1/*
2 * This file is provided under a dual BSD/GPLv2 license.  When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
23 *
24 * BSD LICENSE
25 *
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
28 *
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
32 *
33 *   * Redistributions of source code must retain the above copyright
34 *     notice, this list of conditions and the following disclaimer.
35 *   * Redistributions in binary form must reproduce the above copyright
36 *     notice, this list of conditions and the following disclaimer in
37 *     the documentation and/or other materials provided with the
38 *     distribution.
39 *   * Neither the name of Intel Corporation nor the names of its
40 *     contributors may be used to endorse or promote products derived
41 *     from this software without specific prior written permission.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54 */
55#include <linux/circ_buf.h>
56#include <linux/device.h>
57#include <scsi/sas.h>
58#include "host.h"
59#include "isci.h"
60#include "port.h"
61#include "host.h"
62#include "probe_roms.h"
63#include "remote_device.h"
64#include "request.h"
65#include "scu_completion_codes.h"
66#include "scu_event_codes.h"
67#include "registers.h"
68#include "scu_remote_node_context.h"
69#include "scu_task_context.h"
70
71#define SCU_CONTEXT_RAM_INIT_STALL_TIME      200
72
73#define smu_max_ports(dcc_value) \
74	(\
75		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
76		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
77	)
78
79#define smu_max_task_contexts(dcc_value)	\
80	(\
81		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
82		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
83	)
84
85#define smu_max_rncs(dcc_value) \
86	(\
87		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
88		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
89	)
90
91#define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT      100
92
93/**
94 *
95 *
96 * The number of milliseconds to wait while a given phy is consuming power
97 * before allowing another set of phys to consume power. Ultimately, this will
98 * be specified by OEM parameter.
99 */
100#define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
101
102/**
103 * NORMALIZE_PUT_POINTER() -
104 *
105 * This macro will normalize the completion queue put pointer so its value can
106 * be used as an array inde
107 */
108#define NORMALIZE_PUT_POINTER(x) \
109	((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
110
111
112/**
113 * NORMALIZE_EVENT_POINTER() -
114 *
115 * This macro will normalize the completion queue event entry so its value can
116 * be used as an index.
117 */
118#define NORMALIZE_EVENT_POINTER(x) \
119	(\
120		((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
121		>> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT	\
122	)
123
124/**
125 * NORMALIZE_GET_POINTER() -
126 *
127 * This macro will normalize the completion queue get pointer so its value can
128 * be used as an index into an array
129 */
130#define NORMALIZE_GET_POINTER(x) \
131	((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
132
133/**
134 * NORMALIZE_GET_POINTER_CYCLE_BIT() -
135 *
136 * This macro will normalize the completion queue cycle pointer so it matches
137 * the completion queue cycle bit
138 */
139#define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
140	((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
141
142/**
143 * COMPLETION_QUEUE_CYCLE_BIT() -
144 *
145 * This macro will return the cycle bit of the completion queue entry
146 */
147#define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
148
149/* Init the state machine and call the state entry function (if any) */
150void sci_init_sm(struct sci_base_state_machine *sm,
151		 const struct sci_base_state *state_table, u32 initial_state)
152{
153	sci_state_transition_t handler;
154
155	sm->initial_state_id    = initial_state;
156	sm->previous_state_id   = initial_state;
157	sm->current_state_id    = initial_state;
158	sm->state_table         = state_table;
159
160	handler = sm->state_table[initial_state].enter_state;
161	if (handler)
162		handler(sm);
163}
164
165/* Call the state exit fn, update the current state, call the state entry fn */
166void sci_change_state(struct sci_base_state_machine *sm, u32 next_state)
167{
168	sci_state_transition_t handler;
169
170	handler = sm->state_table[sm->current_state_id].exit_state;
171	if (handler)
172		handler(sm);
173
174	sm->previous_state_id = sm->current_state_id;
175	sm->current_state_id = next_state;
176
177	handler = sm->state_table[sm->current_state_id].enter_state;
178	if (handler)
179		handler(sm);
180}
181
182static bool sci_controller_completion_queue_has_entries(struct isci_host *ihost)
183{
184	u32 get_value = ihost->completion_queue_get;
185	u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;
186
187	if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
188	    COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index]))
189		return true;
190
191	return false;
192}
193
194static bool sci_controller_isr(struct isci_host *ihost)
195{
196	if (sci_controller_completion_queue_has_entries(ihost)) {
197		return true;
198	} else {
199		/*
200		 * we have a spurious interrupt it could be that we have already
201		 * emptied the completion queue from a previous interrupt */
202		writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
203
204		/*
205		 * There is a race in the hardware that could cause us not to be notified
206		 * of an interrupt completion if we do not take this step.  We will mask
207		 * then unmask the interrupts so if there is another interrupt pending
208		 * the clearing of the interrupt source we get the next interrupt message. */
209		writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
210		writel(0, &ihost->smu_registers->interrupt_mask);
211	}
212
213	return false;
214}
215
216irqreturn_t isci_msix_isr(int vec, void *data)
217{
218	struct isci_host *ihost = data;
219
220	if (sci_controller_isr(ihost))
221		tasklet_schedule(&ihost->completion_tasklet);
222
223	return IRQ_HANDLED;
224}
225
226static bool sci_controller_error_isr(struct isci_host *ihost)
227{
228	u32 interrupt_status;
229
230	interrupt_status =
231		readl(&ihost->smu_registers->interrupt_status);
232	interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
233
234	if (interrupt_status != 0) {
235		/*
236		 * There is an error interrupt pending so let it through and handle
237		 * in the callback */
238		return true;
239	}
240
241	/*
242	 * There is a race in the hardware that could cause us not to be notified
243	 * of an interrupt completion if we do not take this step.  We will mask
244	 * then unmask the error interrupts so if there was another interrupt
245	 * pending we will be notified.
246	 * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
247	writel(0xff, &ihost->smu_registers->interrupt_mask);
248	writel(0, &ihost->smu_registers->interrupt_mask);
249
250	return false;
251}
252
253static void sci_controller_task_completion(struct isci_host *ihost, u32 ent)
254{
255	u32 index = SCU_GET_COMPLETION_INDEX(ent);
256	struct isci_request *ireq = ihost->reqs[index];
257
258	/* Make sure that we really want to process this IO request */
259	if (test_bit(IREQ_ACTIVE, &ireq->flags) &&
260	    ireq->io_tag != SCI_CONTROLLER_INVALID_IO_TAG &&
261	    ISCI_TAG_SEQ(ireq->io_tag) == ihost->io_request_sequence[index])
262		/* Yep this is a valid io request pass it along to the
263		 * io request handler
264		 */
265		sci_io_request_tc_completion(ireq, ent);
266}
267
268static void sci_controller_sdma_completion(struct isci_host *ihost, u32 ent)
269{
270	u32 index;
271	struct isci_request *ireq;
272	struct isci_remote_device *idev;
273
274	index = SCU_GET_COMPLETION_INDEX(ent);
275
276	switch (scu_get_command_request_type(ent)) {
277	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
278	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
279		ireq = ihost->reqs[index];
280		dev_warn(&ihost->pdev->dev, "%s: %x for io request %p\n",
281			 __func__, ent, ireq);
282		/* @todo For a post TC operation we need to fail the IO
283		 * request
284		 */
285		break;
286	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
287	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
288	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
289		idev = ihost->device_table[index];
290		dev_warn(&ihost->pdev->dev, "%s: %x for device %p\n",
291			 __func__, ent, idev);
292		/* @todo For a port RNC operation we need to fail the
293		 * device
294		 */
295		break;
296	default:
297		dev_warn(&ihost->pdev->dev, "%s: unknown completion type %x\n",
298			 __func__, ent);
299		break;
300	}
301}
302
303static void sci_controller_unsolicited_frame(struct isci_host *ihost, u32 ent)
304{
305	u32 index;
306	u32 frame_index;
307
308	struct scu_unsolicited_frame_header *frame_header;
309	struct isci_phy *iphy;
310	struct isci_remote_device *idev;
311
312	enum sci_status result = SCI_FAILURE;
313
314	frame_index = SCU_GET_FRAME_INDEX(ent);
315
316	frame_header = ihost->uf_control.buffers.array[frame_index].header;
317	ihost->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;
318
319	if (SCU_GET_FRAME_ERROR(ent)) {
320		/*
321		 * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
322		 * /       this cause a problem? We expect the phy initialization will
323		 * /       fail if there is an error in the frame. */
324		sci_controller_release_frame(ihost, frame_index);
325		return;
326	}
327
328	if (frame_header->is_address_frame) {
329		index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
330		iphy = &ihost->phys[index];
331		result = sci_phy_frame_handler(iphy, frame_index);
332	} else {
333
334		index = SCU_GET_COMPLETION_INDEX(ent);
335
336		if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
337			/*
338			 * This is a signature fis or a frame from a direct attached SATA
339			 * device that has not yet been created.  In either case forwared
340			 * the frame to the PE and let it take care of the frame data. */
341			index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
342			iphy = &ihost->phys[index];
343			result = sci_phy_frame_handler(iphy, frame_index);
344		} else {
345			if (index < ihost->remote_node_entries)
346				idev = ihost->device_table[index];
347			else
348				idev = NULL;
349
350			if (idev != NULL)
351				result = sci_remote_device_frame_handler(idev, frame_index);
352			else
353				sci_controller_release_frame(ihost, frame_index);
354		}
355	}
356
357	if (result != SCI_SUCCESS) {
358		/*
359		 * / @todo Is there any reason to report some additional error message
360		 * /       when we get this failure notifiction? */
361	}
362}
363
364static void sci_controller_event_completion(struct isci_host *ihost, u32 ent)
365{
366	struct isci_remote_device *idev;
367	struct isci_request *ireq;
368	struct isci_phy *iphy;
369	u32 index;
370
371	index = SCU_GET_COMPLETION_INDEX(ent);
372
373	switch (scu_get_event_type(ent)) {
374	case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
375		/* / @todo The driver did something wrong and we need to fix the condtion. */
376		dev_err(&ihost->pdev->dev,
377			"%s: SCIC Controller 0x%p received SMU command error "
378			"0x%x\n",
379			__func__,
380			ihost,
381			ent);
382		break;
383
384	case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
385	case SCU_EVENT_TYPE_SMU_ERROR:
386	case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
387		/*
388		 * / @todo This is a hardware failure and its likely that we want to
389		 * /       reset the controller. */
390		dev_err(&ihost->pdev->dev,
391			"%s: SCIC Controller 0x%p received fatal controller "
392			"event  0x%x\n",
393			__func__,
394			ihost,
395			ent);
396		break;
397
398	case SCU_EVENT_TYPE_TRANSPORT_ERROR:
399		ireq = ihost->reqs[index];
400		sci_io_request_event_handler(ireq, ent);
401		break;
402
403	case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
404		switch (scu_get_event_specifier(ent)) {
405		case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
406		case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
407			ireq = ihost->reqs[index];
408			if (ireq != NULL)
409				sci_io_request_event_handler(ireq, ent);
410			else
411				dev_warn(&ihost->pdev->dev,
412					 "%s: SCIC Controller 0x%p received "
413					 "event 0x%x for io request object "
414					 "that doesnt exist.\n",
415					 __func__,
416					 ihost,
417					 ent);
418
419			break;
420
421		case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
422			idev = ihost->device_table[index];
423			if (idev != NULL)
424				sci_remote_device_event_handler(idev, ent);
425			else
426				dev_warn(&ihost->pdev->dev,
427					 "%s: SCIC Controller 0x%p received "
428					 "event 0x%x for remote device object "
429					 "that doesnt exist.\n",
430					 __func__,
431					 ihost,
432					 ent);
433
434			break;
435		}
436		break;
437
438	case SCU_EVENT_TYPE_BROADCAST_CHANGE:
439	/*
440	 * direct the broadcast change event to the phy first and then let
441	 * the phy redirect the broadcast change to the port object */
442	case SCU_EVENT_TYPE_ERR_CNT_EVENT:
443	/*
444	 * direct error counter event to the phy object since that is where
445	 * we get the event notification.  This is a type 4 event. */
446	case SCU_EVENT_TYPE_OSSP_EVENT:
447		index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
448		iphy = &ihost->phys[index];
449		sci_phy_event_handler(iphy, ent);
450		break;
451
452	case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
453	case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
454	case SCU_EVENT_TYPE_RNC_OPS_MISC:
455		if (index < ihost->remote_node_entries) {
456			idev = ihost->device_table[index];
457
458			if (idev != NULL)
459				sci_remote_device_event_handler(idev, ent);
460		} else
461			dev_err(&ihost->pdev->dev,
462				"%s: SCIC Controller 0x%p received event 0x%x "
463				"for remote device object 0x%0x that doesnt "
464				"exist.\n",
465				__func__,
466				ihost,
467				ent,
468				index);
469
470		break;
471
472	default:
473		dev_warn(&ihost->pdev->dev,
474			 "%s: SCIC Controller received unknown event code %x\n",
475			 __func__,
476			 ent);
477		break;
478	}
479}
480
481static void sci_controller_process_completions(struct isci_host *ihost)
482{
483	u32 completion_count = 0;
484	u32 ent;
485	u32 get_index;
486	u32 get_cycle;
487	u32 event_get;
488	u32 event_cycle;
489
490	dev_dbg(&ihost->pdev->dev,
491		"%s: completion queue begining get:0x%08x\n",
492		__func__,
493		ihost->completion_queue_get);
494
495	/* Get the component parts of the completion queue */
496	get_index = NORMALIZE_GET_POINTER(ihost->completion_queue_get);
497	get_cycle = SMU_CQGR_CYCLE_BIT & ihost->completion_queue_get;
498
499	event_get = NORMALIZE_EVENT_POINTER(ihost->completion_queue_get);
500	event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & ihost->completion_queue_get;
501
502	while (
503		NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
504		== COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index])
505		) {
506		completion_count++;
507
508		ent = ihost->completion_queue[get_index];
509
510		/* increment the get pointer and check for rollover to toggle the cycle bit */
511		get_cycle ^= ((get_index+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES) <<
512			     (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT - SCU_MAX_COMPLETION_QUEUE_SHIFT);
513		get_index = (get_index+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES-1);
514
515		dev_dbg(&ihost->pdev->dev,
516			"%s: completion queue entry:0x%08x\n",
517			__func__,
518			ent);
519
520		switch (SCU_GET_COMPLETION_TYPE(ent)) {
521		case SCU_COMPLETION_TYPE_TASK:
522			sci_controller_task_completion(ihost, ent);
523			break;
524
525		case SCU_COMPLETION_TYPE_SDMA:
526			sci_controller_sdma_completion(ihost, ent);
527			break;
528
529		case SCU_COMPLETION_TYPE_UFI:
530			sci_controller_unsolicited_frame(ihost, ent);
531			break;
532
533		case SCU_COMPLETION_TYPE_EVENT:
534			sci_controller_event_completion(ihost, ent);
535			break;
536
537		case SCU_COMPLETION_TYPE_NOTIFY: {
538			event_cycle ^= ((event_get+1) & SCU_MAX_EVENTS) <<
539				       (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT - SCU_MAX_EVENTS_SHIFT);
540			event_get = (event_get+1) & (SCU_MAX_EVENTS-1);
541
542			sci_controller_event_completion(ihost, ent);
543			break;
544		}
545		default:
546			dev_warn(&ihost->pdev->dev,
547				 "%s: SCIC Controller received unknown "
548				 "completion type %x\n",
549				 __func__,
550				 ent);
551			break;
552		}
553	}
554
555	/* Update the get register if we completed one or more entries */
556	if (completion_count > 0) {
557		ihost->completion_queue_get =
558			SMU_CQGR_GEN_BIT(ENABLE) |
559			SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
560			event_cycle |
561			SMU_CQGR_GEN_VAL(EVENT_POINTER, event_get) |
562			get_cycle |
563			SMU_CQGR_GEN_VAL(POINTER, get_index);
564
565		writel(ihost->completion_queue_get,
566		       &ihost->smu_registers->completion_queue_get);
567
568	}
569
570	dev_dbg(&ihost->pdev->dev,
571		"%s: completion queue ending get:0x%08x\n",
572		__func__,
573		ihost->completion_queue_get);
574
575}
576
577static void sci_controller_error_handler(struct isci_host *ihost)
578{
579	u32 interrupt_status;
580
581	interrupt_status =
582		readl(&ihost->smu_registers->interrupt_status);
583
584	if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
585	    sci_controller_completion_queue_has_entries(ihost)) {
586
587		sci_controller_process_completions(ihost);
588		writel(SMU_ISR_QUEUE_SUSPEND, &ihost->smu_registers->interrupt_status);
589	} else {
590		dev_err(&ihost->pdev->dev, "%s: status: %#x\n", __func__,
591			interrupt_status);
592
593		sci_change_state(&ihost->sm, SCIC_FAILED);
594
595		return;
596	}
597
598	/* If we dont process any completions I am not sure that we want to do this.
599	 * We are in the middle of a hardware fault and should probably be reset.
600	 */
601	writel(0, &ihost->smu_registers->interrupt_mask);
602}
603
604irqreturn_t isci_intx_isr(int vec, void *data)
605{
606	irqreturn_t ret = IRQ_NONE;
607	struct isci_host *ihost = data;
608
609	if (sci_controller_isr(ihost)) {
610		writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
611		tasklet_schedule(&ihost->completion_tasklet);
612		ret = IRQ_HANDLED;
613	} else if (sci_controller_error_isr(ihost)) {
614		spin_lock(&ihost->scic_lock);
615		sci_controller_error_handler(ihost);
616		spin_unlock(&ihost->scic_lock);
617		ret = IRQ_HANDLED;
618	}
619
620	return ret;
621}
622
623irqreturn_t isci_error_isr(int vec, void *data)
624{
625	struct isci_host *ihost = data;
626
627	if (sci_controller_error_isr(ihost))
628		sci_controller_error_handler(ihost);
629
630	return IRQ_HANDLED;
631}
632
633/**
634 * isci_host_start_complete() - This function is called by the core library,
635 *    through the ISCI Module, to indicate controller start status.
636 * @isci_host: This parameter specifies the ISCI host object
637 * @completion_status: This parameter specifies the completion status from the
638 *    core library.
639 *
640 */
641static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
642{
643	if (completion_status != SCI_SUCCESS)
644		dev_info(&ihost->pdev->dev,
645			"controller start timed out, continuing...\n");
646	isci_host_change_state(ihost, isci_ready);
647	clear_bit(IHOST_START_PENDING, &ihost->flags);
648	wake_up(&ihost->eventq);
649}
650
651int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
652{
653	struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
654
655	if (test_bit(IHOST_START_PENDING, &ihost->flags))
656		return 0;
657
658	/* todo: use sas_flush_discovery once it is upstream */
659	scsi_flush_work(shost);
660
661	scsi_flush_work(shost);
662
663	dev_dbg(&ihost->pdev->dev,
664		"%s: ihost->status = %d, time = %ld\n",
665		 __func__, isci_host_get_state(ihost), time);
666
667	return 1;
668
669}
670
671/**
672 * sci_controller_get_suggested_start_timeout() - This method returns the
673 *    suggested sci_controller_start() timeout amount.  The user is free to
674 *    use any timeout value, but this method provides the suggested minimum
675 *    start timeout value.  The returned value is based upon empirical
676 *    information determined as a result of interoperability testing.
677 * @controller: the handle to the controller object for which to return the
678 *    suggested start timeout.
679 *
680 * This method returns the number of milliseconds for the suggested start
681 * operation timeout.
682 */
683static u32 sci_controller_get_suggested_start_timeout(struct isci_host *ihost)
684{
685	/* Validate the user supplied parameters. */
686	if (!ihost)
687		return 0;
688
689	/*
690	 * The suggested minimum timeout value for a controller start operation:
691	 *
692	 *     Signature FIS Timeout
693	 *   + Phy Start Timeout
694	 *   + Number of Phy Spin Up Intervals
695	 *   ---------------------------------
696	 *   Number of milliseconds for the controller start operation.
697	 *
698	 * NOTE: The number of phy spin up intervals will be equivalent
699	 *       to the number of phys divided by the number phys allowed
700	 *       per interval - 1 (once OEM parameters are supported).
701	 *       Currently we assume only 1 phy per interval. */
702
703	return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
704		+ SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
705		+ ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
706}
707
708static void sci_controller_enable_interrupts(struct isci_host *ihost)
709{
710	BUG_ON(ihost->smu_registers == NULL);
711	writel(0, &ihost->smu_registers->interrupt_mask);
712}
713
714void sci_controller_disable_interrupts(struct isci_host *ihost)
715{
716	BUG_ON(ihost->smu_registers == NULL);
717	writel(0xffffffff, &ihost->smu_registers->interrupt_mask);
718}
719
720static void sci_controller_enable_port_task_scheduler(struct isci_host *ihost)
721{
722	u32 port_task_scheduler_value;
723
724	port_task_scheduler_value =
725		readl(&ihost->scu_registers->peg0.ptsg.control);
726	port_task_scheduler_value |=
727		(SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
728		 SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
729	writel(port_task_scheduler_value,
730	       &ihost->scu_registers->peg0.ptsg.control);
731}
732
733static void sci_controller_assign_task_entries(struct isci_host *ihost)
734{
735	u32 task_assignment;
736
737	/*
738	 * Assign all the TCs to function 0
739	 * TODO: Do we actually need to read this register to write it back?
740	 */
741
742	task_assignment =
743		readl(&ihost->smu_registers->task_context_assignment[0]);
744
745	task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
746		(SMU_TCA_GEN_VAL(ENDING,  ihost->task_context_entries - 1)) |
747		(SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));
748
749	writel(task_assignment,
750		&ihost->smu_registers->task_context_assignment[0]);
751
752}
753
754static void sci_controller_initialize_completion_queue(struct isci_host *ihost)
755{
756	u32 index;
757	u32 completion_queue_control_value;
758	u32 completion_queue_get_value;
759	u32 completion_queue_put_value;
760
761	ihost->completion_queue_get = 0;
762
763	completion_queue_control_value =
764		(SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) |
765		 SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1));
766
767	writel(completion_queue_control_value,
768	       &ihost->smu_registers->completion_queue_control);
769
770
771	/* Set the completion queue get pointer and enable the queue */
772	completion_queue_get_value = (
773		(SMU_CQGR_GEN_VAL(POINTER, 0))
774		| (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
775		| (SMU_CQGR_GEN_BIT(ENABLE))
776		| (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
777		);
778
779	writel(completion_queue_get_value,
780	       &ihost->smu_registers->completion_queue_get);
781
782	/* Set the completion queue put pointer */
783	completion_queue_put_value = (
784		(SMU_CQPR_GEN_VAL(POINTER, 0))
785		| (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
786		);
787
788	writel(completion_queue_put_value,
789	       &ihost->smu_registers->completion_queue_put);
790
791	/* Initialize the cycle bit of the completion queue entries */
792	for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) {
793		/*
794		 * If get.cycle_bit != completion_queue.cycle_bit
795		 * its not a valid completion queue entry
796		 * so at system start all entries are invalid */
797		ihost->completion_queue[index] = 0x80000000;
798	}
799}
800
801static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host *ihost)
802{
803	u32 frame_queue_control_value;
804	u32 frame_queue_get_value;
805	u32 frame_queue_put_value;
806
807	/* Write the queue size */
808	frame_queue_control_value =
809		SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES);
810
811	writel(frame_queue_control_value,
812	       &ihost->scu_registers->sdma.unsolicited_frame_queue_control);
813
814	/* Setup the get pointer for the unsolicited frame queue */
815	frame_queue_get_value = (
816		SCU_UFQGP_GEN_VAL(POINTER, 0)
817		|  SCU_UFQGP_GEN_BIT(ENABLE_BIT)
818		);
819
820	writel(frame_queue_get_value,
821	       &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
822	/* Setup the put pointer for the unsolicited frame queue */
823	frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
824	writel(frame_queue_put_value,
825	       &ihost->scu_registers->sdma.unsolicited_frame_put_pointer);
826}
827
828static void sci_controller_transition_to_ready(struct isci_host *ihost, enum sci_status status)
829{
830	if (ihost->sm.current_state_id == SCIC_STARTING) {
831		/*
832		 * We move into the ready state, because some of the phys/ports
833		 * may be up and operational.
834		 */
835		sci_change_state(&ihost->sm, SCIC_READY);
836
837		isci_host_start_complete(ihost, status);
838	}
839}
840
841static bool is_phy_starting(struct isci_phy *iphy)
842{
843	enum sci_phy_states state;
844
845	state = iphy->sm.current_state_id;
846	switch (state) {
847	case SCI_PHY_STARTING:
848	case SCI_PHY_SUB_INITIAL:
849	case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
850	case SCI_PHY_SUB_AWAIT_IAF_UF:
851	case SCI_PHY_SUB_AWAIT_SAS_POWER:
852	case SCI_PHY_SUB_AWAIT_SATA_POWER:
853	case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
854	case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
855	case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
856	case SCI_PHY_SUB_FINAL:
857		return true;
858	default:
859		return false;
860	}
861}
862
863/**
864 * sci_controller_start_next_phy - start phy
865 * @scic: controller
866 *
867 * If all the phys have been started, then attempt to transition the
868 * controller to the READY state and inform the user
869 * (sci_cb_controller_start_complete()).
870 */
871static enum sci_status sci_controller_start_next_phy(struct isci_host *ihost)
872{
873	struct sci_oem_params *oem = &ihost->oem_parameters;
874	struct isci_phy *iphy;
875	enum sci_status status;
876
877	status = SCI_SUCCESS;
878
879	if (ihost->phy_startup_timer_pending)
880		return status;
881
882	if (ihost->next_phy_to_start >= SCI_MAX_PHYS) {
883		bool is_controller_start_complete = true;
884		u32 state;
885		u8 index;
886
887		for (index = 0; index < SCI_MAX_PHYS; index++) {
888			iphy = &ihost->phys[index];
889			state = iphy->sm.current_state_id;
890
891			if (!phy_get_non_dummy_port(iphy))
892				continue;
893
894			/* The controller start operation is complete iff:
895			 * - all links have been given an opportunity to start
896			 * - have no indication of a connected device
897			 * - have an indication of a connected device and it has
898			 *   finished the link training process.
899			 */
900			if ((iphy->is_in_link_training == false && state == SCI_PHY_INITIAL) ||
901			    (iphy->is_in_link_training == false && state == SCI_PHY_STOPPED) ||
902			    (iphy->is_in_link_training == true && is_phy_starting(iphy)) ||
903			    (ihost->port_agent.phy_ready_mask != ihost->port_agent.phy_configured_mask)) {
904				is_controller_start_complete = false;
905				break;
906			}
907		}
908
909		/*
910		 * The controller has successfully finished the start process.
911		 * Inform the SCI Core user and transition to the READY state. */
912		if (is_controller_start_complete == true) {
913			sci_controller_transition_to_ready(ihost, SCI_SUCCESS);
914			sci_del_timer(&ihost->phy_timer);
915			ihost->phy_startup_timer_pending = false;
916		}
917	} else {
918		iphy = &ihost->phys[ihost->next_phy_to_start];
919
920		if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
921			if (phy_get_non_dummy_port(iphy) == NULL) {
922				ihost->next_phy_to_start++;
923
924				/* Caution recursion ahead be forwarned
925				 *
926				 * The PHY was never added to a PORT in MPC mode
927				 * so start the next phy in sequence This phy
928				 * will never go link up and will not draw power
929				 * the OEM parameters either configured the phy
930				 * incorrectly for the PORT or it was never
931				 * assigned to a PORT
932				 */
933				return sci_controller_start_next_phy(ihost);
934			}
935		}
936
937		status = sci_phy_start(iphy);
938
939		if (status == SCI_SUCCESS) {
940			sci_mod_timer(&ihost->phy_timer,
941				      SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
942			ihost->phy_startup_timer_pending = true;
943		} else {
944			dev_warn(&ihost->pdev->dev,
945				 "%s: Controller stop operation failed "
946				 "to stop phy %d because of status "
947				 "%d.\n",
948				 __func__,
949				 ihost->phys[ihost->next_phy_to_start].phy_index,
950				 status);
951		}
952
953		ihost->next_phy_to_start++;
954	}
955
956	return status;
957}
958
959static void phy_startup_timeout(unsigned long data)
960{
961	struct sci_timer *tmr = (struct sci_timer *)data;
962	struct isci_host *ihost = container_of(tmr, typeof(*ihost), phy_timer);
963	unsigned long flags;
964	enum sci_status status;
965
966	spin_lock_irqsave(&ihost->scic_lock, flags);
967
968	if (tmr->cancel)
969		goto done;
970
971	ihost->phy_startup_timer_pending = false;
972
973	do {
974		status = sci_controller_start_next_phy(ihost);
975	} while (status != SCI_SUCCESS);
976
977done:
978	spin_unlock_irqrestore(&ihost->scic_lock, flags);
979}
980
981static u16 isci_tci_active(struct isci_host *ihost)
982{
983	return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
984}
985
986static enum sci_status sci_controller_start(struct isci_host *ihost,
987					     u32 timeout)
988{
989	enum sci_status result;
990	u16 index;
991
992	if (ihost->sm.current_state_id != SCIC_INITIALIZED) {
993		dev_warn(&ihost->pdev->dev,
994			 "SCIC Controller start operation requested in "
995			 "invalid state\n");
996		return SCI_FAILURE_INVALID_STATE;
997	}
998
999	/* Build the TCi free pool */
1000	BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8);
1001	ihost->tci_head = 0;
1002	ihost->tci_tail = 0;
1003	for (index = 0; index < ihost->task_context_entries; index++)
1004		isci_tci_free(ihost, index);
1005
1006	/* Build the RNi free pool */
1007	sci_remote_node_table_initialize(&ihost->available_remote_nodes,
1008					 ihost->remote_node_entries);
1009
1010	/*
1011	 * Before anything else lets make sure we will not be
1012	 * interrupted by the hardware.
1013	 */
1014	sci_controller_disable_interrupts(ihost);
1015
1016	/* Enable the port task scheduler */
1017	sci_controller_enable_port_task_scheduler(ihost);
1018
1019	/* Assign all the task entries to ihost physical function */
1020	sci_controller_assign_task_entries(ihost);
1021
1022	/* Now initialize the completion queue */
1023	sci_controller_initialize_completion_queue(ihost);
1024
1025	/* Initialize the unsolicited frame queue for use */
1026	sci_controller_initialize_unsolicited_frame_queue(ihost);
1027
1028	/* Start all of the ports on this controller */
1029	for (index = 0; index < ihost->logical_port_entries; index++) {
1030		struct isci_port *iport = &ihost->ports[index];
1031
1032		result = sci_port_start(iport);
1033		if (result)
1034			return result;
1035	}
1036
1037	sci_controller_start_next_phy(ihost);
1038
1039	sci_mod_timer(&ihost->timer, timeout);
1040
1041	sci_change_state(&ihost->sm, SCIC_STARTING);
1042
1043	return SCI_SUCCESS;
1044}
1045
1046void isci_host_scan_start(struct Scsi_Host *shost)
1047{
1048	struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
1049	unsigned long tmo = sci_controller_get_suggested_start_timeout(ihost);
1050
1051	set_bit(IHOST_START_PENDING, &ihost->flags);
1052
1053	spin_lock_irq(&ihost->scic_lock);
1054	sci_controller_start(ihost, tmo);
1055	sci_controller_enable_interrupts(ihost);
1056	spin_unlock_irq(&ihost->scic_lock);
1057}
1058
1059static void isci_host_stop_complete(struct isci_host *ihost, enum sci_status completion_status)
1060{
1061	isci_host_change_state(ihost, isci_stopped);
1062	sci_controller_disable_interrupts(ihost);
1063	clear_bit(IHOST_STOP_PENDING, &ihost->flags);
1064	wake_up(&ihost->eventq);
1065}
1066
1067static void sci_controller_completion_handler(struct isci_host *ihost)
1068{
1069	/* Empty out the completion queue */
1070	if (sci_controller_completion_queue_has_entries(ihost))
1071		sci_controller_process_completions(ihost);
1072
1073	/* Clear the interrupt and enable all interrupts again */
1074	writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
1075	/* Could we write the value of SMU_ISR_COMPLETION? */
1076	writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
1077	writel(0, &ihost->smu_registers->interrupt_mask);
1078}
1079
1080/**
1081 * isci_host_completion_routine() - This function is the delayed service
1082 *    routine that calls the sci core library's completion handler. It's
1083 *    scheduled as a tasklet from the interrupt service routine when interrupts
1084 *    in use, or set as the timeout function in polled mode.
1085 * @data: This parameter specifies the ISCI host object
1086 *
1087 */
1088static void isci_host_completion_routine(unsigned long data)
1089{
1090	struct isci_host *ihost = (struct isci_host *)data;
1091	struct list_head    completed_request_list;
1092	struct list_head    errored_request_list;
1093	struct list_head    *current_position;
1094	struct list_head    *next_position;
1095	struct isci_request *request;
1096	struct isci_request *next_request;
1097	struct sas_task     *task;
1098	u16 active;
1099
1100	INIT_LIST_HEAD(&completed_request_list);
1101	INIT_LIST_HEAD(&errored_request_list);
1102
1103	spin_lock_irq(&ihost->scic_lock);
1104
1105	sci_controller_completion_handler(ihost);
1106
1107	/* Take the lists of completed I/Os from the host. */
1108
1109	list_splice_init(&ihost->requests_to_complete,
1110			 &completed_request_list);
1111
1112	/* Take the list of errored I/Os from the host. */
1113	list_splice_init(&ihost->requests_to_errorback,
1114			 &errored_request_list);
1115
1116	spin_unlock_irq(&ihost->scic_lock);
1117
1118	/* Process any completions in the lists. */
1119	list_for_each_safe(current_position, next_position,
1120			   &completed_request_list) {
1121
1122		request = list_entry(current_position, struct isci_request,
1123				     completed_node);
1124		task = isci_request_access_task(request);
1125
1126		/* Normal notification (task_done) */
1127		dev_dbg(&ihost->pdev->dev,
1128			"%s: Normal - request/task = %p/%p\n",
1129			__func__,
1130			request,
1131			task);
1132
1133		/* Return the task to libsas */
1134		if (task != NULL) {
1135
1136			task->lldd_task = NULL;
1137			if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
1138
1139				/* If the task is already in the abort path,
1140				* the task_done callback cannot be called.
1141				*/
1142				task->task_done(task);
1143			}
1144		}
1145
1146		spin_lock_irq(&ihost->scic_lock);
1147		isci_free_tag(ihost, request->io_tag);
1148		spin_unlock_irq(&ihost->scic_lock);
1149	}
1150	list_for_each_entry_safe(request, next_request, &errored_request_list,
1151				 completed_node) {
1152
1153		task = isci_request_access_task(request);
1154
1155		/* Use sas_task_abort */
1156		dev_warn(&ihost->pdev->dev,
1157			 "%s: Error - request/task = %p/%p\n",
1158			 __func__,
1159			 request,
1160			 task);
1161
1162		if (task != NULL) {
1163
1164			/* Put the task into the abort path if it's not there
1165			 * already.
1166			 */
1167			if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED))
1168				sas_task_abort(task);
1169
1170		} else {
1171			/* This is a case where the request has completed with a
1172			 * status such that it needed further target servicing,
1173			 * but the sas_task reference has already been removed
1174			 * from the request.  Since it was errored, it was not
1175			 * being aborted, so there is nothing to do except free
1176			 * it.
1177			 */
1178
1179			spin_lock_irq(&ihost->scic_lock);
1180			/* Remove the request from the remote device's list
1181			* of pending requests.
1182			*/
1183			list_del_init(&request->dev_node);
1184			isci_free_tag(ihost, request->io_tag);
1185			spin_unlock_irq(&ihost->scic_lock);
1186		}
1187	}
1188
1189	/* the coalesence timeout doubles at each encoding step, so
1190	 * update it based on the ilog2 value of the outstanding requests
1191	 */
1192	active = isci_tci_active(ihost);
1193	writel(SMU_ICC_GEN_VAL(NUMBER, active) |
1194	       SMU_ICC_GEN_VAL(TIMER, ISCI_COALESCE_BASE + ilog2(active)),
1195	       &ihost->smu_registers->interrupt_coalesce_control);
1196}
1197
1198/**
1199 * sci_controller_stop() - This method will stop an individual controller
1200 *    object.This method will invoke the associated user callback upon
1201 *    completion.  The completion callback is called when the following
1202 *    conditions are met: -# the method return status is SCI_SUCCESS. -# the
1203 *    controller has been quiesced. This method will ensure that all IO
1204 *    requests are quiesced, phys are stopped, and all additional operation by
1205 *    the hardware is halted.
1206 * @controller: the handle to the controller object to stop.
1207 * @timeout: This parameter specifies the number of milliseconds in which the
1208 *    stop operation should complete.
1209 *
1210 * The controller must be in the STARTED or STOPPED state. Indicate if the
1211 * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
1212 * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
1213 * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
1214 * controller is not either in the STARTED or STOPPED states.
1215 */
1216static enum sci_status sci_controller_stop(struct isci_host *ihost, u32 timeout)
1217{
1218	if (ihost->sm.current_state_id != SCIC_READY) {
1219		dev_warn(&ihost->pdev->dev,
1220			 "SCIC Controller stop operation requested in "
1221			 "invalid state\n");
1222		return SCI_FAILURE_INVALID_STATE;
1223	}
1224
1225	sci_mod_timer(&ihost->timer, timeout);
1226	sci_change_state(&ihost->sm, SCIC_STOPPING);
1227	return SCI_SUCCESS;
1228}
1229
1230/**
1231 * sci_controller_reset() - This method will reset the supplied core
1232 *    controller regardless of the state of said controller.  This operation is
1233 *    considered destructive.  In other words, all current operations are wiped
1234 *    out.  No IO completions for outstanding devices occur.  Outstanding IO
1235 *    requests are not aborted or completed at the actual remote device.
1236 * @controller: the handle to the controller object to reset.
1237 *
1238 * Indicate if the controller reset method succeeded or failed in some way.
1239 * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
1240 * the controller reset operation is unable to complete.
1241 */
1242static enum sci_status sci_controller_reset(struct isci_host *ihost)
1243{
1244	switch (ihost->sm.current_state_id) {
1245	case SCIC_RESET:
1246	case SCIC_READY:
1247	case SCIC_STOPPED:
1248	case SCIC_FAILED:
1249		/*
1250		 * The reset operation is not a graceful cleanup, just
1251		 * perform the state transition.
1252		 */
1253		sci_change_state(&ihost->sm, SCIC_RESETTING);
1254		return SCI_SUCCESS;
1255	default:
1256		dev_warn(&ihost->pdev->dev,
1257			 "SCIC Controller reset operation requested in "
1258			 "invalid state\n");
1259		return SCI_FAILURE_INVALID_STATE;
1260	}
1261}
1262
1263void isci_host_deinit(struct isci_host *ihost)
1264{
1265	int i;
1266
1267	/* disable output data selects */
1268	for (i = 0; i < isci_gpio_count(ihost); i++)
1269		writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
1270
1271	isci_host_change_state(ihost, isci_stopping);
1272	for (i = 0; i < SCI_MAX_PORTS; i++) {
1273		struct isci_port *iport = &ihost->ports[i];
1274		struct isci_remote_device *idev, *d;
1275
1276		list_for_each_entry_safe(idev, d, &iport->remote_dev_list, node) {
1277			if (test_bit(IDEV_ALLOCATED, &idev->flags))
1278				isci_remote_device_stop(ihost, idev);
1279		}
1280	}
1281
1282	set_bit(IHOST_STOP_PENDING, &ihost->flags);
1283
1284	spin_lock_irq(&ihost->scic_lock);
1285	sci_controller_stop(ihost, SCIC_CONTROLLER_STOP_TIMEOUT);
1286	spin_unlock_irq(&ihost->scic_lock);
1287
1288	wait_for_stop(ihost);
1289
1290	/* disable sgpio: where the above wait should give time for the
1291	 * enclosure to sample the gpios going inactive
1292	 */
1293	writel(0, &ihost->scu_registers->peg0.sgpio.interface_control);
1294
1295	sci_controller_reset(ihost);
1296
1297	/* Cancel any/all outstanding port timers */
1298	for (i = 0; i < ihost->logical_port_entries; i++) {
1299		struct isci_port *iport = &ihost->ports[i];
1300		del_timer_sync(&iport->timer.timer);
1301	}
1302
1303	/* Cancel any/all outstanding phy timers */
1304	for (i = 0; i < SCI_MAX_PHYS; i++) {
1305		struct isci_phy *iphy = &ihost->phys[i];
1306		del_timer_sync(&iphy->sata_timer.timer);
1307	}
1308
1309	del_timer_sync(&ihost->port_agent.timer.timer);
1310
1311	del_timer_sync(&ihost->power_control.timer.timer);
1312
1313	del_timer_sync(&ihost->timer.timer);
1314
1315	del_timer_sync(&ihost->phy_timer.timer);
1316}
1317
1318static void __iomem *scu_base(struct isci_host *isci_host)
1319{
1320	struct pci_dev *pdev = isci_host->pdev;
1321	int id = isci_host->id;
1322
1323	return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
1324}
1325
1326static void __iomem *smu_base(struct isci_host *isci_host)
1327{
1328	struct pci_dev *pdev = isci_host->pdev;
1329	int id = isci_host->id;
1330
1331	return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
1332}
1333
1334static void isci_user_parameters_get(struct sci_user_parameters *u)
1335{
1336	int i;
1337
1338	for (i = 0; i < SCI_MAX_PHYS; i++) {
1339		struct sci_phy_user_params *u_phy = &u->phys[i];
1340
1341		u_phy->max_speed_generation = phy_gen;
1342
1343		/* we are not exporting these for now */
1344		u_phy->align_insertion_frequency = 0x7f;
1345		u_phy->in_connection_align_insertion_frequency = 0xff;
1346		u_phy->notify_enable_spin_up_insertion_frequency = 0x33;
1347	}
1348
1349	u->stp_inactivity_timeout = stp_inactive_to;
1350	u->ssp_inactivity_timeout = ssp_inactive_to;
1351	u->stp_max_occupancy_timeout = stp_max_occ_to;
1352	u->ssp_max_occupancy_timeout = ssp_max_occ_to;
1353	u->no_outbound_task_timeout = no_outbound_task_to;
1354	u->max_concurr_spinup = max_concurr_spinup;
1355}
1356
1357static void sci_controller_initial_state_enter(struct sci_base_state_machine *sm)
1358{
1359	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1360
1361	sci_change_state(&ihost->sm, SCIC_RESET);
1362}
1363
1364static inline void sci_controller_starting_state_exit(struct sci_base_state_machine *sm)
1365{
1366	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1367
1368	sci_del_timer(&ihost->timer);
1369}
1370
1371#define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
1372#define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
1373#define INTERRUPT_COALESCE_TIMEOUT_MAX_US                    2700000
1374#define INTERRUPT_COALESCE_NUMBER_MAX                        256
1375#define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN                7
1376#define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX                28
1377
1378/**
1379 * sci_controller_set_interrupt_coalescence() - This method allows the user to
1380 *    configure the interrupt coalescence.
1381 * @controller: This parameter represents the handle to the controller object
1382 *    for which its interrupt coalesce register is overridden.
1383 * @coalesce_number: Used to control the number of entries in the Completion
1384 *    Queue before an interrupt is generated. If the number of entries exceed
1385 *    this number, an interrupt will be generated. The valid range of the input
1386 *    is [0, 256]. A setting of 0 results in coalescing being disabled.
1387 * @coalesce_timeout: Timeout value in microseconds. The valid range of the
1388 *    input is [0, 2700000] . A setting of 0 is allowed and results in no
1389 *    interrupt coalescing timeout.
1390 *
1391 * Indicate if the user successfully set the interrupt coalesce parameters.
1392 * SCI_SUCCESS The user successfully updated the interrutp coalescence.
1393 * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
1394 */
1395static enum sci_status
1396sci_controller_set_interrupt_coalescence(struct isci_host *ihost,
1397					 u32 coalesce_number,
1398					 u32 coalesce_timeout)
1399{
1400	u8 timeout_encode = 0;
1401	u32 min = 0;
1402	u32 max = 0;
1403
1404	/* Check if the input parameters fall in the range. */
1405	if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
1406		return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1407
1408	/*
1409	 *  Defined encoding for interrupt coalescing timeout:
1410	 *              Value   Min      Max     Units
1411	 *              -----   ---      ---     -----
1412	 *              0       -        -       Disabled
1413	 *              1       13.3     20.0    ns
1414	 *              2       26.7     40.0
1415	 *              3       53.3     80.0
1416	 *              4       106.7    160.0
1417	 *              5       213.3    320.0
1418	 *              6       426.7    640.0
1419	 *              7       853.3    1280.0
1420	 *              8       1.7      2.6     us
1421	 *              9       3.4      5.1
1422	 *              10      6.8      10.2
1423	 *              11      13.7     20.5
1424	 *              12      27.3     41.0
1425	 *              13      54.6     81.9
1426	 *              14      109.2    163.8
1427	 *              15      218.5    327.7
1428	 *              16      436.9    655.4
1429	 *              17      873.8    1310.7
1430	 *              18      1.7      2.6     ms
1431	 *              19      3.5      5.2
1432	 *              20      7.0      10.5
1433	 *              21      14.0     21.0
1434	 *              22      28.0     41.9
1435	 *              23      55.9     83.9
1436	 *              24      111.8    167.8
1437	 *              25      223.7    335.5
1438	 *              26      447.4    671.1
1439	 *              27      894.8    1342.2
1440	 *              28      1.8      2.7     s
1441	 *              Others Undefined */
1442
1443	/*
1444	 * Use the table above to decide the encode of interrupt coalescing timeout
1445	 * value for register writing. */
1446	if (coalesce_timeout == 0)
1447		timeout_encode = 0;
1448	else{
1449		/* make the timeout value in unit of (10 ns). */
1450		coalesce_timeout = coalesce_timeout * 100;
1451		min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
1452		max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;
1453
1454		/* get the encode of timeout for register writing. */
1455		for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
1456		      timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
1457		      timeout_encode++) {
1458			if (min <= coalesce_timeout &&  max > coalesce_timeout)
1459				break;
1460			else if (coalesce_timeout >= max && coalesce_timeout < min * 2
1461				 && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
1462				if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
1463					break;
1464				else{
1465					timeout_encode++;
1466					break;
1467				}
1468			} else {
1469				max = max * 2;
1470				min = min * 2;
1471			}
1472		}
1473
1474		if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
1475			/* the value is out of range. */
1476			return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1477	}
1478
1479	writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
1480	       SMU_ICC_GEN_VAL(TIMER, timeout_encode),
1481	       &ihost->smu_registers->interrupt_coalesce_control);
1482
1483
1484	ihost->interrupt_coalesce_number = (u16)coalesce_number;
1485	ihost->interrupt_coalesce_timeout = coalesce_timeout / 100;
1486
1487	return SCI_SUCCESS;
1488}
1489
1490
1491static void sci_controller_ready_state_enter(struct sci_base_state_machine *sm)
1492{
1493	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1494
1495	/* set the default interrupt coalescence number and timeout value. */
1496	sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1497}
1498
1499static void sci_controller_ready_state_exit(struct sci_base_state_machine *sm)
1500{
1501	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1502
1503	/* disable interrupt coalescence. */
1504	sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1505}
1506
1507static enum sci_status sci_controller_stop_phys(struct isci_host *ihost)
1508{
1509	u32 index;
1510	enum sci_status status;
1511	enum sci_status phy_status;
1512
1513	status = SCI_SUCCESS;
1514
1515	for (index = 0; index < SCI_MAX_PHYS; index++) {
1516		phy_status = sci_phy_stop(&ihost->phys[index]);
1517
1518		if (phy_status != SCI_SUCCESS &&
1519		    phy_status != SCI_FAILURE_INVALID_STATE) {
1520			status = SCI_FAILURE;
1521
1522			dev_warn(&ihost->pdev->dev,
1523				 "%s: Controller stop operation failed to stop "
1524				 "phy %d because of status %d.\n",
1525				 __func__,
1526				 ihost->phys[index].phy_index, phy_status);
1527		}
1528	}
1529
1530	return status;
1531}
1532
1533static enum sci_status sci_controller_stop_ports(struct isci_host *ihost)
1534{
1535	u32 index;
1536	enum sci_status port_status;
1537	enum sci_status status = SCI_SUCCESS;
1538
1539	for (index = 0; index < ihost->logical_port_entries; index++) {
1540		struct isci_port *iport = &ihost->ports[index];
1541
1542		port_status = sci_port_stop(iport);
1543
1544		if ((port_status != SCI_SUCCESS) &&
1545		    (port_status != SCI_FAILURE_INVALID_STATE)) {
1546			status = SCI_FAILURE;
1547
1548			dev_warn(&ihost->pdev->dev,
1549				 "%s: Controller stop operation failed to "
1550				 "stop port %d because of status %d.\n",
1551				 __func__,
1552				 iport->logical_port_index,
1553				 port_status);
1554		}
1555	}
1556
1557	return status;
1558}
1559
1560static enum sci_status sci_controller_stop_devices(struct isci_host *ihost)
1561{
1562	u32 index;
1563	enum sci_status status;
1564	enum sci_status device_status;
1565
1566	status = SCI_SUCCESS;
1567
1568	for (index = 0; index < ihost->remote_node_entries; index++) {
1569		if (ihost->device_table[index] != NULL) {
1570			/* / @todo What timeout value do we want to provide to this request? */
1571			device_status = sci_remote_device_stop(ihost->device_table[index], 0);
1572
1573			if ((device_status != SCI_SUCCESS) &&
1574			    (device_status != SCI_FAILURE_INVALID_STATE)) {
1575				dev_warn(&ihost->pdev->dev,
1576					 "%s: Controller stop operation failed "
1577					 "to stop device 0x%p because of "
1578					 "status %d.\n",
1579					 __func__,
1580					 ihost->device_table[index], device_status);
1581			}
1582		}
1583	}
1584
1585	return status;
1586}
1587
1588static void sci_controller_stopping_state_enter(struct sci_base_state_machine *sm)
1589{
1590	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1591
1592	/* Stop all of the components for this controller */
1593	sci_controller_stop_phys(ihost);
1594	sci_controller_stop_ports(ihost);
1595	sci_controller_stop_devices(ihost);
1596}
1597
1598static void sci_controller_stopping_state_exit(struct sci_base_state_machine *sm)
1599{
1600	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1601
1602	sci_del_timer(&ihost->timer);
1603}
1604
1605static void sci_controller_reset_hardware(struct isci_host *ihost)
1606{
1607	/* Disable interrupts so we dont take any spurious interrupts */
1608	sci_controller_disable_interrupts(ihost);
1609
1610	/* Reset the SCU */
1611	writel(0xFFFFFFFF, &ihost->smu_registers->soft_reset_control);
1612
1613	/* Delay for 1ms to before clearing the CQP and UFQPR. */
1614	udelay(1000);
1615
1616	/* The write to the CQGR clears the CQP */
1617	writel(0x00000000, &ihost->smu_registers->completion_queue_get);
1618
1619	/* The write to the UFQGP clears the UFQPR */
1620	writel(0, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
1621}
1622
1623static void sci_controller_resetting_state_enter(struct sci_base_state_machine *sm)
1624{
1625	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1626
1627	sci_controller_reset_hardware(ihost);
1628	sci_change_state(&ihost->sm, SCIC_RESET);
1629}
1630
1631static const struct sci_base_state sci_controller_state_table[] = {
1632	[SCIC_INITIAL] = {
1633		.enter_state = sci_controller_initial_state_enter,
1634	},
1635	[SCIC_RESET] = {},
1636	[SCIC_INITIALIZING] = {},
1637	[SCIC_INITIALIZED] = {},
1638	[SCIC_STARTING] = {
1639		.exit_state  = sci_controller_starting_state_exit,
1640	},
1641	[SCIC_READY] = {
1642		.enter_state = sci_controller_ready_state_enter,
1643		.exit_state  = sci_controller_ready_state_exit,
1644	},
1645	[SCIC_RESETTING] = {
1646		.enter_state = sci_controller_resetting_state_enter,
1647	},
1648	[SCIC_STOPPING] = {
1649		.enter_state = sci_controller_stopping_state_enter,
1650		.exit_state = sci_controller_stopping_state_exit,
1651	},
1652	[SCIC_STOPPED] = {},
1653	[SCIC_FAILED] = {}
1654};
1655
1656static void sci_controller_set_default_config_parameters(struct isci_host *ihost)
1657{
1658	/* these defaults are overridden by the platform / firmware */
1659	u16 index;
1660
1661	/* Default to APC mode. */
1662	ihost->oem_parameters.controller.mode_type = SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE;
1663
1664	/* Default to APC mode. */
1665	ihost->oem_parameters.controller.max_concurr_spin_up = 1;
1666
1667	/* Default to no SSC operation. */
1668	ihost->oem_parameters.controller.do_enable_ssc = false;
1669
1670	/* Default to short cables on all phys. */
1671	ihost->oem_parameters.controller.cable_selection_mask = 0;
1672
1673	/* Initialize all of the port parameter information to narrow ports. */
1674	for (index = 0; index < SCI_MAX_PORTS; index++) {
1675		ihost->oem_parameters.ports[index].phy_mask = 0;
1676	}
1677
1678	/* Initialize all of the phy parameter information. */
1679	for (index = 0; index < SCI_MAX_PHYS; index++) {
1680		/* Default to 3G (i.e. Gen 2). */
1681		ihost->user_parameters.phys[index].max_speed_generation =
1682			SCIC_SDS_PARM_GEN2_SPEED;
1683
1684		/* the frequencies cannot be 0 */
1685		ihost->user_parameters.phys[index].align_insertion_frequency = 0x7f;
1686		ihost->user_parameters.phys[index].in_connection_align_insertion_frequency = 0xff;
1687		ihost->user_parameters.phys[index].notify_enable_spin_up_insertion_frequency = 0x33;
1688
1689		/*
1690		 * Previous Vitesse based expanders had a arbitration issue that
1691		 * is worked around by having the upper 32-bits of SAS address
1692		 * with a value greater then the Vitesse company identifier.
1693		 * Hence, usage of 0x5FCFFFFF. */
1694		ihost->oem_parameters.phys[index].sas_address.low = 0x1 + ihost->id;
1695		ihost->oem_parameters.phys[index].sas_address.high = 0x5FCFFFFF;
1696	}
1697
1698	ihost->user_parameters.stp_inactivity_timeout = 5;
1699	ihost->user_parameters.ssp_inactivity_timeout = 5;
1700	ihost->user_parameters.stp_max_occupancy_timeout = 5;
1701	ihost->user_parameters.ssp_max_occupancy_timeout = 20;
1702	ihost->user_parameters.no_outbound_task_timeout = 2;
1703}
1704
1705static void controller_timeout(unsigned long data)
1706{
1707	struct sci_timer *tmr = (struct sci_timer *)data;
1708	struct isci_host *ihost = container_of(tmr, typeof(*ihost), timer);
1709	struct sci_base_state_machine *sm = &ihost->sm;
1710	unsigned long flags;
1711
1712	spin_lock_irqsave(&ihost->scic_lock, flags);
1713
1714	if (tmr->cancel)
1715		goto done;
1716
1717	if (sm->current_state_id == SCIC_STARTING)
1718		sci_controller_transition_to_ready(ihost, SCI_FAILURE_TIMEOUT);
1719	else if (sm->current_state_id == SCIC_STOPPING) {
1720		sci_change_state(sm, SCIC_FAILED);
1721		isci_host_stop_complete(ihost, SCI_FAILURE_TIMEOUT);
1722	} else	/* / @todo Now what do we want to do in this case? */
1723		dev_err(&ihost->pdev->dev,
1724			"%s: Controller timer fired when controller was not "
1725			"in a state being timed.\n",
1726			__func__);
1727
1728done:
1729	spin_unlock_irqrestore(&ihost->scic_lock, flags);
1730}
1731
1732static enum sci_status sci_controller_construct(struct isci_host *ihost,
1733						void __iomem *scu_base,
1734						void __iomem *smu_base)
1735{
1736	u8 i;
1737
1738	sci_init_sm(&ihost->sm, sci_controller_state_table, SCIC_INITIAL);
1739
1740	ihost->scu_registers = scu_base;
1741	ihost->smu_registers = smu_base;
1742
1743	sci_port_configuration_agent_construct(&ihost->port_agent);
1744
1745	/* Construct the ports for this controller */
1746	for (i = 0; i < SCI_MAX_PORTS; i++)
1747		sci_port_construct(&ihost->ports[i], i, ihost);
1748	sci_port_construct(&ihost->ports[i], SCIC_SDS_DUMMY_PORT, ihost);
1749
1750	/* Construct the phys for this controller */
1751	for (i = 0; i < SCI_MAX_PHYS; i++) {
1752		/* Add all the PHYs to the dummy port */
1753		sci_phy_construct(&ihost->phys[i],
1754				  &ihost->ports[SCI_MAX_PORTS], i);
1755	}
1756
1757	ihost->invalid_phy_mask = 0;
1758
1759	sci_init_timer(&ihost->timer, controller_timeout);
1760
1761	/* Initialize the User and OEM parameters to default values. */
1762	sci_controller_set_default_config_parameters(ihost);
1763
1764	return sci_controller_reset(ihost);
1765}
1766
1767int sci_oem_parameters_validate(struct sci_oem_params *oem, u8 version)
1768{
1769	int i;
1770
1771	for (i = 0; i < SCI_MAX_PORTS; i++)
1772		if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
1773			return -EINVAL;
1774
1775	for (i = 0; i < SCI_MAX_PHYS; i++)
1776		if (oem->phys[i].sas_address.high == 0 &&
1777		    oem->phys[i].sas_address.low == 0)
1778			return -EINVAL;
1779
1780	if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
1781		for (i = 0; i < SCI_MAX_PHYS; i++)
1782			if (oem->ports[i].phy_mask != 0)
1783				return -EINVAL;
1784	} else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
1785		u8 phy_mask = 0;
1786
1787		for (i = 0; i < SCI_MAX_PHYS; i++)
1788			phy_mask |= oem->ports[i].phy_mask;
1789
1790		if (phy_mask == 0)
1791			return -EINVAL;
1792	} else
1793		return -EINVAL;
1794
1795	if (oem->controller.max_concurr_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT ||
1796	    oem->controller.max_concurr_spin_up < 1)
1797		return -EINVAL;
1798
1799	if (oem->controller.do_enable_ssc) {
1800		if (version < ISCI_ROM_VER_1_1 && oem->controller.do_enable_ssc != 1)
1801			return -EINVAL;
1802
1803		if (version >= ISCI_ROM_VER_1_1) {
1804			u8 test = oem->controller.ssc_sata_tx_spread_level;
1805
1806			switch (test) {
1807			case 0:
1808			case 2:
1809			case 3:
1810			case 6:
1811			case 7:
1812				break;
1813			default:
1814				return -EINVAL;
1815			}
1816
1817			test = oem->controller.ssc_sas_tx_spread_level;
1818			if (oem->controller.ssc_sas_tx_type == 0) {
1819				switch (test) {
1820				case 0:
1821				case 2:
1822				case 3:
1823					break;
1824				default:
1825					return -EINVAL;
1826				}
1827			} else if (oem->controller.ssc_sas_tx_type == 1) {
1828				switch (test) {
1829				case 0:
1830				case 3:
1831				case 6:
1832					break;
1833				default:
1834					return -EINVAL;
1835				}
1836			}
1837		}
1838	}
1839
1840	return 0;
1841}
1842
1843static enum sci_status sci_oem_parameters_set(struct isci_host *ihost)
1844{
1845	u32 state = ihost->sm.current_state_id;
1846	struct isci_pci_info *pci_info = to_pci_info(ihost->pdev);
1847
1848	if (state == SCIC_RESET ||
1849	    state == SCIC_INITIALIZING ||
1850	    state == SCIC_INITIALIZED) {
1851		u8 oem_version = pci_info->orom ? pci_info->orom->hdr.version :
1852			ISCI_ROM_VER_1_0;
1853
1854		if (sci_oem_parameters_validate(&ihost->oem_parameters,
1855						oem_version))
1856			return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1857
1858		return SCI_SUCCESS;
1859	}
1860
1861	return SCI_FAILURE_INVALID_STATE;
1862}
1863
1864static u8 max_spin_up(struct isci_host *ihost)
1865{
1866	if (ihost->user_parameters.max_concurr_spinup)
1867		return min_t(u8, ihost->user_parameters.max_concurr_spinup,
1868			     MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
1869	else
1870		return min_t(u8, ihost->oem_parameters.controller.max_concurr_spin_up,
1871			     MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
1872}
1873
1874static void power_control_timeout(unsigned long data)
1875{
1876	struct sci_timer *tmr = (struct sci_timer *)data;
1877	struct isci_host *ihost = container_of(tmr, typeof(*ihost), power_control.timer);
1878	struct isci_phy *iphy;
1879	unsigned long flags;
1880	u8 i;
1881
1882	spin_lock_irqsave(&ihost->scic_lock, flags);
1883
1884	if (tmr->cancel)
1885		goto done;
1886
1887	ihost->power_control.phys_granted_power = 0;
1888
1889	if (ihost->power_control.phys_waiting == 0) {
1890		ihost->power_control.timer_started = false;
1891		goto done;
1892	}
1893
1894	for (i = 0; i < SCI_MAX_PHYS; i++) {
1895
1896		if (ihost->power_control.phys_waiting == 0)
1897			break;
1898
1899		iphy = ihost->power_control.requesters[i];
1900		if (iphy == NULL)
1901			continue;
1902
1903		if (ihost->power_control.phys_granted_power >= max_spin_up(ihost))
1904			break;
1905
1906		ihost->power_control.requesters[i] = NULL;
1907		ihost->power_control.phys_waiting--;
1908		ihost->power_control.phys_granted_power++;
1909		sci_phy_consume_power_handler(iphy);
1910
1911		if (iphy->protocol == SCIC_SDS_PHY_PROTOCOL_SAS) {
1912			u8 j;
1913
1914			for (j = 0; j < SCI_MAX_PHYS; j++) {
1915				struct isci_phy *requester = ihost->power_control.requesters[j];
1916
1917				/*
1918				 * Search the power_control queue to see if there are other phys
1919				 * attached to the same remote device. If found, take all of
1920				 * them out of await_sas_power state.
1921				 */
1922				if (requester != NULL && requester != iphy) {
1923					u8 other = memcmp(requester->frame_rcvd.iaf.sas_addr,
1924							  iphy->frame_rcvd.iaf.sas_addr,
1925							  sizeof(requester->frame_rcvd.iaf.sas_addr));
1926
1927					if (other == 0) {
1928						ihost->power_control.requesters[j] = NULL;
1929						ihost->power_control.phys_waiting--;
1930						sci_phy_consume_power_handler(requester);
1931					}
1932				}
1933			}
1934		}
1935	}
1936
1937	/*
1938	 * It doesn't matter if the power list is empty, we need to start the
1939	 * timer in case another phy becomes ready.
1940	 */
1941	sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1942	ihost->power_control.timer_started = true;
1943
1944done:
1945	spin_unlock_irqrestore(&ihost->scic_lock, flags);
1946}
1947
1948void sci_controller_power_control_queue_insert(struct isci_host *ihost,
1949					       struct isci_phy *iphy)
1950{
1951	BUG_ON(iphy == NULL);
1952
1953	if (ihost->power_control.phys_granted_power < max_spin_up(ihost)) {
1954		ihost->power_control.phys_granted_power++;
1955		sci_phy_consume_power_handler(iphy);
1956
1957		/*
1958		 * stop and start the power_control timer. When the timer fires, the
1959		 * no_of_phys_granted_power will be set to 0
1960		 */
1961		if (ihost->power_control.timer_started)
1962			sci_del_timer(&ihost->power_control.timer);
1963
1964		sci_mod_timer(&ihost->power_control.timer,
1965				 SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1966		ihost->power_control.timer_started = true;
1967
1968	} else {
1969		/*
1970		 * There are phys, attached to the same sas address as this phy, are
1971		 * already in READY state, this phy don't need wait.
1972		 */
1973		u8 i;
1974		struct isci_phy *current_phy;
1975
1976		for (i = 0; i < SCI_MAX_PHYS; i++) {
1977			u8 other;
1978			current_phy = &ihost->phys[i];
1979
1980			other = memcmp(current_phy->frame_rcvd.iaf.sas_addr,
1981				       iphy->frame_rcvd.iaf.sas_addr,
1982				       sizeof(current_phy->frame_rcvd.iaf.sas_addr));
1983
1984			if (current_phy->sm.current_state_id == SCI_PHY_READY &&
1985			    current_phy->protocol == SCIC_SDS_PHY_PROTOCOL_SAS &&
1986			    other == 0) {
1987				sci_phy_consume_power_handler(iphy);
1988				break;
1989			}
1990		}
1991
1992		if (i == SCI_MAX_PHYS) {
1993			/* Add the phy in the waiting list */
1994			ihost->power_control.requesters[iphy->phy_index] = iphy;
1995			ihost->power_control.phys_waiting++;
1996		}
1997	}
1998}
1999
2000void sci_controller_power_control_queue_remove(struct isci_host *ihost,
2001					       struct isci_phy *iphy)
2002{
2003	BUG_ON(iphy == NULL);
2004
2005	if (ihost->power_control.requesters[iphy->phy_index])
2006		ihost->power_control.phys_waiting--;
2007
2008	ihost->power_control.requesters[iphy->phy_index] = NULL;
2009}
2010
2011static int is_long_cable(int phy, unsigned char selection_byte)
2012{
2013	return !!(selection_byte & (1 << phy));
2014}
2015
2016static int is_medium_cable(int phy, unsigned char selection_byte)
2017{
2018	return !!(selection_byte & (1 << (phy + 4)));
2019}
2020
2021static enum cable_selections decode_selection_byte(
2022	int phy,
2023	unsigned char selection_byte)
2024{
2025	return ((selection_byte & (1 << phy)) ? 1 : 0)
2026		+ (selection_byte & (1 << (phy + 4)) ? 2 : 0);
2027}
2028
2029static unsigned char *to_cable_select(struct isci_host *ihost)
2030{
2031	if (is_cable_select_overridden())
2032		return ((unsigned char *)&cable_selection_override)
2033			+ ihost->id;
2034	else
2035		return &ihost->oem_parameters.controller.cable_selection_mask;
2036}
2037
2038enum cable_selections decode_cable_selection(struct isci_host *ihost, int phy)
2039{
2040	return decode_selection_byte(phy, *to_cable_select(ihost));
2041}
2042
2043char *lookup_cable_names(enum cable_selections selection)
2044{
2045	static char *cable_names[] = {
2046		[short_cable]     = "short",
2047		[long_cable]      = "long",
2048		[medium_cable]    = "medium",
2049		[undefined_cable] = "<undefined, assumed long>" /* bit 0==1 */
2050	};
2051	return (selection <= undefined_cable) ? cable_names[selection]
2052					      : cable_names[undefined_cable];
2053}
2054
2055#define AFE_REGISTER_WRITE_DELAY 10
2056
2057static void sci_controller_afe_initialization(struct isci_host *ihost)
2058{
2059	struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe;
2060	const struct sci_oem_params *oem = &ihost->oem_parameters;
2061	struct pci_dev *pdev = ihost->pdev;
2062	u32 afe_status;
2063	u32 phy_id;
2064	unsigned char cable_selection_mask = *to_cable_select(ihost);
2065
2066	/* Clear DFX Status registers */
2067	writel(0x0081000f, &afe->afe_dfx_master_control0);
2068	udelay(AFE_REGISTER_WRITE_DELAY);
2069
2070	if (is_b0(pdev) || is_c0(pdev) || is_c1(pdev)) {
2071		/* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
2072		 * Timer, PM Stagger Timer
2073		 */
2074		writel(0x0007FFFF, &afe->afe_pmsn_master_control2);
2075		udelay(AFE_REGISTER_WRITE_DELAY);
2076	}
2077
2078	/* Configure bias currents to normal */
2079	if (is_a2(pdev))
2080		writel(0x00005A00, &afe->afe_bias_control);
2081	else if (is_b0(pdev) || is_c0(pdev))
2082		writel(0x00005F00, &afe->afe_bias_control);
2083	else if (is_c1(pdev))
2084		writel(0x00005500, &afe->afe_bias_control);
2085
2086	udelay(AFE_REGISTER_WRITE_DELAY);
2087
2088	/* Enable PLL */
2089	if (is_a2(pdev))
2090		writel(0x80040908, &afe->afe_pll_control0);
2091	else if (is_b0(pdev) || is_c0(pdev))
2092		writel(0x80040A08, &afe->afe_pll_control0);
2093	else if (is_c1(pdev)) {
2094		writel(0x80000B08, &afe->afe_pll_control0);
2095		udelay(AFE_REGISTER_WRITE_DELAY);
2096		writel(0x00000B08, &afe->afe_pll_control0);
2097		udelay(AFE_REGISTER_WRITE_DELAY);
2098		writel(0x80000B08, &afe->afe_pll_control0);
2099	}
2100
2101	udelay(AFE_REGISTER_WRITE_DELAY);
2102
2103	/* Wait for the PLL to lock */
2104	do {
2105		afe_status = readl(&afe->afe_common_block_status);
2106		udelay(AFE_REGISTER_WRITE_DELAY);
2107	} while ((afe_status & 0x00001000) == 0);
2108
2109	if (is_a2(pdev)) {
2110		/* Shorten SAS SNW lock time (RxLock timer value from 76
2111		 * us to 50 us)
2112		 */
2113		writel(0x7bcc96ad, &afe->afe_pmsn_master_control0);
2114		udelay(AFE_REGISTER_WRITE_DELAY);
2115	}
2116
2117	for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
2118		struct scu_afe_transceiver *xcvr = &afe->scu_afe_xcvr[phy_id];
2119		const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
2120		int cable_length_long =
2121			is_long_cable(phy_id, cable_selection_mask);
2122		int cable_length_medium =
2123			is_medium_cable(phy_id, cable_selection_mask);
2124
2125		if (is_a2(pdev)) {
2126			/* All defaults, except the Receive Word
2127			 * Alignament/Comma Detect Enable....(0xe800)
2128			 */
2129			writel(0x00004512, &xcvr->afe_xcvr_control0);
2130			udelay(AFE_REGISTER_WRITE_DELAY);
2131
2132			writel(0x0050100F, &xcvr->afe_xcvr_control1);
2133			udelay(AFE_REGISTER_WRITE_DELAY);
2134		} else if (is_b0(pdev)) {
2135			/* Configure transmitter SSC parameters */
2136			writel(0x00030000, &xcvr->afe_tx_ssc_control);
2137			udelay(AFE_REGISTER_WRITE_DELAY);
2138		} else if (is_c0(pdev)) {
2139			/* Configure transmitter SSC parameters */
2140			writel(0x00010202, &xcvr->afe_tx_ssc_control);
2141			udelay(AFE_REGISTER_WRITE_DELAY);
2142
2143			/* All defaults, except the Receive Word
2144			 * Alignament/Comma Detect Enable....(0xe800)
2145			 */
2146			writel(0x00014500, &xcvr->afe_xcvr_control0);
2147			udelay(AFE_REGISTER_WRITE_DELAY);
2148		} else if (is_c1(pdev)) {
2149			/* Configure transmitter SSC parameters */
2150			writel(0x00010202, &xcvr->afe_tx_ssc_control);
2151			udelay(AFE_REGISTER_WRITE_DELAY);
2152
2153			/* All defaults, except the Receive Word
2154			 * Alignament/Comma Detect Enable....(0xe800)
2155			 */
2156			writel(0x0001C500, &xcvr->afe_xcvr_control0);
2157			udelay(AFE_REGISTER_WRITE_DELAY);
2158		}
2159
2160		/* Power up TX and RX out from power down (PWRDNTX and
2161		 * PWRDNRX) & increase TX int & ext bias 20%....(0xe85c)
2162		 */
2163		if (is_a2(pdev))
2164			writel(0x000003F0, &xcvr->afe_channel_control);
2165		else if (is_b0(pdev)) {
2166			writel(0x000003D7, &xcvr->afe_channel_control);
2167			udelay(AFE_REGISTER_WRITE_DELAY);
2168
2169			writel(0x000003D4, &xcvr->afe_channel_control);
2170		} else if (is_c0(pdev)) {
2171			writel(0x000001E7, &xcvr->afe_channel_control);
2172			udelay(AFE_REGISTER_WRITE_DELAY);
2173
2174			writel(0x000001E4, &xcvr->afe_channel_control);
2175		} else if (is_c1(pdev)) {
2176			writel(cable_length_long ? 0x000002F7 : 0x000001F7,
2177			       &xcvr->afe_channel_control);
2178			udelay(AFE_REGISTER_WRITE_DELAY);
2179
2180			writel(cable_length_long ? 0x000002F4 : 0x000001F4,
2181			       &xcvr->afe_channel_control);
2182		}
2183		udelay(AFE_REGISTER_WRITE_DELAY);
2184
2185		if (is_a2(pdev)) {
2186			/* Enable TX equalization (0xe824) */
2187			writel(0x00040000, &xcvr->afe_tx_control);
2188			udelay(AFE_REGISTER_WRITE_DELAY);
2189		}
2190
2191		if (is_a2(pdev) || is_b0(pdev))
2192			/* RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0,
2193			 * TPD=0x0(TX Power On), RDD=0x0(RX Detect
2194			 * Enabled) ....(0xe800)
2195			 */
2196			writel(0x00004100, &xcvr->afe_xcvr_control0);
2197		else if (is_c0(pdev))
2198			writel(0x00014100, &xcvr->afe_xcvr_control0);
2199		else if (is_c1(pdev))
2200			writel(0x0001C100, &xcvr->afe_xcvr_control0);
2201		udelay(AFE_REGISTER_WRITE_DELAY);
2202
2203		/* Leave DFE/FFE on */
2204		if (is_a2(pdev))
2205			writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
2206		else if (is_b0(pdev)) {
2207			writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
2208			udelay(AFE_REGISTER_WRITE_DELAY);
2209			/* Enable TX equalization (0xe824) */
2210			writel(0x00040000, &xcvr->afe_tx_control);
2211		} else if (is_c0(pdev)) {
2212			writel(0x01400C0F, &xcvr->afe_rx_ssc_control1);
2213			udelay(AFE_REGISTER_WRITE_DELAY);
2214
2215			writel(0x3F6F103F, &xcvr->afe_rx_ssc_control0);
2216			udelay(AFE_REGISTER_WRITE_DELAY);
2217
2218			/* Enable TX equalization (0xe824) */
2219			writel(0x00040000, &xcvr->afe_tx_control);
2220		} else if (is_c1(pdev)) {
2221			writel(cable_length_long ? 0x01500C0C :
2222			       cable_length_medium ? 0x01400C0D : 0x02400C0D,
2223			       &xcvr->afe_xcvr_control1);
2224			udelay(AFE_REGISTER_WRITE_DELAY);
2225
2226			writel(0x000003E0, &xcvr->afe_dfx_rx_control1);
2227			udelay(AFE_REGISTER_WRITE_DELAY);
2228
2229			writel(cable_length_long ? 0x33091C1F :
2230			       cable_length_medium ? 0x3315181F : 0x2B17161F,
2231			       &xcvr->afe_rx_ssc_control0);
2232			udelay(AFE_REGISTER_WRITE_DELAY);
2233
2234			/* Enable TX equalization (0xe824) */
2235			writel(0x00040000, &xcvr->afe_tx_control);
2236		}
2237
2238		udelay(AFE_REGISTER_WRITE_DELAY);
2239
2240		writel(oem_phy->afe_tx_amp_control0, &xcvr->afe_tx_amp_control0);
2241		udelay(AFE_REGISTER_WRITE_DELAY);
2242
2243		writel(oem_phy->afe_tx_amp_control1, &xcvr->afe_tx_amp_control1);
2244		udelay(AFE_REGISTER_WRITE_DELAY);
2245
2246		writel(oem_phy->afe_tx_amp_control2, &xcvr->afe_tx_amp_control2);
2247		udelay(AFE_REGISTER_WRITE_DELAY);
2248
2249		writel(oem_phy->afe_tx_amp_control3, &xcvr->afe_tx_amp_control3);
2250		udelay(AFE_REGISTER_WRITE_DELAY);
2251	}
2252
2253	/* Transfer control to the PEs */
2254	writel(0x00010f00, &afe->afe_dfx_master_control0);
2255	udelay(AFE_REGISTER_WRITE_DELAY);
2256}
2257
2258static void sci_controller_initialize_power_control(struct isci_host *ihost)
2259{
2260	sci_init_timer(&ihost->power_control.timer, power_control_timeout);
2261
2262	memset(ihost->power_control.requesters, 0,
2263	       sizeof(ihost->power_control.requesters));
2264
2265	ihost->power_control.phys_waiting = 0;
2266	ihost->power_control.phys_granted_power = 0;
2267}
2268
2269static enum sci_status sci_controller_initialize(struct isci_host *ihost)
2270{
2271	struct sci_base_state_machine *sm = &ihost->sm;
2272	enum sci_status result = SCI_FAILURE;
2273	unsigned long i, state, val;
2274
2275	if (ihost->sm.current_state_id != SCIC_RESET) {
2276		dev_warn(&ihost->pdev->dev,
2277			 "SCIC Controller initialize operation requested "
2278			 "in invalid state\n");
2279		return SCI_FAILURE_INVALID_STATE;
2280	}
2281
2282	sci_change_state(sm, SCIC_INITIALIZING);
2283
2284	sci_init_timer(&ihost->phy_timer, phy_startup_timeout);
2285
2286	ihost->next_phy_to_start = 0;
2287	ihost->phy_startup_timer_pending = false;
2288
2289	sci_controller_initialize_power_control(ihost);
2290
2291	/*
2292	 * There is nothing to do here for B0 since we do not have to
2293	 * program the AFE registers.
2294	 * / @todo The AFE settings are supposed to be correct for the B0 but
2295	 * /       presently they seem to be wrong. */
2296	sci_controller_afe_initialization(ihost);
2297
2298
2299	/* Take the hardware out of reset */
2300	writel(0, &ihost->smu_registers->soft_reset_control);
2301
2302	/*
2303	 * / @todo Provide meaningfull error code for hardware failure
2304	 * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
2305	for (i = 100; i >= 1; i--) {
2306		u32 status;
2307
2308		/* Loop until the hardware reports success */
2309		udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
2310		status = readl(&ihost->smu_registers->control_status);
2311
2312		if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED)
2313			break;
2314	}
2315	if (i == 0)
2316		goto out;
2317
2318	/*
2319	 * Determine what are the actaul device capacities that the
2320	 * hardware will support */
2321	val = readl(&ihost->smu_registers->device_context_capacity);
2322
2323	/* Record the smaller of the two capacity values */
2324	ihost->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS);
2325	ihost->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS);
2326	ihost->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES);
2327
2328	/*
2329	 * Make all PEs that are unassigned match up with the
2330	 * logical ports
2331	 */
2332	for (i = 0; i < ihost->logical_port_entries; i++) {
2333		struct scu_port_task_scheduler_group_registers __iomem
2334			*ptsg = &ihost->scu_registers->peg0.ptsg;
2335
2336		writel(i, &ptsg->protocol_engine[i]);
2337	}
2338
2339	/* Initialize hardware PCI Relaxed ordering in DMA engines */
2340	val = readl(&ihost->scu_registers->sdma.pdma_configuration);
2341	val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2342	writel(val, &ihost->scu_registers->sdma.pdma_configuration);
2343
2344	val = readl(&ihost->scu_registers->sdma.cdma_configuration);
2345	val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2346	writel(val, &ihost->scu_registers->sdma.cdma_configuration);
2347
2348	/*
2349	 * Initialize the PHYs before the PORTs because the PHY registers
2350	 * are accessed during the port initialization.
2351	 */
2352	for (i = 0; i < SCI_MAX_PHYS; i++) {
2353		result = sci_phy_initialize(&ihost->phys[i],
2354					    &ihost->scu_registers->peg0.pe[i].tl,
2355					    &ihost->scu_registers->peg0.pe[i].ll);
2356		if (result != SCI_SUCCESS)
2357			goto out;
2358	}
2359
2360	for (i = 0; i < ihost->logical_port_entries; i++) {
2361		struct isci_port *iport = &ihost->ports[i];
2362
2363		iport->port_task_scheduler_registers = &ihost->scu_registers->peg0.ptsg.port[i];
2364		iport->port_pe_configuration_register = &ihost->scu_registers->peg0.ptsg.protocol_engine[0];
2365		iport->viit_registers = &ihost->scu_registers->peg0.viit[i];
2366	}
2367
2368	result = sci_port_configuration_agent_initialize(ihost, &ihost->port_agent);
2369
2370 out:
2371	/* Advance the controller state machine */
2372	if (result == SCI_SUCCESS)
2373		state = SCIC_INITIALIZED;
2374	else
2375		state = SCIC_FAILED;
2376	sci_change_state(sm, state);
2377
2378	return result;
2379}
2380
2381static enum sci_status sci_user_parameters_set(struct isci_host *ihost,
2382					       struct sci_user_parameters *sci_parms)
2383{
2384	u32 state = ihost->sm.current_state_id;
2385
2386	if (state == SCIC_RESET ||
2387	    state == SCIC_INITIALIZING ||
2388	    state == SCIC_INITIALIZED) {
2389		u16 index;
2390
2391		/*
2392		 * Validate the user parameters.  If they are not legal, then
2393		 * return a failure.
2394		 */
2395		for (index = 0; index < SCI_MAX_PHYS; index++) {
2396			struct sci_phy_user_params *user_phy;
2397
2398			user_phy = &sci_parms->phys[index];
2399
2400			if (!((user_phy->max_speed_generation <=
2401						SCIC_SDS_PARM_MAX_SPEED) &&
2402			      (user_phy->max_speed_generation >
2403						SCIC_SDS_PARM_NO_SPEED)))
2404				return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2405
2406			if (user_phy->in_connection_align_insertion_frequency <
2407					3)
2408				return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2409
2410			if ((user_phy->in_connection_align_insertion_frequency <
2411						3) ||
2412			    (user_phy->align_insertion_frequency == 0) ||
2413			    (user_phy->
2414				notify_enable_spin_up_insertion_frequency ==
2415						0))
2416				return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2417		}
2418
2419		if ((sci_parms->stp_inactivity_timeout == 0) ||
2420		    (sci_parms->ssp_inactivity_timeout == 0) ||
2421		    (sci_parms->stp_max_occupancy_timeout == 0) ||
2422		    (sci_parms->ssp_max_occupancy_timeout == 0) ||
2423		    (sci_parms->no_outbound_task_timeout == 0))
2424			return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2425
2426		memcpy(&ihost->user_parameters, sci_parms, sizeof(*sci_parms));
2427
2428		return SCI_SUCCESS;
2429	}
2430
2431	return SCI_FAILURE_INVALID_STATE;
2432}
2433
2434static int sci_controller_mem_init(struct isci_host *ihost)
2435{
2436	struct device *dev = &ihost->pdev->dev;
2437	dma_addr_t dma;
2438	size_t size;
2439	int err;
2440
2441	size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32);
2442	ihost->completion_queue = dmam_alloc_coherent(dev, size, &dma, GFP_KERNEL);
2443	if (!ihost->completion_queue)
2444		return -ENOMEM;
2445
2446	writel(lower_32_bits(dma), &ihost->smu_registers->completion_queue_lower);
2447	writel(upper_32_bits(dma), &ihost->smu_registers->completion_queue_upper);
2448
2449	size = ihost->remote_node_entries * sizeof(union scu_remote_node_context);
2450	ihost->remote_node_context_table = dmam_alloc_coherent(dev, size, &dma,
2451							       GFP_KERNEL);
2452	if (!ihost->remote_node_context_table)
2453		return -ENOMEM;
2454
2455	writel(lower_32_bits(dma), &ihost->smu_registers->remote_node_context_lower);
2456	writel(upper_32_bits(dma), &ihost->smu_registers->remote_node_context_upper);
2457
2458	size = ihost->task_context_entries * sizeof(struct scu_task_context),
2459	ihost->task_context_table = dmam_alloc_coherent(dev, size, &dma, GFP_KERNEL);
2460	if (!ihost->task_context_table)
2461		return -ENOMEM;
2462
2463	ihost->task_context_dma = dma;
2464	writel(lower_32_bits(dma), &ihost->smu_registers->host_task_table_lower);
2465	writel(upper_32_bits(dma), &ihost->smu_registers->host_task_table_upper);
2466
2467	err = sci_unsolicited_frame_control_construct(ihost);
2468	if (err)
2469		return err;
2470
2471	/*
2472	 * Inform the silicon as to the location of the UF headers and
2473	 * address table.
2474	 */
2475	writel(lower_32_bits(ihost->uf_control.headers.physical_address),
2476		&ihost->scu_registers->sdma.uf_header_base_address_lower);
2477	writel(upper_32_bits(ihost->uf_control.headers.physical_address),
2478		&ihost->scu_registers->sdma.uf_header_base_address_upper);
2479
2480	writel(lower_32_bits(ihost->uf_control.address_table.physical_address),
2481		&ihost->scu_registers->sdma.uf_address_table_lower);
2482	writel(upper_32_bits(ihost->uf_control.address_table.physical_address),
2483		&ihost->scu_registers->sdma.uf_address_table_upper);
2484
2485	return 0;
2486}
2487
2488int isci_host_init(struct isci_host *ihost)
2489{
2490	int err = 0, i;
2491	enum sci_status status;
2492	struct sci_user_parameters sci_user_params;
2493	struct isci_pci_info *pci_info = to_pci_info(ihost->pdev);
2494
2495	spin_lock_init(&ihost->state_lock);
2496	spin_lock_init(&ihost->scic_lock);
2497	init_waitqueue_head(&ihost->eventq);
2498
2499	isci_host_change_state(ihost, isci_starting);
2500
2501	status = sci_controller_construct(ihost, scu_base(ihost),
2502					  smu_base(ihost));
2503
2504	if (status != SCI_SUCCESS) {
2505		dev_err(&ihost->pdev->dev,
2506			"%s: sci_controller_construct failed - status = %x\n",
2507			__func__,
2508			status);
2509		return -ENODEV;
2510	}
2511
2512	ihost->sas_ha.dev = &ihost->pdev->dev;
2513	ihost->sas_ha.lldd_ha = ihost;
2514
2515	/*
2516	 * grab initial values stored in the controller object for OEM and USER
2517	 * parameters
2518	 */
2519	isci_user_parameters_get(&sci_user_params);
2520	status = sci_user_parameters_set(ihost, &sci_user_params);
2521	if (status != SCI_SUCCESS) {
2522		dev_warn(&ihost->pdev->dev,
2523			 "%s: sci_user_parameters_set failed\n",
2524			 __func__);
2525		return -ENODEV;
2526	}
2527
2528	/* grab any OEM parameters specified in orom */
2529	if (pci_info->orom) {
2530		status = isci_parse_oem_parameters(&ihost->oem_parameters,
2531						   pci_info->orom,
2532						   ihost->id);
2533		if (status != SCI_SUCCESS) {
2534			dev_warn(&ihost->pdev->dev,
2535				 "parsing firmware oem parameters failed\n");
2536			return -EINVAL;
2537		}
2538	}
2539
2540	status = sci_oem_parameters_set(ihost);
2541	if (status != SCI_SUCCESS) {
2542		dev_warn(&ihost->pdev->dev,
2543				"%s: sci_oem_parameters_set failed\n",
2544				__func__);
2545		return -ENODEV;
2546	}
2547
2548	tasklet_init(&ihost->completion_tasklet,
2549		     isci_host_completion_routine, (unsigned long)ihost);
2550
2551	INIT_LIST_HEAD(&ihost->requests_to_complete);
2552	INIT_LIST_HEAD(&ihost->requests_to_errorback);
2553
2554	spin_lock_irq(&ihost->scic_lock);
2555	status = sci_controller_initialize(ihost);
2556	spin_unlock_irq(&ihost->scic_lock);
2557	if (status != SCI_SUCCESS) {
2558		dev_warn(&ihost->pdev->dev,
2559			 "%s: sci_controller_initialize failed -"
2560			 " status = 0x%x\n",
2561			 __func__, status);
2562		return -ENODEV;
2563	}
2564
2565	err = sci_controller_mem_init(ihost);
2566	if (err)
2567		return err;
2568
2569	for (i = 0; i < SCI_MAX_PORTS; i++)
2570		isci_port_init(&ihost->ports[i], ihost, i);
2571
2572	for (i = 0; i < SCI_MAX_PHYS; i++)
2573		isci_phy_init(&ihost->phys[i], ihost, i);
2574
2575	/* enable sgpio */
2576	writel(1, &ihost->scu_registers->peg0.sgpio.interface_control);
2577	for (i = 0; i < isci_gpio_count(ihost); i++)
2578		writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
2579	writel(0, &ihost->scu_registers->peg0.sgpio.vendor_specific_code);
2580
2581	for (i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) {
2582		struct isci_remote_device *idev = &ihost->devices[i];
2583
2584		INIT_LIST_HEAD(&idev->reqs_in_process);
2585		INIT_LIST_HEAD(&idev->node);
2586	}
2587
2588	for (i = 0; i < SCI_MAX_IO_REQUESTS; i++) {
2589		struct isci_request *ireq;
2590		dma_addr_t dma;
2591
2592		ireq = dmam_alloc_coherent(&ihost->pdev->dev,
2593					   sizeof(struct isci_request), &dma,
2594					   GFP_KERNEL);
2595		if (!ireq)
2596			return -ENOMEM;
2597
2598		ireq->tc = &ihost->task_context_table[i];
2599		ireq->owning_controller = ihost;
2600		spin_lock_init(&ireq->state_lock);
2601		ireq->request_daddr = dma;
2602		ireq->isci_host = ihost;
2603		ihost->reqs[i] = ireq;
2604	}
2605
2606	return 0;
2607}
2608
2609void sci_controller_link_up(struct isci_host *ihost, struct isci_port *iport,
2610			    struct isci_phy *iphy)
2611{
2612	switch (ihost->sm.current_state_id) {
2613	case SCIC_STARTING:
2614		sci_del_timer(&ihost->phy_timer);
2615		ihost->phy_startup_timer_pending = false;
2616		ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2617						  iport, iphy);
2618		sci_controller_start_next_phy(ihost);
2619		break;
2620	case SCIC_READY:
2621		ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2622						  iport, iphy);
2623		break;
2624	default:
2625		dev_dbg(&ihost->pdev->dev,
2626			"%s: SCIC Controller linkup event from phy %d in "
2627			"unexpected state %d\n", __func__, iphy->phy_index,
2628			ihost->sm.current_state_id);
2629	}
2630}
2631
2632void sci_controller_link_down(struct isci_host *ihost, struct isci_port *iport,
2633			      struct isci_phy *iphy)
2634{
2635	switch (ihost->sm.current_state_id) {
2636	case SCIC_STARTING:
2637	case SCIC_READY:
2638		ihost->port_agent.link_down_handler(ihost, &ihost->port_agent,
2639						   iport, iphy);
2640		break;
2641	default:
2642		dev_dbg(&ihost->pdev->dev,
2643			"%s: SCIC Controller linkdown event from phy %d in "
2644			"unexpected state %d\n",
2645			__func__,
2646			iphy->phy_index,
2647			ihost->sm.current_state_id);
2648	}
2649}
2650
2651static bool sci_controller_has_remote_devices_stopping(struct isci_host *ihost)
2652{
2653	u32 index;
2654
2655	for (index = 0; index < ihost->remote_node_entries; index++) {
2656		if ((ihost->device_table[index] != NULL) &&
2657		   (ihost->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING))
2658			return true;
2659	}
2660
2661	return false;
2662}
2663
2664void sci_controller_remote_device_stopped(struct isci_host *ihost,
2665					  struct isci_remote_device *idev)
2666{
2667	if (ihost->sm.current_state_id != SCIC_STOPPING) {
2668		dev_dbg(&ihost->pdev->dev,
2669			"SCIC Controller 0x%p remote device stopped event "
2670			"from device 0x%p in unexpected state %d\n",
2671			ihost, idev,
2672			ihost->sm.current_state_id);
2673		return;
2674	}
2675
2676	if (!sci_controller_has_remote_devices_stopping(ihost))
2677		sci_change_state(&ihost->sm, SCIC_STOPPED);
2678}
2679
2680void sci_controller_post_request(struct isci_host *ihost, u32 request)
2681{
2682	dev_dbg(&ihost->pdev->dev, "%s[%d]: %#x\n",
2683		__func__, ihost->id, request);
2684
2685	writel(request, &ihost->smu_registers->post_context_port);
2686}
2687
2688struct isci_request *sci_request_by_tag(struct isci_host *ihost, u16 io_tag)
2689{
2690	u16 task_index;
2691	u16 task_sequence;
2692
2693	task_index = ISCI_TAG_TCI(io_tag);
2694
2695	if (task_index < ihost->task_context_entries) {
2696		struct isci_request *ireq = ihost->reqs[task_index];
2697
2698		if (test_bit(IREQ_ACTIVE, &ireq->flags)) {
2699			task_sequence = ISCI_TAG_SEQ(io_tag);
2700
2701			if (task_sequence == ihost->io_request_sequence[task_index])
2702				return ireq;
2703		}
2704	}
2705
2706	return NULL;
2707}
2708
2709/**
2710 * This method allocates remote node index and the reserves the remote node
2711 *    context space for use. This method can fail if there are no more remote
2712 *    node index available.
2713 * @scic: This is the controller object which contains the set of
2714 *    free remote node ids
2715 * @sci_dev: This is the device object which is requesting the a remote node
2716 *    id
2717 * @node_id: This is the remote node id that is assinged to the device if one
2718 *    is available
2719 *
2720 * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
2721 * node index available.
2722 */
2723enum sci_status sci_controller_allocate_remote_node_context(struct isci_host *ihost,
2724							    struct isci_remote_device *idev,
2725							    u16 *node_id)
2726{
2727	u16 node_index;
2728	u32 remote_node_count = sci_remote_device_node_count(idev);
2729
2730	node_index = sci_remote_node_table_allocate_remote_node(
2731		&ihost->available_remote_nodes, remote_node_count
2732		);
2733
2734	if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
2735		ihost->device_table[node_index] = idev;
2736
2737		*node_id = node_index;
2738
2739		return SCI_SUCCESS;
2740	}
2741
2742	return SCI_FAILURE_INSUFFICIENT_RESOURCES;
2743}
2744
2745void sci_controller_free_remote_node_context(struct isci_host *ihost,
2746					     struct isci_remote_device *idev,
2747					     u16 node_id)
2748{
2749	u32 remote_node_count = sci_remote_device_node_count(idev);
2750
2751	if (ihost->device_table[node_id] == idev) {
2752		ihost->device_table[node_id] = NULL;
2753
2754		sci_remote_node_table_release_remote_node_index(
2755			&ihost->available_remote_nodes, remote_node_count, node_id
2756			);
2757	}
2758}
2759
2760void sci_controller_copy_sata_response(void *response_buffer,
2761				       void *frame_header,
2762				       void *frame_buffer)
2763{
2764	/* XXX type safety? */
2765	memcpy(response_buffer, frame_header, sizeof(u32));
2766
2767	memcpy(response_buffer + sizeof(u32),
2768	       frame_buffer,
2769	       sizeof(struct dev_to_host_fis) - sizeof(u32));
2770}
2771
2772void sci_controller_release_frame(struct isci_host *ihost, u32 frame_index)
2773{
2774	if (sci_unsolicited_frame_control_release_frame(&ihost->uf_control, frame_index))
2775		writel(ihost->uf_control.get,
2776			&ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
2777}
2778
2779void isci_tci_free(struct isci_host *ihost, u16 tci)
2780{
2781	u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1);
2782
2783	ihost->tci_pool[tail] = tci;
2784	ihost->tci_tail = tail + 1;
2785}
2786
2787static u16 isci_tci_alloc(struct isci_host *ihost)
2788{
2789	u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1);
2790	u16 tci = ihost->tci_pool[head];
2791
2792	ihost->tci_head = head + 1;
2793	return tci;
2794}
2795
2796static u16 isci_tci_space(struct isci_host *ihost)
2797{
2798	return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
2799}
2800
2801u16 isci_alloc_tag(struct isci_host *ihost)
2802{
2803	if (isci_tci_space(ihost)) {
2804		u16 tci = isci_tci_alloc(ihost);
2805		u8 seq = ihost->io_request_sequence[tci];
2806
2807		return ISCI_TAG(seq, tci);
2808	}
2809
2810	return SCI_CONTROLLER_INVALID_IO_TAG;
2811}
2812
2813enum sci_status isci_free_tag(struct isci_host *ihost, u16 io_tag)
2814{
2815	u16 tci = ISCI_TAG_TCI(io_tag);
2816	u16 seq = ISCI_TAG_SEQ(io_tag);
2817
2818	/* prevent tail from passing head */
2819	if (isci_tci_active(ihost) == 0)
2820		return SCI_FAILURE_INVALID_IO_TAG;
2821
2822	if (seq == ihost->io_request_sequence[tci]) {
2823		ihost->io_request_sequence[tci] = (seq+1) & (SCI_MAX_SEQ-1);
2824
2825		isci_tci_free(ihost, tci);
2826
2827		return SCI_SUCCESS;
2828	}
2829	return SCI_FAILURE_INVALID_IO_TAG;
2830}
2831
2832enum sci_status sci_controller_start_io(struct isci_host *ihost,
2833					struct isci_remote_device *idev,
2834					struct isci_request *ireq)
2835{
2836	enum sci_status status;
2837
2838	if (ihost->sm.current_state_id != SCIC_READY) {
2839		dev_warn(&ihost->pdev->dev, "invalid state to start I/O");
2840		return SCI_FAILURE_INVALID_STATE;
2841	}
2842
2843	status = sci_remote_device_start_io(ihost, idev, ireq);
2844	if (status != SCI_SUCCESS)
2845		return status;
2846
2847	set_bit(IREQ_ACTIVE, &ireq->flags);
2848	sci_controller_post_request(ihost, ireq->post_context);
2849	return SCI_SUCCESS;
2850}
2851
2852enum sci_status sci_controller_terminate_request(struct isci_host *ihost,
2853						 struct isci_remote_device *idev,
2854						 struct isci_request *ireq)
2855{
2856	/* terminate an ongoing (i.e. started) core IO request.  This does not
2857	 * abort the IO request at the target, but rather removes the IO
2858	 * request from the host controller.
2859	 */
2860	enum sci_status status;
2861
2862	if (ihost->sm.current_state_id != SCIC_READY) {
2863		dev_warn(&ihost->pdev->dev,
2864			 "invalid state to terminate request\n");
2865		return SCI_FAILURE_INVALID_STATE;
2866	}
2867
2868	status = sci_io_request_terminate(ireq);
2869	if (status != SCI_SUCCESS)
2870		return status;
2871
2872	/*
2873	 * Utilize the original post context command and or in the POST_TC_ABORT
2874	 * request sub-type.
2875	 */
2876	sci_controller_post_request(ihost,
2877				    ireq->post_context | SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
2878	return SCI_SUCCESS;
2879}
2880
2881/**
2882 * sci_controller_complete_io() - This method will perform core specific
2883 *    completion operations for an IO request.  After this method is invoked,
2884 *    the user should consider the IO request as invalid until it is properly
2885 *    reused (i.e. re-constructed).
2886 * @ihost: The handle to the controller object for which to complete the
2887 *    IO request.
2888 * @idev: The handle to the remote device object for which to complete
2889 *    the IO request.
2890 * @ireq: the handle to the io request object to complete.
2891 */
2892enum sci_status sci_controller_complete_io(struct isci_host *ihost,
2893					   struct isci_remote_device *idev,
2894					   struct isci_request *ireq)
2895{
2896	enum sci_status status;
2897	u16 index;
2898
2899	switch (ihost->sm.current_state_id) {
2900	case SCIC_STOPPING:
2901		/* XXX: Implement this function */
2902		return SCI_FAILURE;
2903	case SCIC_READY:
2904		status = sci_remote_device_complete_io(ihost, idev, ireq);
2905		if (status != SCI_SUCCESS)
2906			return status;
2907
2908		index = ISCI_TAG_TCI(ireq->io_tag);
2909		clear_bit(IREQ_ACTIVE, &ireq->flags);
2910		return SCI_SUCCESS;
2911	default:
2912		dev_warn(&ihost->pdev->dev, "invalid state to complete I/O");
2913		return SCI_FAILURE_INVALID_STATE;
2914	}
2915
2916}
2917
2918enum sci_status sci_controller_continue_io(struct isci_request *ireq)
2919{
2920	struct isci_host *ihost = ireq->owning_controller;
2921
2922	if (ihost->sm.current_state_id != SCIC_READY) {
2923		dev_warn(&ihost->pdev->dev, "invalid state to continue I/O");
2924		return SCI_FAILURE_INVALID_STATE;
2925	}
2926
2927	set_bit(IREQ_ACTIVE, &ireq->flags);
2928	sci_controller_post_request(ihost, ireq->post_context);
2929	return SCI_SUCCESS;
2930}
2931
2932/**
2933 * sci_controller_start_task() - This method is called by the SCIC user to
2934 *    send/start a framework task management request.
2935 * @controller: the handle to the controller object for which to start the task
2936 *    management request.
2937 * @remote_device: the handle to the remote device object for which to start
2938 *    the task management request.
2939 * @task_request: the handle to the task request object to start.
2940 */
2941enum sci_task_status sci_controller_start_task(struct isci_host *ihost,
2942					       struct isci_remote_device *idev,
2943					       struct isci_request *ireq)
2944{
2945	enum sci_status status;
2946
2947	if (ihost->sm.current_state_id != SCIC_READY) {
2948		dev_warn(&ihost->pdev->dev,
2949			 "%s: SCIC Controller starting task from invalid "
2950			 "state\n",
2951			 __func__);
2952		return SCI_TASK_FAILURE_INVALID_STATE;
2953	}
2954
2955	status = sci_remote_device_start_task(ihost, idev, ireq);
2956	switch (status) {
2957	case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
2958		set_bit(IREQ_ACTIVE, &ireq->flags);
2959
2960		/*
2961		 * We will let framework know this task request started successfully,
2962		 * although core is still woring on starting the request (to post tc when
2963		 * RNC is resumed.)
2964		 */
2965		return SCI_SUCCESS;
2966	case SCI_SUCCESS:
2967		set_bit(IREQ_ACTIVE, &ireq->flags);
2968		sci_controller_post_request(ihost, ireq->post_context);
2969		break;
2970	default:
2971		break;
2972	}
2973
2974	return status;
2975}
2976
2977static int sci_write_gpio_tx_gp(struct isci_host *ihost, u8 reg_index, u8 reg_count, u8 *write_data)
2978{
2979	int d;
2980
2981	/* no support for TX_GP_CFG */
2982	if (reg_index == 0)
2983		return -EINVAL;
2984
2985	for (d = 0; d < isci_gpio_count(ihost); d++) {
2986		u32 val = 0x444; /* all ODx.n clear */
2987		int i;
2988
2989		for (i = 0; i < 3; i++) {
2990			int bit = (i << 2) + 2;
2991
2992			bit = try_test_sas_gpio_gp_bit(to_sas_gpio_od(d, i),
2993						       write_data, reg_index,
2994						       reg_count);
2995			if (bit < 0)
2996				break;
2997
2998			/* if od is set, clear the 'invert' bit */
2999			val &= ~(bit << ((i << 2) + 2));
3000		}
3001
3002		if (i < 3)
3003			break;
3004		writel(val, &ihost->scu_registers->peg0.sgpio.output_data_select[d]);
3005	}
3006
3007	/* unless reg_index is > 1, we should always be able to write at
3008	 * least one register
3009	 */
3010	return d > 0;
3011}
3012
3013int isci_gpio_write(struct sas_ha_struct *sas_ha, u8 reg_type, u8 reg_index,
3014		    u8 reg_count, u8 *write_data)
3015{
3016	struct isci_host *ihost = sas_ha->lldd_ha;
3017	int written;
3018
3019	switch (reg_type) {
3020	case SAS_GPIO_REG_TX_GP:
3021		written = sci_write_gpio_tx_gp(ihost, reg_index, reg_count, write_data);
3022		break;
3023	default:
3024		written = -EINVAL;
3025	}
3026
3027	return written;
3028}
3029