9962	       ahd_inw(ahd, DINDEX));
9963	printk("%s: SCBPTR == 0x%x, SCB_NEXT == 0x%x, SCB_NEXT2 == 0x%x\n",
9964	       ahd_name(ahd), ahd_get_scbptr(ahd),
9965	       ahd_inw_scbram(ahd, SCB_NEXT),
9966	       ahd_inw_scbram(ahd, SCB_NEXT2));
9967	printk("CDB %x %x %x %x %x %x\n",
9968	       ahd_inb_scbram(ahd, SCB_CDB_STORE),
9969	       ahd_inb_scbram(ahd, SCB_CDB_STORE+1),
9970	       ahd_inb_scbram(ahd, SCB_CDB_STORE+2),
9971	       ahd_inb_scbram(ahd, SCB_CDB_STORE+3),
9972	       ahd_inb_scbram(ahd, SCB_CDB_STORE+4),
9973	       ahd_inb_scbram(ahd, SCB_CDB_STORE+5));
9974	printk("STACK:");
9975	for (i = 0; i < ahd->stack_size; i++) {
9976		ahd->saved_stack[i] =
9977		    ahd_inb(ahd, STACK)|(ahd_inb(ahd, STACK) << 8);
9978		printk(" 0x%x", ahd->saved_stack[i]);
9979	}
9980	for (i = ahd->stack_size-1; i >= 0; i--) {
9981		ahd_outb(ahd, STACK, ahd->saved_stack[i] & 0xFF);
9982		ahd_outb(ahd, STACK, (ahd->saved_stack[i] >> 8) & 0xFF);
9983	}
9984	printk("\n<<<<<<<<<<<<<<<<< Dump Card State Ends >>>>>>>>>>>>>>>>>>\n");
9985	ahd_restore_modes(ahd, saved_modes);
9986	if (paused == 0)
9987		ahd_unpause(ahd);
9988}
9989
9990#if 0
9991void
9992ahd_dump_scbs(struct ahd_softc *ahd)
9993{
9994	ahd_mode_state saved_modes;
9995	u_int	       saved_scb_index;
9996	int	       i;
9997
9998	saved_modes = ahd_save_modes(ahd);
9999	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
10000	saved_scb_index = ahd_get_scbptr(ahd);
10001	for (i = 0; i < AHD_SCB_MAX; i++) {
10002		ahd_set_scbptr(ahd, i);
10003		printk("%3d", i);
10004		printk("(CTRL 0x%x ID 0x%x N 0x%x N2 0x%x SG 0x%x, RSG 0x%x)\n",
10005		       ahd_inb_scbram(ahd, SCB_CONTROL),
10006		       ahd_inb_scbram(ahd, SCB_SCSIID),
10007		       ahd_inw_scbram(ahd, SCB_NEXT),
10008		       ahd_inw_scbram(ahd, SCB_NEXT2),
10009		       ahd_inl_scbram(ahd, SCB_SGPTR),
10010		       ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR));
10011	}
10012	printk("\n");
10013	ahd_set_scbptr(ahd, saved_scb_index);
10014	ahd_restore_modes(ahd, saved_modes);
10015}
10016#endif  /*  0  */
10017
10018/**************************** Flexport Logic **********************************/
10019/*
10020 * Read count 16bit words from 16bit word address start_addr from the
10021 * SEEPROM attached to the controller, into buf, using the controller's
10022 * SEEPROM reading state machine.  Optionally treat the data as a byte
10023 * stream in terms of byte order.
10024 */
10025int
10026ahd_read_seeprom(struct ahd_softc *ahd, uint16_t *buf,
10027		 u_int start_addr, u_int count, int bytestream)
10028{
10029	u_int cur_addr;
10030	u_int end_addr;
10031	int   error;
10032
10033	/*
10034	 * If we never make it through the loop even once,
10035	 * we were passed invalid arguments.
10036	 */
10037	error = EINVAL;
10038	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
10039	end_addr = start_addr + count;
10040	for (cur_addr = start_addr; cur_addr < end_addr; cur_addr++) {
10041
10042		ahd_outb(ahd, SEEADR, cur_addr);
10043		ahd_outb(ahd, SEECTL, SEEOP_READ | SEESTART);
10044
10045		error = ahd_wait_seeprom(ahd);
10046		if (error)
10047			break;
10048		if (bytestream != 0) {
10049			uint8_t *bytestream_ptr;
10050
10051			bytestream_ptr = (uint8_t *)buf;
10052			*bytestream_ptr++ = ahd_inb(ahd, SEEDAT);
10053			*bytestream_ptr = ahd_inb(ahd, SEEDAT+1);
10054		} else {
10055			/*
10056			 * ahd_inw() already handles machine byte order.
10057			 */
10058			*buf = ahd_inw(ahd, SEEDAT);
10059		}
10060		buf++;
10061	}
10062	return (error);
10063}
10064
10065/*
10066 * Write count 16bit words from buf, into SEEPROM attache to the
10067 * controller starting at 16bit word address start_addr, using the
10068 * controller's SEEPROM writing state machine.
10069 */
10070int
10071ahd_write_seeprom(struct ahd_softc *ahd, uint16_t *buf,
10072		  u_int start_addr, u_int count)
10073{
10074	u_int cur_addr;
10075	u_int end_addr;
10076	int   error;
10077	int   retval;
10078
10079	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
10080	error = ENOENT;
10081
10082	/* Place the chip into write-enable mode */
10083	ahd_outb(ahd, SEEADR, SEEOP_EWEN_ADDR);
10084	ahd_outb(ahd, SEECTL, SEEOP_EWEN | SEESTART);
10085	error = ahd_wait_seeprom(ahd);
10086	if (error)
10087		return (error);
10088
10089	/*
10090	 * Write the data.  If we don't get through the loop at
10091	 * least once, the arguments were invalid.
10092	 */
10093	retval = EINVAL;
10094	end_addr = start_addr + count;
10095	for (cur_addr = start_addr; cur_addr < end_addr; cur_addr++) {
10096		ahd_outw(ahd, SEEDAT, *buf++);
10097		ahd_outb(ahd, SEEADR, cur_addr);
10098		ahd_outb(ahd, SEECTL, SEEOP_WRITE | SEESTART);
10099
10100		retval = ahd_wait_seeprom(ahd);
10101		if (retval)
10102			break;
10103	}
10104
10105	/*
10106	 * Disable writes.
10107	 */
10108	ahd_outb(ahd, SEEADR, SEEOP_EWDS_ADDR);
10109	ahd_outb(ahd, SEECTL, SEEOP_EWDS | SEESTART);
10110	error = ahd_wait_seeprom(ahd);
10111	if (error)
10112		return (error);
10113	return (retval);
10114}
10115
10116/*
10117 * Wait ~100us for the serial eeprom to satisfy our request.
10118 */
10119static int
10120ahd_wait_seeprom(struct ahd_softc *ahd)
10121{
10122	int cnt;
10123
10124	cnt = 5000;
10125	while ((ahd_inb(ahd, SEESTAT) & (SEEARBACK|SEEBUSY)) != 0 && --cnt)
10126		ahd_delay(5);
10127
10128	if (cnt == 0)
10129		return (ETIMEDOUT);
10130	return (0);
10131}
10132
10133/*
10134 * Validate the two checksums in the per_channel
10135 * vital product data struct.
10136 */
10137static int
10138ahd_verify_vpd_cksum(struct vpd_config *vpd)
10139{
10140	int i;
10141	int maxaddr;
10142	uint32_t checksum;
10143	uint8_t *vpdarray;
10144
10145	vpdarray = (uint8_t *)vpd;
10146	maxaddr = offsetof(struct vpd_config, vpd_checksum);
10147	checksum = 0;
10148	for (i = offsetof(struct vpd_config, resource_type); i < maxaddr; i++)
10149		checksum = checksum + vpdarray[i];
10150	if (checksum == 0
10151	 || (-checksum & 0xFF) != vpd->vpd_checksum)
10152		return (0);
10153
10154	checksum = 0;
10155	maxaddr = offsetof(struct vpd_config, checksum);
10156	for (i = offsetof(struct vpd_config, default_target_flags);
10157	     i < maxaddr; i++)
10158		checksum = checksum + vpdarray[i];
10159	if (checksum == 0
10160	 || (-checksum & 0xFF) != vpd->checksum)
10161		return (0);
10162	return (1);
10163}
10164
10165int
10166ahd_verify_cksum(struct seeprom_config *sc)
10167{
10168	int i;
10169	int maxaddr;
10170	uint32_t checksum;
10171	uint16_t *scarray;
10172
10173	maxaddr = (sizeof(*sc)/2) - 1;
10174	checksum = 0;
10175	scarray = (uint16_t *)sc;
10176
10177	for (i = 0; i < maxaddr; i++)
10178		checksum = checksum + scarray[i];
10179	if (checksum == 0
10180	 || (checksum & 0xFFFF) != sc->checksum) {
10181		return (0);
10182	} else {
10183		return (1);
10184	}
10185}
10186
10187int
10188ahd_acquire_seeprom(struct ahd_softc *ahd)
10189{
10190	/*
10191	 * We should be able to determine the SEEPROM type
10192	 * from the flexport logic, but unfortunately not
10193	 * all implementations have this logic and there is
10194	 * no programatic method for determining if the logic
10195	 * is present.
10196	 */
10197	return (1);
10198#if 0
10199	uint8_t	seetype;
10200	int	error;
10201
10202	error = ahd_read_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, &seetype);
10203	if (error != 0
10204         || ((seetype & FLX_ROMSTAT_SEECFG) == FLX_ROMSTAT_SEE_NONE))
10205		return (0);
10206	return (1);
10207#endif
10208}
10209
10210void
10211ahd_release_seeprom(struct ahd_softc *ahd)
10212{
10213	/* Currently a no-op */
10214}
10215
10216/*
10217 * Wait at most 2 seconds for flexport arbitration to succeed.
10218 */
10219static int
10220ahd_wait_flexport(struct ahd_softc *ahd)
10221{
10222	int cnt;
10223
10224	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
10225	cnt = 1000000 * 2 / 5;
10226	while ((ahd_inb(ahd, BRDCTL) & FLXARBACK) == 0 && --cnt)
10227		ahd_delay(5);
10228
10229	if (cnt == 0)
10230		return (ETIMEDOUT);
10231	return (0);
10232}
10233
10234int
10235ahd_write_flexport(struct ahd_softc *ahd, u_int addr, u_int value)
10236{
10237	int error;
10238
10239	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
10240	if (addr > 7)
10241		panic("ahd_write_flexport: address out of range");
10242	ahd_outb(ahd, BRDCTL, BRDEN|(addr << 3));
10243	error = ahd_wait_flexport(ahd);
10244	if (error != 0)
10245		return (error);
10246	ahd_outb(ahd, BRDDAT, value);
10247	ahd_flush_device_writes(ahd);
10248	ahd_outb(ahd, BRDCTL, BRDSTB|BRDEN|(addr << 3));
10249	ahd_flush_device_writes(ahd);
10250	ahd_outb(ahd, BRDCTL, BRDEN|(addr << 3));
10251	ahd_flush_device_writes(ahd);
10252	ahd_outb(ahd, BRDCTL, 0);
10253	ahd_flush_device_writes(ahd);
10254	return (0);
10255}
10256
10257int
10258ahd_read_flexport(struct ahd_softc *ahd, u_int addr, uint8_t *value)
10259{
10260	int	error;
10261
10262	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
10263	if (addr > 7)
10264		panic("ahd_read_flexport: address out of range");
10265	ahd_outb(ahd, BRDCTL, BRDRW|BRDEN|(addr << 3));
10266	error = ahd_wait_flexport(ahd);
10267	if (error != 0)
10268		return (error);
10269	*value = ahd_inb(ahd, BRDDAT);
10270	ahd_outb(ahd, BRDCTL, 0);
10271	ahd_flush_device_writes(ahd);
10272	return (0);
10273}
10274
10275/************************* Target Mode ****************************************/
10276#ifdef AHD_TARGET_MODE
10277cam_status
10278ahd_find_tmode_devs(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb,
10279		    struct ahd_tmode_tstate **tstate,
10280		    struct ahd_tmode_lstate **lstate,
10281		    int notfound_failure)
10282{
10283
10284	if ((ahd->features & AHD_TARGETMODE) == 0)
10285		return (CAM_REQ_INVALID);
10286
10287	/*
10288	 * Handle the 'black hole' device that sucks up
10289	 * requests to unattached luns on enabled targets.
10290	 */
10291	if (ccb->ccb_h.target_id == CAM_TARGET_WILDCARD
10292	 && ccb->ccb_h.target_lun == CAM_LUN_WILDCARD) {
10293		*tstate = NULL;
10294		*lstate = ahd->black_hole;
10295	} else {
10296		u_int max_id;
10297
10298		max_id = (ahd->features & AHD_WIDE) ? 16 : 8;
10299		if (ccb->ccb_h.target_id >= max_id)
10300			return (CAM_TID_INVALID);
10301
10302		if (ccb->ccb_h.target_lun >= AHD_NUM_LUNS)
10303			return (CAM_LUN_INVALID);
10304
10305		*tstate = ahd->enabled_targets[ccb->ccb_h.target_id];
10306		*lstate = NULL;
10307		if (*tstate != NULL)
10308			*lstate =
10309			    (*tstate)->enabled_luns[ccb->ccb_h.target_lun];
10310	}
10311
10312	if (notfound_failure != 0 && *lstate == NULL)
10313		return (CAM_PATH_INVALID);
10314
10315	return (CAM_REQ_CMP);
10316}
10317
10318void
10319ahd_handle_en_lun(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb)
10320{
10321#if NOT_YET
10322	struct	   ahd_tmode_tstate *tstate;
10323	struct	   ahd_tmode_lstate *lstate;
10324	struct	   ccb_en_lun *cel;
10325	cam_status status;
10326	u_int	   target;
10327	u_int	   lun;
10328	u_int	   target_mask;
10329	u_long	   s;
10330	char	   channel;
10331
10332	status = ahd_find_tmode_devs(ahd, sim, ccb, &tstate, &lstate,
10333				     /*notfound_failure*/FALSE);
10334
10335	if (status != CAM_REQ_CMP) {
10336		ccb->ccb_h.status = status;
10337		return;
10338	}
10339
10340	if ((ahd->features & AHD_MULTIROLE) != 0) {
10341		u_int	   our_id;
10342
10343		our_id = ahd->our_id;
10344		if (ccb->ccb_h.target_id != our_id) {
10345			if ((ahd->features & AHD_MULTI_TID) != 0
10346		   	 && (ahd->flags & AHD_INITIATORROLE) != 0) {
10347				/*
10348				 * Only allow additional targets if
10349				 * the initiator role is disabled.
10350				 * The hardware cannot handle a re-select-in
10351				 * on the initiator id during a re-select-out
10352				 * on a different target id.
10353				 */
10354				status = CAM_TID_INVALID;
10355			} else if ((ahd->flags & AHD_INITIATORROLE) != 0
10356				|| ahd->enabled_luns > 0) {
10357				/*
10358				 * Only allow our target id to change
10359				 * if the initiator role is not configured
10360				 * and there are no enabled luns which
10361				 * are attached to the currently registered
10362				 * scsi id.
10363				 */
10364				status = CAM_TID_INVALID;
10365			}
10366		}
10367	}
10368
10369	if (status != CAM_REQ_CMP) {
10370		ccb->ccb_h.status = status;
10371		return;
10372	}
10373
10374	/*
10375	 * We now have an id that is valid.
10376	 * If we aren't in target mode, switch modes.
10377	 */
10378	if ((ahd->flags & AHD_TARGETROLE) == 0
10379	 && ccb->ccb_h.target_id != CAM_TARGET_WILDCARD) {
10380		u_long	s;
10381
10382		printk("Configuring Target Mode\n");
10383		ahd_lock(ahd, &s);
10384		if (LIST_FIRST(&ahd->pending_scbs) != NULL) {
10385			ccb->ccb_h.status = CAM_BUSY;
10386			ahd_unlock(ahd, &s);
10387			return;
10388		}
10389		ahd->flags |= AHD_TARGETROLE;
10390		if ((ahd->features & AHD_MULTIROLE) == 0)
10391			ahd->flags &= ~AHD_INITIATORROLE;
10392		ahd_pause(ahd);
10393		ahd_loadseq(ahd);
10394		ahd_restart(ahd);
10395		ahd_unlock(ahd, &s);
10396	}
10397	cel = &ccb->cel;
10398	target = ccb->ccb_h.target_id;
10399	lun = ccb->ccb_h.target_lun;
10400	channel = SIM_CHANNEL(ahd, sim);
10401	target_mask = 0x01 << target;
10402	if (channel == 'B')
10403		target_mask <<= 8;
10404
10405	if (cel->enable != 0) {
10406		u_int scsiseq1;
10407
10408		/* Are we already enabled?? */
10409		if (lstate != NULL) {
10410			xpt_print_path(ccb->ccb_h.path);
10411			printk("Lun already enabled\n");
10412			ccb->ccb_h.status = CAM_LUN_ALRDY_ENA;
10413			return;
10414		}
10415
10416		if (cel->grp6_len != 0
10417		 || cel->grp7_len != 0) {
10418			/*
10419			 * Don't (yet?) support vendor
10420			 * specific commands.
10421			 */
10422			ccb->ccb_h.status = CAM_REQ_INVALID;
10423			printk("Non-zero Group Codes\n");
10424			return;
10425		}
10426
10427		/*
10428		 * Seems to be okay.
10429		 * Setup our data structures.
10430		 */
10431		if (target != CAM_TARGET_WILDCARD && tstate == NULL) {
10432			tstate = ahd_alloc_tstate(ahd, target, channel);
10433			if (tstate == NULL) {
10434				xpt_print_path(ccb->ccb_h.path);
10435				printk("Couldn't allocate tstate\n");
10436				ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
10437				return;
10438			}
10439		}
10440		lstate = kmalloc(sizeof(*lstate), GFP_ATOMIC);
10441		if (lstate == NULL) {
10442			xpt_print_path(ccb->ccb_h.path);
10443			printk("Couldn't allocate lstate\n");
10444			ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
10445			return;
10446		}
10447		memset(lstate, 0, sizeof(*lstate));
10448		status = xpt_create_path(&lstate->path, /*periph*/NULL,
10449					 xpt_path_path_id(ccb->ccb_h.path),
10450					 xpt_path_target_id(ccb->ccb_h.path),
10451					 xpt_path_lun_id(ccb->ccb_h.path));
10452		if (status != CAM_REQ_CMP) {
10453			kfree(lstate);
10454			xpt_print_path(ccb->ccb_h.path);
10455			printk("Couldn't allocate path\n");
10456			ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
10457			return;
10458		}
10459		SLIST_INIT(&lstate->accept_tios);
10460		SLIST_INIT(&lstate->immed_notifies);
10461		ahd_lock(ahd, &s);
10462		ahd_pause(ahd);
10463		if (target != CAM_TARGET_WILDCARD) {
10464			tstate->enabled_luns[lun] = lstate;
10465			ahd->enabled_luns++;
10466
10467			if ((ahd->features & AHD_MULTI_TID) != 0) {
10468				u_int targid_mask;
10469
10470				targid_mask = ahd_inw(ahd, TARGID);
10471				targid_mask |= target_mask;
10472				ahd_outw(ahd, TARGID, targid_mask);
10473				ahd_update_scsiid(ahd, targid_mask);
10474			} else {
10475				u_int our_id;
10476				char  channel;
10477
10478				channel = SIM_CHANNEL(ahd, sim);
10479				our_id = SIM_SCSI_ID(ahd, sim);
10480
10481				/*
10482				 * This can only happen if selections
10483				 * are not enabled
10484				 */
10485				if (target != our_id) {
10486					u_int sblkctl;
10487					char  cur_channel;
10488					int   swap;
10489
10490					sblkctl = ahd_inb(ahd, SBLKCTL);
10491					cur_channel = (sblkctl & SELBUSB)
10492						    ? 'B' : 'A';
10493					if ((ahd->features & AHD_TWIN) == 0)
10494						cur_channel = 'A';
10495					swap = cur_channel != channel;
10496					ahd->our_id = target;
10497
10498					if (swap)
10499						ahd_outb(ahd, SBLKCTL,
10500							 sblkctl ^ SELBUSB);
10501
10502					ahd_outb(ahd, SCSIID, target);
10503
10504					if (swap)
10505						ahd_outb(ahd, SBLKCTL, sblkctl);
10506				}
10507			}
10508		} else
10509			ahd->black_hole = lstate;
10510		/* Allow select-in operations */
10511		if (ahd->black_hole != NULL && ahd->enabled_luns > 0) {
10512			scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE);
10513			scsiseq1 |= ENSELI;
10514			ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq1);
10515			scsiseq1 = ahd_inb(ahd, SCSISEQ1);
10516			scsiseq1 |= ENSELI;
10517			ahd_outb(ahd, SCSISEQ1, scsiseq1);
10518		}
10519		ahd_unpause(ahd);
10520		ahd_unlock(ahd, &s);
10521		ccb->ccb_h.status = CAM_REQ_CMP;
10522		xpt_print_path(ccb->ccb_h.path);
10523		printk("Lun now enabled for target mode\n");
10524	} else {
10525		struct scb *scb;
10526		int i, empty;
10527
10528		if (lstate == NULL) {
10529			ccb->ccb_h.status = CAM_LUN_INVALID;
10530			return;
10531		}
10532
10533		ahd_lock(ahd, &s);
10534
10535		ccb->ccb_h.status = CAM_REQ_CMP;
10536		LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
10537			struct ccb_hdr *ccbh;
10538
10539			ccbh = &scb->io_ctx->ccb_h;
10540			if (ccbh->func_code == XPT_CONT_TARGET_IO
10541			 && !xpt_path_comp(ccbh->path, ccb->ccb_h.path)){
10542				printk("CTIO pending\n");
10543				ccb->ccb_h.status = CAM_REQ_INVALID;
10544				ahd_unlock(ahd, &s);
10545				return;
10546			}
10547		}
10548
10549		if (SLIST_FIRST(&lstate->accept_tios) != NULL) {
10550			printk("ATIOs pending\n");
10551			ccb->ccb_h.status = CAM_REQ_INVALID;
10552		}
10553
10554		if (SLIST_FIRST(&lstate->immed_notifies) != NULL) {
10555			printk("INOTs pending\n");
10556			ccb->ccb_h.status = CAM_REQ_INVALID;
10557		}
10558
10559		if (ccb->ccb_h.status != CAM_REQ_CMP) {
10560			ahd_unlock(ahd, &s);
10561			return;
10562		}
10563
10564		xpt_print_path(ccb->ccb_h.path);
10565		printk("Target mode disabled\n");
10566		xpt_free_path(lstate->path);
10567		kfree(lstate);
10568
10569		ahd_pause(ahd);
10570		/* Can we clean up the target too? */
10571		if (target != CAM_TARGET_WILDCARD) {
10572			tstate->enabled_luns[lun] = NULL;
10573			ahd->enabled_luns--;
10574			for (empty = 1, i = 0; i < 8; i++)
10575				if (tstate->enabled_luns[i] != NULL) {
10576					empty = 0;
10577					break;
10578				}
10579
10580			if (empty) {
10581				ahd_free_tstate(ahd, target, channel,
10582						/*force*/FALSE);
10583				if (ahd->features & AHD_MULTI_TID) {
10584					u_int targid_mask;
10585
10586					targid_mask = ahd_inw(ahd, TARGID);
10587					targid_mask &= ~target_mask;
10588					ahd_outw(ahd, TARGID, targid_mask);
10589					ahd_update_scsiid(ahd, targid_mask);
10590				}
10591			}
10592		} else {
10593
10594			ahd->black_hole = NULL;
10595
10596			/*
10597			 * We can't allow selections without
10598			 * our black hole device.
10599			 */
10600			empty = TRUE;
10601		}
10602		if (ahd->enabled_luns == 0) {
10603			/* Disallow select-in */
10604			u_int scsiseq1;
10605
10606			scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE);
10607			scsiseq1 &= ~ENSELI;
10608			ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq1);
10609			scsiseq1 = ahd_inb(ahd, SCSISEQ1);
10610			scsiseq1 &= ~ENSELI;
10611			ahd_outb(ahd, SCSISEQ1, scsiseq1);
10612
10613			if ((ahd->features & AHD_MULTIROLE) == 0) {
10614				printk("Configuring Initiator Mode\n");
10615				ahd->flags &= ~AHD_TARGETROLE;
10616				ahd->flags |= AHD_INITIATORROLE;
10617				ahd_pause(ahd);
10618				ahd_loadseq(ahd);
10619				ahd_restart(ahd);
10620				/*
10621				 * Unpaused.  The extra unpause
10622				 * that follows is harmless.
10623				 */
10624			}
10625		}
10626		ahd_unpause(ahd);
10627		ahd_unlock(ahd, &s);
10628	}
10629#endif
10630}
10631
10632static void
10633ahd_update_scsiid(struct ahd_softc *ahd, u_int targid_mask)
10634{
10635#if NOT_YET
10636	u_int scsiid_mask;
10637	u_int scsiid;
10638
10639	if ((ahd->features & AHD_MULTI_TID) == 0)
10640		panic("ahd_update_scsiid called on non-multitid unit\n");
10641
10642	/*
10643	 * Since we will rely on the TARGID mask
10644	 * for selection enables, ensure that OID
10645	 * in SCSIID is not set to some other ID
10646	 * that we don't want to allow selections on.
10647	 */
10648	if ((ahd->features & AHD_ULTRA2) != 0)
10649		scsiid = ahd_inb(ahd, SCSIID_ULTRA2);
10650	else
10651		scsiid = ahd_inb(ahd, SCSIID);
10652	scsiid_mask = 0x1 << (scsiid & OID);
10653	if ((targid_mask & scsiid_mask) == 0) {
10654		u_int our_id;
10655
10656		/* ffs counts from 1 */
10657		our_id = ffs(targid_mask);
10658		if (our_id == 0)
10659			our_id = ahd->our_id;
10660		else
10661			our_id--;
10662		scsiid &= TID;
10663		scsiid |= our_id;
10664	}
10665	if ((ahd->features & AHD_ULTRA2) != 0)
10666		ahd_outb(ahd, SCSIID_ULTRA2, scsiid);
10667	else
10668		ahd_outb(ahd, SCSIID, scsiid);
10669#endif
10670}
10671
10672static void
10673ahd_run_tqinfifo(struct ahd_softc *ahd, int paused)
10674{
10675	struct target_cmd *cmd;
10676
10677	ahd_sync_tqinfifo(ahd, BUS_DMASYNC_POSTREAD);
10678	while ((cmd = &ahd->targetcmds[ahd->tqinfifonext])->cmd_valid != 0) {
10679
10680		/*
10681		 * Only advance through the queue if we
10682		 * have the resources to process the command.
10683		 */
10684		if (ahd_handle_target_cmd(ahd, cmd) != 0)
10685			break;
10686
10687		cmd->cmd_valid = 0;
10688		ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
10689				ahd->shared_data_map.dmamap,
10690				ahd_targetcmd_offset(ahd, ahd->tqinfifonext),
10691				sizeof(struct target_cmd),
10692				BUS_DMASYNC_PREREAD);
10693		ahd->tqinfifonext++;
10694
10695		/*
10696		 * Lazily update our position in the target mode incoming
10697		 * command queue as seen by the sequencer.
10698		 */
10699		if ((ahd->tqinfifonext & (HOST_TQINPOS - 1)) == 1) {
10700			u_int hs_mailbox;
10701
10702			hs_mailbox = ahd_inb(ahd, HS_MAILBOX);
10703			hs_mailbox &= ~HOST_TQINPOS;
10704			hs_mailbox |= ahd->tqinfifonext & HOST_TQINPOS;
10705			ahd_outb(ahd, HS_MAILBOX, hs_mailbox);
10706		}
10707	}
10708}
10709
10710static int
10711ahd_handle_target_cmd(struct ahd_softc *ahd, struct target_cmd *cmd)
10712{
10713	struct	  ahd_tmode_tstate *tstate;
10714	struct	  ahd_tmode_lstate *lstate;
10715	struct	  ccb_accept_tio *atio;
10716	uint8_t *byte;
10717	int	  initiator;
10718	int	  target;
10719	int	  lun;
10720
10721	initiator = SCSIID_TARGET(ahd, cmd->scsiid);
10722	target = SCSIID_OUR_ID(cmd->scsiid);
10723	lun    = (cmd->identify & MSG_IDENTIFY_LUNMASK);
10724
10725	byte = cmd->bytes;
10726	tstate = ahd->enabled_targets[target];
10727	lstate = NULL;
10728	if (tstate != NULL)
10729		lstate = tstate->enabled_luns[lun];
10730
10731	/*
10732	 * Commands for disabled luns go to the black hole driver.
10733	 */
10734	if (lstate == NULL)
10735		lstate = ahd->black_hole;
10736
10737	atio = (struct ccb_accept_tio*)SLIST_FIRST(&lstate->accept_tios);
10738	if (atio == NULL) {
10739		ahd->flags |= AHD_TQINFIFO_BLOCKED;
10740		/*
10741		 * Wait for more ATIOs from the peripheral driver for this lun.
10742		 */
10743		return (1);
10744	} else
10745		ahd->flags &= ~AHD_TQINFIFO_BLOCKED;
10746#ifdef AHD_DEBUG
10747	if ((ahd_debug & AHD_SHOW_TQIN) != 0)
10748		printk("Incoming command from %d for %d:%d%s\n",
10749		       initiator, target, lun,
10750		       lstate == ahd->black_hole ? "(Black Holed)" : "");
10751#endif
10752	SLIST_REMOVE_HEAD(&lstate->accept_tios, sim_links.sle);
10753
10754	if (lstate == ahd->black_hole) {
10755		/* Fill in the wildcards */
10756		atio->ccb_h.target_id = target;
10757		atio->ccb_h.target_lun = lun;
10758	}
10759
10760	/*
10761	 * Package it up and send it off to
10762	 * whomever has this lun enabled.
10763	 */
10764	atio->sense_len = 0;
10765	atio->init_id = initiator;
10766	if (byte[0] != 0xFF) {
10767		/* Tag was included */
10768		atio->tag_action = *byte++;
10769		atio->tag_id = *byte++;
10770		atio->ccb_h.flags = CAM_TAG_ACTION_VALID;
10771	} else {
10772		atio->ccb_h.flags = 0;
10773	}
10774	byte++;
10775
10776	/* Okay.  Now determine the cdb size based on the command code */
10777	switch (*byte >> CMD_GROUP_CODE_SHIFT) {
10778	case 0:
10779		atio->cdb_len = 6;
10780		break;
10781	case 1:
10782	case 2:
10783		atio->cdb_len = 10;
10784		break;
10785	case 4:
10786		atio->cdb_len = 16;
10787		break;
10788	case 5:
10789		atio->cdb_len = 12;
10790		break;
10791	case 3:
10792	default:
10793		/* Only copy the opcode. */
10794		atio->cdb_len = 1;
10795		printk("Reserved or VU command code type encountered\n");
10796		break;
10797	}
10798
10799	memcpy(atio->cdb_io.cdb_bytes, byte, atio->cdb_len);
10800
10801	atio->ccb_h.status |= CAM_CDB_RECVD;
10802
10803	if ((cmd->identify & MSG_IDENTIFY_DISCFLAG) == 0) {
10804		/*
10805		 * We weren't allowed to disconnect.
10806		 * We're hanging on the bus until a
10807		 * continue target I/O comes in response
10808		 * to this accept tio.
10809		 */
10810#ifdef AHD_DEBUG
10811		if ((ahd_debug & AHD_SHOW_TQIN) != 0)
10812			printk("Received Immediate Command %d:%d:%d - %p\n",
10813			       initiator, target, lun, ahd->pending_device);
10814#endif
10815		ahd->pending_device = lstate;
10816		ahd_freeze_ccb((union ccb *)atio);
10817		atio->ccb_h.flags |= CAM_DIS_DISCONNECT;
10818	}
10819	xpt_done((union ccb*)atio);
10820	return (0);
10821}
10822
10823#endif
10824