1/*
2 * Driver for Cirrus Logic EP93xx SPI controller.
3 *
4 * Copyright (C) 2010-2011 Mika Westerberg
5 *
6 * Explicit FIFO handling code was inspired by amba-pl022 driver.
7 *
8 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
9 *
10 * For more information about the SPI controller see documentation on Cirrus
11 * Logic web site:
12 *     http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
17 */
18
19#include <linux/io.h>
20#include <linux/clk.h>
21#include <linux/err.h>
22#include <linux/delay.h>
23#include <linux/device.h>
24#include <linux/dmaengine.h>
25#include <linux/bitops.h>
26#include <linux/interrupt.h>
27#include <linux/module.h>
28#include <linux/platform_device.h>
29#include <linux/workqueue.h>
30#include <linux/sched.h>
31#include <linux/scatterlist.h>
32#include <linux/spi/spi.h>
33
34#include <mach/dma.h>
35#include <mach/ep93xx_spi.h>
36
37#define SSPCR0			0x0000
38#define SSPCR0_MODE_SHIFT	6
39#define SSPCR0_SCR_SHIFT	8
40
41#define SSPCR1			0x0004
42#define SSPCR1_RIE		BIT(0)
43#define SSPCR1_TIE		BIT(1)
44#define SSPCR1_RORIE		BIT(2)
45#define SSPCR1_LBM		BIT(3)
46#define SSPCR1_SSE		BIT(4)
47#define SSPCR1_MS		BIT(5)
48#define SSPCR1_SOD		BIT(6)
49
50#define SSPDR			0x0008
51
52#define SSPSR			0x000c
53#define SSPSR_TFE		BIT(0)
54#define SSPSR_TNF		BIT(1)
55#define SSPSR_RNE		BIT(2)
56#define SSPSR_RFF		BIT(3)
57#define SSPSR_BSY		BIT(4)
58#define SSPCPSR			0x0010
59
60#define SSPIIR			0x0014
61#define SSPIIR_RIS		BIT(0)
62#define SSPIIR_TIS		BIT(1)
63#define SSPIIR_RORIS		BIT(2)
64#define SSPICR			SSPIIR
65
66/* timeout in milliseconds */
67#define SPI_TIMEOUT		5
68/* maximum depth of RX/TX FIFO */
69#define SPI_FIFO_SIZE		8
70
71/**
72 * struct ep93xx_spi - EP93xx SPI controller structure
73 * @lock: spinlock that protects concurrent accesses to fields @running,
74 *        @current_msg and @msg_queue
75 * @pdev: pointer to platform device
76 * @clk: clock for the controller
77 * @regs_base: pointer to ioremap()'d registers
78 * @sspdr_phys: physical address of the SSPDR register
79 * @irq: IRQ number used by the driver
80 * @min_rate: minimum clock rate (in Hz) supported by the controller
81 * @max_rate: maximum clock rate (in Hz) supported by the controller
82 * @running: is the queue running
83 * @wq: workqueue used by the driver
84 * @msg_work: work that is queued for the driver
85 * @wait: wait here until given transfer is completed
86 * @msg_queue: queue for the messages
87 * @current_msg: message that is currently processed (or %NULL if none)
88 * @tx: current byte in transfer to transmit
89 * @rx: current byte in transfer to receive
90 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
91 *              frame decreases this level and sending one frame increases it.
92 * @dma_rx: RX DMA channel
93 * @dma_tx: TX DMA channel
94 * @dma_rx_data: RX parameters passed to the DMA engine
95 * @dma_tx_data: TX parameters passed to the DMA engine
96 * @rx_sgt: sg table for RX transfers
97 * @tx_sgt: sg table for TX transfers
98 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
99 *            the client
100 *
101 * This structure holds EP93xx SPI controller specific information. When
102 * @running is %true, driver accepts transfer requests from protocol drivers.
103 * @current_msg is used to hold pointer to the message that is currently
104 * processed. If @current_msg is %NULL, it means that no processing is going
105 * on.
106 *
107 * Most of the fields are only written once and they can be accessed without
108 * taking the @lock. Fields that are accessed concurrently are: @current_msg,
109 * @running, and @msg_queue.
110 */
111struct ep93xx_spi {
112	spinlock_t			lock;
113	const struct platform_device	*pdev;
114	struct clk			*clk;
115	void __iomem			*regs_base;
116	unsigned long			sspdr_phys;
117	int				irq;
118	unsigned long			min_rate;
119	unsigned long			max_rate;
120	bool				running;
121	struct workqueue_struct		*wq;
122	struct work_struct		msg_work;
123	struct completion		wait;
124	struct list_head		msg_queue;
125	struct spi_message		*current_msg;
126	size_t				tx;
127	size_t				rx;
128	size_t				fifo_level;
129	struct dma_chan			*dma_rx;
130	struct dma_chan			*dma_tx;
131	struct ep93xx_dma_data		dma_rx_data;
132	struct ep93xx_dma_data		dma_tx_data;
133	struct sg_table			rx_sgt;
134	struct sg_table			tx_sgt;
135	void				*zeropage;
136};
137
138/**
139 * struct ep93xx_spi_chip - SPI device hardware settings
140 * @spi: back pointer to the SPI device
141 * @rate: max rate in hz this chip supports
142 * @div_cpsr: cpsr (pre-scaler) divider
143 * @div_scr: scr divider
144 * @dss: bits per word (4 - 16 bits)
145 * @ops: private chip operations
146 *
147 * This structure is used to store hardware register specific settings for each
148 * SPI device. Settings are written to hardware by function
149 * ep93xx_spi_chip_setup().
150 */
151struct ep93xx_spi_chip {
152	const struct spi_device		*spi;
153	unsigned long			rate;
154	u8				div_cpsr;
155	u8				div_scr;
156	u8				dss;
157	struct ep93xx_spi_chip_ops	*ops;
158};
159
160/* converts bits per word to CR0.DSS value */
161#define bits_per_word_to_dss(bpw)	((bpw) - 1)
162
163static inline void
164ep93xx_spi_write_u8(const struct ep93xx_spi *espi, u16 reg, u8 value)
165{
166	__raw_writeb(value, espi->regs_base + reg);
167}
168
169static inline u8
170ep93xx_spi_read_u8(const struct ep93xx_spi *spi, u16 reg)
171{
172	return __raw_readb(spi->regs_base + reg);
173}
174
175static inline void
176ep93xx_spi_write_u16(const struct ep93xx_spi *espi, u16 reg, u16 value)
177{
178	__raw_writew(value, espi->regs_base + reg);
179}
180
181static inline u16
182ep93xx_spi_read_u16(const struct ep93xx_spi *spi, u16 reg)
183{
184	return __raw_readw(spi->regs_base + reg);
185}
186
187static int ep93xx_spi_enable(const struct ep93xx_spi *espi)
188{
189	u8 regval;
190	int err;
191
192	err = clk_enable(espi->clk);
193	if (err)
194		return err;
195
196	regval = ep93xx_spi_read_u8(espi, SSPCR1);
197	regval |= SSPCR1_SSE;
198	ep93xx_spi_write_u8(espi, SSPCR1, regval);
199
200	return 0;
201}
202
203static void ep93xx_spi_disable(const struct ep93xx_spi *espi)
204{
205	u8 regval;
206
207	regval = ep93xx_spi_read_u8(espi, SSPCR1);
208	regval &= ~SSPCR1_SSE;
209	ep93xx_spi_write_u8(espi, SSPCR1, regval);
210
211	clk_disable(espi->clk);
212}
213
214static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi *espi)
215{
216	u8 regval;
217
218	regval = ep93xx_spi_read_u8(espi, SSPCR1);
219	regval |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
220	ep93xx_spi_write_u8(espi, SSPCR1, regval);
221}
222
223static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi *espi)
224{
225	u8 regval;
226
227	regval = ep93xx_spi_read_u8(espi, SSPCR1);
228	regval &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
229	ep93xx_spi_write_u8(espi, SSPCR1, regval);
230}
231
232/**
233 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
234 * @espi: ep93xx SPI controller struct
235 * @chip: divisors are calculated for this chip
236 * @rate: desired SPI output clock rate
237 *
238 * Function calculates cpsr (clock pre-scaler) and scr divisors based on
239 * given @rate and places them to @chip->div_cpsr and @chip->div_scr. If,
240 * for some reason, divisors cannot be calculated nothing is stored and
241 * %-EINVAL is returned.
242 */
243static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi,
244				    struct ep93xx_spi_chip *chip,
245				    unsigned long rate)
246{
247	unsigned long spi_clk_rate = clk_get_rate(espi->clk);
248	int cpsr, scr;
249
250	/*
251	 * Make sure that max value is between values supported by the
252	 * controller. Note that minimum value is already checked in
253	 * ep93xx_spi_transfer().
254	 */
255	rate = clamp(rate, espi->min_rate, espi->max_rate);
256
257	/*
258	 * Calculate divisors so that we can get speed according the
259	 * following formula:
260	 *	rate = spi_clock_rate / (cpsr * (1 + scr))
261	 *
262	 * cpsr must be even number and starts from 2, scr can be any number
263	 * between 0 and 255.
264	 */
265	for (cpsr = 2; cpsr <= 254; cpsr += 2) {
266		for (scr = 0; scr <= 255; scr++) {
267			if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
268				chip->div_scr = (u8)scr;
269				chip->div_cpsr = (u8)cpsr;
270				return 0;
271			}
272		}
273	}
274
275	return -EINVAL;
276}
277
278static void ep93xx_spi_cs_control(struct spi_device *spi, bool control)
279{
280	struct ep93xx_spi_chip *chip = spi_get_ctldata(spi);
281	int value = (spi->mode & SPI_CS_HIGH) ? control : !control;
282
283	if (chip->ops && chip->ops->cs_control)
284		chip->ops->cs_control(spi, value);
285}
286
287/**
288 * ep93xx_spi_setup() - setup an SPI device
289 * @spi: SPI device to setup
290 *
291 * This function sets up SPI device mode, speed etc. Can be called multiple
292 * times for a single device. Returns %0 in case of success, negative error in
293 * case of failure. When this function returns success, the device is
294 * deselected.
295 */
296static int ep93xx_spi_setup(struct spi_device *spi)
297{
298	struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
299	struct ep93xx_spi_chip *chip;
300
301	if (spi->bits_per_word < 4 || spi->bits_per_word > 16) {
302		dev_err(&espi->pdev->dev, "invalid bits per word %d\n",
303			spi->bits_per_word);
304		return -EINVAL;
305	}
306
307	chip = spi_get_ctldata(spi);
308	if (!chip) {
309		dev_dbg(&espi->pdev->dev, "initial setup for %s\n",
310			spi->modalias);
311
312		chip = kzalloc(sizeof(*chip), GFP_KERNEL);
313		if (!chip)
314			return -ENOMEM;
315
316		chip->spi = spi;
317		chip->ops = spi->controller_data;
318
319		if (chip->ops && chip->ops->setup) {
320			int ret = chip->ops->setup(spi);
321			if (ret) {
322				kfree(chip);
323				return ret;
324			}
325		}
326
327		spi_set_ctldata(spi, chip);
328	}
329
330	if (spi->max_speed_hz != chip->rate) {
331		int err;
332
333		err = ep93xx_spi_calc_divisors(espi, chip, spi->max_speed_hz);
334		if (err != 0) {
335			spi_set_ctldata(spi, NULL);
336			kfree(chip);
337			return err;
338		}
339		chip->rate = spi->max_speed_hz;
340	}
341
342	chip->dss = bits_per_word_to_dss(spi->bits_per_word);
343
344	ep93xx_spi_cs_control(spi, false);
345	return 0;
346}
347
348/**
349 * ep93xx_spi_transfer() - queue message to be transferred
350 * @spi: target SPI device
351 * @msg: message to be transferred
352 *
353 * This function is called by SPI device drivers when they are going to transfer
354 * a new message. It simply puts the message in the queue and schedules
355 * workqueue to perform the actual transfer later on.
356 *
357 * Returns %0 on success and negative error in case of failure.
358 */
359static int ep93xx_spi_transfer(struct spi_device *spi, struct spi_message *msg)
360{
361	struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
362	struct spi_transfer *t;
363	unsigned long flags;
364
365	if (!msg || !msg->complete)
366		return -EINVAL;
367
368	/* first validate each transfer */
369	list_for_each_entry(t, &msg->transfers, transfer_list) {
370		if (t->bits_per_word) {
371			if (t->bits_per_word < 4 || t->bits_per_word > 16)
372				return -EINVAL;
373		}
374		if (t->speed_hz && t->speed_hz < espi->min_rate)
375				return -EINVAL;
376	}
377
378	/*
379	 * Now that we own the message, let's initialize it so that it is
380	 * suitable for us. We use @msg->status to signal whether there was
381	 * error in transfer and @msg->state is used to hold pointer to the
382	 * current transfer (or %NULL if no active current transfer).
383	 */
384	msg->state = NULL;
385	msg->status = 0;
386	msg->actual_length = 0;
387
388	spin_lock_irqsave(&espi->lock, flags);
389	if (!espi->running) {
390		spin_unlock_irqrestore(&espi->lock, flags);
391		return -ESHUTDOWN;
392	}
393	list_add_tail(&msg->queue, &espi->msg_queue);
394	queue_work(espi->wq, &espi->msg_work);
395	spin_unlock_irqrestore(&espi->lock, flags);
396
397	return 0;
398}
399
400/**
401 * ep93xx_spi_cleanup() - cleans up master controller specific state
402 * @spi: SPI device to cleanup
403 *
404 * This function releases master controller specific state for given @spi
405 * device.
406 */
407static void ep93xx_spi_cleanup(struct spi_device *spi)
408{
409	struct ep93xx_spi_chip *chip;
410
411	chip = spi_get_ctldata(spi);
412	if (chip) {
413		if (chip->ops && chip->ops->cleanup)
414			chip->ops->cleanup(spi);
415		spi_set_ctldata(spi, NULL);
416		kfree(chip);
417	}
418}
419
420/**
421 * ep93xx_spi_chip_setup() - configures hardware according to given @chip
422 * @espi: ep93xx SPI controller struct
423 * @chip: chip specific settings
424 *
425 * This function sets up the actual hardware registers with settings given in
426 * @chip. Note that no validation is done so make sure that callers validate
427 * settings before calling this.
428 */
429static void ep93xx_spi_chip_setup(const struct ep93xx_spi *espi,
430				  const struct ep93xx_spi_chip *chip)
431{
432	u16 cr0;
433
434	cr0 = chip->div_scr << SSPCR0_SCR_SHIFT;
435	cr0 |= (chip->spi->mode & (SPI_CPHA|SPI_CPOL)) << SSPCR0_MODE_SHIFT;
436	cr0 |= chip->dss;
437
438	dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
439		chip->spi->mode, chip->div_cpsr, chip->div_scr, chip->dss);
440	dev_dbg(&espi->pdev->dev, "setup: cr0 %#x", cr0);
441
442	ep93xx_spi_write_u8(espi, SSPCPSR, chip->div_cpsr);
443	ep93xx_spi_write_u16(espi, SSPCR0, cr0);
444}
445
446static inline int bits_per_word(const struct ep93xx_spi *espi)
447{
448	struct spi_message *msg = espi->current_msg;
449	struct spi_transfer *t = msg->state;
450
451	return t->bits_per_word ? t->bits_per_word : msg->spi->bits_per_word;
452}
453
454static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t)
455{
456	if (bits_per_word(espi) > 8) {
457		u16 tx_val = 0;
458
459		if (t->tx_buf)
460			tx_val = ((u16 *)t->tx_buf)[espi->tx];
461		ep93xx_spi_write_u16(espi, SSPDR, tx_val);
462		espi->tx += sizeof(tx_val);
463	} else {
464		u8 tx_val = 0;
465
466		if (t->tx_buf)
467			tx_val = ((u8 *)t->tx_buf)[espi->tx];
468		ep93xx_spi_write_u8(espi, SSPDR, tx_val);
469		espi->tx += sizeof(tx_val);
470	}
471}
472
473static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t)
474{
475	if (bits_per_word(espi) > 8) {
476		u16 rx_val;
477
478		rx_val = ep93xx_spi_read_u16(espi, SSPDR);
479		if (t->rx_buf)
480			((u16 *)t->rx_buf)[espi->rx] = rx_val;
481		espi->rx += sizeof(rx_val);
482	} else {
483		u8 rx_val;
484
485		rx_val = ep93xx_spi_read_u8(espi, SSPDR);
486		if (t->rx_buf)
487			((u8 *)t->rx_buf)[espi->rx] = rx_val;
488		espi->rx += sizeof(rx_val);
489	}
490}
491
492/**
493 * ep93xx_spi_read_write() - perform next RX/TX transfer
494 * @espi: ep93xx SPI controller struct
495 *
496 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
497 * called several times, the whole transfer will be completed. Returns
498 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
499 *
500 * When this function is finished, RX FIFO should be empty and TX FIFO should be
501 * full.
502 */
503static int ep93xx_spi_read_write(struct ep93xx_spi *espi)
504{
505	struct spi_message *msg = espi->current_msg;
506	struct spi_transfer *t = msg->state;
507
508	/* read as long as RX FIFO has frames in it */
509	while ((ep93xx_spi_read_u8(espi, SSPSR) & SSPSR_RNE)) {
510		ep93xx_do_read(espi, t);
511		espi->fifo_level--;
512	}
513
514	/* write as long as TX FIFO has room */
515	while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) {
516		ep93xx_do_write(espi, t);
517		espi->fifo_level++;
518	}
519
520	if (espi->rx == t->len)
521		return 0;
522
523	return -EINPROGRESS;
524}
525
526static void ep93xx_spi_pio_transfer(struct ep93xx_spi *espi)
527{
528	/*
529	 * Now everything is set up for the current transfer. We prime the TX
530	 * FIFO, enable interrupts, and wait for the transfer to complete.
531	 */
532	if (ep93xx_spi_read_write(espi)) {
533		ep93xx_spi_enable_interrupts(espi);
534		wait_for_completion(&espi->wait);
535	}
536}
537
538/**
539 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
540 * @espi: ep93xx SPI controller struct
541 * @dir: DMA transfer direction
542 *
543 * Function configures the DMA, maps the buffer and prepares the DMA
544 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
545 * in case of failure.
546 */
547static struct dma_async_tx_descriptor *
548ep93xx_spi_dma_prepare(struct ep93xx_spi *espi, enum dma_data_direction dir)
549{
550	struct spi_transfer *t = espi->current_msg->state;
551	struct dma_async_tx_descriptor *txd;
552	enum dma_slave_buswidth buswidth;
553	struct dma_slave_config conf;
554	enum dma_transfer_direction slave_dirn;
555	struct scatterlist *sg;
556	struct sg_table *sgt;
557	struct dma_chan *chan;
558	const void *buf, *pbuf;
559	size_t len = t->len;
560	int i, ret, nents;
561
562	if (bits_per_word(espi) > 8)
563		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
564	else
565		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
566
567	memset(&conf, 0, sizeof(conf));
568	conf.direction = dir;
569
570	if (dir == DMA_FROM_DEVICE) {
571		chan = espi->dma_rx;
572		buf = t->rx_buf;
573		sgt = &espi->rx_sgt;
574
575		conf.src_addr = espi->sspdr_phys;
576		conf.src_addr_width = buswidth;
577		slave_dirn = DMA_DEV_TO_MEM;
578	} else {
579		chan = espi->dma_tx;
580		buf = t->tx_buf;
581		sgt = &espi->tx_sgt;
582
583		conf.dst_addr = espi->sspdr_phys;
584		conf.dst_addr_width = buswidth;
585		slave_dirn = DMA_MEM_TO_DEV;
586	}
587
588	ret = dmaengine_slave_config(chan, &conf);
589	if (ret)
590		return ERR_PTR(ret);
591
592	/*
593	 * We need to split the transfer into PAGE_SIZE'd chunks. This is
594	 * because we are using @espi->zeropage to provide a zero RX buffer
595	 * for the TX transfers and we have only allocated one page for that.
596	 *
597	 * For performance reasons we allocate a new sg_table only when
598	 * needed. Otherwise we will re-use the current one. Eventually the
599	 * last sg_table is released in ep93xx_spi_release_dma().
600	 */
601
602	nents = DIV_ROUND_UP(len, PAGE_SIZE);
603	if (nents != sgt->nents) {
604		sg_free_table(sgt);
605
606		ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
607		if (ret)
608			return ERR_PTR(ret);
609	}
610
611	pbuf = buf;
612	for_each_sg(sgt->sgl, sg, sgt->nents, i) {
613		size_t bytes = min_t(size_t, len, PAGE_SIZE);
614
615		if (buf) {
616			sg_set_page(sg, virt_to_page(pbuf), bytes,
617				    offset_in_page(pbuf));
618		} else {
619			sg_set_page(sg, virt_to_page(espi->zeropage),
620				    bytes, 0);
621		}
622
623		pbuf += bytes;
624		len -= bytes;
625	}
626
627	if (WARN_ON(len)) {
628		dev_warn(&espi->pdev->dev, "len = %d expected 0!", len);
629		return ERR_PTR(-EINVAL);
630	}
631
632	nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
633	if (!nents)
634		return ERR_PTR(-ENOMEM);
635
636	txd = chan->device->device_prep_slave_sg(chan, sgt->sgl, nents,
637						 slave_dirn, DMA_CTRL_ACK);
638	if (!txd) {
639		dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
640		return ERR_PTR(-ENOMEM);
641	}
642	return txd;
643}
644
645/**
646 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
647 * @espi: ep93xx SPI controller struct
648 * @dir: DMA transfer direction
649 *
650 * Function finishes with the DMA transfer. After this, the DMA buffer is
651 * unmapped.
652 */
653static void ep93xx_spi_dma_finish(struct ep93xx_spi *espi,
654				  enum dma_data_direction dir)
655{
656	struct dma_chan *chan;
657	struct sg_table *sgt;
658
659	if (dir == DMA_FROM_DEVICE) {
660		chan = espi->dma_rx;
661		sgt = &espi->rx_sgt;
662	} else {
663		chan = espi->dma_tx;
664		sgt = &espi->tx_sgt;
665	}
666
667	dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
668}
669
670static void ep93xx_spi_dma_callback(void *callback_param)
671{
672	complete(callback_param);
673}
674
675static void ep93xx_spi_dma_transfer(struct ep93xx_spi *espi)
676{
677	struct spi_message *msg = espi->current_msg;
678	struct dma_async_tx_descriptor *rxd, *txd;
679
680	rxd = ep93xx_spi_dma_prepare(espi, DMA_FROM_DEVICE);
681	if (IS_ERR(rxd)) {
682		dev_err(&espi->pdev->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
683		msg->status = PTR_ERR(rxd);
684		return;
685	}
686
687	txd = ep93xx_spi_dma_prepare(espi, DMA_TO_DEVICE);
688	if (IS_ERR(txd)) {
689		ep93xx_spi_dma_finish(espi, DMA_FROM_DEVICE);
690		dev_err(&espi->pdev->dev, "DMA TX failed: %ld\n", PTR_ERR(rxd));
691		msg->status = PTR_ERR(txd);
692		return;
693	}
694
695	/* We are ready when RX is done */
696	rxd->callback = ep93xx_spi_dma_callback;
697	rxd->callback_param = &espi->wait;
698
699	/* Now submit both descriptors and wait while they finish */
700	dmaengine_submit(rxd);
701	dmaengine_submit(txd);
702
703	dma_async_issue_pending(espi->dma_rx);
704	dma_async_issue_pending(espi->dma_tx);
705
706	wait_for_completion(&espi->wait);
707
708	ep93xx_spi_dma_finish(espi, DMA_TO_DEVICE);
709	ep93xx_spi_dma_finish(espi, DMA_FROM_DEVICE);
710}
711
712/**
713 * ep93xx_spi_process_transfer() - processes one SPI transfer
714 * @espi: ep93xx SPI controller struct
715 * @msg: current message
716 * @t: transfer to process
717 *
718 * This function processes one SPI transfer given in @t. Function waits until
719 * transfer is complete (may sleep) and updates @msg->status based on whether
720 * transfer was successfully processed or not.
721 */
722static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi,
723					struct spi_message *msg,
724					struct spi_transfer *t)
725{
726	struct ep93xx_spi_chip *chip = spi_get_ctldata(msg->spi);
727
728	msg->state = t;
729
730	/*
731	 * Handle any transfer specific settings if needed. We use
732	 * temporary chip settings here and restore original later when
733	 * the transfer is finished.
734	 */
735	if (t->speed_hz || t->bits_per_word) {
736		struct ep93xx_spi_chip tmp_chip = *chip;
737
738		if (t->speed_hz) {
739			int err;
740
741			err = ep93xx_spi_calc_divisors(espi, &tmp_chip,
742						       t->speed_hz);
743			if (err) {
744				dev_err(&espi->pdev->dev,
745					"failed to adjust speed\n");
746				msg->status = err;
747				return;
748			}
749		}
750
751		if (t->bits_per_word)
752			tmp_chip.dss = bits_per_word_to_dss(t->bits_per_word);
753
754		/*
755		 * Set up temporary new hw settings for this transfer.
756		 */
757		ep93xx_spi_chip_setup(espi, &tmp_chip);
758	}
759
760	espi->rx = 0;
761	espi->tx = 0;
762
763	/*
764	 * There is no point of setting up DMA for the transfers which will
765	 * fit into the FIFO and can be transferred with a single interrupt.
766	 * So in these cases we will be using PIO and don't bother for DMA.
767	 */
768	if (espi->dma_rx && t->len > SPI_FIFO_SIZE)
769		ep93xx_spi_dma_transfer(espi);
770	else
771		ep93xx_spi_pio_transfer(espi);
772
773	/*
774	 * In case of error during transmit, we bail out from processing
775	 * the message.
776	 */
777	if (msg->status)
778		return;
779
780	msg->actual_length += t->len;
781
782	/*
783	 * After this transfer is finished, perform any possible
784	 * post-transfer actions requested by the protocol driver.
785	 */
786	if (t->delay_usecs) {
787		set_current_state(TASK_UNINTERRUPTIBLE);
788		schedule_timeout(usecs_to_jiffies(t->delay_usecs));
789	}
790	if (t->cs_change) {
791		if (!list_is_last(&t->transfer_list, &msg->transfers)) {
792			/*
793			 * In case protocol driver is asking us to drop the
794			 * chipselect briefly, we let the scheduler to handle
795			 * any "delay" here.
796			 */
797			ep93xx_spi_cs_control(msg->spi, false);
798			cond_resched();
799			ep93xx_spi_cs_control(msg->spi, true);
800		}
801	}
802
803	if (t->speed_hz || t->bits_per_word)
804		ep93xx_spi_chip_setup(espi, chip);
805}
806
807/*
808 * ep93xx_spi_process_message() - process one SPI message
809 * @espi: ep93xx SPI controller struct
810 * @msg: message to process
811 *
812 * This function processes a single SPI message. We go through all transfers in
813 * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
814 * asserted during the whole message (unless per transfer cs_change is set).
815 *
816 * @msg->status contains %0 in case of success or negative error code in case of
817 * failure.
818 */
819static void ep93xx_spi_process_message(struct ep93xx_spi *espi,
820				       struct spi_message *msg)
821{
822	unsigned long timeout;
823	struct spi_transfer *t;
824	int err;
825
826	/*
827	 * Enable the SPI controller and its clock.
828	 */
829	err = ep93xx_spi_enable(espi);
830	if (err) {
831		dev_err(&espi->pdev->dev, "failed to enable SPI controller\n");
832		msg->status = err;
833		return;
834	}
835
836	/*
837	 * Just to be sure: flush any data from RX FIFO.
838	 */
839	timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
840	while (ep93xx_spi_read_u16(espi, SSPSR) & SSPSR_RNE) {
841		if (time_after(jiffies, timeout)) {
842			dev_warn(&espi->pdev->dev,
843				 "timeout while flushing RX FIFO\n");
844			msg->status = -ETIMEDOUT;
845			return;
846		}
847		ep93xx_spi_read_u16(espi, SSPDR);
848	}
849
850	/*
851	 * We explicitly handle FIFO level. This way we don't have to check TX
852	 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
853	 */
854	espi->fifo_level = 0;
855
856	/*
857	 * Update SPI controller registers according to spi device and assert
858	 * the chipselect.
859	 */
860	ep93xx_spi_chip_setup(espi, spi_get_ctldata(msg->spi));
861	ep93xx_spi_cs_control(msg->spi, true);
862
863	list_for_each_entry(t, &msg->transfers, transfer_list) {
864		ep93xx_spi_process_transfer(espi, msg, t);
865		if (msg->status)
866			break;
867	}
868
869	/*
870	 * Now the whole message is transferred (or failed for some reason). We
871	 * deselect the device and disable the SPI controller.
872	 */
873	ep93xx_spi_cs_control(msg->spi, false);
874	ep93xx_spi_disable(espi);
875}
876
877#define work_to_espi(work) (container_of((work), struct ep93xx_spi, msg_work))
878
879/**
880 * ep93xx_spi_work() - EP93xx SPI workqueue worker function
881 * @work: work struct
882 *
883 * Workqueue worker function. This function is called when there are new
884 * SPI messages to be processed. Message is taken out from the queue and then
885 * passed to ep93xx_spi_process_message().
886 *
887 * After message is transferred, protocol driver is notified by calling
888 * @msg->complete(). In case of error, @msg->status is set to negative error
889 * number, otherwise it contains zero (and @msg->actual_length is updated).
890 */
891static void ep93xx_spi_work(struct work_struct *work)
892{
893	struct ep93xx_spi *espi = work_to_espi(work);
894	struct spi_message *msg;
895
896	spin_lock_irq(&espi->lock);
897	if (!espi->running || espi->current_msg ||
898		list_empty(&espi->msg_queue)) {
899		spin_unlock_irq(&espi->lock);
900		return;
901	}
902	msg = list_first_entry(&espi->msg_queue, struct spi_message, queue);
903	list_del_init(&msg->queue);
904	espi->current_msg = msg;
905	spin_unlock_irq(&espi->lock);
906
907	ep93xx_spi_process_message(espi, msg);
908
909	/*
910	 * Update the current message and re-schedule ourselves if there are
911	 * more messages in the queue.
912	 */
913	spin_lock_irq(&espi->lock);
914	espi->current_msg = NULL;
915	if (espi->running && !list_empty(&espi->msg_queue))
916		queue_work(espi->wq, &espi->msg_work);
917	spin_unlock_irq(&espi->lock);
918
919	/* notify the protocol driver that we are done with this message */
920	msg->complete(msg->context);
921}
922
923static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
924{
925	struct ep93xx_spi *espi = dev_id;
926	u8 irq_status = ep93xx_spi_read_u8(espi, SSPIIR);
927
928	/*
929	 * If we got ROR (receive overrun) interrupt we know that something is
930	 * wrong. Just abort the message.
931	 */
932	if (unlikely(irq_status & SSPIIR_RORIS)) {
933		/* clear the overrun interrupt */
934		ep93xx_spi_write_u8(espi, SSPICR, 0);
935		dev_warn(&espi->pdev->dev,
936			 "receive overrun, aborting the message\n");
937		espi->current_msg->status = -EIO;
938	} else {
939		/*
940		 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
941		 * simply execute next data transfer.
942		 */
943		if (ep93xx_spi_read_write(espi)) {
944			/*
945			 * In normal case, there still is some processing left
946			 * for current transfer. Let's wait for the next
947			 * interrupt then.
948			 */
949			return IRQ_HANDLED;
950		}
951	}
952
953	/*
954	 * Current transfer is finished, either with error or with success. In
955	 * any case we disable interrupts and notify the worker to handle
956	 * any post-processing of the message.
957	 */
958	ep93xx_spi_disable_interrupts(espi);
959	complete(&espi->wait);
960	return IRQ_HANDLED;
961}
962
963static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
964{
965	if (ep93xx_dma_chan_is_m2p(chan))
966		return false;
967
968	chan->private = filter_param;
969	return true;
970}
971
972static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
973{
974	dma_cap_mask_t mask;
975	int ret;
976
977	espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
978	if (!espi->zeropage)
979		return -ENOMEM;
980
981	dma_cap_zero(mask);
982	dma_cap_set(DMA_SLAVE, mask);
983
984	espi->dma_rx_data.port = EP93XX_DMA_SSP;
985	espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
986	espi->dma_rx_data.name = "ep93xx-spi-rx";
987
988	espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
989					   &espi->dma_rx_data);
990	if (!espi->dma_rx) {
991		ret = -ENODEV;
992		goto fail_free_page;
993	}
994
995	espi->dma_tx_data.port = EP93XX_DMA_SSP;
996	espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
997	espi->dma_tx_data.name = "ep93xx-spi-tx";
998
999	espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
1000					   &espi->dma_tx_data);
1001	if (!espi->dma_tx) {
1002		ret = -ENODEV;
1003		goto fail_release_rx;
1004	}
1005
1006	return 0;
1007
1008fail_release_rx:
1009	dma_release_channel(espi->dma_rx);
1010	espi->dma_rx = NULL;
1011fail_free_page:
1012	free_page((unsigned long)espi->zeropage);
1013
1014	return ret;
1015}
1016
1017static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
1018{
1019	if (espi->dma_rx) {
1020		dma_release_channel(espi->dma_rx);
1021		sg_free_table(&espi->rx_sgt);
1022	}
1023	if (espi->dma_tx) {
1024		dma_release_channel(espi->dma_tx);
1025		sg_free_table(&espi->tx_sgt);
1026	}
1027
1028	if (espi->zeropage)
1029		free_page((unsigned long)espi->zeropage);
1030}
1031
1032static int __devinit ep93xx_spi_probe(struct platform_device *pdev)
1033{
1034	struct spi_master *master;
1035	struct ep93xx_spi_info *info;
1036	struct ep93xx_spi *espi;
1037	struct resource *res;
1038	int error;
1039
1040	info = pdev->dev.platform_data;
1041
1042	master = spi_alloc_master(&pdev->dev, sizeof(*espi));
1043	if (!master) {
1044		dev_err(&pdev->dev, "failed to allocate spi master\n");
1045		return -ENOMEM;
1046	}
1047
1048	master->setup = ep93xx_spi_setup;
1049	master->transfer = ep93xx_spi_transfer;
1050	master->cleanup = ep93xx_spi_cleanup;
1051	master->bus_num = pdev->id;
1052	master->num_chipselect = info->num_chipselect;
1053	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1054
1055	platform_set_drvdata(pdev, master);
1056
1057	espi = spi_master_get_devdata(master);
1058
1059	espi->clk = clk_get(&pdev->dev, NULL);
1060	if (IS_ERR(espi->clk)) {
1061		dev_err(&pdev->dev, "unable to get spi clock\n");
1062		error = PTR_ERR(espi->clk);
1063		goto fail_release_master;
1064	}
1065
1066	spin_lock_init(&espi->lock);
1067	init_completion(&espi->wait);
1068
1069	/*
1070	 * Calculate maximum and minimum supported clock rates
1071	 * for the controller.
1072	 */
1073	espi->max_rate = clk_get_rate(espi->clk) / 2;
1074	espi->min_rate = clk_get_rate(espi->clk) / (254 * 256);
1075	espi->pdev = pdev;
1076
1077	espi->irq = platform_get_irq(pdev, 0);
1078	if (espi->irq < 0) {
1079		error = -EBUSY;
1080		dev_err(&pdev->dev, "failed to get irq resources\n");
1081		goto fail_put_clock;
1082	}
1083
1084	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1085	if (!res) {
1086		dev_err(&pdev->dev, "unable to get iomem resource\n");
1087		error = -ENODEV;
1088		goto fail_put_clock;
1089	}
1090
1091	res = request_mem_region(res->start, resource_size(res), pdev->name);
1092	if (!res) {
1093		dev_err(&pdev->dev, "unable to request iomem resources\n");
1094		error = -EBUSY;
1095		goto fail_put_clock;
1096	}
1097
1098	espi->sspdr_phys = res->start + SSPDR;
1099	espi->regs_base = ioremap(res->start, resource_size(res));
1100	if (!espi->regs_base) {
1101		dev_err(&pdev->dev, "failed to map resources\n");
1102		error = -ENODEV;
1103		goto fail_free_mem;
1104	}
1105
1106	error = request_irq(espi->irq, ep93xx_spi_interrupt, 0,
1107			    "ep93xx-spi", espi);
1108	if (error) {
1109		dev_err(&pdev->dev, "failed to request irq\n");
1110		goto fail_unmap_regs;
1111	}
1112
1113	if (info->use_dma && ep93xx_spi_setup_dma(espi))
1114		dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
1115
1116	espi->wq = create_singlethread_workqueue("ep93xx_spid");
1117	if (!espi->wq) {
1118		dev_err(&pdev->dev, "unable to create workqueue\n");
1119		goto fail_free_dma;
1120	}
1121	INIT_WORK(&espi->msg_work, ep93xx_spi_work);
1122	INIT_LIST_HEAD(&espi->msg_queue);
1123	espi->running = true;
1124
1125	/* make sure that the hardware is disabled */
1126	ep93xx_spi_write_u8(espi, SSPCR1, 0);
1127
1128	error = spi_register_master(master);
1129	if (error) {
1130		dev_err(&pdev->dev, "failed to register SPI master\n");
1131		goto fail_free_queue;
1132	}
1133
1134	dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
1135		 (unsigned long)res->start, espi->irq);
1136
1137	return 0;
1138
1139fail_free_queue:
1140	destroy_workqueue(espi->wq);
1141fail_free_dma:
1142	ep93xx_spi_release_dma(espi);
1143	free_irq(espi->irq, espi);
1144fail_unmap_regs:
1145	iounmap(espi->regs_base);
1146fail_free_mem:
1147	release_mem_region(res->start, resource_size(res));
1148fail_put_clock:
1149	clk_put(espi->clk);
1150fail_release_master:
1151	spi_master_put(master);
1152	platform_set_drvdata(pdev, NULL);
1153
1154	return error;
1155}
1156
1157static int __devexit ep93xx_spi_remove(struct platform_device *pdev)
1158{
1159	struct spi_master *master = platform_get_drvdata(pdev);
1160	struct ep93xx_spi *espi = spi_master_get_devdata(master);
1161	struct resource *res;
1162
1163	spin_lock_irq(&espi->lock);
1164	espi->running = false;
1165	spin_unlock_irq(&espi->lock);
1166
1167	destroy_workqueue(espi->wq);
1168
1169	/*
1170	 * Complete remaining messages with %-ESHUTDOWN status.
1171	 */
1172	spin_lock_irq(&espi->lock);
1173	while (!list_empty(&espi->msg_queue)) {
1174		struct spi_message *msg;
1175
1176		msg = list_first_entry(&espi->msg_queue,
1177				       struct spi_message, queue);
1178		list_del_init(&msg->queue);
1179		msg->status = -ESHUTDOWN;
1180		spin_unlock_irq(&espi->lock);
1181		msg->complete(msg->context);
1182		spin_lock_irq(&espi->lock);
1183	}
1184	spin_unlock_irq(&espi->lock);
1185
1186	ep93xx_spi_release_dma(espi);
1187	free_irq(espi->irq, espi);
1188	iounmap(espi->regs_base);
1189	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1190	release_mem_region(res->start, resource_size(res));
1191	clk_put(espi->clk);
1192	platform_set_drvdata(pdev, NULL);
1193
1194	spi_unregister_master(master);
1195	return 0;
1196}
1197
1198static struct platform_driver ep93xx_spi_driver = {
1199	.driver		= {
1200		.name	= "ep93xx-spi",
1201		.owner	= THIS_MODULE,
1202	},
1203	.probe		= ep93xx_spi_probe,
1204	.remove		= __devexit_p(ep93xx_spi_remove),
1205};
1206module_platform_driver(ep93xx_spi_driver);
1207
1208MODULE_DESCRIPTION("EP93xx SPI Controller driver");
1209MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1210MODULE_LICENSE("GPL");
1211MODULE_ALIAS("platform:ep93xx-spi");
1212