1/*
2 *  Copyright (C) 1991, 1992  Linus Torvalds
3 */
4
5/*
6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7 * or rs-channels. It also implements echoing, cooked mode etc.
8 *
9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10 *
11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12 * tty_struct and tty_queue structures.  Previously there was an array
13 * of 256 tty_struct's which was statically allocated, and the
14 * tty_queue structures were allocated at boot time.  Both are now
15 * dynamically allocated only when the tty is open.
16 *
17 * Also restructured routines so that there is more of a separation
18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19 * the low-level tty routines (serial.c, pty.c, console.c).  This
20 * makes for cleaner and more compact code.  -TYT, 9/17/92
21 *
22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23 * which can be dynamically activated and de-activated by the line
24 * discipline handling modules (like SLIP).
25 *
26 * NOTE: pay no attention to the line discipline code (yet); its
27 * interface is still subject to change in this version...
28 * -- TYT, 1/31/92
29 *
30 * Added functionality to the OPOST tty handling.  No delays, but all
31 * other bits should be there.
32 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33 *
34 * Rewrote canonical mode and added more termios flags.
35 * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36 *
37 * Reorganized FASYNC support so mouse code can share it.
38 *	-- ctm@ardi.com, 9Sep95
39 *
40 * New TIOCLINUX variants added.
41 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
42 *
43 * Restrict vt switching via ioctl()
44 *      -- grif@cs.ucr.edu, 5-Dec-95
45 *
46 * Move console and virtual terminal code to more appropriate files,
47 * implement CONFIG_VT and generalize console device interface.
48 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49 *
50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51 *	-- Bill Hawes <whawes@star.net>, June 97
52 *
53 * Added devfs support.
54 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55 *
56 * Added support for a Unix98-style ptmx device.
57 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58 *
59 * Reduced memory usage for older ARM systems
60 *      -- Russell King <rmk@arm.linux.org.uk>
61 *
62 * Move do_SAK() into process context.  Less stack use in devfs functions.
63 * alloc_tty_struct() always uses kmalloc()
64 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65 */
66
67#include <linux/types.h>
68#include <linux/major.h>
69#include <linux/errno.h>
70#include <linux/signal.h>
71#include <linux/fcntl.h>
72#include <linux/sched.h>
73#include <linux/interrupt.h>
74#include <linux/tty.h>
75#include <linux/tty_driver.h>
76#include <linux/tty_flip.h>
77#include <linux/devpts_fs.h>
78#include <linux/file.h>
79#include <linux/fdtable.h>
80#include <linux/console.h>
81#include <linux/timer.h>
82#include <linux/ctype.h>
83#include <linux/kd.h>
84#include <linux/mm.h>
85#include <linux/string.h>
86#include <linux/slab.h>
87#include <linux/poll.h>
88#include <linux/proc_fs.h>
89#include <linux/init.h>
90#include <linux/module.h>
91#include <linux/device.h>
92#include <linux/wait.h>
93#include <linux/bitops.h>
94#include <linux/delay.h>
95#include <linux/seq_file.h>
96#include <linux/serial.h>
97#include <linux/ratelimit.h>
98
99#include <linux/uaccess.h>
100#include <asm/system.h>
101
102#include <linux/kbd_kern.h>
103#include <linux/vt_kern.h>
104#include <linux/selection.h>
105
106#include <linux/kmod.h>
107#include <linux/nsproxy.h>
108
109#undef TTY_DEBUG_HANGUP
110
111#define TTY_PARANOIA_CHECK 1
112#define CHECK_TTY_COUNT 1
113
114struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
115	.c_iflag = ICRNL | IXON,
116	.c_oflag = OPOST | ONLCR,
117	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
118	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
119		   ECHOCTL | ECHOKE | IEXTEN,
120	.c_cc = INIT_C_CC,
121	.c_ispeed = 38400,
122	.c_ospeed = 38400
123};
124
125EXPORT_SYMBOL(tty_std_termios);
126
127/* This list gets poked at by procfs and various bits of boot up code. This
128   could do with some rationalisation such as pulling the tty proc function
129   into this file */
130
131LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
132
133/* Mutex to protect creating and releasing a tty. This is shared with
134   vt.c for deeply disgusting hack reasons */
135DEFINE_MUTEX(tty_mutex);
136EXPORT_SYMBOL(tty_mutex);
137
138/* Spinlock to protect the tty->tty_files list */
139DEFINE_SPINLOCK(tty_files_lock);
140
141static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
142static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
143ssize_t redirected_tty_write(struct file *, const char __user *,
144							size_t, loff_t *);
145static unsigned int tty_poll(struct file *, poll_table *);
146static int tty_open(struct inode *, struct file *);
147long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
148#ifdef CONFIG_COMPAT
149static long tty_compat_ioctl(struct file *file, unsigned int cmd,
150				unsigned long arg);
151#else
152#define tty_compat_ioctl NULL
153#endif
154static int __tty_fasync(int fd, struct file *filp, int on);
155static int tty_fasync(int fd, struct file *filp, int on);
156static void release_tty(struct tty_struct *tty, int idx);
157static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
159
160/**
161 *	alloc_tty_struct	-	allocate a tty object
162 *
163 *	Return a new empty tty structure. The data fields have not
164 *	been initialized in any way but has been zeroed
165 *
166 *	Locking: none
167 */
168
169struct tty_struct *alloc_tty_struct(void)
170{
171	return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
172}
173
174/**
175 *	free_tty_struct		-	free a disused tty
176 *	@tty: tty struct to free
177 *
178 *	Free the write buffers, tty queue and tty memory itself.
179 *
180 *	Locking: none. Must be called after tty is definitely unused
181 */
182
183void free_tty_struct(struct tty_struct *tty)
184{
185	if (tty->dev)
186		put_device(tty->dev);
187	kfree(tty->write_buf);
188	tty_buffer_free_all(tty);
189	kfree(tty);
190}
191
192static inline struct tty_struct *file_tty(struct file *file)
193{
194	return ((struct tty_file_private *)file->private_data)->tty;
195}
196
197int tty_alloc_file(struct file *file)
198{
199	struct tty_file_private *priv;
200
201	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
202	if (!priv)
203		return -ENOMEM;
204
205	file->private_data = priv;
206
207	return 0;
208}
209
210/* Associate a new file with the tty structure */
211void tty_add_file(struct tty_struct *tty, struct file *file)
212{
213	struct tty_file_private *priv = file->private_data;
214
215	priv->tty = tty;
216	priv->file = file;
217
218	spin_lock(&tty_files_lock);
219	list_add(&priv->list, &tty->tty_files);
220	spin_unlock(&tty_files_lock);
221}
222
223/**
224 * tty_free_file - free file->private_data
225 *
226 * This shall be used only for fail path handling when tty_add_file was not
227 * called yet.
228 */
229void tty_free_file(struct file *file)
230{
231	struct tty_file_private *priv = file->private_data;
232
233	file->private_data = NULL;
234	kfree(priv);
235}
236
237/* Delete file from its tty */
238void tty_del_file(struct file *file)
239{
240	struct tty_file_private *priv = file->private_data;
241
242	spin_lock(&tty_files_lock);
243	list_del(&priv->list);
244	spin_unlock(&tty_files_lock);
245	tty_free_file(file);
246}
247
248
249#define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
250
251/**
252 *	tty_name	-	return tty naming
253 *	@tty: tty structure
254 *	@buf: buffer for output
255 *
256 *	Convert a tty structure into a name. The name reflects the kernel
257 *	naming policy and if udev is in use may not reflect user space
258 *
259 *	Locking: none
260 */
261
262char *tty_name(struct tty_struct *tty, char *buf)
263{
264	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
265		strcpy(buf, "NULL tty");
266	else
267		strcpy(buf, tty->name);
268	return buf;
269}
270
271EXPORT_SYMBOL(tty_name);
272
273int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
274			      const char *routine)
275{
276#ifdef TTY_PARANOIA_CHECK
277	if (!tty) {
278		printk(KERN_WARNING
279			"null TTY for (%d:%d) in %s\n",
280			imajor(inode), iminor(inode), routine);
281		return 1;
282	}
283	if (tty->magic != TTY_MAGIC) {
284		printk(KERN_WARNING
285			"bad magic number for tty struct (%d:%d) in %s\n",
286			imajor(inode), iminor(inode), routine);
287		return 1;
288	}
289#endif
290	return 0;
291}
292
293static int check_tty_count(struct tty_struct *tty, const char *routine)
294{
295#ifdef CHECK_TTY_COUNT
296	struct list_head *p;
297	int count = 0;
298
299	spin_lock(&tty_files_lock);
300	list_for_each(p, &tty->tty_files) {
301		count++;
302	}
303	spin_unlock(&tty_files_lock);
304	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
305	    tty->driver->subtype == PTY_TYPE_SLAVE &&
306	    tty->link && tty->link->count)
307		count++;
308	if (tty->count != count) {
309		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
310				    "!= #fd's(%d) in %s\n",
311		       tty->name, tty->count, count, routine);
312		return count;
313	}
314#endif
315	return 0;
316}
317
318/**
319 *	get_tty_driver		-	find device of a tty
320 *	@dev_t: device identifier
321 *	@index: returns the index of the tty
322 *
323 *	This routine returns a tty driver structure, given a device number
324 *	and also passes back the index number.
325 *
326 *	Locking: caller must hold tty_mutex
327 */
328
329static struct tty_driver *get_tty_driver(dev_t device, int *index)
330{
331	struct tty_driver *p;
332
333	list_for_each_entry(p, &tty_drivers, tty_drivers) {
334		dev_t base = MKDEV(p->major, p->minor_start);
335		if (device < base || device >= base + p->num)
336			continue;
337		*index = device - base;
338		return tty_driver_kref_get(p);
339	}
340	return NULL;
341}
342
343#ifdef CONFIG_CONSOLE_POLL
344
345/**
346 *	tty_find_polling_driver	-	find device of a polled tty
347 *	@name: name string to match
348 *	@line: pointer to resulting tty line nr
349 *
350 *	This routine returns a tty driver structure, given a name
351 *	and the condition that the tty driver is capable of polled
352 *	operation.
353 */
354struct tty_driver *tty_find_polling_driver(char *name, int *line)
355{
356	struct tty_driver *p, *res = NULL;
357	int tty_line = 0;
358	int len;
359	char *str, *stp;
360
361	for (str = name; *str; str++)
362		if ((*str >= '0' && *str <= '9') || *str == ',')
363			break;
364	if (!*str)
365		return NULL;
366
367	len = str - name;
368	tty_line = simple_strtoul(str, &str, 10);
369
370	mutex_lock(&tty_mutex);
371	/* Search through the tty devices to look for a match */
372	list_for_each_entry(p, &tty_drivers, tty_drivers) {
373		if (strncmp(name, p->name, len) != 0)
374			continue;
375		stp = str;
376		if (*stp == ',')
377			stp++;
378		if (*stp == '\0')
379			stp = NULL;
380
381		if (tty_line >= 0 && tty_line < p->num && p->ops &&
382		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
383			res = tty_driver_kref_get(p);
384			*line = tty_line;
385			break;
386		}
387	}
388	mutex_unlock(&tty_mutex);
389
390	return res;
391}
392EXPORT_SYMBOL_GPL(tty_find_polling_driver);
393#endif
394
395/**
396 *	tty_check_change	-	check for POSIX terminal changes
397 *	@tty: tty to check
398 *
399 *	If we try to write to, or set the state of, a terminal and we're
400 *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
401 *	ignored, go ahead and perform the operation.  (POSIX 7.2)
402 *
403 *	Locking: ctrl_lock
404 */
405
406int tty_check_change(struct tty_struct *tty)
407{
408	unsigned long flags;
409	int ret = 0;
410
411	if (current->signal->tty != tty)
412		return 0;
413
414	spin_lock_irqsave(&tty->ctrl_lock, flags);
415
416	if (!tty->pgrp) {
417		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
418		goto out_unlock;
419	}
420	if (task_pgrp(current) == tty->pgrp)
421		goto out_unlock;
422	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
423	if (is_ignored(SIGTTOU))
424		goto out;
425	if (is_current_pgrp_orphaned()) {
426		ret = -EIO;
427		goto out;
428	}
429	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
430	set_thread_flag(TIF_SIGPENDING);
431	ret = -ERESTARTSYS;
432out:
433	return ret;
434out_unlock:
435	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
436	return ret;
437}
438
439EXPORT_SYMBOL(tty_check_change);
440
441static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
442				size_t count, loff_t *ppos)
443{
444	return 0;
445}
446
447static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
448				 size_t count, loff_t *ppos)
449{
450	return -EIO;
451}
452
453/* No kernel lock held - none needed ;) */
454static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
455{
456	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
457}
458
459static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
460		unsigned long arg)
461{
462	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
463}
464
465static long hung_up_tty_compat_ioctl(struct file *file,
466				     unsigned int cmd, unsigned long arg)
467{
468	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
469}
470
471static const struct file_operations tty_fops = {
472	.llseek		= no_llseek,
473	.read		= tty_read,
474	.write		= tty_write,
475	.poll		= tty_poll,
476	.unlocked_ioctl	= tty_ioctl,
477	.compat_ioctl	= tty_compat_ioctl,
478	.open		= tty_open,
479	.release	= tty_release,
480	.fasync		= tty_fasync,
481};
482
483static const struct file_operations console_fops = {
484	.llseek		= no_llseek,
485	.read		= tty_read,
486	.write		= redirected_tty_write,
487	.poll		= tty_poll,
488	.unlocked_ioctl	= tty_ioctl,
489	.compat_ioctl	= tty_compat_ioctl,
490	.open		= tty_open,
491	.release	= tty_release,
492	.fasync		= tty_fasync,
493};
494
495static const struct file_operations hung_up_tty_fops = {
496	.llseek		= no_llseek,
497	.read		= hung_up_tty_read,
498	.write		= hung_up_tty_write,
499	.poll		= hung_up_tty_poll,
500	.unlocked_ioctl	= hung_up_tty_ioctl,
501	.compat_ioctl	= hung_up_tty_compat_ioctl,
502	.release	= tty_release,
503};
504
505static DEFINE_SPINLOCK(redirect_lock);
506static struct file *redirect;
507
508/**
509 *	tty_wakeup	-	request more data
510 *	@tty: terminal
511 *
512 *	Internal and external helper for wakeups of tty. This function
513 *	informs the line discipline if present that the driver is ready
514 *	to receive more output data.
515 */
516
517void tty_wakeup(struct tty_struct *tty)
518{
519	struct tty_ldisc *ld;
520
521	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
522		ld = tty_ldisc_ref(tty);
523		if (ld) {
524			if (ld->ops->write_wakeup)
525				ld->ops->write_wakeup(tty);
526			tty_ldisc_deref(ld);
527		}
528	}
529	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
530}
531
532EXPORT_SYMBOL_GPL(tty_wakeup);
533
534/**
535 *	__tty_hangup		-	actual handler for hangup events
536 *	@work: tty device
537 *
538 *	This can be called by the "eventd" kernel thread.  That is process
539 *	synchronous but doesn't hold any locks, so we need to make sure we
540 *	have the appropriate locks for what we're doing.
541 *
542 *	The hangup event clears any pending redirections onto the hung up
543 *	device. It ensures future writes will error and it does the needed
544 *	line discipline hangup and signal delivery. The tty object itself
545 *	remains intact.
546 *
547 *	Locking:
548 *		BTM
549 *		  redirect lock for undoing redirection
550 *		  file list lock for manipulating list of ttys
551 *		  tty_ldisc_lock from called functions
552 *		  termios_mutex resetting termios data
553 *		  tasklist_lock to walk task list for hangup event
554 *		    ->siglock to protect ->signal/->sighand
555 */
556void __tty_hangup(struct tty_struct *tty)
557{
558	struct file *cons_filp = NULL;
559	struct file *filp, *f = NULL;
560	struct task_struct *p;
561	struct tty_file_private *priv;
562	int    closecount = 0, n;
563	unsigned long flags;
564	int refs = 0;
565
566	if (!tty)
567		return;
568
569
570	spin_lock(&redirect_lock);
571	if (redirect && file_tty(redirect) == tty) {
572		f = redirect;
573		redirect = NULL;
574	}
575	spin_unlock(&redirect_lock);
576
577	tty_lock();
578
579	/* some functions below drop BTM, so we need this bit */
580	set_bit(TTY_HUPPING, &tty->flags);
581
582	/* inuse_filps is protected by the single tty lock,
583	   this really needs to change if we want to flush the
584	   workqueue with the lock held */
585	check_tty_count(tty, "tty_hangup");
586
587	spin_lock(&tty_files_lock);
588	/* This breaks for file handles being sent over AF_UNIX sockets ? */
589	list_for_each_entry(priv, &tty->tty_files, list) {
590		filp = priv->file;
591		if (filp->f_op->write == redirected_tty_write)
592			cons_filp = filp;
593		if (filp->f_op->write != tty_write)
594			continue;
595		closecount++;
596		__tty_fasync(-1, filp, 0);	/* can't block */
597		filp->f_op = &hung_up_tty_fops;
598	}
599	spin_unlock(&tty_files_lock);
600
601	/*
602	 * it drops BTM and thus races with reopen
603	 * we protect the race by TTY_HUPPING
604	 */
605	tty_ldisc_hangup(tty);
606
607	read_lock(&tasklist_lock);
608	if (tty->session) {
609		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
610			spin_lock_irq(&p->sighand->siglock);
611			if (p->signal->tty == tty) {
612				p->signal->tty = NULL;
613				/* We defer the dereferences outside fo
614				   the tasklist lock */
615				refs++;
616			}
617			if (!p->signal->leader) {
618				spin_unlock_irq(&p->sighand->siglock);
619				continue;
620			}
621			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
622			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
623			put_pid(p->signal->tty_old_pgrp);  /* A noop */
624			spin_lock_irqsave(&tty->ctrl_lock, flags);
625			if (tty->pgrp)
626				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
627			spin_unlock_irqrestore(&tty->ctrl_lock, flags);
628			spin_unlock_irq(&p->sighand->siglock);
629		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
630	}
631	read_unlock(&tasklist_lock);
632
633	spin_lock_irqsave(&tty->ctrl_lock, flags);
634	clear_bit(TTY_THROTTLED, &tty->flags);
635	clear_bit(TTY_PUSH, &tty->flags);
636	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
637	put_pid(tty->session);
638	put_pid(tty->pgrp);
639	tty->session = NULL;
640	tty->pgrp = NULL;
641	tty->ctrl_status = 0;
642	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
643
644	/* Account for the p->signal references we killed */
645	while (refs--)
646		tty_kref_put(tty);
647
648	/*
649	 * If one of the devices matches a console pointer, we
650	 * cannot just call hangup() because that will cause
651	 * tty->count and state->count to go out of sync.
652	 * So we just call close() the right number of times.
653	 */
654	if (cons_filp) {
655		if (tty->ops->close)
656			for (n = 0; n < closecount; n++)
657				tty->ops->close(tty, cons_filp);
658	} else if (tty->ops->hangup)
659		(tty->ops->hangup)(tty);
660	/*
661	 * We don't want to have driver/ldisc interactions beyond
662	 * the ones we did here. The driver layer expects no
663	 * calls after ->hangup() from the ldisc side. However we
664	 * can't yet guarantee all that.
665	 */
666	set_bit(TTY_HUPPED, &tty->flags);
667	clear_bit(TTY_HUPPING, &tty->flags);
668	tty_ldisc_enable(tty);
669
670	tty_unlock();
671
672	if (f)
673		fput(f);
674}
675
676static void do_tty_hangup(struct work_struct *work)
677{
678	struct tty_struct *tty =
679		container_of(work, struct tty_struct, hangup_work);
680
681	__tty_hangup(tty);
682}
683
684/**
685 *	tty_hangup		-	trigger a hangup event
686 *	@tty: tty to hangup
687 *
688 *	A carrier loss (virtual or otherwise) has occurred on this like
689 *	schedule a hangup sequence to run after this event.
690 */
691
692void tty_hangup(struct tty_struct *tty)
693{
694#ifdef TTY_DEBUG_HANGUP
695	char	buf[64];
696	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
697#endif
698	schedule_work(&tty->hangup_work);
699}
700
701EXPORT_SYMBOL(tty_hangup);
702
703/**
704 *	tty_vhangup		-	process vhangup
705 *	@tty: tty to hangup
706 *
707 *	The user has asked via system call for the terminal to be hung up.
708 *	We do this synchronously so that when the syscall returns the process
709 *	is complete. That guarantee is necessary for security reasons.
710 */
711
712void tty_vhangup(struct tty_struct *tty)
713{
714#ifdef TTY_DEBUG_HANGUP
715	char	buf[64];
716
717	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
718#endif
719	__tty_hangup(tty);
720}
721
722EXPORT_SYMBOL(tty_vhangup);
723
724
725/**
726 *	tty_vhangup_self	-	process vhangup for own ctty
727 *
728 *	Perform a vhangup on the current controlling tty
729 */
730
731void tty_vhangup_self(void)
732{
733	struct tty_struct *tty;
734
735	tty = get_current_tty();
736	if (tty) {
737		tty_vhangup(tty);
738		tty_kref_put(tty);
739	}
740}
741
742/**
743 *	tty_hung_up_p		-	was tty hung up
744 *	@filp: file pointer of tty
745 *
746 *	Return true if the tty has been subject to a vhangup or a carrier
747 *	loss
748 */
749
750int tty_hung_up_p(struct file *filp)
751{
752	return (filp->f_op == &hung_up_tty_fops);
753}
754
755EXPORT_SYMBOL(tty_hung_up_p);
756
757static void session_clear_tty(struct pid *session)
758{
759	struct task_struct *p;
760	do_each_pid_task(session, PIDTYPE_SID, p) {
761		proc_clear_tty(p);
762	} while_each_pid_task(session, PIDTYPE_SID, p);
763}
764
765/**
766 *	disassociate_ctty	-	disconnect controlling tty
767 *	@on_exit: true if exiting so need to "hang up" the session
768 *
769 *	This function is typically called only by the session leader, when
770 *	it wants to disassociate itself from its controlling tty.
771 *
772 *	It performs the following functions:
773 * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
774 * 	(2)  Clears the tty from being controlling the session
775 * 	(3)  Clears the controlling tty for all processes in the
776 * 		session group.
777 *
778 *	The argument on_exit is set to 1 if called when a process is
779 *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
780 *
781 *	Locking:
782 *		BTM is taken for hysterical raisins, and held when
783 *		  called from no_tty().
784 *		  tty_mutex is taken to protect tty
785 *		  ->siglock is taken to protect ->signal/->sighand
786 *		  tasklist_lock is taken to walk process list for sessions
787 *		    ->siglock is taken to protect ->signal/->sighand
788 */
789
790void disassociate_ctty(int on_exit)
791{
792	struct tty_struct *tty;
793
794	if (!current->signal->leader)
795		return;
796
797	tty = get_current_tty();
798	if (tty) {
799		struct pid *tty_pgrp = get_pid(tty->pgrp);
800		if (on_exit) {
801			if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
802				tty_vhangup(tty);
803		}
804		tty_kref_put(tty);
805		if (tty_pgrp) {
806			kill_pgrp(tty_pgrp, SIGHUP, on_exit);
807			if (!on_exit)
808				kill_pgrp(tty_pgrp, SIGCONT, on_exit);
809			put_pid(tty_pgrp);
810		}
811	} else if (on_exit) {
812		struct pid *old_pgrp;
813		spin_lock_irq(&current->sighand->siglock);
814		old_pgrp = current->signal->tty_old_pgrp;
815		current->signal->tty_old_pgrp = NULL;
816		spin_unlock_irq(&current->sighand->siglock);
817		if (old_pgrp) {
818			kill_pgrp(old_pgrp, SIGHUP, on_exit);
819			kill_pgrp(old_pgrp, SIGCONT, on_exit);
820			put_pid(old_pgrp);
821		}
822		return;
823	}
824
825	spin_lock_irq(&current->sighand->siglock);
826	put_pid(current->signal->tty_old_pgrp);
827	current->signal->tty_old_pgrp = NULL;
828	spin_unlock_irq(&current->sighand->siglock);
829
830	tty = get_current_tty();
831	if (tty) {
832		unsigned long flags;
833		spin_lock_irqsave(&tty->ctrl_lock, flags);
834		put_pid(tty->session);
835		put_pid(tty->pgrp);
836		tty->session = NULL;
837		tty->pgrp = NULL;
838		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
839		tty_kref_put(tty);
840	} else {
841#ifdef TTY_DEBUG_HANGUP
842		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
843		       " = NULL", tty);
844#endif
845	}
846
847	/* Now clear signal->tty under the lock */
848	read_lock(&tasklist_lock);
849	session_clear_tty(task_session(current));
850	read_unlock(&tasklist_lock);
851}
852
853/**
854 *
855 *	no_tty	- Ensure the current process does not have a controlling tty
856 */
857void no_tty(void)
858{
859	struct task_struct *tsk = current;
860	tty_lock();
861	disassociate_ctty(0);
862	tty_unlock();
863	proc_clear_tty(tsk);
864}
865
866
867/**
868 *	stop_tty	-	propagate flow control
869 *	@tty: tty to stop
870 *
871 *	Perform flow control to the driver. For PTY/TTY pairs we
872 *	must also propagate the TIOCKPKT status. May be called
873 *	on an already stopped device and will not re-call the driver
874 *	method.
875 *
876 *	This functionality is used by both the line disciplines for
877 *	halting incoming flow and by the driver. It may therefore be
878 *	called from any context, may be under the tty atomic_write_lock
879 *	but not always.
880 *
881 *	Locking:
882 *		Uses the tty control lock internally
883 */
884
885void stop_tty(struct tty_struct *tty)
886{
887	unsigned long flags;
888	spin_lock_irqsave(&tty->ctrl_lock, flags);
889	if (tty->stopped) {
890		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
891		return;
892	}
893	tty->stopped = 1;
894	if (tty->link && tty->link->packet) {
895		tty->ctrl_status &= ~TIOCPKT_START;
896		tty->ctrl_status |= TIOCPKT_STOP;
897		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
898	}
899	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
900	if (tty->ops->stop)
901		(tty->ops->stop)(tty);
902}
903
904EXPORT_SYMBOL(stop_tty);
905
906/**
907 *	start_tty	-	propagate flow control
908 *	@tty: tty to start
909 *
910 *	Start a tty that has been stopped if at all possible. Perform
911 *	any necessary wakeups and propagate the TIOCPKT status. If this
912 *	is the tty was previous stopped and is being started then the
913 *	driver start method is invoked and the line discipline woken.
914 *
915 *	Locking:
916 *		ctrl_lock
917 */
918
919void start_tty(struct tty_struct *tty)
920{
921	unsigned long flags;
922	spin_lock_irqsave(&tty->ctrl_lock, flags);
923	if (!tty->stopped || tty->flow_stopped) {
924		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
925		return;
926	}
927	tty->stopped = 0;
928	if (tty->link && tty->link->packet) {
929		tty->ctrl_status &= ~TIOCPKT_STOP;
930		tty->ctrl_status |= TIOCPKT_START;
931		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
932	}
933	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
934	if (tty->ops->start)
935		(tty->ops->start)(tty);
936	/* If we have a running line discipline it may need kicking */
937	tty_wakeup(tty);
938}
939
940EXPORT_SYMBOL(start_tty);
941
942/**
943 *	tty_read	-	read method for tty device files
944 *	@file: pointer to tty file
945 *	@buf: user buffer
946 *	@count: size of user buffer
947 *	@ppos: unused
948 *
949 *	Perform the read system call function on this terminal device. Checks
950 *	for hung up devices before calling the line discipline method.
951 *
952 *	Locking:
953 *		Locks the line discipline internally while needed. Multiple
954 *	read calls may be outstanding in parallel.
955 */
956
957static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
958			loff_t *ppos)
959{
960	int i;
961	struct inode *inode = file->f_path.dentry->d_inode;
962	struct tty_struct *tty = file_tty(file);
963	struct tty_ldisc *ld;
964
965	if (tty_paranoia_check(tty, inode, "tty_read"))
966		return -EIO;
967	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
968		return -EIO;
969
970	/* We want to wait for the line discipline to sort out in this
971	   situation */
972	ld = tty_ldisc_ref_wait(tty);
973	if (ld->ops->read)
974		i = (ld->ops->read)(tty, file, buf, count);
975	else
976		i = -EIO;
977	tty_ldisc_deref(ld);
978	if (i > 0)
979		inode->i_atime = current_fs_time(inode->i_sb);
980	return i;
981}
982
983void tty_write_unlock(struct tty_struct *tty)
984	__releases(&tty->atomic_write_lock)
985{
986	mutex_unlock(&tty->atomic_write_lock);
987	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
988}
989
990int tty_write_lock(struct tty_struct *tty, int ndelay)
991	__acquires(&tty->atomic_write_lock)
992{
993	if (!mutex_trylock(&tty->atomic_write_lock)) {
994		if (ndelay)
995			return -EAGAIN;
996		if (mutex_lock_interruptible(&tty->atomic_write_lock))
997			return -ERESTARTSYS;
998	}
999	return 0;
1000}
1001
1002/*
1003 * Split writes up in sane blocksizes to avoid
1004 * denial-of-service type attacks
1005 */
1006static inline ssize_t do_tty_write(
1007	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1008	struct tty_struct *tty,
1009	struct file *file,
1010	const char __user *buf,
1011	size_t count)
1012{
1013	ssize_t ret, written = 0;
1014	unsigned int chunk;
1015
1016	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1017	if (ret < 0)
1018		return ret;
1019
1020	/*
1021	 * We chunk up writes into a temporary buffer. This
1022	 * simplifies low-level drivers immensely, since they
1023	 * don't have locking issues and user mode accesses.
1024	 *
1025	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1026	 * big chunk-size..
1027	 *
1028	 * The default chunk-size is 2kB, because the NTTY
1029	 * layer has problems with bigger chunks. It will
1030	 * claim to be able to handle more characters than
1031	 * it actually does.
1032	 *
1033	 * FIXME: This can probably go away now except that 64K chunks
1034	 * are too likely to fail unless switched to vmalloc...
1035	 */
1036	chunk = 2048;
1037	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1038		chunk = 65536;
1039	if (count < chunk)
1040		chunk = count;
1041
1042	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1043	if (tty->write_cnt < chunk) {
1044		unsigned char *buf_chunk;
1045
1046		if (chunk < 1024)
1047			chunk = 1024;
1048
1049		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1050		if (!buf_chunk) {
1051			ret = -ENOMEM;
1052			goto out;
1053		}
1054		kfree(tty->write_buf);
1055		tty->write_cnt = chunk;
1056		tty->write_buf = buf_chunk;
1057	}
1058
1059	/* Do the write .. */
1060	for (;;) {
1061		size_t size = count;
1062		if (size > chunk)
1063			size = chunk;
1064		ret = -EFAULT;
1065		if (copy_from_user(tty->write_buf, buf, size))
1066			break;
1067		ret = write(tty, file, tty->write_buf, size);
1068		if (ret <= 0)
1069			break;
1070		written += ret;
1071		buf += ret;
1072		count -= ret;
1073		if (!count)
1074			break;
1075		ret = -ERESTARTSYS;
1076		if (signal_pending(current))
1077			break;
1078		cond_resched();
1079	}
1080	if (written) {
1081		struct inode *inode = file->f_path.dentry->d_inode;
1082		inode->i_mtime = current_fs_time(inode->i_sb);
1083		ret = written;
1084	}
1085out:
1086	tty_write_unlock(tty);
1087	return ret;
1088}
1089
1090/**
1091 * tty_write_message - write a message to a certain tty, not just the console.
1092 * @tty: the destination tty_struct
1093 * @msg: the message to write
1094 *
1095 * This is used for messages that need to be redirected to a specific tty.
1096 * We don't put it into the syslog queue right now maybe in the future if
1097 * really needed.
1098 *
1099 * We must still hold the BTM and test the CLOSING flag for the moment.
1100 */
1101
1102void tty_write_message(struct tty_struct *tty, char *msg)
1103{
1104	if (tty) {
1105		mutex_lock(&tty->atomic_write_lock);
1106		tty_lock();
1107		if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1108			tty_unlock();
1109			tty->ops->write(tty, msg, strlen(msg));
1110		} else
1111			tty_unlock();
1112		tty_write_unlock(tty);
1113	}
1114	return;
1115}
1116
1117
1118/**
1119 *	tty_write		-	write method for tty device file
1120 *	@file: tty file pointer
1121 *	@buf: user data to write
1122 *	@count: bytes to write
1123 *	@ppos: unused
1124 *
1125 *	Write data to a tty device via the line discipline.
1126 *
1127 *	Locking:
1128 *		Locks the line discipline as required
1129 *		Writes to the tty driver are serialized by the atomic_write_lock
1130 *	and are then processed in chunks to the device. The line discipline
1131 *	write method will not be invoked in parallel for each device.
1132 */
1133
1134static ssize_t tty_write(struct file *file, const char __user *buf,
1135						size_t count, loff_t *ppos)
1136{
1137	struct inode *inode = file->f_path.dentry->d_inode;
1138	struct tty_struct *tty = file_tty(file);
1139 	struct tty_ldisc *ld;
1140	ssize_t ret;
1141
1142	if (tty_paranoia_check(tty, inode, "tty_write"))
1143		return -EIO;
1144	if (!tty || !tty->ops->write ||
1145		(test_bit(TTY_IO_ERROR, &tty->flags)))
1146			return -EIO;
1147	/* Short term debug to catch buggy drivers */
1148	if (tty->ops->write_room == NULL)
1149		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1150			tty->driver->name);
1151	ld = tty_ldisc_ref_wait(tty);
1152	if (!ld->ops->write)
1153		ret = -EIO;
1154	else
1155		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1156	tty_ldisc_deref(ld);
1157	return ret;
1158}
1159
1160ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1161						size_t count, loff_t *ppos)
1162{
1163	struct file *p = NULL;
1164
1165	spin_lock(&redirect_lock);
1166	if (redirect) {
1167		get_file(redirect);
1168		p = redirect;
1169	}
1170	spin_unlock(&redirect_lock);
1171
1172	if (p) {
1173		ssize_t res;
1174		res = vfs_write(p, buf, count, &p->f_pos);
1175		fput(p);
1176		return res;
1177	}
1178	return tty_write(file, buf, count, ppos);
1179}
1180
1181static char ptychar[] = "pqrstuvwxyzabcde";
1182
1183/**
1184 *	pty_line_name	-	generate name for a pty
1185 *	@driver: the tty driver in use
1186 *	@index: the minor number
1187 *	@p: output buffer of at least 6 bytes
1188 *
1189 *	Generate a name from a driver reference and write it to the output
1190 *	buffer.
1191 *
1192 *	Locking: None
1193 */
1194static void pty_line_name(struct tty_driver *driver, int index, char *p)
1195{
1196	int i = index + driver->name_base;
1197	/* ->name is initialized to "ttyp", but "tty" is expected */
1198	sprintf(p, "%s%c%x",
1199		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1200		ptychar[i >> 4 & 0xf], i & 0xf);
1201}
1202
1203/**
1204 *	tty_line_name	-	generate name for a tty
1205 *	@driver: the tty driver in use
1206 *	@index: the minor number
1207 *	@p: output buffer of at least 7 bytes
1208 *
1209 *	Generate a name from a driver reference and write it to the output
1210 *	buffer.
1211 *
1212 *	Locking: None
1213 */
1214static void tty_line_name(struct tty_driver *driver, int index, char *p)
1215{
1216	sprintf(p, "%s%d", driver->name, index + driver->name_base);
1217}
1218
1219/**
1220 *	tty_driver_lookup_tty() - find an existing tty, if any
1221 *	@driver: the driver for the tty
1222 *	@idx:	 the minor number
1223 *
1224 *	Return the tty, if found or ERR_PTR() otherwise.
1225 *
1226 *	Locking: tty_mutex must be held. If tty is found, the mutex must
1227 *	be held until the 'fast-open' is also done. Will change once we
1228 *	have refcounting in the driver and per driver locking
1229 */
1230static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1231		struct inode *inode, int idx)
1232{
1233	struct tty_struct *tty;
1234
1235	if (driver->ops->lookup)
1236		return driver->ops->lookup(driver, inode, idx);
1237
1238	tty = driver->ttys[idx];
1239	return tty;
1240}
1241
1242/**
1243 *	tty_init_termios	-  helper for termios setup
1244 *	@tty: the tty to set up
1245 *
1246 *	Initialise the termios structures for this tty. Thus runs under
1247 *	the tty_mutex currently so we can be relaxed about ordering.
1248 */
1249
1250int tty_init_termios(struct tty_struct *tty)
1251{
1252	struct ktermios *tp;
1253	int idx = tty->index;
1254
1255	tp = tty->driver->termios[idx];
1256	if (tp == NULL) {
1257		tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1258		if (tp == NULL)
1259			return -ENOMEM;
1260		memcpy(tp, &tty->driver->init_termios,
1261						sizeof(struct ktermios));
1262		tty->driver->termios[idx] = tp;
1263	}
1264	tty->termios = tp;
1265	tty->termios_locked = tp + 1;
1266
1267	/* Compatibility until drivers always set this */
1268	tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1269	tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1270	return 0;
1271}
1272EXPORT_SYMBOL_GPL(tty_init_termios);
1273
1274/**
1275 *	tty_driver_install_tty() - install a tty entry in the driver
1276 *	@driver: the driver for the tty
1277 *	@tty: the tty
1278 *
1279 *	Install a tty object into the driver tables. The tty->index field
1280 *	will be set by the time this is called. This method is responsible
1281 *	for ensuring any need additional structures are allocated and
1282 *	configured.
1283 *
1284 *	Locking: tty_mutex for now
1285 */
1286static int tty_driver_install_tty(struct tty_driver *driver,
1287						struct tty_struct *tty)
1288{
1289	int idx = tty->index;
1290	int ret;
1291
1292	if (driver->ops->install) {
1293		ret = driver->ops->install(driver, tty);
1294		return ret;
1295	}
1296
1297	if (tty_init_termios(tty) == 0) {
1298		tty_driver_kref_get(driver);
1299		tty->count++;
1300		driver->ttys[idx] = tty;
1301		return 0;
1302	}
1303	return -ENOMEM;
1304}
1305
1306/**
1307 *	tty_driver_remove_tty() - remove a tty from the driver tables
1308 *	@driver: the driver for the tty
1309 *	@idx:	 the minor number
1310 *
1311 *	Remvoe a tty object from the driver tables. The tty->index field
1312 *	will be set by the time this is called.
1313 *
1314 *	Locking: tty_mutex for now
1315 */
1316void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1317{
1318	if (driver->ops->remove)
1319		driver->ops->remove(driver, tty);
1320	else
1321		driver->ttys[tty->index] = NULL;
1322}
1323
1324/*
1325 * 	tty_reopen()	- fast re-open of an open tty
1326 * 	@tty	- the tty to open
1327 *
1328 *	Return 0 on success, -errno on error.
1329 *
1330 *	Locking: tty_mutex must be held from the time the tty was found
1331 *		 till this open completes.
1332 */
1333static int tty_reopen(struct tty_struct *tty)
1334{
1335	struct tty_driver *driver = tty->driver;
1336
1337	if (test_bit(TTY_CLOSING, &tty->flags) ||
1338			test_bit(TTY_HUPPING, &tty->flags) ||
1339			test_bit(TTY_LDISC_CHANGING, &tty->flags))
1340		return -EIO;
1341
1342	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1343	    driver->subtype == PTY_TYPE_MASTER) {
1344		/*
1345		 * special case for PTY masters: only one open permitted,
1346		 * and the slave side open count is incremented as well.
1347		 */
1348		if (tty->count)
1349			return -EIO;
1350
1351		tty->link->count++;
1352	}
1353	tty->count++;
1354	tty->driver = driver; /* N.B. why do this every time?? */
1355
1356	mutex_lock(&tty->ldisc_mutex);
1357	WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1358	mutex_unlock(&tty->ldisc_mutex);
1359
1360	return 0;
1361}
1362
1363/**
1364 *	tty_init_dev		-	initialise a tty device
1365 *	@driver: tty driver we are opening a device on
1366 *	@idx: device index
1367 *	@ret_tty: returned tty structure
1368 *	@first_ok: ok to open a new device (used by ptmx)
1369 *
1370 *	Prepare a tty device. This may not be a "new" clean device but
1371 *	could also be an active device. The pty drivers require special
1372 *	handling because of this.
1373 *
1374 *	Locking:
1375 *		The function is called under the tty_mutex, which
1376 *	protects us from the tty struct or driver itself going away.
1377 *
1378 *	On exit the tty device has the line discipline attached and
1379 *	a reference count of 1. If a pair was created for pty/tty use
1380 *	and the other was a pty master then it too has a reference count of 1.
1381 *
1382 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1383 * failed open.  The new code protects the open with a mutex, so it's
1384 * really quite straightforward.  The mutex locking can probably be
1385 * relaxed for the (most common) case of reopening a tty.
1386 */
1387
1388struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1389								int first_ok)
1390{
1391	struct tty_struct *tty;
1392	int retval;
1393
1394	/* Check if pty master is being opened multiple times */
1395	if (driver->subtype == PTY_TYPE_MASTER &&
1396		(driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1397		return ERR_PTR(-EIO);
1398	}
1399
1400	/*
1401	 * First time open is complex, especially for PTY devices.
1402	 * This code guarantees that either everything succeeds and the
1403	 * TTY is ready for operation, or else the table slots are vacated
1404	 * and the allocated memory released.  (Except that the termios
1405	 * and locked termios may be retained.)
1406	 */
1407
1408	if (!try_module_get(driver->owner))
1409		return ERR_PTR(-ENODEV);
1410
1411	tty = alloc_tty_struct();
1412	if (!tty) {
1413		retval = -ENOMEM;
1414		goto err_module_put;
1415	}
1416	initialize_tty_struct(tty, driver, idx);
1417
1418	retval = tty_driver_install_tty(driver, tty);
1419	if (retval < 0)
1420		goto err_deinit_tty;
1421
1422	/*
1423	 * Structures all installed ... call the ldisc open routines.
1424	 * If we fail here just call release_tty to clean up.  No need
1425	 * to decrement the use counts, as release_tty doesn't care.
1426	 */
1427	retval = tty_ldisc_setup(tty, tty->link);
1428	if (retval)
1429		goto err_release_tty;
1430	return tty;
1431
1432err_deinit_tty:
1433	deinitialize_tty_struct(tty);
1434	free_tty_struct(tty);
1435err_module_put:
1436	module_put(driver->owner);
1437	return ERR_PTR(retval);
1438
1439	/* call the tty release_tty routine to clean out this slot */
1440err_release_tty:
1441	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1442				 "clearing slot %d\n", idx);
1443	release_tty(tty, idx);
1444	return ERR_PTR(retval);
1445}
1446
1447void tty_free_termios(struct tty_struct *tty)
1448{
1449	struct ktermios *tp;
1450	int idx = tty->index;
1451	/* Kill this flag and push into drivers for locking etc */
1452	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1453		/* FIXME: Locking on ->termios array */
1454		tp = tty->termios;
1455		tty->driver->termios[idx] = NULL;
1456		kfree(tp);
1457	}
1458}
1459EXPORT_SYMBOL(tty_free_termios);
1460
1461void tty_shutdown(struct tty_struct *tty)
1462{
1463	tty_driver_remove_tty(tty->driver, tty);
1464	tty_free_termios(tty);
1465}
1466EXPORT_SYMBOL(tty_shutdown);
1467
1468/**
1469 *	release_one_tty		-	release tty structure memory
1470 *	@kref: kref of tty we are obliterating
1471 *
1472 *	Releases memory associated with a tty structure, and clears out the
1473 *	driver table slots. This function is called when a device is no longer
1474 *	in use. It also gets called when setup of a device fails.
1475 *
1476 *	Locking:
1477 *		tty_mutex - sometimes only
1478 *		takes the file list lock internally when working on the list
1479 *	of ttys that the driver keeps.
1480 *
1481 *	This method gets called from a work queue so that the driver private
1482 *	cleanup ops can sleep (needed for USB at least)
1483 */
1484static void release_one_tty(struct work_struct *work)
1485{
1486	struct tty_struct *tty =
1487		container_of(work, struct tty_struct, hangup_work);
1488	struct tty_driver *driver = tty->driver;
1489
1490	if (tty->ops->cleanup)
1491		tty->ops->cleanup(tty);
1492
1493	tty->magic = 0;
1494	tty_driver_kref_put(driver);
1495	module_put(driver->owner);
1496
1497	spin_lock(&tty_files_lock);
1498	list_del_init(&tty->tty_files);
1499	spin_unlock(&tty_files_lock);
1500
1501	put_pid(tty->pgrp);
1502	put_pid(tty->session);
1503	free_tty_struct(tty);
1504}
1505
1506static void queue_release_one_tty(struct kref *kref)
1507{
1508	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1509
1510	if (tty->ops->shutdown)
1511		tty->ops->shutdown(tty);
1512	else
1513		tty_shutdown(tty);
1514
1515	/* The hangup queue is now free so we can reuse it rather than
1516	   waste a chunk of memory for each port */
1517	INIT_WORK(&tty->hangup_work, release_one_tty);
1518	schedule_work(&tty->hangup_work);
1519}
1520
1521/**
1522 *	tty_kref_put		-	release a tty kref
1523 *	@tty: tty device
1524 *
1525 *	Release a reference to a tty device and if need be let the kref
1526 *	layer destruct the object for us
1527 */
1528
1529void tty_kref_put(struct tty_struct *tty)
1530{
1531	if (tty)
1532		kref_put(&tty->kref, queue_release_one_tty);
1533}
1534EXPORT_SYMBOL(tty_kref_put);
1535
1536/**
1537 *	release_tty		-	release tty structure memory
1538 *
1539 *	Release both @tty and a possible linked partner (think pty pair),
1540 *	and decrement the refcount of the backing module.
1541 *
1542 *	Locking:
1543 *		tty_mutex - sometimes only
1544 *		takes the file list lock internally when working on the list
1545 *	of ttys that the driver keeps.
1546 *		FIXME: should we require tty_mutex is held here ??
1547 *
1548 */
1549static void release_tty(struct tty_struct *tty, int idx)
1550{
1551	/* This should always be true but check for the moment */
1552	WARN_ON(tty->index != idx);
1553
1554	if (tty->link)
1555		tty_kref_put(tty->link);
1556	tty_kref_put(tty);
1557}
1558
1559/**
1560 *	tty_release_checks - check a tty before real release
1561 *	@tty: tty to check
1562 *	@o_tty: link of @tty (if any)
1563 *	@idx: index of the tty
1564 *
1565 *	Performs some paranoid checking before true release of the @tty.
1566 *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1567 */
1568static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1569		int idx)
1570{
1571#ifdef TTY_PARANOIA_CHECK
1572	if (idx < 0 || idx >= tty->driver->num) {
1573		printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1574				__func__, tty->name);
1575		return -1;
1576	}
1577
1578	/* not much to check for devpts */
1579	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1580		return 0;
1581
1582	if (tty != tty->driver->ttys[idx]) {
1583		printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1584				__func__, idx, tty->name);
1585		return -1;
1586	}
1587	if (tty->termios != tty->driver->termios[idx]) {
1588		printk(KERN_DEBUG "%s: driver.termios[%d] not termios for (%s)\n",
1589				__func__, idx, tty->name);
1590		return -1;
1591	}
1592	if (tty->driver->other) {
1593		if (o_tty != tty->driver->other->ttys[idx]) {
1594			printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1595					__func__, idx, tty->name);
1596			return -1;
1597		}
1598		if (o_tty->termios != tty->driver->other->termios[idx]) {
1599			printk(KERN_DEBUG "%s: other->termios[%d] not o_termios for (%s)\n",
1600					__func__, idx, tty->name);
1601			return -1;
1602		}
1603		if (o_tty->link != tty) {
1604			printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1605			return -1;
1606		}
1607	}
1608#endif
1609	return 0;
1610}
1611
1612/**
1613 *	tty_release		-	vfs callback for close
1614 *	@inode: inode of tty
1615 *	@filp: file pointer for handle to tty
1616 *
1617 *	Called the last time each file handle is closed that references
1618 *	this tty. There may however be several such references.
1619 *
1620 *	Locking:
1621 *		Takes bkl. See tty_release_dev
1622 *
1623 * Even releasing the tty structures is a tricky business.. We have
1624 * to be very careful that the structures are all released at the
1625 * same time, as interrupts might otherwise get the wrong pointers.
1626 *
1627 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1628 * lead to double frees or releasing memory still in use.
1629 */
1630
1631int tty_release(struct inode *inode, struct file *filp)
1632{
1633	struct tty_struct *tty = file_tty(filp);
1634	struct tty_struct *o_tty;
1635	int	pty_master, tty_closing, o_tty_closing, do_sleep;
1636	int	devpts;
1637	int	idx;
1638	char	buf[64];
1639
1640	if (tty_paranoia_check(tty, inode, __func__))
1641		return 0;
1642
1643	tty_lock();
1644	check_tty_count(tty, __func__);
1645
1646	__tty_fasync(-1, filp, 0);
1647
1648	idx = tty->index;
1649	pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1650		      tty->driver->subtype == PTY_TYPE_MASTER);
1651	devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1652	o_tty = tty->link;
1653
1654	if (tty_release_checks(tty, o_tty, idx)) {
1655		tty_unlock();
1656		return 0;
1657	}
1658
1659#ifdef TTY_DEBUG_HANGUP
1660	printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1661			tty_name(tty, buf), tty->count);
1662#endif
1663
1664	if (tty->ops->close)
1665		tty->ops->close(tty, filp);
1666
1667	tty_unlock();
1668	/*
1669	 * Sanity check: if tty->count is going to zero, there shouldn't be
1670	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1671	 * wait queues and kick everyone out _before_ actually starting to
1672	 * close.  This ensures that we won't block while releasing the tty
1673	 * structure.
1674	 *
1675	 * The test for the o_tty closing is necessary, since the master and
1676	 * slave sides may close in any order.  If the slave side closes out
1677	 * first, its count will be one, since the master side holds an open.
1678	 * Thus this test wouldn't be triggered at the time the slave closes,
1679	 * so we do it now.
1680	 *
1681	 * Note that it's possible for the tty to be opened again while we're
1682	 * flushing out waiters.  By recalculating the closing flags before
1683	 * each iteration we avoid any problems.
1684	 */
1685	while (1) {
1686		/* Guard against races with tty->count changes elsewhere and
1687		   opens on /dev/tty */
1688
1689		mutex_lock(&tty_mutex);
1690		tty_lock();
1691		tty_closing = tty->count <= 1;
1692		o_tty_closing = o_tty &&
1693			(o_tty->count <= (pty_master ? 1 : 0));
1694		do_sleep = 0;
1695
1696		if (tty_closing) {
1697			if (waitqueue_active(&tty->read_wait)) {
1698				wake_up_poll(&tty->read_wait, POLLIN);
1699				do_sleep++;
1700			}
1701			if (waitqueue_active(&tty->write_wait)) {
1702				wake_up_poll(&tty->write_wait, POLLOUT);
1703				do_sleep++;
1704			}
1705		}
1706		if (o_tty_closing) {
1707			if (waitqueue_active(&o_tty->read_wait)) {
1708				wake_up_poll(&o_tty->read_wait, POLLIN);
1709				do_sleep++;
1710			}
1711			if (waitqueue_active(&o_tty->write_wait)) {
1712				wake_up_poll(&o_tty->write_wait, POLLOUT);
1713				do_sleep++;
1714			}
1715		}
1716		if (!do_sleep)
1717			break;
1718
1719		printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1720				__func__, tty_name(tty, buf));
1721		tty_unlock();
1722		mutex_unlock(&tty_mutex);
1723		schedule();
1724	}
1725
1726	/*
1727	 * The closing flags are now consistent with the open counts on
1728	 * both sides, and we've completed the last operation that could
1729	 * block, so it's safe to proceed with closing.
1730	 */
1731	if (pty_master) {
1732		if (--o_tty->count < 0) {
1733			printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1734				__func__, o_tty->count, tty_name(o_tty, buf));
1735			o_tty->count = 0;
1736		}
1737	}
1738	if (--tty->count < 0) {
1739		printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1740				__func__, tty->count, tty_name(tty, buf));
1741		tty->count = 0;
1742	}
1743
1744	/*
1745	 * We've decremented tty->count, so we need to remove this file
1746	 * descriptor off the tty->tty_files list; this serves two
1747	 * purposes:
1748	 *  - check_tty_count sees the correct number of file descriptors
1749	 *    associated with this tty.
1750	 *  - do_tty_hangup no longer sees this file descriptor as
1751	 *    something that needs to be handled for hangups.
1752	 */
1753	tty_del_file(filp);
1754
1755	/*
1756	 * Perform some housekeeping before deciding whether to return.
1757	 *
1758	 * Set the TTY_CLOSING flag if this was the last open.  In the
1759	 * case of a pty we may have to wait around for the other side
1760	 * to close, and TTY_CLOSING makes sure we can't be reopened.
1761	 */
1762	if (tty_closing)
1763		set_bit(TTY_CLOSING, &tty->flags);
1764	if (o_tty_closing)
1765		set_bit(TTY_CLOSING, &o_tty->flags);
1766
1767	/*
1768	 * If _either_ side is closing, make sure there aren't any
1769	 * processes that still think tty or o_tty is their controlling
1770	 * tty.
1771	 */
1772	if (tty_closing || o_tty_closing) {
1773		read_lock(&tasklist_lock);
1774		session_clear_tty(tty->session);
1775		if (o_tty)
1776			session_clear_tty(o_tty->session);
1777		read_unlock(&tasklist_lock);
1778	}
1779
1780	mutex_unlock(&tty_mutex);
1781
1782	/* check whether both sides are closing ... */
1783	if (!tty_closing || (o_tty && !o_tty_closing)) {
1784		tty_unlock();
1785		return 0;
1786	}
1787
1788#ifdef TTY_DEBUG_HANGUP
1789	printk(KERN_DEBUG "%s: freeing tty structure...\n", __func__);
1790#endif
1791	/*
1792	 * Ask the line discipline code to release its structures
1793	 */
1794	tty_ldisc_release(tty, o_tty);
1795	/*
1796	 * The release_tty function takes care of the details of clearing
1797	 * the slots and preserving the termios structure.
1798	 */
1799	release_tty(tty, idx);
1800
1801	/* Make this pty number available for reallocation */
1802	if (devpts)
1803		devpts_kill_index(inode, idx);
1804	tty_unlock();
1805	return 0;
1806}
1807
1808/**
1809 *	tty_open_current_tty - get tty of current task for open
1810 *	@device: device number
1811 *	@filp: file pointer to tty
1812 *	@return: tty of the current task iff @device is /dev/tty
1813 *
1814 *	We cannot return driver and index like for the other nodes because
1815 *	devpts will not work then. It expects inodes to be from devpts FS.
1816 */
1817static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1818{
1819	struct tty_struct *tty;
1820
1821	if (device != MKDEV(TTYAUX_MAJOR, 0))
1822		return NULL;
1823
1824	tty = get_current_tty();
1825	if (!tty)
1826		return ERR_PTR(-ENXIO);
1827
1828	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1829	/* noctty = 1; */
1830	tty_kref_put(tty);
1831	/* FIXME: we put a reference and return a TTY! */
1832	return tty;
1833}
1834
1835/**
1836 *	tty_lookup_driver - lookup a tty driver for a given device file
1837 *	@device: device number
1838 *	@filp: file pointer to tty
1839 *	@noctty: set if the device should not become a controlling tty
1840 *	@index: index for the device in the @return driver
1841 *	@return: driver for this inode (with increased refcount)
1842 *
1843 * 	If @return is not erroneous, the caller is responsible to decrement the
1844 * 	refcount by tty_driver_kref_put.
1845 *
1846 *	Locking: tty_mutex protects get_tty_driver
1847 */
1848static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1849		int *noctty, int *index)
1850{
1851	struct tty_driver *driver;
1852
1853	switch (device) {
1854#ifdef CONFIG_VT
1855	case MKDEV(TTY_MAJOR, 0): {
1856		extern struct tty_driver *console_driver;
1857		driver = tty_driver_kref_get(console_driver);
1858		*index = fg_console;
1859		*noctty = 1;
1860		break;
1861	}
1862#endif
1863	case MKDEV(TTYAUX_MAJOR, 1): {
1864		struct tty_driver *console_driver = console_device(index);
1865		if (console_driver) {
1866			driver = tty_driver_kref_get(console_driver);
1867			if (driver) {
1868				/* Don't let /dev/console block */
1869				filp->f_flags |= O_NONBLOCK;
1870				*noctty = 1;
1871				break;
1872			}
1873		}
1874		return ERR_PTR(-ENODEV);
1875	}
1876	default:
1877		driver = get_tty_driver(device, index);
1878		if (!driver)
1879			return ERR_PTR(-ENODEV);
1880		break;
1881	}
1882	return driver;
1883}
1884
1885/**
1886 *	tty_open		-	open a tty device
1887 *	@inode: inode of device file
1888 *	@filp: file pointer to tty
1889 *
1890 *	tty_open and tty_release keep up the tty count that contains the
1891 *	number of opens done on a tty. We cannot use the inode-count, as
1892 *	different inodes might point to the same tty.
1893 *
1894 *	Open-counting is needed for pty masters, as well as for keeping
1895 *	track of serial lines: DTR is dropped when the last close happens.
1896 *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1897 *
1898 *	The termios state of a pty is reset on first open so that
1899 *	settings don't persist across reuse.
1900 *
1901 *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1902 *		 tty->count should protect the rest.
1903 *		 ->siglock protects ->signal/->sighand
1904 */
1905
1906static int tty_open(struct inode *inode, struct file *filp)
1907{
1908	struct tty_struct *tty;
1909	int noctty, retval;
1910	struct tty_driver *driver = NULL;
1911	int index;
1912	dev_t device = inode->i_rdev;
1913	unsigned saved_flags = filp->f_flags;
1914
1915	nonseekable_open(inode, filp);
1916
1917retry_open:
1918	retval = tty_alloc_file(filp);
1919	if (retval)
1920		return -ENOMEM;
1921
1922	noctty = filp->f_flags & O_NOCTTY;
1923	index  = -1;
1924	retval = 0;
1925
1926	mutex_lock(&tty_mutex);
1927	tty_lock();
1928
1929	tty = tty_open_current_tty(device, filp);
1930	if (IS_ERR(tty)) {
1931		retval = PTR_ERR(tty);
1932		goto err_unlock;
1933	} else if (!tty) {
1934		driver = tty_lookup_driver(device, filp, &noctty, &index);
1935		if (IS_ERR(driver)) {
1936			retval = PTR_ERR(driver);
1937			goto err_unlock;
1938		}
1939
1940		/* check whether we're reopening an existing tty */
1941		tty = tty_driver_lookup_tty(driver, inode, index);
1942		if (IS_ERR(tty)) {
1943			retval = PTR_ERR(tty);
1944			goto err_unlock;
1945		}
1946	}
1947
1948	if (tty) {
1949		retval = tty_reopen(tty);
1950		if (retval)
1951			tty = ERR_PTR(retval);
1952	} else
1953		tty = tty_init_dev(driver, index, 0);
1954
1955	mutex_unlock(&tty_mutex);
1956	if (driver)
1957		tty_driver_kref_put(driver);
1958	if (IS_ERR(tty)) {
1959		tty_unlock();
1960		retval = PTR_ERR(tty);
1961		goto err_file;
1962	}
1963
1964	tty_add_file(tty, filp);
1965
1966	check_tty_count(tty, __func__);
1967	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1968	    tty->driver->subtype == PTY_TYPE_MASTER)
1969		noctty = 1;
1970#ifdef TTY_DEBUG_HANGUP
1971	printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
1972#endif
1973	if (tty->ops->open)
1974		retval = tty->ops->open(tty, filp);
1975	else
1976		retval = -ENODEV;
1977	filp->f_flags = saved_flags;
1978
1979	if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1980						!capable(CAP_SYS_ADMIN))
1981		retval = -EBUSY;
1982
1983	if (retval) {
1984#ifdef TTY_DEBUG_HANGUP
1985		printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
1986				retval, tty->name);
1987#endif
1988		tty_unlock(); /* need to call tty_release without BTM */
1989		tty_release(inode, filp);
1990		if (retval != -ERESTARTSYS)
1991			return retval;
1992
1993		if (signal_pending(current))
1994			return retval;
1995
1996		schedule();
1997		/*
1998		 * Need to reset f_op in case a hangup happened.
1999		 */
2000		tty_lock();
2001		if (filp->f_op == &hung_up_tty_fops)
2002			filp->f_op = &tty_fops;
2003		tty_unlock();
2004		goto retry_open;
2005	}
2006	tty_unlock();
2007
2008
2009	mutex_lock(&tty_mutex);
2010	tty_lock();
2011	spin_lock_irq(&current->sighand->siglock);
2012	if (!noctty &&
2013	    current->signal->leader &&
2014	    !current->signal->tty &&
2015	    tty->session == NULL)
2016		__proc_set_tty(current, tty);
2017	spin_unlock_irq(&current->sighand->siglock);
2018	tty_unlock();
2019	mutex_unlock(&tty_mutex);
2020	return 0;
2021err_unlock:
2022	tty_unlock();
2023	mutex_unlock(&tty_mutex);
2024	/* after locks to avoid deadlock */
2025	if (!IS_ERR_OR_NULL(driver))
2026		tty_driver_kref_put(driver);
2027err_file:
2028	tty_free_file(filp);
2029	return retval;
2030}
2031
2032
2033
2034/**
2035 *	tty_poll	-	check tty status
2036 *	@filp: file being polled
2037 *	@wait: poll wait structures to update
2038 *
2039 *	Call the line discipline polling method to obtain the poll
2040 *	status of the device.
2041 *
2042 *	Locking: locks called line discipline but ldisc poll method
2043 *	may be re-entered freely by other callers.
2044 */
2045
2046static unsigned int tty_poll(struct file *filp, poll_table *wait)
2047{
2048	struct tty_struct *tty = file_tty(filp);
2049	struct tty_ldisc *ld;
2050	int ret = 0;
2051
2052	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2053		return 0;
2054
2055	ld = tty_ldisc_ref_wait(tty);
2056	if (ld->ops->poll)
2057		ret = (ld->ops->poll)(tty, filp, wait);
2058	tty_ldisc_deref(ld);
2059	return ret;
2060}
2061
2062static int __tty_fasync(int fd, struct file *filp, int on)
2063{
2064	struct tty_struct *tty = file_tty(filp);
2065	unsigned long flags;
2066	int retval = 0;
2067
2068	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2069		goto out;
2070
2071	retval = fasync_helper(fd, filp, on, &tty->fasync);
2072	if (retval <= 0)
2073		goto out;
2074
2075	if (on) {
2076		enum pid_type type;
2077		struct pid *pid;
2078		if (!waitqueue_active(&tty->read_wait))
2079			tty->minimum_to_wake = 1;
2080		spin_lock_irqsave(&tty->ctrl_lock, flags);
2081		if (tty->pgrp) {
2082			pid = tty->pgrp;
2083			type = PIDTYPE_PGID;
2084		} else {
2085			pid = task_pid(current);
2086			type = PIDTYPE_PID;
2087		}
2088		get_pid(pid);
2089		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2090		retval = __f_setown(filp, pid, type, 0);
2091		put_pid(pid);
2092		if (retval)
2093			goto out;
2094	} else {
2095		if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2096			tty->minimum_to_wake = N_TTY_BUF_SIZE;
2097	}
2098	retval = 0;
2099out:
2100	return retval;
2101}
2102
2103static int tty_fasync(int fd, struct file *filp, int on)
2104{
2105	int retval;
2106	tty_lock();
2107	retval = __tty_fasync(fd, filp, on);
2108	tty_unlock();
2109	return retval;
2110}
2111
2112/**
2113 *	tiocsti			-	fake input character
2114 *	@tty: tty to fake input into
2115 *	@p: pointer to character
2116 *
2117 *	Fake input to a tty device. Does the necessary locking and
2118 *	input management.
2119 *
2120 *	FIXME: does not honour flow control ??
2121 *
2122 *	Locking:
2123 *		Called functions take tty_ldisc_lock
2124 *		current->signal->tty check is safe without locks
2125 *
2126 *	FIXME: may race normal receive processing
2127 */
2128
2129static int tiocsti(struct tty_struct *tty, char __user *p)
2130{
2131	char ch, mbz = 0;
2132	struct tty_ldisc *ld;
2133
2134	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2135		return -EPERM;
2136	if (get_user(ch, p))
2137		return -EFAULT;
2138	tty_audit_tiocsti(tty, ch);
2139	ld = tty_ldisc_ref_wait(tty);
2140	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2141	tty_ldisc_deref(ld);
2142	return 0;
2143}
2144
2145/**
2146 *	tiocgwinsz		-	implement window query ioctl
2147 *	@tty; tty
2148 *	@arg: user buffer for result
2149 *
2150 *	Copies the kernel idea of the window size into the user buffer.
2151 *
2152 *	Locking: tty->termios_mutex is taken to ensure the winsize data
2153 *		is consistent.
2154 */
2155
2156static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2157{
2158	int err;
2159
2160	mutex_lock(&tty->termios_mutex);
2161	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2162	mutex_unlock(&tty->termios_mutex);
2163
2164	return err ? -EFAULT: 0;
2165}
2166
2167/**
2168 *	tty_do_resize		-	resize event
2169 *	@tty: tty being resized
2170 *	@rows: rows (character)
2171 *	@cols: cols (character)
2172 *
2173 *	Update the termios variables and send the necessary signals to
2174 *	peform a terminal resize correctly
2175 */
2176
2177int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2178{
2179	struct pid *pgrp;
2180	unsigned long flags;
2181
2182	/* Lock the tty */
2183	mutex_lock(&tty->termios_mutex);
2184	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2185		goto done;
2186	/* Get the PID values and reference them so we can
2187	   avoid holding the tty ctrl lock while sending signals */
2188	spin_lock_irqsave(&tty->ctrl_lock, flags);
2189	pgrp = get_pid(tty->pgrp);
2190	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2191
2192	if (pgrp)
2193		kill_pgrp(pgrp, SIGWINCH, 1);
2194	put_pid(pgrp);
2195
2196	tty->winsize = *ws;
2197done:
2198	mutex_unlock(&tty->termios_mutex);
2199	return 0;
2200}
2201
2202/**
2203 *	tiocswinsz		-	implement window size set ioctl
2204 *	@tty; tty side of tty
2205 *	@arg: user buffer for result
2206 *
2207 *	Copies the user idea of the window size to the kernel. Traditionally
2208 *	this is just advisory information but for the Linux console it
2209 *	actually has driver level meaning and triggers a VC resize.
2210 *
2211 *	Locking:
2212 *		Driver dependent. The default do_resize method takes the
2213 *	tty termios mutex and ctrl_lock. The console takes its own lock
2214 *	then calls into the default method.
2215 */
2216
2217static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2218{
2219	struct winsize tmp_ws;
2220	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2221		return -EFAULT;
2222
2223	if (tty->ops->resize)
2224		return tty->ops->resize(tty, &tmp_ws);
2225	else
2226		return tty_do_resize(tty, &tmp_ws);
2227}
2228
2229/**
2230 *	tioccons	-	allow admin to move logical console
2231 *	@file: the file to become console
2232 *
2233 *	Allow the administrator to move the redirected console device
2234 *
2235 *	Locking: uses redirect_lock to guard the redirect information
2236 */
2237
2238static int tioccons(struct file *file)
2239{
2240	if (!capable(CAP_SYS_ADMIN))
2241		return -EPERM;
2242	if (file->f_op->write == redirected_tty_write) {
2243		struct file *f;
2244		spin_lock(&redirect_lock);
2245		f = redirect;
2246		redirect = NULL;
2247		spin_unlock(&redirect_lock);
2248		if (f)
2249			fput(f);
2250		return 0;
2251	}
2252	spin_lock(&redirect_lock);
2253	if (redirect) {
2254		spin_unlock(&redirect_lock);
2255		return -EBUSY;
2256	}
2257	get_file(file);
2258	redirect = file;
2259	spin_unlock(&redirect_lock);
2260	return 0;
2261}
2262
2263/**
2264 *	fionbio		-	non blocking ioctl
2265 *	@file: file to set blocking value
2266 *	@p: user parameter
2267 *
2268 *	Historical tty interfaces had a blocking control ioctl before
2269 *	the generic functionality existed. This piece of history is preserved
2270 *	in the expected tty API of posix OS's.
2271 *
2272 *	Locking: none, the open file handle ensures it won't go away.
2273 */
2274
2275static int fionbio(struct file *file, int __user *p)
2276{
2277	int nonblock;
2278
2279	if (get_user(nonblock, p))
2280		return -EFAULT;
2281
2282	spin_lock(&file->f_lock);
2283	if (nonblock)
2284		file->f_flags |= O_NONBLOCK;
2285	else
2286		file->f_flags &= ~O_NONBLOCK;
2287	spin_unlock(&file->f_lock);
2288	return 0;
2289}
2290
2291/**
2292 *	tiocsctty	-	set controlling tty
2293 *	@tty: tty structure
2294 *	@arg: user argument
2295 *
2296 *	This ioctl is used to manage job control. It permits a session
2297 *	leader to set this tty as the controlling tty for the session.
2298 *
2299 *	Locking:
2300 *		Takes tty_mutex() to protect tty instance
2301 *		Takes tasklist_lock internally to walk sessions
2302 *		Takes ->siglock() when updating signal->tty
2303 */
2304
2305static int tiocsctty(struct tty_struct *tty, int arg)
2306{
2307	int ret = 0;
2308	if (current->signal->leader && (task_session(current) == tty->session))
2309		return ret;
2310
2311	mutex_lock(&tty_mutex);
2312	/*
2313	 * The process must be a session leader and
2314	 * not have a controlling tty already.
2315	 */
2316	if (!current->signal->leader || current->signal->tty) {
2317		ret = -EPERM;
2318		goto unlock;
2319	}
2320
2321	if (tty->session) {
2322		/*
2323		 * This tty is already the controlling
2324		 * tty for another session group!
2325		 */
2326		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2327			/*
2328			 * Steal it away
2329			 */
2330			read_lock(&tasklist_lock);
2331			session_clear_tty(tty->session);
2332			read_unlock(&tasklist_lock);
2333		} else {
2334			ret = -EPERM;
2335			goto unlock;
2336		}
2337	}
2338	proc_set_tty(current, tty);
2339unlock:
2340	mutex_unlock(&tty_mutex);
2341	return ret;
2342}
2343
2344/**
2345 *	tty_get_pgrp	-	return a ref counted pgrp pid
2346 *	@tty: tty to read
2347 *
2348 *	Returns a refcounted instance of the pid struct for the process
2349 *	group controlling the tty.
2350 */
2351
2352struct pid *tty_get_pgrp(struct tty_struct *tty)
2353{
2354	unsigned long flags;
2355	struct pid *pgrp;
2356
2357	spin_lock_irqsave(&tty->ctrl_lock, flags);
2358	pgrp = get_pid(tty->pgrp);
2359	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2360
2361	return pgrp;
2362}
2363EXPORT_SYMBOL_GPL(tty_get_pgrp);
2364
2365/**
2366 *	tiocgpgrp		-	get process group
2367 *	@tty: tty passed by user
2368 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2369 *	@p: returned pid
2370 *
2371 *	Obtain the process group of the tty. If there is no process group
2372 *	return an error.
2373 *
2374 *	Locking: none. Reference to current->signal->tty is safe.
2375 */
2376
2377static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2378{
2379	struct pid *pid;
2380	int ret;
2381	/*
2382	 * (tty == real_tty) is a cheap way of
2383	 * testing if the tty is NOT a master pty.
2384	 */
2385	if (tty == real_tty && current->signal->tty != real_tty)
2386		return -ENOTTY;
2387	pid = tty_get_pgrp(real_tty);
2388	ret =  put_user(pid_vnr(pid), p);
2389	put_pid(pid);
2390	return ret;
2391}
2392
2393/**
2394 *	tiocspgrp		-	attempt to set process group
2395 *	@tty: tty passed by user
2396 *	@real_tty: tty side device matching tty passed by user
2397 *	@p: pid pointer
2398 *
2399 *	Set the process group of the tty to the session passed. Only
2400 *	permitted where the tty session is our session.
2401 *
2402 *	Locking: RCU, ctrl lock
2403 */
2404
2405static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2406{
2407	struct pid *pgrp;
2408	pid_t pgrp_nr;
2409	int retval = tty_check_change(real_tty);
2410	unsigned long flags;
2411
2412	if (retval == -EIO)
2413		return -ENOTTY;
2414	if (retval)
2415		return retval;
2416	if (!current->signal->tty ||
2417	    (current->signal->tty != real_tty) ||
2418	    (real_tty->session != task_session(current)))
2419		return -ENOTTY;
2420	if (get_user(pgrp_nr, p))
2421		return -EFAULT;
2422	if (pgrp_nr < 0)
2423		return -EINVAL;
2424	rcu_read_lock();
2425	pgrp = find_vpid(pgrp_nr);
2426	retval = -ESRCH;
2427	if (!pgrp)
2428		goto out_unlock;
2429	retval = -EPERM;
2430	if (session_of_pgrp(pgrp) != task_session(current))
2431		goto out_unlock;
2432	retval = 0;
2433	spin_lock_irqsave(&tty->ctrl_lock, flags);
2434	put_pid(real_tty->pgrp);
2435	real_tty->pgrp = get_pid(pgrp);
2436	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2437out_unlock:
2438	rcu_read_unlock();
2439	return retval;
2440}
2441
2442/**
2443 *	tiocgsid		-	get session id
2444 *	@tty: tty passed by user
2445 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2446 *	@p: pointer to returned session id
2447 *
2448 *	Obtain the session id of the tty. If there is no session
2449 *	return an error.
2450 *
2451 *	Locking: none. Reference to current->signal->tty is safe.
2452 */
2453
2454static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2455{
2456	/*
2457	 * (tty == real_tty) is a cheap way of
2458	 * testing if the tty is NOT a master pty.
2459	*/
2460	if (tty == real_tty && current->signal->tty != real_tty)
2461		return -ENOTTY;
2462	if (!real_tty->session)
2463		return -ENOTTY;
2464	return put_user(pid_vnr(real_tty->session), p);
2465}
2466
2467/**
2468 *	tiocsetd	-	set line discipline
2469 *	@tty: tty device
2470 *	@p: pointer to user data
2471 *
2472 *	Set the line discipline according to user request.
2473 *
2474 *	Locking: see tty_set_ldisc, this function is just a helper
2475 */
2476
2477static int tiocsetd(struct tty_struct *tty, int __user *p)
2478{
2479	int ldisc;
2480	int ret;
2481
2482	if (get_user(ldisc, p))
2483		return -EFAULT;
2484
2485	ret = tty_set_ldisc(tty, ldisc);
2486
2487	return ret;
2488}
2489
2490/**
2491 *	send_break	-	performed time break
2492 *	@tty: device to break on
2493 *	@duration: timeout in mS
2494 *
2495 *	Perform a timed break on hardware that lacks its own driver level
2496 *	timed break functionality.
2497 *
2498 *	Locking:
2499 *		atomic_write_lock serializes
2500 *
2501 */
2502
2503static int send_break(struct tty_struct *tty, unsigned int duration)
2504{
2505	int retval;
2506
2507	if (tty->ops->break_ctl == NULL)
2508		return 0;
2509
2510	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2511		retval = tty->ops->break_ctl(tty, duration);
2512	else {
2513		/* Do the work ourselves */
2514		if (tty_write_lock(tty, 0) < 0)
2515			return -EINTR;
2516		retval = tty->ops->break_ctl(tty, -1);
2517		if (retval)
2518			goto out;
2519		if (!signal_pending(current))
2520			msleep_interruptible(duration);
2521		retval = tty->ops->break_ctl(tty, 0);
2522out:
2523		tty_write_unlock(tty);
2524		if (signal_pending(current))
2525			retval = -EINTR;
2526	}
2527	return retval;
2528}
2529
2530/**
2531 *	tty_tiocmget		-	get modem status
2532 *	@tty: tty device
2533 *	@file: user file pointer
2534 *	@p: pointer to result
2535 *
2536 *	Obtain the modem status bits from the tty driver if the feature
2537 *	is supported. Return -EINVAL if it is not available.
2538 *
2539 *	Locking: none (up to the driver)
2540 */
2541
2542static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2543{
2544	int retval = -EINVAL;
2545
2546	if (tty->ops->tiocmget) {
2547		retval = tty->ops->tiocmget(tty);
2548
2549		if (retval >= 0)
2550			retval = put_user(retval, p);
2551	}
2552	return retval;
2553}
2554
2555/**
2556 *	tty_tiocmset		-	set modem status
2557 *	@tty: tty device
2558 *	@cmd: command - clear bits, set bits or set all
2559 *	@p: pointer to desired bits
2560 *
2561 *	Set the modem status bits from the tty driver if the feature
2562 *	is supported. Return -EINVAL if it is not available.
2563 *
2564 *	Locking: none (up to the driver)
2565 */
2566
2567static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2568	     unsigned __user *p)
2569{
2570	int retval;
2571	unsigned int set, clear, val;
2572
2573	if (tty->ops->tiocmset == NULL)
2574		return -EINVAL;
2575
2576	retval = get_user(val, p);
2577	if (retval)
2578		return retval;
2579	set = clear = 0;
2580	switch (cmd) {
2581	case TIOCMBIS:
2582		set = val;
2583		break;
2584	case TIOCMBIC:
2585		clear = val;
2586		break;
2587	case TIOCMSET:
2588		set = val;
2589		clear = ~val;
2590		break;
2591	}
2592	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2593	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2594	return tty->ops->tiocmset(tty, set, clear);
2595}
2596
2597static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2598{
2599	int retval = -EINVAL;
2600	struct serial_icounter_struct icount;
2601	memset(&icount, 0, sizeof(icount));
2602	if (tty->ops->get_icount)
2603		retval = tty->ops->get_icount(tty, &icount);
2604	if (retval != 0)
2605		return retval;
2606	if (copy_to_user(arg, &icount, sizeof(icount)))
2607		return -EFAULT;
2608	return 0;
2609}
2610
2611struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2612{
2613	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2614	    tty->driver->subtype == PTY_TYPE_MASTER)
2615		tty = tty->link;
2616	return tty;
2617}
2618EXPORT_SYMBOL(tty_pair_get_tty);
2619
2620struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2621{
2622	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2623	    tty->driver->subtype == PTY_TYPE_MASTER)
2624	    return tty;
2625	return tty->link;
2626}
2627EXPORT_SYMBOL(tty_pair_get_pty);
2628
2629/*
2630 * Split this up, as gcc can choke on it otherwise..
2631 */
2632long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2633{
2634	struct tty_struct *tty = file_tty(file);
2635	struct tty_struct *real_tty;
2636	void __user *p = (void __user *)arg;
2637	int retval;
2638	struct tty_ldisc *ld;
2639	struct inode *inode = file->f_dentry->d_inode;
2640
2641	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2642		return -EINVAL;
2643
2644	real_tty = tty_pair_get_tty(tty);
2645
2646	/*
2647	 * Factor out some common prep work
2648	 */
2649	switch (cmd) {
2650	case TIOCSETD:
2651	case TIOCSBRK:
2652	case TIOCCBRK:
2653	case TCSBRK:
2654	case TCSBRKP:
2655		retval = tty_check_change(tty);
2656		if (retval)
2657			return retval;
2658		if (cmd != TIOCCBRK) {
2659			tty_wait_until_sent(tty, 0);
2660			if (signal_pending(current))
2661				return -EINTR;
2662		}
2663		break;
2664	}
2665
2666	/*
2667	 *	Now do the stuff.
2668	 */
2669	switch (cmd) {
2670	case TIOCSTI:
2671		return tiocsti(tty, p);
2672	case TIOCGWINSZ:
2673		return tiocgwinsz(real_tty, p);
2674	case TIOCSWINSZ:
2675		return tiocswinsz(real_tty, p);
2676	case TIOCCONS:
2677		return real_tty != tty ? -EINVAL : tioccons(file);
2678	case FIONBIO:
2679		return fionbio(file, p);
2680	case TIOCEXCL:
2681		set_bit(TTY_EXCLUSIVE, &tty->flags);
2682		return 0;
2683	case TIOCNXCL:
2684		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2685		return 0;
2686	case TIOCNOTTY:
2687		if (current->signal->tty != tty)
2688			return -ENOTTY;
2689		no_tty();
2690		return 0;
2691	case TIOCSCTTY:
2692		return tiocsctty(tty, arg);
2693	case TIOCGPGRP:
2694		return tiocgpgrp(tty, real_tty, p);
2695	case TIOCSPGRP:
2696		return tiocspgrp(tty, real_tty, p);
2697	case TIOCGSID:
2698		return tiocgsid(tty, real_tty, p);
2699	case TIOCGETD:
2700		return put_user(tty->ldisc->ops->num, (int __user *)p);
2701	case TIOCSETD:
2702		return tiocsetd(tty, p);
2703	case TIOCVHANGUP:
2704		if (!capable(CAP_SYS_ADMIN))
2705			return -EPERM;
2706		tty_vhangup(tty);
2707		return 0;
2708	case TIOCGDEV:
2709	{
2710		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2711		return put_user(ret, (unsigned int __user *)p);
2712	}
2713	/*
2714	 * Break handling
2715	 */
2716	case TIOCSBRK:	/* Turn break on, unconditionally */
2717		if (tty->ops->break_ctl)
2718			return tty->ops->break_ctl(tty, -1);
2719		return 0;
2720	case TIOCCBRK:	/* Turn break off, unconditionally */
2721		if (tty->ops->break_ctl)
2722			return tty->ops->break_ctl(tty, 0);
2723		return 0;
2724	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2725		/* non-zero arg means wait for all output data
2726		 * to be sent (performed above) but don't send break.
2727		 * This is used by the tcdrain() termios function.
2728		 */
2729		if (!arg)
2730			return send_break(tty, 250);
2731		return 0;
2732	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2733		return send_break(tty, arg ? arg*100 : 250);
2734
2735	case TIOCMGET:
2736		return tty_tiocmget(tty, p);
2737	case TIOCMSET:
2738	case TIOCMBIC:
2739	case TIOCMBIS:
2740		return tty_tiocmset(tty, cmd, p);
2741	case TIOCGICOUNT:
2742		retval = tty_tiocgicount(tty, p);
2743		/* For the moment allow fall through to the old method */
2744        	if (retval != -EINVAL)
2745			return retval;
2746		break;
2747	case TCFLSH:
2748		switch (arg) {
2749		case TCIFLUSH:
2750		case TCIOFLUSH:
2751		/* flush tty buffer and allow ldisc to process ioctl */
2752			tty_buffer_flush(tty);
2753			break;
2754		}
2755		break;
2756	}
2757	if (tty->ops->ioctl) {
2758		retval = (tty->ops->ioctl)(tty, cmd, arg);
2759		if (retval != -ENOIOCTLCMD)
2760			return retval;
2761	}
2762	ld = tty_ldisc_ref_wait(tty);
2763	retval = -EINVAL;
2764	if (ld->ops->ioctl) {
2765		retval = ld->ops->ioctl(tty, file, cmd, arg);
2766		if (retval == -ENOIOCTLCMD)
2767			retval = -EINVAL;
2768	}
2769	tty_ldisc_deref(ld);
2770	return retval;
2771}
2772
2773#ifdef CONFIG_COMPAT
2774static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2775				unsigned long arg)
2776{
2777	struct inode *inode = file->f_dentry->d_inode;
2778	struct tty_struct *tty = file_tty(file);
2779	struct tty_ldisc *ld;
2780	int retval = -ENOIOCTLCMD;
2781
2782	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2783		return -EINVAL;
2784
2785	if (tty->ops->compat_ioctl) {
2786		retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2787		if (retval != -ENOIOCTLCMD)
2788			return retval;
2789	}
2790
2791	ld = tty_ldisc_ref_wait(tty);
2792	if (ld->ops->compat_ioctl)
2793		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2794	else
2795		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2796	tty_ldisc_deref(ld);
2797
2798	return retval;
2799}
2800#endif
2801
2802/*
2803 * This implements the "Secure Attention Key" ---  the idea is to
2804 * prevent trojan horses by killing all processes associated with this
2805 * tty when the user hits the "Secure Attention Key".  Required for
2806 * super-paranoid applications --- see the Orange Book for more details.
2807 *
2808 * This code could be nicer; ideally it should send a HUP, wait a few
2809 * seconds, then send a INT, and then a KILL signal.  But you then
2810 * have to coordinate with the init process, since all processes associated
2811 * with the current tty must be dead before the new getty is allowed
2812 * to spawn.
2813 *
2814 * Now, if it would be correct ;-/ The current code has a nasty hole -
2815 * it doesn't catch files in flight. We may send the descriptor to ourselves
2816 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2817 *
2818 * Nasty bug: do_SAK is being called in interrupt context.  This can
2819 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2820 */
2821void __do_SAK(struct tty_struct *tty)
2822{
2823#ifdef TTY_SOFT_SAK
2824	tty_hangup(tty);
2825#else
2826	struct task_struct *g, *p;
2827	struct pid *session;
2828	int		i;
2829	struct file	*filp;
2830	struct fdtable *fdt;
2831
2832	if (!tty)
2833		return;
2834	session = tty->session;
2835
2836	tty_ldisc_flush(tty);
2837
2838	tty_driver_flush_buffer(tty);
2839
2840	read_lock(&tasklist_lock);
2841	/* Kill the entire session */
2842	do_each_pid_task(session, PIDTYPE_SID, p) {
2843		printk(KERN_NOTICE "SAK: killed process %d"
2844			" (%s): task_session(p)==tty->session\n",
2845			task_pid_nr(p), p->comm);
2846		send_sig(SIGKILL, p, 1);
2847	} while_each_pid_task(session, PIDTYPE_SID, p);
2848	/* Now kill any processes that happen to have the
2849	 * tty open.
2850	 */
2851	do_each_thread(g, p) {
2852		if (p->signal->tty == tty) {
2853			printk(KERN_NOTICE "SAK: killed process %d"
2854			    " (%s): task_session(p)==tty->session\n",
2855			    task_pid_nr(p), p->comm);
2856			send_sig(SIGKILL, p, 1);
2857			continue;
2858		}
2859		task_lock(p);
2860		if (p->files) {
2861			/*
2862			 * We don't take a ref to the file, so we must
2863			 * hold ->file_lock instead.
2864			 */
2865			spin_lock(&p->files->file_lock);
2866			fdt = files_fdtable(p->files);
2867			for (i = 0; i < fdt->max_fds; i++) {
2868				filp = fcheck_files(p->files, i);
2869				if (!filp)
2870					continue;
2871				if (filp->f_op->read == tty_read &&
2872				    file_tty(filp) == tty) {
2873					printk(KERN_NOTICE "SAK: killed process %d"
2874					    " (%s): fd#%d opened to the tty\n",
2875					    task_pid_nr(p), p->comm, i);
2876					force_sig(SIGKILL, p);
2877					break;
2878				}
2879			}
2880			spin_unlock(&p->files->file_lock);
2881		}
2882		task_unlock(p);
2883	} while_each_thread(g, p);
2884	read_unlock(&tasklist_lock);
2885#endif
2886}
2887
2888static void do_SAK_work(struct work_struct *work)
2889{
2890	struct tty_struct *tty =
2891		container_of(work, struct tty_struct, SAK_work);
2892	__do_SAK(tty);
2893}
2894
2895/*
2896 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2897 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2898 * the values which we write to it will be identical to the values which it
2899 * already has. --akpm
2900 */
2901void do_SAK(struct tty_struct *tty)
2902{
2903	if (!tty)
2904		return;
2905	schedule_work(&tty->SAK_work);
2906}
2907
2908EXPORT_SYMBOL(do_SAK);
2909
2910static int dev_match_devt(struct device *dev, void *data)
2911{
2912	dev_t *devt = data;
2913	return dev->devt == *devt;
2914}
2915
2916/* Must put_device() after it's unused! */
2917static struct device *tty_get_device(struct tty_struct *tty)
2918{
2919	dev_t devt = tty_devnum(tty);
2920	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2921}
2922
2923
2924/**
2925 *	initialize_tty_struct
2926 *	@tty: tty to initialize
2927 *
2928 *	This subroutine initializes a tty structure that has been newly
2929 *	allocated.
2930 *
2931 *	Locking: none - tty in question must not be exposed at this point
2932 */
2933
2934void initialize_tty_struct(struct tty_struct *tty,
2935		struct tty_driver *driver, int idx)
2936{
2937	memset(tty, 0, sizeof(struct tty_struct));
2938	kref_init(&tty->kref);
2939	tty->magic = TTY_MAGIC;
2940	tty_ldisc_init(tty);
2941	tty->session = NULL;
2942	tty->pgrp = NULL;
2943	tty->overrun_time = jiffies;
2944	tty->buf.head = tty->buf.tail = NULL;
2945	tty_buffer_init(tty);
2946	mutex_init(&tty->termios_mutex);
2947	mutex_init(&tty->ldisc_mutex);
2948	init_waitqueue_head(&tty->write_wait);
2949	init_waitqueue_head(&tty->read_wait);
2950	INIT_WORK(&tty->hangup_work, do_tty_hangup);
2951	mutex_init(&tty->atomic_read_lock);
2952	mutex_init(&tty->atomic_write_lock);
2953	mutex_init(&tty->output_lock);
2954	mutex_init(&tty->echo_lock);
2955	spin_lock_init(&tty->read_lock);
2956	spin_lock_init(&tty->ctrl_lock);
2957	INIT_LIST_HEAD(&tty->tty_files);
2958	INIT_WORK(&tty->SAK_work, do_SAK_work);
2959
2960	tty->driver = driver;
2961	tty->ops = driver->ops;
2962	tty->index = idx;
2963	tty_line_name(driver, idx, tty->name);
2964	tty->dev = tty_get_device(tty);
2965}
2966
2967/**
2968 *	deinitialize_tty_struct
2969 *	@tty: tty to deinitialize
2970 *
2971 *	This subroutine deinitializes a tty structure that has been newly
2972 *	allocated but tty_release cannot be called on that yet.
2973 *
2974 *	Locking: none - tty in question must not be exposed at this point
2975 */
2976void deinitialize_tty_struct(struct tty_struct *tty)
2977{
2978	tty_ldisc_deinit(tty);
2979}
2980
2981/**
2982 *	tty_put_char	-	write one character to a tty
2983 *	@tty: tty
2984 *	@ch: character
2985 *
2986 *	Write one byte to the tty using the provided put_char method
2987 *	if present. Returns the number of characters successfully output.
2988 *
2989 *	Note: the specific put_char operation in the driver layer may go
2990 *	away soon. Don't call it directly, use this method
2991 */
2992
2993int tty_put_char(struct tty_struct *tty, unsigned char ch)
2994{
2995	if (tty->ops->put_char)
2996		return tty->ops->put_char(tty, ch);
2997	return tty->ops->write(tty, &ch, 1);
2998}
2999EXPORT_SYMBOL_GPL(tty_put_char);
3000
3001struct class *tty_class;
3002
3003/**
3004 *	tty_register_device - register a tty device
3005 *	@driver: the tty driver that describes the tty device
3006 *	@index: the index in the tty driver for this tty device
3007 *	@device: a struct device that is associated with this tty device.
3008 *		This field is optional, if there is no known struct device
3009 *		for this tty device it can be set to NULL safely.
3010 *
3011 *	Returns a pointer to the struct device for this tty device
3012 *	(or ERR_PTR(-EFOO) on error).
3013 *
3014 *	This call is required to be made to register an individual tty device
3015 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3016 *	that bit is not set, this function should not be called by a tty
3017 *	driver.
3018 *
3019 *	Locking: ??
3020 */
3021
3022struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3023				   struct device *device)
3024{
3025	char name[64];
3026	dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3027
3028	if (index >= driver->num) {
3029		printk(KERN_ERR "Attempt to register invalid tty line number "
3030		       " (%d).\n", index);
3031		return ERR_PTR(-EINVAL);
3032	}
3033
3034	if (driver->type == TTY_DRIVER_TYPE_PTY)
3035		pty_line_name(driver, index, name);
3036	else
3037		tty_line_name(driver, index, name);
3038
3039	return device_create(tty_class, device, dev, NULL, name);
3040}
3041EXPORT_SYMBOL(tty_register_device);
3042
3043/**
3044 * 	tty_unregister_device - unregister a tty device
3045 * 	@driver: the tty driver that describes the tty device
3046 * 	@index: the index in the tty driver for this tty device
3047 *
3048 * 	If a tty device is registered with a call to tty_register_device() then
3049 *	this function must be called when the tty device is gone.
3050 *
3051 *	Locking: ??
3052 */
3053
3054void tty_unregister_device(struct tty_driver *driver, unsigned index)
3055{
3056	device_destroy(tty_class,
3057		MKDEV(driver->major, driver->minor_start) + index);
3058}
3059EXPORT_SYMBOL(tty_unregister_device);
3060
3061struct tty_driver *alloc_tty_driver(int lines)
3062{
3063	struct tty_driver *driver;
3064
3065	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3066	if (driver) {
3067		kref_init(&driver->kref);
3068		driver->magic = TTY_DRIVER_MAGIC;
3069		driver->num = lines;
3070		/* later we'll move allocation of tables here */
3071	}
3072	return driver;
3073}
3074EXPORT_SYMBOL(alloc_tty_driver);
3075
3076static void destruct_tty_driver(struct kref *kref)
3077{
3078	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3079	int i;
3080	struct ktermios *tp;
3081	void *p;
3082
3083	if (driver->flags & TTY_DRIVER_INSTALLED) {
3084		/*
3085		 * Free the termios and termios_locked structures because
3086		 * we don't want to get memory leaks when modular tty
3087		 * drivers are removed from the kernel.
3088		 */
3089		for (i = 0; i < driver->num; i++) {
3090			tp = driver->termios[i];
3091			if (tp) {
3092				driver->termios[i] = NULL;
3093				kfree(tp);
3094			}
3095			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3096				tty_unregister_device(driver, i);
3097		}
3098		p = driver->ttys;
3099		proc_tty_unregister_driver(driver);
3100		driver->ttys = NULL;
3101		driver->termios = NULL;
3102		kfree(p);
3103		cdev_del(&driver->cdev);
3104	}
3105	kfree(driver);
3106}
3107
3108void tty_driver_kref_put(struct tty_driver *driver)
3109{
3110	kref_put(&driver->kref, destruct_tty_driver);
3111}
3112EXPORT_SYMBOL(tty_driver_kref_put);
3113
3114void tty_set_operations(struct tty_driver *driver,
3115			const struct tty_operations *op)
3116{
3117	driver->ops = op;
3118};
3119EXPORT_SYMBOL(tty_set_operations);
3120
3121void put_tty_driver(struct tty_driver *d)
3122{
3123	tty_driver_kref_put(d);
3124}
3125EXPORT_SYMBOL(put_tty_driver);
3126
3127/*
3128 * Called by a tty driver to register itself.
3129 */
3130int tty_register_driver(struct tty_driver *driver)
3131{
3132	int error;
3133	int i;
3134	dev_t dev;
3135	void **p = NULL;
3136	struct device *d;
3137
3138	if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3139		p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3140		if (!p)
3141			return -ENOMEM;
3142	}
3143
3144	if (!driver->major) {
3145		error = alloc_chrdev_region(&dev, driver->minor_start,
3146						driver->num, driver->name);
3147		if (!error) {
3148			driver->major = MAJOR(dev);
3149			driver->minor_start = MINOR(dev);
3150		}
3151	} else {
3152		dev = MKDEV(driver->major, driver->minor_start);
3153		error = register_chrdev_region(dev, driver->num, driver->name);
3154	}
3155	if (error < 0) {
3156		kfree(p);
3157		return error;
3158	}
3159
3160	if (p) {
3161		driver->ttys = (struct tty_struct **)p;
3162		driver->termios = (struct ktermios **)(p + driver->num);
3163	} else {
3164		driver->ttys = NULL;
3165		driver->termios = NULL;
3166	}
3167
3168	cdev_init(&driver->cdev, &tty_fops);
3169	driver->cdev.owner = driver->owner;
3170	error = cdev_add(&driver->cdev, dev, driver->num);
3171	if (error) {
3172		unregister_chrdev_region(dev, driver->num);
3173		driver->ttys = NULL;
3174		driver->termios = NULL;
3175		kfree(p);
3176		return error;
3177	}
3178
3179	mutex_lock(&tty_mutex);
3180	list_add(&driver->tty_drivers, &tty_drivers);
3181	mutex_unlock(&tty_mutex);
3182
3183	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3184		for (i = 0; i < driver->num; i++) {
3185			d = tty_register_device(driver, i, NULL);
3186			if (IS_ERR(d)) {
3187				error = PTR_ERR(d);
3188				goto err;
3189			}
3190		}
3191	}
3192	proc_tty_register_driver(driver);
3193	driver->flags |= TTY_DRIVER_INSTALLED;
3194	return 0;
3195
3196err:
3197	for (i--; i >= 0; i--)
3198		tty_unregister_device(driver, i);
3199
3200	mutex_lock(&tty_mutex);
3201	list_del(&driver->tty_drivers);
3202	mutex_unlock(&tty_mutex);
3203
3204	unregister_chrdev_region(dev, driver->num);
3205	driver->ttys = NULL;
3206	driver->termios = NULL;
3207	kfree(p);
3208	return error;
3209}
3210
3211EXPORT_SYMBOL(tty_register_driver);
3212
3213/*
3214 * Called by a tty driver to unregister itself.
3215 */
3216int tty_unregister_driver(struct tty_driver *driver)
3217{
3218#if 0
3219	/* FIXME */
3220	if (driver->refcount)
3221		return -EBUSY;
3222#endif
3223	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3224				driver->num);
3225	mutex_lock(&tty_mutex);
3226	list_del(&driver->tty_drivers);
3227	mutex_unlock(&tty_mutex);
3228	return 0;
3229}
3230
3231EXPORT_SYMBOL(tty_unregister_driver);
3232
3233dev_t tty_devnum(struct tty_struct *tty)
3234{
3235	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3236}
3237EXPORT_SYMBOL(tty_devnum);
3238
3239void proc_clear_tty(struct task_struct *p)
3240{
3241	unsigned long flags;
3242	struct tty_struct *tty;
3243	spin_lock_irqsave(&p->sighand->siglock, flags);
3244	tty = p->signal->tty;
3245	p->signal->tty = NULL;
3246	spin_unlock_irqrestore(&p->sighand->siglock, flags);
3247	tty_kref_put(tty);
3248}
3249
3250/* Called under the sighand lock */
3251
3252static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3253{
3254	if (tty) {
3255		unsigned long flags;
3256		/* We should not have a session or pgrp to put here but.... */
3257		spin_lock_irqsave(&tty->ctrl_lock, flags);
3258		put_pid(tty->session);
3259		put_pid(tty->pgrp);
3260		tty->pgrp = get_pid(task_pgrp(tsk));
3261		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3262		tty->session = get_pid(task_session(tsk));
3263		if (tsk->signal->tty) {
3264			printk(KERN_DEBUG "tty not NULL!!\n");
3265			tty_kref_put(tsk->signal->tty);
3266		}
3267	}
3268	put_pid(tsk->signal->tty_old_pgrp);
3269	tsk->signal->tty = tty_kref_get(tty);
3270	tsk->signal->tty_old_pgrp = NULL;
3271}
3272
3273static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3274{
3275	spin_lock_irq(&tsk->sighand->siglock);
3276	__proc_set_tty(tsk, tty);
3277	spin_unlock_irq(&tsk->sighand->siglock);
3278}
3279
3280struct tty_struct *get_current_tty(void)
3281{
3282	struct tty_struct *tty;
3283	unsigned long flags;
3284
3285	spin_lock_irqsave(&current->sighand->siglock, flags);
3286	tty = tty_kref_get(current->signal->tty);
3287	spin_unlock_irqrestore(&current->sighand->siglock, flags);
3288	return tty;
3289}
3290EXPORT_SYMBOL_GPL(get_current_tty);
3291
3292void tty_default_fops(struct file_operations *fops)
3293{
3294	*fops = tty_fops;
3295}
3296
3297/*
3298 * Initialize the console device. This is called *early*, so
3299 * we can't necessarily depend on lots of kernel help here.
3300 * Just do some early initializations, and do the complex setup
3301 * later.
3302 */
3303void __init console_init(void)
3304{
3305	initcall_t *call;
3306
3307	/* Setup the default TTY line discipline. */
3308	tty_ldisc_begin();
3309
3310	/*
3311	 * set up the console device so that later boot sequences can
3312	 * inform about problems etc..
3313	 */
3314	call = __con_initcall_start;
3315	while (call < __con_initcall_end) {
3316		(*call)();
3317		call++;
3318	}
3319}
3320
3321static char *tty_devnode(struct device *dev, umode_t *mode)
3322{
3323	if (!mode)
3324		return NULL;
3325	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3326	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3327		*mode = 0666;
3328	return NULL;
3329}
3330
3331static int __init tty_class_init(void)
3332{
3333	tty_class = class_create(THIS_MODULE, "tty");
3334	if (IS_ERR(tty_class))
3335		return PTR_ERR(tty_class);
3336	tty_class->devnode = tty_devnode;
3337	return 0;
3338}
3339
3340postcore_initcall(tty_class_init);
3341
3342/* 3/2004 jmc: why do these devices exist? */
3343static struct cdev tty_cdev, console_cdev;
3344
3345static ssize_t show_cons_active(struct device *dev,
3346				struct device_attribute *attr, char *buf)
3347{
3348	struct console *cs[16];
3349	int i = 0;
3350	struct console *c;
3351	ssize_t count = 0;
3352
3353	console_lock();
3354	for_each_console(c) {
3355		if (!c->device)
3356			continue;
3357		if (!c->write)
3358			continue;
3359		if ((c->flags & CON_ENABLED) == 0)
3360			continue;
3361		cs[i++] = c;
3362		if (i >= ARRAY_SIZE(cs))
3363			break;
3364	}
3365	while (i--)
3366		count += sprintf(buf + count, "%s%d%c",
3367				 cs[i]->name, cs[i]->index, i ? ' ':'\n');
3368	console_unlock();
3369
3370	return count;
3371}
3372static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3373
3374static struct device *consdev;
3375
3376void console_sysfs_notify(void)
3377{
3378	if (consdev)
3379		sysfs_notify(&consdev->kobj, NULL, "active");
3380}
3381
3382/*
3383 * Ok, now we can initialize the rest of the tty devices and can count
3384 * on memory allocations, interrupts etc..
3385 */
3386int __init tty_init(void)
3387{
3388	cdev_init(&tty_cdev, &tty_fops);
3389	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3390	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3391		panic("Couldn't register /dev/tty driver\n");
3392	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3393
3394	cdev_init(&console_cdev, &console_fops);
3395	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3396	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3397		panic("Couldn't register /dev/console driver\n");
3398	consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3399			      "console");
3400	if (IS_ERR(consdev))
3401		consdev = NULL;
3402	else
3403		WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3404
3405#ifdef CONFIG_VT
3406	vty_init(&console_fops);
3407#endif
3408	return 0;
3409}
3410
3411