1/*
2 * Copyright(c) 2007 Intel Corporation. All rights reserved.
3 * Copyright(c) 2008 Red Hat, Inc.  All rights reserved.
4 * Copyright(c) 2008 Mike Christie
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Maintained at www.Open-FCoE.org
20 */
21
22/*
23 * Fibre Channel exchange and sequence handling.
24 */
25
26#include <linux/timer.h>
27#include <linux/slab.h>
28#include <linux/err.h>
29#include <linux/export.h>
30
31#include <scsi/fc/fc_fc2.h>
32
33#include <scsi/libfc.h>
34#include <scsi/fc_encode.h>
35
36#include "fc_libfc.h"
37
38u16	fc_cpu_mask;		/* cpu mask for possible cpus */
39EXPORT_SYMBOL(fc_cpu_mask);
40static u16	fc_cpu_order;	/* 2's power to represent total possible cpus */
41static struct kmem_cache *fc_em_cachep;	       /* cache for exchanges */
42static struct workqueue_struct *fc_exch_workqueue;
43
44/*
45 * Structure and function definitions for managing Fibre Channel Exchanges
46 * and Sequences.
47 *
48 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
49 *
50 * fc_exch_mgr holds the exchange state for an N port
51 *
52 * fc_exch holds state for one exchange and links to its active sequence.
53 *
54 * fc_seq holds the state for an individual sequence.
55 */
56
57/**
58 * struct fc_exch_pool - Per cpu exchange pool
59 * @next_index:	  Next possible free exchange index
60 * @total_exches: Total allocated exchanges
61 * @lock:	  Exch pool lock
62 * @ex_list:	  List of exchanges
63 *
64 * This structure manages per cpu exchanges in array of exchange pointers.
65 * This array is allocated followed by struct fc_exch_pool memory for
66 * assigned range of exchanges to per cpu pool.
67 */
68struct fc_exch_pool {
69	spinlock_t	 lock;
70	struct list_head ex_list;
71	u16		 next_index;
72	u16		 total_exches;
73
74	/* two cache of free slot in exch array */
75	u16		 left;
76	u16		 right;
77} ____cacheline_aligned_in_smp;
78
79/**
80 * struct fc_exch_mgr - The Exchange Manager (EM).
81 * @class:	    Default class for new sequences
82 * @kref:	    Reference counter
83 * @min_xid:	    Minimum exchange ID
84 * @max_xid:	    Maximum exchange ID
85 * @ep_pool:	    Reserved exchange pointers
86 * @pool_max_index: Max exch array index in exch pool
87 * @pool:	    Per cpu exch pool
88 * @stats:	    Statistics structure
89 *
90 * This structure is the center for creating exchanges and sequences.
91 * It manages the allocation of exchange IDs.
92 */
93struct fc_exch_mgr {
94	struct fc_exch_pool __percpu *pool;
95	mempool_t	*ep_pool;
96	enum fc_class	class;
97	struct kref	kref;
98	u16		min_xid;
99	u16		max_xid;
100	u16		pool_max_index;
101
102	/*
103	 * currently exchange mgr stats are updated but not used.
104	 * either stats can be expose via sysfs or remove them
105	 * all together if not used XXX
106	 */
107	struct {
108		atomic_t no_free_exch;
109		atomic_t no_free_exch_xid;
110		atomic_t xid_not_found;
111		atomic_t xid_busy;
112		atomic_t seq_not_found;
113		atomic_t non_bls_resp;
114	} stats;
115};
116
117/**
118 * struct fc_exch_mgr_anchor - primary structure for list of EMs
119 * @ema_list: Exchange Manager Anchor list
120 * @mp:	      Exchange Manager associated with this anchor
121 * @match:    Routine to determine if this anchor's EM should be used
122 *
123 * When walking the list of anchors the match routine will be called
124 * for each anchor to determine if that EM should be used. The last
125 * anchor in the list will always match to handle any exchanges not
126 * handled by other EMs. The non-default EMs would be added to the
127 * anchor list by HW that provides FCoE offloads.
128 */
129struct fc_exch_mgr_anchor {
130	struct list_head ema_list;
131	struct fc_exch_mgr *mp;
132	bool (*match)(struct fc_frame *);
133};
134
135static void fc_exch_rrq(struct fc_exch *);
136static void fc_seq_ls_acc(struct fc_frame *);
137static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
138			  enum fc_els_rjt_explan);
139static void fc_exch_els_rec(struct fc_frame *);
140static void fc_exch_els_rrq(struct fc_frame *);
141
142/*
143 * Internal implementation notes.
144 *
145 * The exchange manager is one by default in libfc but LLD may choose
146 * to have one per CPU. The sequence manager is one per exchange manager
147 * and currently never separated.
148 *
149 * Section 9.8 in FC-FS-2 specifies:  "The SEQ_ID is a one-byte field
150 * assigned by the Sequence Initiator that shall be unique for a specific
151 * D_ID and S_ID pair while the Sequence is open."   Note that it isn't
152 * qualified by exchange ID, which one might think it would be.
153 * In practice this limits the number of open sequences and exchanges to 256
154 * per session.	 For most targets we could treat this limit as per exchange.
155 *
156 * The exchange and its sequence are freed when the last sequence is received.
157 * It's possible for the remote port to leave an exchange open without
158 * sending any sequences.
159 *
160 * Notes on reference counts:
161 *
162 * Exchanges are reference counted and exchange gets freed when the reference
163 * count becomes zero.
164 *
165 * Timeouts:
166 * Sequences are timed out for E_D_TOV and R_A_TOV.
167 *
168 * Sequence event handling:
169 *
170 * The following events may occur on initiator sequences:
171 *
172 *	Send.
173 *	    For now, the whole thing is sent.
174 *	Receive ACK
175 *	    This applies only to class F.
176 *	    The sequence is marked complete.
177 *	ULP completion.
178 *	    The upper layer calls fc_exch_done() when done
179 *	    with exchange and sequence tuple.
180 *	RX-inferred completion.
181 *	    When we receive the next sequence on the same exchange, we can
182 *	    retire the previous sequence ID.  (XXX not implemented).
183 *	Timeout.
184 *	    R_A_TOV frees the sequence ID.  If we're waiting for ACK,
185 *	    E_D_TOV causes abort and calls upper layer response handler
186 *	    with FC_EX_TIMEOUT error.
187 *	Receive RJT
188 *	    XXX defer.
189 *	Send ABTS
190 *	    On timeout.
191 *
192 * The following events may occur on recipient sequences:
193 *
194 *	Receive
195 *	    Allocate sequence for first frame received.
196 *	    Hold during receive handler.
197 *	    Release when final frame received.
198 *	    Keep status of last N of these for the ELS RES command.  XXX TBD.
199 *	Receive ABTS
200 *	    Deallocate sequence
201 *	Send RJT
202 *	    Deallocate
203 *
204 * For now, we neglect conditions where only part of a sequence was
205 * received or transmitted, or where out-of-order receipt is detected.
206 */
207
208/*
209 * Locking notes:
210 *
211 * The EM code run in a per-CPU worker thread.
212 *
213 * To protect against concurrency between a worker thread code and timers,
214 * sequence allocation and deallocation must be locked.
215 *  - exchange refcnt can be done atomicly without locks.
216 *  - sequence allocation must be locked by exch lock.
217 *  - If the EM pool lock and ex_lock must be taken at the same time, then the
218 *    EM pool lock must be taken before the ex_lock.
219 */
220
221/*
222 * opcode names for debugging.
223 */
224static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
225
226/**
227 * fc_exch_name_lookup() - Lookup name by opcode
228 * @op:	       Opcode to be looked up
229 * @table:     Opcode/name table
230 * @max_index: Index not to be exceeded
231 *
232 * This routine is used to determine a human-readable string identifying
233 * a R_CTL opcode.
234 */
235static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
236					      unsigned int max_index)
237{
238	const char *name = NULL;
239
240	if (op < max_index)
241		name = table[op];
242	if (!name)
243		name = "unknown";
244	return name;
245}
246
247/**
248 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
249 * @op: The opcode to be looked up
250 */
251static const char *fc_exch_rctl_name(unsigned int op)
252{
253	return fc_exch_name_lookup(op, fc_exch_rctl_names,
254				   ARRAY_SIZE(fc_exch_rctl_names));
255}
256
257/**
258 * fc_exch_hold() - Increment an exchange's reference count
259 * @ep: Echange to be held
260 */
261static inline void fc_exch_hold(struct fc_exch *ep)
262{
263	atomic_inc(&ep->ex_refcnt);
264}
265
266/**
267 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
268 *			 and determine SOF and EOF.
269 * @ep:	   The exchange to that will use the header
270 * @fp:	   The frame whose header is to be modified
271 * @f_ctl: F_CTL bits that will be used for the frame header
272 *
273 * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
274 * fh_seq_id, fh_seq_cnt and the SOF and EOF.
275 */
276static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
277			      u32 f_ctl)
278{
279	struct fc_frame_header *fh = fc_frame_header_get(fp);
280	u16 fill;
281
282	fr_sof(fp) = ep->class;
283	if (ep->seq.cnt)
284		fr_sof(fp) = fc_sof_normal(ep->class);
285
286	if (f_ctl & FC_FC_END_SEQ) {
287		fr_eof(fp) = FC_EOF_T;
288		if (fc_sof_needs_ack(ep->class))
289			fr_eof(fp) = FC_EOF_N;
290		/*
291		 * From F_CTL.
292		 * The number of fill bytes to make the length a 4-byte
293		 * multiple is the low order 2-bits of the f_ctl.
294		 * The fill itself will have been cleared by the frame
295		 * allocation.
296		 * After this, the length will be even, as expected by
297		 * the transport.
298		 */
299		fill = fr_len(fp) & 3;
300		if (fill) {
301			fill = 4 - fill;
302			/* TODO, this may be a problem with fragmented skb */
303			skb_put(fp_skb(fp), fill);
304			hton24(fh->fh_f_ctl, f_ctl | fill);
305		}
306	} else {
307		WARN_ON(fr_len(fp) % 4 != 0);	/* no pad to non last frame */
308		fr_eof(fp) = FC_EOF_N;
309	}
310
311	/*
312	 * Initialize remainig fh fields
313	 * from fc_fill_fc_hdr
314	 */
315	fh->fh_ox_id = htons(ep->oxid);
316	fh->fh_rx_id = htons(ep->rxid);
317	fh->fh_seq_id = ep->seq.id;
318	fh->fh_seq_cnt = htons(ep->seq.cnt);
319}
320
321/**
322 * fc_exch_release() - Decrement an exchange's reference count
323 * @ep: Exchange to be released
324 *
325 * If the reference count reaches zero and the exchange is complete,
326 * it is freed.
327 */
328static void fc_exch_release(struct fc_exch *ep)
329{
330	struct fc_exch_mgr *mp;
331
332	if (atomic_dec_and_test(&ep->ex_refcnt)) {
333		mp = ep->em;
334		if (ep->destructor)
335			ep->destructor(&ep->seq, ep->arg);
336		WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
337		mempool_free(ep, mp->ep_pool);
338	}
339}
340
341/**
342 * fc_exch_done_locked() - Complete an exchange with the exchange lock held
343 * @ep: The exchange that is complete
344 */
345static int fc_exch_done_locked(struct fc_exch *ep)
346{
347	int rc = 1;
348
349	/*
350	 * We must check for completion in case there are two threads
351	 * tyring to complete this. But the rrq code will reuse the
352	 * ep, and in that case we only clear the resp and set it as
353	 * complete, so it can be reused by the timer to send the rrq.
354	 */
355	ep->resp = NULL;
356	if (ep->state & FC_EX_DONE)
357		return rc;
358	ep->esb_stat |= ESB_ST_COMPLETE;
359
360	if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
361		ep->state |= FC_EX_DONE;
362		if (cancel_delayed_work(&ep->timeout_work))
363			atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
364		rc = 0;
365	}
366	return rc;
367}
368
369/**
370 * fc_exch_ptr_get() - Return an exchange from an exchange pool
371 * @pool:  Exchange Pool to get an exchange from
372 * @index: Index of the exchange within the pool
373 *
374 * Use the index to get an exchange from within an exchange pool. exches
375 * will point to an array of exchange pointers. The index will select
376 * the exchange within the array.
377 */
378static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
379					      u16 index)
380{
381	struct fc_exch **exches = (struct fc_exch **)(pool + 1);
382	return exches[index];
383}
384
385/**
386 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
387 * @pool:  The pool to assign the exchange to
388 * @index: The index in the pool where the exchange will be assigned
389 * @ep:	   The exchange to assign to the pool
390 */
391static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
392				   struct fc_exch *ep)
393{
394	((struct fc_exch **)(pool + 1))[index] = ep;
395}
396
397/**
398 * fc_exch_delete() - Delete an exchange
399 * @ep: The exchange to be deleted
400 */
401static void fc_exch_delete(struct fc_exch *ep)
402{
403	struct fc_exch_pool *pool;
404	u16 index;
405
406	pool = ep->pool;
407	spin_lock_bh(&pool->lock);
408	WARN_ON(pool->total_exches <= 0);
409	pool->total_exches--;
410
411	/* update cache of free slot */
412	index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
413	if (pool->left == FC_XID_UNKNOWN)
414		pool->left = index;
415	else if (pool->right == FC_XID_UNKNOWN)
416		pool->right = index;
417	else
418		pool->next_index = index;
419
420	fc_exch_ptr_set(pool, index, NULL);
421	list_del(&ep->ex_list);
422	spin_unlock_bh(&pool->lock);
423	fc_exch_release(ep);	/* drop hold for exch in mp */
424}
425
426/**
427 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
428 *				the exchange lock held
429 * @ep:		The exchange whose timer will start
430 * @timer_msec: The timeout period
431 *
432 * Used for upper level protocols to time out the exchange.
433 * The timer is cancelled when it fires or when the exchange completes.
434 */
435static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
436					    unsigned int timer_msec)
437{
438	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
439		return;
440
441	FC_EXCH_DBG(ep, "Exchange timer armed\n");
442
443	if (queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
444			       msecs_to_jiffies(timer_msec)))
445		fc_exch_hold(ep);		/* hold for timer */
446}
447
448/**
449 * fc_exch_timer_set() - Lock the exchange and set the timer
450 * @ep:		The exchange whose timer will start
451 * @timer_msec: The timeout period
452 */
453static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
454{
455	spin_lock_bh(&ep->ex_lock);
456	fc_exch_timer_set_locked(ep, timer_msec);
457	spin_unlock_bh(&ep->ex_lock);
458}
459
460/**
461 * fc_seq_send() - Send a frame using existing sequence/exchange pair
462 * @lport: The local port that the exchange will be sent on
463 * @sp:	   The sequence to be sent
464 * @fp:	   The frame to be sent on the exchange
465 */
466static int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp,
467		       struct fc_frame *fp)
468{
469	struct fc_exch *ep;
470	struct fc_frame_header *fh = fc_frame_header_get(fp);
471	int error;
472	u32 f_ctl;
473	u8 fh_type = fh->fh_type;
474
475	ep = fc_seq_exch(sp);
476	WARN_ON((ep->esb_stat & ESB_ST_SEQ_INIT) != ESB_ST_SEQ_INIT);
477
478	f_ctl = ntoh24(fh->fh_f_ctl);
479	fc_exch_setup_hdr(ep, fp, f_ctl);
480	fr_encaps(fp) = ep->encaps;
481
482	/*
483	 * update sequence count if this frame is carrying
484	 * multiple FC frames when sequence offload is enabled
485	 * by LLD.
486	 */
487	if (fr_max_payload(fp))
488		sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
489					fr_max_payload(fp));
490	else
491		sp->cnt++;
492
493	/*
494	 * Send the frame.
495	 */
496	error = lport->tt.frame_send(lport, fp);
497
498	if (fh_type == FC_TYPE_BLS)
499		return error;
500
501	/*
502	 * Update the exchange and sequence flags,
503	 * assuming all frames for the sequence have been sent.
504	 * We can only be called to send once for each sequence.
505	 */
506	spin_lock_bh(&ep->ex_lock);
507	ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ;	/* not first seq */
508	if (f_ctl & FC_FC_SEQ_INIT)
509		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
510	spin_unlock_bh(&ep->ex_lock);
511	return error;
512}
513
514/**
515 * fc_seq_alloc() - Allocate a sequence for a given exchange
516 * @ep:	    The exchange to allocate a new sequence for
517 * @seq_id: The sequence ID to be used
518 *
519 * We don't support multiple originated sequences on the same exchange.
520 * By implication, any previously originated sequence on this exchange
521 * is complete, and we reallocate the same sequence.
522 */
523static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
524{
525	struct fc_seq *sp;
526
527	sp = &ep->seq;
528	sp->ssb_stat = 0;
529	sp->cnt = 0;
530	sp->id = seq_id;
531	return sp;
532}
533
534/**
535 * fc_seq_start_next_locked() - Allocate a new sequence on the same
536 *				exchange as the supplied sequence
537 * @sp: The sequence/exchange to get a new sequence for
538 */
539static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
540{
541	struct fc_exch *ep = fc_seq_exch(sp);
542
543	sp = fc_seq_alloc(ep, ep->seq_id++);
544	FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
545		    ep->f_ctl, sp->id);
546	return sp;
547}
548
549/**
550 * fc_seq_start_next() - Lock the exchange and get a new sequence
551 *			 for a given sequence/exchange pair
552 * @sp: The sequence/exchange to get a new exchange for
553 */
554static struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
555{
556	struct fc_exch *ep = fc_seq_exch(sp);
557
558	spin_lock_bh(&ep->ex_lock);
559	sp = fc_seq_start_next_locked(sp);
560	spin_unlock_bh(&ep->ex_lock);
561
562	return sp;
563}
564
565/*
566 * Set the response handler for the exchange associated with a sequence.
567 */
568static void fc_seq_set_resp(struct fc_seq *sp,
569			    void (*resp)(struct fc_seq *, struct fc_frame *,
570					 void *),
571			    void *arg)
572{
573	struct fc_exch *ep = fc_seq_exch(sp);
574
575	spin_lock_bh(&ep->ex_lock);
576	ep->resp = resp;
577	ep->arg = arg;
578	spin_unlock_bh(&ep->ex_lock);
579}
580
581/**
582 * fc_exch_abort_locked() - Abort an exchange
583 * @ep:	The exchange to be aborted
584 * @timer_msec: The period of time to wait before aborting
585 *
586 * Locking notes:  Called with exch lock held
587 *
588 * Return value: 0 on success else error code
589 */
590static int fc_exch_abort_locked(struct fc_exch *ep,
591				unsigned int timer_msec)
592{
593	struct fc_seq *sp;
594	struct fc_frame *fp;
595	int error;
596
597	if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
598	    ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP))
599		return -ENXIO;
600
601	/*
602	 * Send the abort on a new sequence if possible.
603	 */
604	sp = fc_seq_start_next_locked(&ep->seq);
605	if (!sp)
606		return -ENOMEM;
607
608	ep->esb_stat |= ESB_ST_SEQ_INIT | ESB_ST_ABNORMAL;
609	if (timer_msec)
610		fc_exch_timer_set_locked(ep, timer_msec);
611
612	/*
613	 * If not logged into the fabric, don't send ABTS but leave
614	 * sequence active until next timeout.
615	 */
616	if (!ep->sid)
617		return 0;
618
619	/*
620	 * Send an abort for the sequence that timed out.
621	 */
622	fp = fc_frame_alloc(ep->lp, 0);
623	if (fp) {
624		fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
625			       FC_TYPE_BLS, FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
626		error = fc_seq_send(ep->lp, sp, fp);
627	} else
628		error = -ENOBUFS;
629	return error;
630}
631
632/**
633 * fc_seq_exch_abort() - Abort an exchange and sequence
634 * @req_sp:	The sequence to be aborted
635 * @timer_msec: The period of time to wait before aborting
636 *
637 * Generally called because of a timeout or an abort from the upper layer.
638 *
639 * Return value: 0 on success else error code
640 */
641static int fc_seq_exch_abort(const struct fc_seq *req_sp,
642			     unsigned int timer_msec)
643{
644	struct fc_exch *ep;
645	int error;
646
647	ep = fc_seq_exch(req_sp);
648	spin_lock_bh(&ep->ex_lock);
649	error = fc_exch_abort_locked(ep, timer_msec);
650	spin_unlock_bh(&ep->ex_lock);
651	return error;
652}
653
654/**
655 * fc_exch_timeout() - Handle exchange timer expiration
656 * @work: The work_struct identifying the exchange that timed out
657 */
658static void fc_exch_timeout(struct work_struct *work)
659{
660	struct fc_exch *ep = container_of(work, struct fc_exch,
661					  timeout_work.work);
662	struct fc_seq *sp = &ep->seq;
663	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
664	void *arg;
665	u32 e_stat;
666	int rc = 1;
667
668	FC_EXCH_DBG(ep, "Exchange timed out\n");
669
670	spin_lock_bh(&ep->ex_lock);
671	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
672		goto unlock;
673
674	e_stat = ep->esb_stat;
675	if (e_stat & ESB_ST_COMPLETE) {
676		ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
677		spin_unlock_bh(&ep->ex_lock);
678		if (e_stat & ESB_ST_REC_QUAL)
679			fc_exch_rrq(ep);
680		goto done;
681	} else {
682		resp = ep->resp;
683		arg = ep->arg;
684		ep->resp = NULL;
685		if (e_stat & ESB_ST_ABNORMAL)
686			rc = fc_exch_done_locked(ep);
687		spin_unlock_bh(&ep->ex_lock);
688		if (!rc)
689			fc_exch_delete(ep);
690		if (resp)
691			resp(sp, ERR_PTR(-FC_EX_TIMEOUT), arg);
692		fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
693		goto done;
694	}
695unlock:
696	spin_unlock_bh(&ep->ex_lock);
697done:
698	/*
699	 * This release matches the hold taken when the timer was set.
700	 */
701	fc_exch_release(ep);
702}
703
704/**
705 * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
706 * @lport: The local port that the exchange is for
707 * @mp:	   The exchange manager that will allocate the exchange
708 *
709 * Returns pointer to allocated fc_exch with exch lock held.
710 */
711static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
712					struct fc_exch_mgr *mp)
713{
714	struct fc_exch *ep;
715	unsigned int cpu;
716	u16 index;
717	struct fc_exch_pool *pool;
718
719	/* allocate memory for exchange */
720	ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
721	if (!ep) {
722		atomic_inc(&mp->stats.no_free_exch);
723		goto out;
724	}
725	memset(ep, 0, sizeof(*ep));
726
727	cpu = get_cpu();
728	pool = per_cpu_ptr(mp->pool, cpu);
729	spin_lock_bh(&pool->lock);
730	put_cpu();
731
732	/* peek cache of free slot */
733	if (pool->left != FC_XID_UNKNOWN) {
734		index = pool->left;
735		pool->left = FC_XID_UNKNOWN;
736		goto hit;
737	}
738	if (pool->right != FC_XID_UNKNOWN) {
739		index = pool->right;
740		pool->right = FC_XID_UNKNOWN;
741		goto hit;
742	}
743
744	index = pool->next_index;
745	/* allocate new exch from pool */
746	while (fc_exch_ptr_get(pool, index)) {
747		index = index == mp->pool_max_index ? 0 : index + 1;
748		if (index == pool->next_index)
749			goto err;
750	}
751	pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
752hit:
753	fc_exch_hold(ep);	/* hold for exch in mp */
754	spin_lock_init(&ep->ex_lock);
755	/*
756	 * Hold exch lock for caller to prevent fc_exch_reset()
757	 * from releasing exch	while fc_exch_alloc() caller is
758	 * still working on exch.
759	 */
760	spin_lock_bh(&ep->ex_lock);
761
762	fc_exch_ptr_set(pool, index, ep);
763	list_add_tail(&ep->ex_list, &pool->ex_list);
764	fc_seq_alloc(ep, ep->seq_id++);
765	pool->total_exches++;
766	spin_unlock_bh(&pool->lock);
767
768	/*
769	 *  update exchange
770	 */
771	ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
772	ep->em = mp;
773	ep->pool = pool;
774	ep->lp = lport;
775	ep->f_ctl = FC_FC_FIRST_SEQ;	/* next seq is first seq */
776	ep->rxid = FC_XID_UNKNOWN;
777	ep->class = mp->class;
778	INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
779out:
780	return ep;
781err:
782	spin_unlock_bh(&pool->lock);
783	atomic_inc(&mp->stats.no_free_exch_xid);
784	mempool_free(ep, mp->ep_pool);
785	return NULL;
786}
787
788/**
789 * fc_exch_alloc() - Allocate an exchange from an EM on a
790 *		     local port's list of EMs.
791 * @lport: The local port that will own the exchange
792 * @fp:	   The FC frame that the exchange will be for
793 *
794 * This function walks the list of exchange manager(EM)
795 * anchors to select an EM for a new exchange allocation. The
796 * EM is selected when a NULL match function pointer is encountered
797 * or when a call to a match function returns true.
798 */
799static inline struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
800					    struct fc_frame *fp)
801{
802	struct fc_exch_mgr_anchor *ema;
803
804	list_for_each_entry(ema, &lport->ema_list, ema_list)
805		if (!ema->match || ema->match(fp))
806			return fc_exch_em_alloc(lport, ema->mp);
807	return NULL;
808}
809
810/**
811 * fc_exch_find() - Lookup and hold an exchange
812 * @mp:	 The exchange manager to lookup the exchange from
813 * @xid: The XID of the exchange to look up
814 */
815static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
816{
817	struct fc_exch_pool *pool;
818	struct fc_exch *ep = NULL;
819
820	if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
821		pool = per_cpu_ptr(mp->pool, xid & fc_cpu_mask);
822		spin_lock_bh(&pool->lock);
823		ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
824		if (ep && ep->xid == xid)
825			fc_exch_hold(ep);
826		spin_unlock_bh(&pool->lock);
827	}
828	return ep;
829}
830
831
832/**
833 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
834 *		    the memory allocated for the related objects may be freed.
835 * @sp: The sequence that has completed
836 */
837static void fc_exch_done(struct fc_seq *sp)
838{
839	struct fc_exch *ep = fc_seq_exch(sp);
840	int rc;
841
842	spin_lock_bh(&ep->ex_lock);
843	rc = fc_exch_done_locked(ep);
844	spin_unlock_bh(&ep->ex_lock);
845	if (!rc)
846		fc_exch_delete(ep);
847}
848
849/**
850 * fc_exch_resp() - Allocate a new exchange for a response frame
851 * @lport: The local port that the exchange was for
852 * @mp:	   The exchange manager to allocate the exchange from
853 * @fp:	   The response frame
854 *
855 * Sets the responder ID in the frame header.
856 */
857static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
858				    struct fc_exch_mgr *mp,
859				    struct fc_frame *fp)
860{
861	struct fc_exch *ep;
862	struct fc_frame_header *fh;
863
864	ep = fc_exch_alloc(lport, fp);
865	if (ep) {
866		ep->class = fc_frame_class(fp);
867
868		/*
869		 * Set EX_CTX indicating we're responding on this exchange.
870		 */
871		ep->f_ctl |= FC_FC_EX_CTX;	/* we're responding */
872		ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not new */
873		fh = fc_frame_header_get(fp);
874		ep->sid = ntoh24(fh->fh_d_id);
875		ep->did = ntoh24(fh->fh_s_id);
876		ep->oid = ep->did;
877
878		/*
879		 * Allocated exchange has placed the XID in the
880		 * originator field. Move it to the responder field,
881		 * and set the originator XID from the frame.
882		 */
883		ep->rxid = ep->xid;
884		ep->oxid = ntohs(fh->fh_ox_id);
885		ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
886		if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
887			ep->esb_stat &= ~ESB_ST_SEQ_INIT;
888
889		fc_exch_hold(ep);	/* hold for caller */
890		spin_unlock_bh(&ep->ex_lock);	/* lock from fc_exch_alloc */
891	}
892	return ep;
893}
894
895/**
896 * fc_seq_lookup_recip() - Find a sequence where the other end
897 *			   originated the sequence
898 * @lport: The local port that the frame was sent to
899 * @mp:	   The Exchange Manager to lookup the exchange from
900 * @fp:	   The frame associated with the sequence we're looking for
901 *
902 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
903 * on the ep that should be released by the caller.
904 */
905static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
906						 struct fc_exch_mgr *mp,
907						 struct fc_frame *fp)
908{
909	struct fc_frame_header *fh = fc_frame_header_get(fp);
910	struct fc_exch *ep = NULL;
911	struct fc_seq *sp = NULL;
912	enum fc_pf_rjt_reason reject = FC_RJT_NONE;
913	u32 f_ctl;
914	u16 xid;
915
916	f_ctl = ntoh24(fh->fh_f_ctl);
917	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
918
919	/*
920	 * Lookup or create the exchange if we will be creating the sequence.
921	 */
922	if (f_ctl & FC_FC_EX_CTX) {
923		xid = ntohs(fh->fh_ox_id);	/* we originated exch */
924		ep = fc_exch_find(mp, xid);
925		if (!ep) {
926			atomic_inc(&mp->stats.xid_not_found);
927			reject = FC_RJT_OX_ID;
928			goto out;
929		}
930		if (ep->rxid == FC_XID_UNKNOWN)
931			ep->rxid = ntohs(fh->fh_rx_id);
932		else if (ep->rxid != ntohs(fh->fh_rx_id)) {
933			reject = FC_RJT_OX_ID;
934			goto rel;
935		}
936	} else {
937		xid = ntohs(fh->fh_rx_id);	/* we are the responder */
938
939		/*
940		 * Special case for MDS issuing an ELS TEST with a
941		 * bad rxid of 0.
942		 * XXX take this out once we do the proper reject.
943		 */
944		if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
945		    fc_frame_payload_op(fp) == ELS_TEST) {
946			fh->fh_rx_id = htons(FC_XID_UNKNOWN);
947			xid = FC_XID_UNKNOWN;
948		}
949
950		/*
951		 * new sequence - find the exchange
952		 */
953		ep = fc_exch_find(mp, xid);
954		if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
955			if (ep) {
956				atomic_inc(&mp->stats.xid_busy);
957				reject = FC_RJT_RX_ID;
958				goto rel;
959			}
960			ep = fc_exch_resp(lport, mp, fp);
961			if (!ep) {
962				reject = FC_RJT_EXCH_EST;	/* XXX */
963				goto out;
964			}
965			xid = ep->xid;	/* get our XID */
966		} else if (!ep) {
967			atomic_inc(&mp->stats.xid_not_found);
968			reject = FC_RJT_RX_ID;	/* XID not found */
969			goto out;
970		}
971	}
972
973	/*
974	 * At this point, we have the exchange held.
975	 * Find or create the sequence.
976	 */
977	if (fc_sof_is_init(fr_sof(fp))) {
978		sp = &ep->seq;
979		sp->ssb_stat |= SSB_ST_RESP;
980		sp->id = fh->fh_seq_id;
981	} else {
982		sp = &ep->seq;
983		if (sp->id != fh->fh_seq_id) {
984			atomic_inc(&mp->stats.seq_not_found);
985			if (f_ctl & FC_FC_END_SEQ) {
986				/*
987				 * Update sequence_id based on incoming last
988				 * frame of sequence exchange. This is needed
989				 * for FCoE target where DDP has been used
990				 * on target where, stack is indicated only
991				 * about last frame's (payload _header) header.
992				 * Whereas "seq_id" which is part of
993				 * frame_header is allocated by initiator
994				 * which is totally different from "seq_id"
995				 * allocated when XFER_RDY was sent by target.
996				 * To avoid false -ve which results into not
997				 * sending RSP, hence write request on other
998				 * end never finishes.
999				 */
1000				spin_lock_bh(&ep->ex_lock);
1001				sp->ssb_stat |= SSB_ST_RESP;
1002				sp->id = fh->fh_seq_id;
1003				spin_unlock_bh(&ep->ex_lock);
1004			} else {
1005				/* sequence/exch should exist */
1006				reject = FC_RJT_SEQ_ID;
1007				goto rel;
1008			}
1009		}
1010	}
1011	WARN_ON(ep != fc_seq_exch(sp));
1012
1013	if (f_ctl & FC_FC_SEQ_INIT)
1014		ep->esb_stat |= ESB_ST_SEQ_INIT;
1015
1016	fr_seq(fp) = sp;
1017out:
1018	return reject;
1019rel:
1020	fc_exch_done(&ep->seq);
1021	fc_exch_release(ep);	/* hold from fc_exch_find/fc_exch_resp */
1022	return reject;
1023}
1024
1025/**
1026 * fc_seq_lookup_orig() - Find a sequence where this end
1027 *			  originated the sequence
1028 * @mp:	   The Exchange Manager to lookup the exchange from
1029 * @fp:	   The frame associated with the sequence we're looking for
1030 *
1031 * Does not hold the sequence for the caller.
1032 */
1033static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
1034					 struct fc_frame *fp)
1035{
1036	struct fc_frame_header *fh = fc_frame_header_get(fp);
1037	struct fc_exch *ep;
1038	struct fc_seq *sp = NULL;
1039	u32 f_ctl;
1040	u16 xid;
1041
1042	f_ctl = ntoh24(fh->fh_f_ctl);
1043	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1044	xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1045	ep = fc_exch_find(mp, xid);
1046	if (!ep)
1047		return NULL;
1048	if (ep->seq.id == fh->fh_seq_id) {
1049		/*
1050		 * Save the RX_ID if we didn't previously know it.
1051		 */
1052		sp = &ep->seq;
1053		if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1054		    ep->rxid == FC_XID_UNKNOWN) {
1055			ep->rxid = ntohs(fh->fh_rx_id);
1056		}
1057	}
1058	fc_exch_release(ep);
1059	return sp;
1060}
1061
1062/**
1063 * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1064 * @ep:	     The exchange to set the addresses for
1065 * @orig_id: The originator's ID
1066 * @resp_id: The responder's ID
1067 *
1068 * Note this must be done before the first sequence of the exchange is sent.
1069 */
1070static void fc_exch_set_addr(struct fc_exch *ep,
1071			     u32 orig_id, u32 resp_id)
1072{
1073	ep->oid = orig_id;
1074	if (ep->esb_stat & ESB_ST_RESP) {
1075		ep->sid = resp_id;
1076		ep->did = orig_id;
1077	} else {
1078		ep->sid = orig_id;
1079		ep->did = resp_id;
1080	}
1081}
1082
1083/**
1084 * fc_seq_els_rsp_send() - Send an ELS response using information from
1085 *			   the existing sequence/exchange.
1086 * @fp:	      The received frame
1087 * @els_cmd:  The ELS command to be sent
1088 * @els_data: The ELS data to be sent
1089 *
1090 * The received frame is not freed.
1091 */
1092static void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1093				struct fc_seq_els_data *els_data)
1094{
1095	switch (els_cmd) {
1096	case ELS_LS_RJT:
1097		fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1098		break;
1099	case ELS_LS_ACC:
1100		fc_seq_ls_acc(fp);
1101		break;
1102	case ELS_RRQ:
1103		fc_exch_els_rrq(fp);
1104		break;
1105	case ELS_REC:
1106		fc_exch_els_rec(fp);
1107		break;
1108	default:
1109		FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1110	}
1111}
1112
1113/**
1114 * fc_seq_send_last() - Send a sequence that is the last in the exchange
1115 * @sp:	     The sequence that is to be sent
1116 * @fp:	     The frame that will be sent on the sequence
1117 * @rctl:    The R_CTL information to be sent
1118 * @fh_type: The frame header type
1119 */
1120static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1121			     enum fc_rctl rctl, enum fc_fh_type fh_type)
1122{
1123	u32 f_ctl;
1124	struct fc_exch *ep = fc_seq_exch(sp);
1125
1126	f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1127	f_ctl |= ep->f_ctl;
1128	fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1129	fc_seq_send(ep->lp, sp, fp);
1130}
1131
1132/**
1133 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1134 * @sp:	   The sequence to send the ACK on
1135 * @rx_fp: The received frame that is being acknoledged
1136 *
1137 * Send ACK_1 (or equiv.) indicating we received something.
1138 */
1139static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1140{
1141	struct fc_frame *fp;
1142	struct fc_frame_header *rx_fh;
1143	struct fc_frame_header *fh;
1144	struct fc_exch *ep = fc_seq_exch(sp);
1145	struct fc_lport *lport = ep->lp;
1146	unsigned int f_ctl;
1147
1148	/*
1149	 * Don't send ACKs for class 3.
1150	 */
1151	if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1152		fp = fc_frame_alloc(lport, 0);
1153		if (!fp)
1154			return;
1155
1156		fh = fc_frame_header_get(fp);
1157		fh->fh_r_ctl = FC_RCTL_ACK_1;
1158		fh->fh_type = FC_TYPE_BLS;
1159
1160		/*
1161		 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1162		 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1163		 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1164		 * Last ACK uses bits 7-6 (continue sequence),
1165		 * bits 5-4 are meaningful (what kind of ACK to use).
1166		 */
1167		rx_fh = fc_frame_header_get(rx_fp);
1168		f_ctl = ntoh24(rx_fh->fh_f_ctl);
1169		f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1170			FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1171			FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1172			FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1173		f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1174		hton24(fh->fh_f_ctl, f_ctl);
1175
1176		fc_exch_setup_hdr(ep, fp, f_ctl);
1177		fh->fh_seq_id = rx_fh->fh_seq_id;
1178		fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1179		fh->fh_parm_offset = htonl(1);	/* ack single frame */
1180
1181		fr_sof(fp) = fr_sof(rx_fp);
1182		if (f_ctl & FC_FC_END_SEQ)
1183			fr_eof(fp) = FC_EOF_T;
1184		else
1185			fr_eof(fp) = FC_EOF_N;
1186
1187		lport->tt.frame_send(lport, fp);
1188	}
1189}
1190
1191/**
1192 * fc_exch_send_ba_rjt() - Send BLS Reject
1193 * @rx_fp:  The frame being rejected
1194 * @reason: The reason the frame is being rejected
1195 * @explan: The explanation for the rejection
1196 *
1197 * This is for rejecting BA_ABTS only.
1198 */
1199static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1200				enum fc_ba_rjt_reason reason,
1201				enum fc_ba_rjt_explan explan)
1202{
1203	struct fc_frame *fp;
1204	struct fc_frame_header *rx_fh;
1205	struct fc_frame_header *fh;
1206	struct fc_ba_rjt *rp;
1207	struct fc_lport *lport;
1208	unsigned int f_ctl;
1209
1210	lport = fr_dev(rx_fp);
1211	fp = fc_frame_alloc(lport, sizeof(*rp));
1212	if (!fp)
1213		return;
1214	fh = fc_frame_header_get(fp);
1215	rx_fh = fc_frame_header_get(rx_fp);
1216
1217	memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1218
1219	rp = fc_frame_payload_get(fp, sizeof(*rp));
1220	rp->br_reason = reason;
1221	rp->br_explan = explan;
1222
1223	/*
1224	 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1225	 */
1226	memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1227	memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1228	fh->fh_ox_id = rx_fh->fh_ox_id;
1229	fh->fh_rx_id = rx_fh->fh_rx_id;
1230	fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1231	fh->fh_r_ctl = FC_RCTL_BA_RJT;
1232	fh->fh_type = FC_TYPE_BLS;
1233
1234	/*
1235	 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1236	 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1237	 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1238	 * Last ACK uses bits 7-6 (continue sequence),
1239	 * bits 5-4 are meaningful (what kind of ACK to use).
1240	 * Always set LAST_SEQ, END_SEQ.
1241	 */
1242	f_ctl = ntoh24(rx_fh->fh_f_ctl);
1243	f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1244		FC_FC_END_CONN | FC_FC_SEQ_INIT |
1245		FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1246	f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1247	f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1248	f_ctl &= ~FC_FC_FIRST_SEQ;
1249	hton24(fh->fh_f_ctl, f_ctl);
1250
1251	fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1252	fr_eof(fp) = FC_EOF_T;
1253	if (fc_sof_needs_ack(fr_sof(fp)))
1254		fr_eof(fp) = FC_EOF_N;
1255
1256	lport->tt.frame_send(lport, fp);
1257}
1258
1259/**
1260 * fc_exch_recv_abts() - Handle an incoming ABTS
1261 * @ep:	   The exchange the abort was on
1262 * @rx_fp: The ABTS frame
1263 *
1264 * This would be for target mode usually, but could be due to lost
1265 * FCP transfer ready, confirm or RRQ. We always handle this as an
1266 * exchange abort, ignoring the parameter.
1267 */
1268static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1269{
1270	struct fc_frame *fp;
1271	struct fc_ba_acc *ap;
1272	struct fc_frame_header *fh;
1273	struct fc_seq *sp;
1274
1275	if (!ep)
1276		goto reject;
1277	spin_lock_bh(&ep->ex_lock);
1278	if (ep->esb_stat & ESB_ST_COMPLETE) {
1279		spin_unlock_bh(&ep->ex_lock);
1280		goto reject;
1281	}
1282	if (!(ep->esb_stat & ESB_ST_REC_QUAL))
1283		fc_exch_hold(ep);		/* hold for REC_QUAL */
1284	ep->esb_stat |= ESB_ST_ABNORMAL | ESB_ST_REC_QUAL;
1285	fc_exch_timer_set_locked(ep, ep->r_a_tov);
1286
1287	fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1288	if (!fp) {
1289		spin_unlock_bh(&ep->ex_lock);
1290		goto free;
1291	}
1292	fh = fc_frame_header_get(fp);
1293	ap = fc_frame_payload_get(fp, sizeof(*ap));
1294	memset(ap, 0, sizeof(*ap));
1295	sp = &ep->seq;
1296	ap->ba_high_seq_cnt = htons(0xffff);
1297	if (sp->ssb_stat & SSB_ST_RESP) {
1298		ap->ba_seq_id = sp->id;
1299		ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1300		ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1301		ap->ba_low_seq_cnt = htons(sp->cnt);
1302	}
1303	sp = fc_seq_start_next_locked(sp);
1304	spin_unlock_bh(&ep->ex_lock);
1305	fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1306	fc_frame_free(rx_fp);
1307	return;
1308
1309reject:
1310	fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1311free:
1312	fc_frame_free(rx_fp);
1313}
1314
1315/**
1316 * fc_seq_assign() - Assign exchange and sequence for incoming request
1317 * @lport: The local port that received the request
1318 * @fp:    The request frame
1319 *
1320 * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1321 * A reference will be held on the exchange/sequence for the caller, which
1322 * must call fc_seq_release().
1323 */
1324static struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1325{
1326	struct fc_exch_mgr_anchor *ema;
1327
1328	WARN_ON(lport != fr_dev(fp));
1329	WARN_ON(fr_seq(fp));
1330	fr_seq(fp) = NULL;
1331
1332	list_for_each_entry(ema, &lport->ema_list, ema_list)
1333		if ((!ema->match || ema->match(fp)) &&
1334		    fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1335			break;
1336	return fr_seq(fp);
1337}
1338
1339/**
1340 * fc_seq_release() - Release the hold
1341 * @sp:    The sequence.
1342 */
1343static void fc_seq_release(struct fc_seq *sp)
1344{
1345	fc_exch_release(fc_seq_exch(sp));
1346}
1347
1348/**
1349 * fc_exch_recv_req() - Handler for an incoming request
1350 * @lport: The local port that received the request
1351 * @mp:	   The EM that the exchange is on
1352 * @fp:	   The request frame
1353 *
1354 * This is used when the other end is originating the exchange
1355 * and the sequence.
1356 */
1357static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1358			     struct fc_frame *fp)
1359{
1360	struct fc_frame_header *fh = fc_frame_header_get(fp);
1361	struct fc_seq *sp = NULL;
1362	struct fc_exch *ep = NULL;
1363	enum fc_pf_rjt_reason reject;
1364
1365	/* We can have the wrong fc_lport at this point with NPIV, which is a
1366	 * problem now that we know a new exchange needs to be allocated
1367	 */
1368	lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1369	if (!lport) {
1370		fc_frame_free(fp);
1371		return;
1372	}
1373	fr_dev(fp) = lport;
1374
1375	BUG_ON(fr_seq(fp));		/* XXX remove later */
1376
1377	/*
1378	 * If the RX_ID is 0xffff, don't allocate an exchange.
1379	 * The upper-level protocol may request one later, if needed.
1380	 */
1381	if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1382		return lport->tt.lport_recv(lport, fp);
1383
1384	reject = fc_seq_lookup_recip(lport, mp, fp);
1385	if (reject == FC_RJT_NONE) {
1386		sp = fr_seq(fp);	/* sequence will be held */
1387		ep = fc_seq_exch(sp);
1388		fc_seq_send_ack(sp, fp);
1389		ep->encaps = fr_encaps(fp);
1390
1391		/*
1392		 * Call the receive function.
1393		 *
1394		 * The receive function may allocate a new sequence
1395		 * over the old one, so we shouldn't change the
1396		 * sequence after this.
1397		 *
1398		 * The frame will be freed by the receive function.
1399		 * If new exch resp handler is valid then call that
1400		 * first.
1401		 */
1402		if (ep->resp)
1403			ep->resp(sp, fp, ep->arg);
1404		else
1405			lport->tt.lport_recv(lport, fp);
1406		fc_exch_release(ep);	/* release from lookup */
1407	} else {
1408		FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1409			     reject);
1410		fc_frame_free(fp);
1411	}
1412}
1413
1414/**
1415 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1416 *			     end is the originator of the sequence that is a
1417 *			     response to our initial exchange
1418 * @mp: The EM that the exchange is on
1419 * @fp: The response frame
1420 */
1421static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1422{
1423	struct fc_frame_header *fh = fc_frame_header_get(fp);
1424	struct fc_seq *sp;
1425	struct fc_exch *ep;
1426	enum fc_sof sof;
1427	u32 f_ctl;
1428	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1429	void *ex_resp_arg;
1430	int rc;
1431
1432	ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1433	if (!ep) {
1434		atomic_inc(&mp->stats.xid_not_found);
1435		goto out;
1436	}
1437	if (ep->esb_stat & ESB_ST_COMPLETE) {
1438		atomic_inc(&mp->stats.xid_not_found);
1439		goto rel;
1440	}
1441	if (ep->rxid == FC_XID_UNKNOWN)
1442		ep->rxid = ntohs(fh->fh_rx_id);
1443	if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1444		atomic_inc(&mp->stats.xid_not_found);
1445		goto rel;
1446	}
1447	if (ep->did != ntoh24(fh->fh_s_id) &&
1448	    ep->did != FC_FID_FLOGI) {
1449		atomic_inc(&mp->stats.xid_not_found);
1450		goto rel;
1451	}
1452	sof = fr_sof(fp);
1453	sp = &ep->seq;
1454	if (fc_sof_is_init(sof)) {
1455		sp->ssb_stat |= SSB_ST_RESP;
1456		sp->id = fh->fh_seq_id;
1457	} else if (sp->id != fh->fh_seq_id) {
1458		atomic_inc(&mp->stats.seq_not_found);
1459		goto rel;
1460	}
1461
1462	f_ctl = ntoh24(fh->fh_f_ctl);
1463	fr_seq(fp) = sp;
1464	if (f_ctl & FC_FC_SEQ_INIT)
1465		ep->esb_stat |= ESB_ST_SEQ_INIT;
1466
1467	if (fc_sof_needs_ack(sof))
1468		fc_seq_send_ack(sp, fp);
1469	resp = ep->resp;
1470	ex_resp_arg = ep->arg;
1471
1472	if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1473	    (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1474	    (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1475		spin_lock_bh(&ep->ex_lock);
1476		resp = ep->resp;
1477		rc = fc_exch_done_locked(ep);
1478		WARN_ON(fc_seq_exch(sp) != ep);
1479		spin_unlock_bh(&ep->ex_lock);
1480		if (!rc)
1481			fc_exch_delete(ep);
1482	}
1483
1484	/*
1485	 * Call the receive function.
1486	 * The sequence is held (has a refcnt) for us,
1487	 * but not for the receive function.
1488	 *
1489	 * The receive function may allocate a new sequence
1490	 * over the old one, so we shouldn't change the
1491	 * sequence after this.
1492	 *
1493	 * The frame will be freed by the receive function.
1494	 * If new exch resp handler is valid then call that
1495	 * first.
1496	 */
1497	if (resp)
1498		resp(sp, fp, ex_resp_arg);
1499	else
1500		fc_frame_free(fp);
1501	fc_exch_release(ep);
1502	return;
1503rel:
1504	fc_exch_release(ep);
1505out:
1506	fc_frame_free(fp);
1507}
1508
1509/**
1510 * fc_exch_recv_resp() - Handler for a sequence where other end is
1511 *			 responding to our sequence
1512 * @mp: The EM that the exchange is on
1513 * @fp: The response frame
1514 */
1515static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1516{
1517	struct fc_seq *sp;
1518
1519	sp = fc_seq_lookup_orig(mp, fp);	/* doesn't hold sequence */
1520
1521	if (!sp)
1522		atomic_inc(&mp->stats.xid_not_found);
1523	else
1524		atomic_inc(&mp->stats.non_bls_resp);
1525
1526	fc_frame_free(fp);
1527}
1528
1529/**
1530 * fc_exch_abts_resp() - Handler for a response to an ABT
1531 * @ep: The exchange that the frame is on
1532 * @fp: The response frame
1533 *
1534 * This response would be to an ABTS cancelling an exchange or sequence.
1535 * The response can be either BA_ACC or BA_RJT
1536 */
1537static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1538{
1539	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1540	void *ex_resp_arg;
1541	struct fc_frame_header *fh;
1542	struct fc_ba_acc *ap;
1543	struct fc_seq *sp;
1544	u16 low;
1545	u16 high;
1546	int rc = 1, has_rec = 0;
1547
1548	fh = fc_frame_header_get(fp);
1549	FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1550		    fc_exch_rctl_name(fh->fh_r_ctl));
1551
1552	if (cancel_delayed_work_sync(&ep->timeout_work))
1553		fc_exch_release(ep);	/* release from pending timer hold */
1554
1555	spin_lock_bh(&ep->ex_lock);
1556	switch (fh->fh_r_ctl) {
1557	case FC_RCTL_BA_ACC:
1558		ap = fc_frame_payload_get(fp, sizeof(*ap));
1559		if (!ap)
1560			break;
1561
1562		/*
1563		 * Decide whether to establish a Recovery Qualifier.
1564		 * We do this if there is a non-empty SEQ_CNT range and
1565		 * SEQ_ID is the same as the one we aborted.
1566		 */
1567		low = ntohs(ap->ba_low_seq_cnt);
1568		high = ntohs(ap->ba_high_seq_cnt);
1569		if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1570		    (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1571		     ap->ba_seq_id == ep->seq_id) && low != high) {
1572			ep->esb_stat |= ESB_ST_REC_QUAL;
1573			fc_exch_hold(ep);  /* hold for recovery qualifier */
1574			has_rec = 1;
1575		}
1576		break;
1577	case FC_RCTL_BA_RJT:
1578		break;
1579	default:
1580		break;
1581	}
1582
1583	resp = ep->resp;
1584	ex_resp_arg = ep->arg;
1585
1586	/* do we need to do some other checks here. Can we reuse more of
1587	 * fc_exch_recv_seq_resp
1588	 */
1589	sp = &ep->seq;
1590	/*
1591	 * do we want to check END_SEQ as well as LAST_SEQ here?
1592	 */
1593	if (ep->fh_type != FC_TYPE_FCP &&
1594	    ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1595		rc = fc_exch_done_locked(ep);
1596	spin_unlock_bh(&ep->ex_lock);
1597	if (!rc)
1598		fc_exch_delete(ep);
1599
1600	if (resp)
1601		resp(sp, fp, ex_resp_arg);
1602	else
1603		fc_frame_free(fp);
1604
1605	if (has_rec)
1606		fc_exch_timer_set(ep, ep->r_a_tov);
1607
1608}
1609
1610/**
1611 * fc_exch_recv_bls() - Handler for a BLS sequence
1612 * @mp: The EM that the exchange is on
1613 * @fp: The request frame
1614 *
1615 * The BLS frame is always a sequence initiated by the remote side.
1616 * We may be either the originator or recipient of the exchange.
1617 */
1618static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1619{
1620	struct fc_frame_header *fh;
1621	struct fc_exch *ep;
1622	u32 f_ctl;
1623
1624	fh = fc_frame_header_get(fp);
1625	f_ctl = ntoh24(fh->fh_f_ctl);
1626	fr_seq(fp) = NULL;
1627
1628	ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1629			  ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1630	if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1631		spin_lock_bh(&ep->ex_lock);
1632		ep->esb_stat |= ESB_ST_SEQ_INIT;
1633		spin_unlock_bh(&ep->ex_lock);
1634	}
1635	if (f_ctl & FC_FC_SEQ_CTX) {
1636		/*
1637		 * A response to a sequence we initiated.
1638		 * This should only be ACKs for class 2 or F.
1639		 */
1640		switch (fh->fh_r_ctl) {
1641		case FC_RCTL_ACK_1:
1642		case FC_RCTL_ACK_0:
1643			break;
1644		default:
1645			FC_EXCH_DBG(ep, "BLS rctl %x - %s received",
1646				    fh->fh_r_ctl,
1647				    fc_exch_rctl_name(fh->fh_r_ctl));
1648			break;
1649		}
1650		fc_frame_free(fp);
1651	} else {
1652		switch (fh->fh_r_ctl) {
1653		case FC_RCTL_BA_RJT:
1654		case FC_RCTL_BA_ACC:
1655			if (ep)
1656				fc_exch_abts_resp(ep, fp);
1657			else
1658				fc_frame_free(fp);
1659			break;
1660		case FC_RCTL_BA_ABTS:
1661			fc_exch_recv_abts(ep, fp);
1662			break;
1663		default:			/* ignore junk */
1664			fc_frame_free(fp);
1665			break;
1666		}
1667	}
1668	if (ep)
1669		fc_exch_release(ep);	/* release hold taken by fc_exch_find */
1670}
1671
1672/**
1673 * fc_seq_ls_acc() - Accept sequence with LS_ACC
1674 * @rx_fp: The received frame, not freed here.
1675 *
1676 * If this fails due to allocation or transmit congestion, assume the
1677 * originator will repeat the sequence.
1678 */
1679static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1680{
1681	struct fc_lport *lport;
1682	struct fc_els_ls_acc *acc;
1683	struct fc_frame *fp;
1684
1685	lport = fr_dev(rx_fp);
1686	fp = fc_frame_alloc(lport, sizeof(*acc));
1687	if (!fp)
1688		return;
1689	acc = fc_frame_payload_get(fp, sizeof(*acc));
1690	memset(acc, 0, sizeof(*acc));
1691	acc->la_cmd = ELS_LS_ACC;
1692	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1693	lport->tt.frame_send(lport, fp);
1694}
1695
1696/**
1697 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1698 * @rx_fp: The received frame, not freed here.
1699 * @reason: The reason the sequence is being rejected
1700 * @explan: The explanation for the rejection
1701 *
1702 * If this fails due to allocation or transmit congestion, assume the
1703 * originator will repeat the sequence.
1704 */
1705static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1706			  enum fc_els_rjt_explan explan)
1707{
1708	struct fc_lport *lport;
1709	struct fc_els_ls_rjt *rjt;
1710	struct fc_frame *fp;
1711
1712	lport = fr_dev(rx_fp);
1713	fp = fc_frame_alloc(lport, sizeof(*rjt));
1714	if (!fp)
1715		return;
1716	rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1717	memset(rjt, 0, sizeof(*rjt));
1718	rjt->er_cmd = ELS_LS_RJT;
1719	rjt->er_reason = reason;
1720	rjt->er_explan = explan;
1721	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1722	lport->tt.frame_send(lport, fp);
1723}
1724
1725/**
1726 * fc_exch_reset() - Reset an exchange
1727 * @ep: The exchange to be reset
1728 */
1729static void fc_exch_reset(struct fc_exch *ep)
1730{
1731	struct fc_seq *sp;
1732	void (*resp)(struct fc_seq *, struct fc_frame *, void *);
1733	void *arg;
1734	int rc = 1;
1735
1736	spin_lock_bh(&ep->ex_lock);
1737	fc_exch_abort_locked(ep, 0);
1738	ep->state |= FC_EX_RST_CLEANUP;
1739	if (cancel_delayed_work(&ep->timeout_work))
1740		atomic_dec(&ep->ex_refcnt);	/* drop hold for timer */
1741	resp = ep->resp;
1742	ep->resp = NULL;
1743	if (ep->esb_stat & ESB_ST_REC_QUAL)
1744		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec_qual */
1745	ep->esb_stat &= ~ESB_ST_REC_QUAL;
1746	arg = ep->arg;
1747	sp = &ep->seq;
1748	rc = fc_exch_done_locked(ep);
1749	spin_unlock_bh(&ep->ex_lock);
1750	if (!rc)
1751		fc_exch_delete(ep);
1752
1753	if (resp)
1754		resp(sp, ERR_PTR(-FC_EX_CLOSED), arg);
1755}
1756
1757/**
1758 * fc_exch_pool_reset() - Reset a per cpu exchange pool
1759 * @lport: The local port that the exchange pool is on
1760 * @pool:  The exchange pool to be reset
1761 * @sid:   The source ID
1762 * @did:   The destination ID
1763 *
1764 * Resets a per cpu exches pool, releasing all of its sequences
1765 * and exchanges. If sid is non-zero then reset only exchanges
1766 * we sourced from the local port's FID. If did is non-zero then
1767 * only reset exchanges destined for the local port's FID.
1768 */
1769static void fc_exch_pool_reset(struct fc_lport *lport,
1770			       struct fc_exch_pool *pool,
1771			       u32 sid, u32 did)
1772{
1773	struct fc_exch *ep;
1774	struct fc_exch *next;
1775
1776	spin_lock_bh(&pool->lock);
1777restart:
1778	list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1779		if ((lport == ep->lp) &&
1780		    (sid == 0 || sid == ep->sid) &&
1781		    (did == 0 || did == ep->did)) {
1782			fc_exch_hold(ep);
1783			spin_unlock_bh(&pool->lock);
1784
1785			fc_exch_reset(ep);
1786
1787			fc_exch_release(ep);
1788			spin_lock_bh(&pool->lock);
1789
1790			/*
1791			 * must restart loop incase while lock
1792			 * was down multiple eps were released.
1793			 */
1794			goto restart;
1795		}
1796	}
1797	pool->next_index = 0;
1798	pool->left = FC_XID_UNKNOWN;
1799	pool->right = FC_XID_UNKNOWN;
1800	spin_unlock_bh(&pool->lock);
1801}
1802
1803/**
1804 * fc_exch_mgr_reset() - Reset all EMs of a local port
1805 * @lport: The local port whose EMs are to be reset
1806 * @sid:   The source ID
1807 * @did:   The destination ID
1808 *
1809 * Reset all EMs associated with a given local port. Release all
1810 * sequences and exchanges. If sid is non-zero then reset only the
1811 * exchanges sent from the local port's FID. If did is non-zero then
1812 * reset only exchanges destined for the local port's FID.
1813 */
1814void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1815{
1816	struct fc_exch_mgr_anchor *ema;
1817	unsigned int cpu;
1818
1819	list_for_each_entry(ema, &lport->ema_list, ema_list) {
1820		for_each_possible_cpu(cpu)
1821			fc_exch_pool_reset(lport,
1822					   per_cpu_ptr(ema->mp->pool, cpu),
1823					   sid, did);
1824	}
1825}
1826EXPORT_SYMBOL(fc_exch_mgr_reset);
1827
1828/**
1829 * fc_exch_lookup() - find an exchange
1830 * @lport: The local port
1831 * @xid: The exchange ID
1832 *
1833 * Returns exchange pointer with hold for caller, or NULL if not found.
1834 */
1835static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
1836{
1837	struct fc_exch_mgr_anchor *ema;
1838
1839	list_for_each_entry(ema, &lport->ema_list, ema_list)
1840		if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
1841			return fc_exch_find(ema->mp, xid);
1842	return NULL;
1843}
1844
1845/**
1846 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
1847 * @rfp: The REC frame, not freed here.
1848 *
1849 * Note that the requesting port may be different than the S_ID in the request.
1850 */
1851static void fc_exch_els_rec(struct fc_frame *rfp)
1852{
1853	struct fc_lport *lport;
1854	struct fc_frame *fp;
1855	struct fc_exch *ep;
1856	struct fc_els_rec *rp;
1857	struct fc_els_rec_acc *acc;
1858	enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
1859	enum fc_els_rjt_explan explan;
1860	u32 sid;
1861	u16 rxid;
1862	u16 oxid;
1863
1864	lport = fr_dev(rfp);
1865	rp = fc_frame_payload_get(rfp, sizeof(*rp));
1866	explan = ELS_EXPL_INV_LEN;
1867	if (!rp)
1868		goto reject;
1869	sid = ntoh24(rp->rec_s_id);
1870	rxid = ntohs(rp->rec_rx_id);
1871	oxid = ntohs(rp->rec_ox_id);
1872
1873	ep = fc_exch_lookup(lport,
1874			    sid == fc_host_port_id(lport->host) ? oxid : rxid);
1875	explan = ELS_EXPL_OXID_RXID;
1876	if (!ep)
1877		goto reject;
1878	if (ep->oid != sid || oxid != ep->oxid)
1879		goto rel;
1880	if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
1881		goto rel;
1882	fp = fc_frame_alloc(lport, sizeof(*acc));
1883	if (!fp)
1884		goto out;
1885
1886	acc = fc_frame_payload_get(fp, sizeof(*acc));
1887	memset(acc, 0, sizeof(*acc));
1888	acc->reca_cmd = ELS_LS_ACC;
1889	acc->reca_ox_id = rp->rec_ox_id;
1890	memcpy(acc->reca_ofid, rp->rec_s_id, 3);
1891	acc->reca_rx_id = htons(ep->rxid);
1892	if (ep->sid == ep->oid)
1893		hton24(acc->reca_rfid, ep->did);
1894	else
1895		hton24(acc->reca_rfid, ep->sid);
1896	acc->reca_fc4value = htonl(ep->seq.rec_data);
1897	acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
1898						 ESB_ST_SEQ_INIT |
1899						 ESB_ST_COMPLETE));
1900	fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
1901	lport->tt.frame_send(lport, fp);
1902out:
1903	fc_exch_release(ep);
1904	return;
1905
1906rel:
1907	fc_exch_release(ep);
1908reject:
1909	fc_seq_ls_rjt(rfp, reason, explan);
1910}
1911
1912/**
1913 * fc_exch_rrq_resp() - Handler for RRQ responses
1914 * @sp:	 The sequence that the RRQ is on
1915 * @fp:	 The RRQ frame
1916 * @arg: The exchange that the RRQ is on
1917 *
1918 * TODO: fix error handler.
1919 */
1920static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
1921{
1922	struct fc_exch *aborted_ep = arg;
1923	unsigned int op;
1924
1925	if (IS_ERR(fp)) {
1926		int err = PTR_ERR(fp);
1927
1928		if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
1929			goto cleanup;
1930		FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
1931			    "frame error %d\n", err);
1932		return;
1933	}
1934
1935	op = fc_frame_payload_op(fp);
1936	fc_frame_free(fp);
1937
1938	switch (op) {
1939	case ELS_LS_RJT:
1940		FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ");
1941		/* fall through */
1942	case ELS_LS_ACC:
1943		goto cleanup;
1944	default:
1945		FC_EXCH_DBG(aborted_ep, "unexpected response op %x "
1946			    "for RRQ", op);
1947		return;
1948	}
1949
1950cleanup:
1951	fc_exch_done(&aborted_ep->seq);
1952	/* drop hold for rec qual */
1953	fc_exch_release(aborted_ep);
1954}
1955
1956
1957/**
1958 * fc_exch_seq_send() - Send a frame using a new exchange and sequence
1959 * @lport:	The local port to send the frame on
1960 * @fp:		The frame to be sent
1961 * @resp:	The response handler for this request
1962 * @destructor: The destructor for the exchange
1963 * @arg:	The argument to be passed to the response handler
1964 * @timer_msec: The timeout period for the exchange
1965 *
1966 * The frame pointer with some of the header's fields must be
1967 * filled before calling this routine, those fields are:
1968 *
1969 * - routing control
1970 * - FC port did
1971 * - FC port sid
1972 * - FC header type
1973 * - frame control
1974 * - parameter or relative offset
1975 */
1976static struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
1977				       struct fc_frame *fp,
1978				       void (*resp)(struct fc_seq *,
1979						    struct fc_frame *fp,
1980						    void *arg),
1981				       void (*destructor)(struct fc_seq *,
1982							  void *),
1983				       void *arg, u32 timer_msec)
1984{
1985	struct fc_exch *ep;
1986	struct fc_seq *sp = NULL;
1987	struct fc_frame_header *fh;
1988	struct fc_fcp_pkt *fsp = NULL;
1989	int rc = 1;
1990
1991	ep = fc_exch_alloc(lport, fp);
1992	if (!ep) {
1993		fc_frame_free(fp);
1994		return NULL;
1995	}
1996	ep->esb_stat |= ESB_ST_SEQ_INIT;
1997	fh = fc_frame_header_get(fp);
1998	fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
1999	ep->resp = resp;
2000	ep->destructor = destructor;
2001	ep->arg = arg;
2002	ep->r_a_tov = FC_DEF_R_A_TOV;
2003	ep->lp = lport;
2004	sp = &ep->seq;
2005
2006	ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
2007	ep->f_ctl = ntoh24(fh->fh_f_ctl);
2008	fc_exch_setup_hdr(ep, fp, ep->f_ctl);
2009	sp->cnt++;
2010
2011	if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) {
2012		fsp = fr_fsp(fp);
2013		fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
2014	}
2015
2016	if (unlikely(lport->tt.frame_send(lport, fp)))
2017		goto err;
2018
2019	if (timer_msec)
2020		fc_exch_timer_set_locked(ep, timer_msec);
2021	ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not first seq */
2022
2023	if (ep->f_ctl & FC_FC_SEQ_INIT)
2024		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
2025	spin_unlock_bh(&ep->ex_lock);
2026	return sp;
2027err:
2028	if (fsp)
2029		fc_fcp_ddp_done(fsp);
2030	rc = fc_exch_done_locked(ep);
2031	spin_unlock_bh(&ep->ex_lock);
2032	if (!rc)
2033		fc_exch_delete(ep);
2034	return NULL;
2035}
2036
2037/**
2038 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
2039 * @ep: The exchange to send the RRQ on
2040 *
2041 * This tells the remote port to stop blocking the use of
2042 * the exchange and the seq_cnt range.
2043 */
2044static void fc_exch_rrq(struct fc_exch *ep)
2045{
2046	struct fc_lport *lport;
2047	struct fc_els_rrq *rrq;
2048	struct fc_frame *fp;
2049	u32 did;
2050
2051	lport = ep->lp;
2052
2053	fp = fc_frame_alloc(lport, sizeof(*rrq));
2054	if (!fp)
2055		goto retry;
2056
2057	rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2058	memset(rrq, 0, sizeof(*rrq));
2059	rrq->rrq_cmd = ELS_RRQ;
2060	hton24(rrq->rrq_s_id, ep->sid);
2061	rrq->rrq_ox_id = htons(ep->oxid);
2062	rrq->rrq_rx_id = htons(ep->rxid);
2063
2064	did = ep->did;
2065	if (ep->esb_stat & ESB_ST_RESP)
2066		did = ep->sid;
2067
2068	fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2069		       lport->port_id, FC_TYPE_ELS,
2070		       FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2071
2072	if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2073			     lport->e_d_tov))
2074		return;
2075
2076retry:
2077	spin_lock_bh(&ep->ex_lock);
2078	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2079		spin_unlock_bh(&ep->ex_lock);
2080		/* drop hold for rec qual */
2081		fc_exch_release(ep);
2082		return;
2083	}
2084	ep->esb_stat |= ESB_ST_REC_QUAL;
2085	fc_exch_timer_set_locked(ep, ep->r_a_tov);
2086	spin_unlock_bh(&ep->ex_lock);
2087}
2088
2089/**
2090 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2091 * @fp: The RRQ frame, not freed here.
2092 */
2093static void fc_exch_els_rrq(struct fc_frame *fp)
2094{
2095	struct fc_lport *lport;
2096	struct fc_exch *ep = NULL;	/* request or subject exchange */
2097	struct fc_els_rrq *rp;
2098	u32 sid;
2099	u16 xid;
2100	enum fc_els_rjt_explan explan;
2101
2102	lport = fr_dev(fp);
2103	rp = fc_frame_payload_get(fp, sizeof(*rp));
2104	explan = ELS_EXPL_INV_LEN;
2105	if (!rp)
2106		goto reject;
2107
2108	/*
2109	 * lookup subject exchange.
2110	 */
2111	sid = ntoh24(rp->rrq_s_id);		/* subject source */
2112	xid = fc_host_port_id(lport->host) == sid ?
2113			ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2114	ep = fc_exch_lookup(lport, xid);
2115	explan = ELS_EXPL_OXID_RXID;
2116	if (!ep)
2117		goto reject;
2118	spin_lock_bh(&ep->ex_lock);
2119	if (ep->oxid != ntohs(rp->rrq_ox_id))
2120		goto unlock_reject;
2121	if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2122	    ep->rxid != FC_XID_UNKNOWN)
2123		goto unlock_reject;
2124	explan = ELS_EXPL_SID;
2125	if (ep->sid != sid)
2126		goto unlock_reject;
2127
2128	/*
2129	 * Clear Recovery Qualifier state, and cancel timer if complete.
2130	 */
2131	if (ep->esb_stat & ESB_ST_REC_QUAL) {
2132		ep->esb_stat &= ~ESB_ST_REC_QUAL;
2133		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec qual */
2134	}
2135	if (ep->esb_stat & ESB_ST_COMPLETE) {
2136		if (cancel_delayed_work(&ep->timeout_work))
2137			atomic_dec(&ep->ex_refcnt);	/* drop timer hold */
2138	}
2139
2140	spin_unlock_bh(&ep->ex_lock);
2141
2142	/*
2143	 * Send LS_ACC.
2144	 */
2145	fc_seq_ls_acc(fp);
2146	goto out;
2147
2148unlock_reject:
2149	spin_unlock_bh(&ep->ex_lock);
2150reject:
2151	fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2152out:
2153	if (ep)
2154		fc_exch_release(ep);	/* drop hold from fc_exch_find */
2155}
2156
2157/**
2158 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2159 * @lport: The local port to add the exchange manager to
2160 * @mp:	   The exchange manager to be added to the local port
2161 * @match: The match routine that indicates when this EM should be used
2162 */
2163struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2164					   struct fc_exch_mgr *mp,
2165					   bool (*match)(struct fc_frame *))
2166{
2167	struct fc_exch_mgr_anchor *ema;
2168
2169	ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2170	if (!ema)
2171		return ema;
2172
2173	ema->mp = mp;
2174	ema->match = match;
2175	/* add EM anchor to EM anchors list */
2176	list_add_tail(&ema->ema_list, &lport->ema_list);
2177	kref_get(&mp->kref);
2178	return ema;
2179}
2180EXPORT_SYMBOL(fc_exch_mgr_add);
2181
2182/**
2183 * fc_exch_mgr_destroy() - Destroy an exchange manager
2184 * @kref: The reference to the EM to be destroyed
2185 */
2186static void fc_exch_mgr_destroy(struct kref *kref)
2187{
2188	struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2189
2190	mempool_destroy(mp->ep_pool);
2191	free_percpu(mp->pool);
2192	kfree(mp);
2193}
2194
2195/**
2196 * fc_exch_mgr_del() - Delete an EM from a local port's list
2197 * @ema: The exchange manager anchor identifying the EM to be deleted
2198 */
2199void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2200{
2201	/* remove EM anchor from EM anchors list */
2202	list_del(&ema->ema_list);
2203	kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2204	kfree(ema);
2205}
2206EXPORT_SYMBOL(fc_exch_mgr_del);
2207
2208/**
2209 * fc_exch_mgr_list_clone() - Share all exchange manager objects
2210 * @src: Source lport to clone exchange managers from
2211 * @dst: New lport that takes references to all the exchange managers
2212 */
2213int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2214{
2215	struct fc_exch_mgr_anchor *ema, *tmp;
2216
2217	list_for_each_entry(ema, &src->ema_list, ema_list) {
2218		if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2219			goto err;
2220	}
2221	return 0;
2222err:
2223	list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2224		fc_exch_mgr_del(ema);
2225	return -ENOMEM;
2226}
2227EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2228
2229/**
2230 * fc_exch_mgr_alloc() - Allocate an exchange manager
2231 * @lport:   The local port that the new EM will be associated with
2232 * @class:   The default FC class for new exchanges
2233 * @min_xid: The minimum XID for exchanges from the new EM
2234 * @max_xid: The maximum XID for exchanges from the new EM
2235 * @match:   The match routine for the new EM
2236 */
2237struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2238				      enum fc_class class,
2239				      u16 min_xid, u16 max_xid,
2240				      bool (*match)(struct fc_frame *))
2241{
2242	struct fc_exch_mgr *mp;
2243	u16 pool_exch_range;
2244	size_t pool_size;
2245	unsigned int cpu;
2246	struct fc_exch_pool *pool;
2247
2248	if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2249	    (min_xid & fc_cpu_mask) != 0) {
2250		FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2251			     min_xid, max_xid);
2252		return NULL;
2253	}
2254
2255	/*
2256	 * allocate memory for EM
2257	 */
2258	mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2259	if (!mp)
2260		return NULL;
2261
2262	mp->class = class;
2263	/* adjust em exch xid range for offload */
2264	mp->min_xid = min_xid;
2265	mp->max_xid = max_xid;
2266
2267	mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2268	if (!mp->ep_pool)
2269		goto free_mp;
2270
2271	/*
2272	 * Setup per cpu exch pool with entire exchange id range equally
2273	 * divided across all cpus. The exch pointers array memory is
2274	 * allocated for exch range per pool.
2275	 */
2276	pool_exch_range = (mp->max_xid - mp->min_xid + 1) / (fc_cpu_mask + 1);
2277	mp->pool_max_index = pool_exch_range - 1;
2278
2279	/*
2280	 * Allocate and initialize per cpu exch pool
2281	 */
2282	pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2283	mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2284	if (!mp->pool)
2285		goto free_mempool;
2286	for_each_possible_cpu(cpu) {
2287		pool = per_cpu_ptr(mp->pool, cpu);
2288		pool->next_index = 0;
2289		pool->left = FC_XID_UNKNOWN;
2290		pool->right = FC_XID_UNKNOWN;
2291		spin_lock_init(&pool->lock);
2292		INIT_LIST_HEAD(&pool->ex_list);
2293	}
2294
2295	kref_init(&mp->kref);
2296	if (!fc_exch_mgr_add(lport, mp, match)) {
2297		free_percpu(mp->pool);
2298		goto free_mempool;
2299	}
2300
2301	/*
2302	 * Above kref_init() sets mp->kref to 1 and then
2303	 * call to fc_exch_mgr_add incremented mp->kref again,
2304	 * so adjust that extra increment.
2305	 */
2306	kref_put(&mp->kref, fc_exch_mgr_destroy);
2307	return mp;
2308
2309free_mempool:
2310	mempool_destroy(mp->ep_pool);
2311free_mp:
2312	kfree(mp);
2313	return NULL;
2314}
2315EXPORT_SYMBOL(fc_exch_mgr_alloc);
2316
2317/**
2318 * fc_exch_mgr_free() - Free all exchange managers on a local port
2319 * @lport: The local port whose EMs are to be freed
2320 */
2321void fc_exch_mgr_free(struct fc_lport *lport)
2322{
2323	struct fc_exch_mgr_anchor *ema, *next;
2324
2325	flush_workqueue(fc_exch_workqueue);
2326	list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2327		fc_exch_mgr_del(ema);
2328}
2329EXPORT_SYMBOL(fc_exch_mgr_free);
2330
2331/**
2332 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2333 * upon 'xid'.
2334 * @f_ctl: f_ctl
2335 * @lport: The local port the frame was received on
2336 * @fh: The received frame header
2337 */
2338static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2339					      struct fc_lport *lport,
2340					      struct fc_frame_header *fh)
2341{
2342	struct fc_exch_mgr_anchor *ema;
2343	u16 xid;
2344
2345	if (f_ctl & FC_FC_EX_CTX)
2346		xid = ntohs(fh->fh_ox_id);
2347	else {
2348		xid = ntohs(fh->fh_rx_id);
2349		if (xid == FC_XID_UNKNOWN)
2350			return list_entry(lport->ema_list.prev,
2351					  typeof(*ema), ema_list);
2352	}
2353
2354	list_for_each_entry(ema, &lport->ema_list, ema_list) {
2355		if ((xid >= ema->mp->min_xid) &&
2356		    (xid <= ema->mp->max_xid))
2357			return ema;
2358	}
2359	return NULL;
2360}
2361/**
2362 * fc_exch_recv() - Handler for received frames
2363 * @lport: The local port the frame was received on
2364 * @fp:	The received frame
2365 */
2366void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2367{
2368	struct fc_frame_header *fh = fc_frame_header_get(fp);
2369	struct fc_exch_mgr_anchor *ema;
2370	u32 f_ctl;
2371
2372	/* lport lock ? */
2373	if (!lport || lport->state == LPORT_ST_DISABLED) {
2374		FC_LPORT_DBG(lport, "Receiving frames for an lport that "
2375			     "has not been initialized correctly\n");
2376		fc_frame_free(fp);
2377		return;
2378	}
2379
2380	f_ctl = ntoh24(fh->fh_f_ctl);
2381	ema = fc_find_ema(f_ctl, lport, fh);
2382	if (!ema) {
2383		FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2384				    "fc_ctl <0x%x>, xid <0x%x>\n",
2385				     f_ctl,
2386				     (f_ctl & FC_FC_EX_CTX) ?
2387				     ntohs(fh->fh_ox_id) :
2388				     ntohs(fh->fh_rx_id));
2389		fc_frame_free(fp);
2390		return;
2391	}
2392
2393	/*
2394	 * If frame is marked invalid, just drop it.
2395	 */
2396	switch (fr_eof(fp)) {
2397	case FC_EOF_T:
2398		if (f_ctl & FC_FC_END_SEQ)
2399			skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2400		/* fall through */
2401	case FC_EOF_N:
2402		if (fh->fh_type == FC_TYPE_BLS)
2403			fc_exch_recv_bls(ema->mp, fp);
2404		else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2405			 FC_FC_EX_CTX)
2406			fc_exch_recv_seq_resp(ema->mp, fp);
2407		else if (f_ctl & FC_FC_SEQ_CTX)
2408			fc_exch_recv_resp(ema->mp, fp);
2409		else	/* no EX_CTX and no SEQ_CTX */
2410			fc_exch_recv_req(lport, ema->mp, fp);
2411		break;
2412	default:
2413		FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2414			     fr_eof(fp));
2415		fc_frame_free(fp);
2416	}
2417}
2418EXPORT_SYMBOL(fc_exch_recv);
2419
2420/**
2421 * fc_exch_init() - Initialize the exchange layer for a local port
2422 * @lport: The local port to initialize the exchange layer for
2423 */
2424int fc_exch_init(struct fc_lport *lport)
2425{
2426	if (!lport->tt.seq_start_next)
2427		lport->tt.seq_start_next = fc_seq_start_next;
2428
2429	if (!lport->tt.seq_set_resp)
2430		lport->tt.seq_set_resp = fc_seq_set_resp;
2431
2432	if (!lport->tt.exch_seq_send)
2433		lport->tt.exch_seq_send = fc_exch_seq_send;
2434
2435	if (!lport->tt.seq_send)
2436		lport->tt.seq_send = fc_seq_send;
2437
2438	if (!lport->tt.seq_els_rsp_send)
2439		lport->tt.seq_els_rsp_send = fc_seq_els_rsp_send;
2440
2441	if (!lport->tt.exch_done)
2442		lport->tt.exch_done = fc_exch_done;
2443
2444	if (!lport->tt.exch_mgr_reset)
2445		lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2446
2447	if (!lport->tt.seq_exch_abort)
2448		lport->tt.seq_exch_abort = fc_seq_exch_abort;
2449
2450	if (!lport->tt.seq_assign)
2451		lport->tt.seq_assign = fc_seq_assign;
2452
2453	if (!lport->tt.seq_release)
2454		lport->tt.seq_release = fc_seq_release;
2455
2456	return 0;
2457}
2458EXPORT_SYMBOL(fc_exch_init);
2459
2460/**
2461 * fc_setup_exch_mgr() - Setup an exchange manager
2462 */
2463int fc_setup_exch_mgr(void)
2464{
2465	fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2466					 0, SLAB_HWCACHE_ALIGN, NULL);
2467	if (!fc_em_cachep)
2468		return -ENOMEM;
2469
2470	/*
2471	 * Initialize fc_cpu_mask and fc_cpu_order. The
2472	 * fc_cpu_mask is set for nr_cpu_ids rounded up
2473	 * to order of 2's * power and order is stored
2474	 * in fc_cpu_order as this is later required in
2475	 * mapping between an exch id and exch array index
2476	 * in per cpu exch pool.
2477	 *
2478	 * This round up is required to align fc_cpu_mask
2479	 * to exchange id's lower bits such that all incoming
2480	 * frames of an exchange gets delivered to the same
2481	 * cpu on which exchange originated by simple bitwise
2482	 * AND operation between fc_cpu_mask and exchange id.
2483	 */
2484	fc_cpu_mask = 1;
2485	fc_cpu_order = 0;
2486	while (fc_cpu_mask < nr_cpu_ids) {
2487		fc_cpu_mask <<= 1;
2488		fc_cpu_order++;
2489	}
2490	fc_cpu_mask--;
2491
2492	fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2493	if (!fc_exch_workqueue)
2494		goto err;
2495	return 0;
2496err:
2497	kmem_cache_destroy(fc_em_cachep);
2498	return -ENOMEM;
2499}
2500
2501/**
2502 * fc_destroy_exch_mgr() - Destroy an exchange manager
2503 */
2504void fc_destroy_exch_mgr(void)
2505{
2506	destroy_workqueue(fc_exch_workqueue);
2507	kmem_cache_destroy(fc_em_cachep);
2508}
2509