1/*
2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18 * for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25#include <linux/module.h>
26#include <linux/version.h>
27#include <linux/kernel.h>
28#include <linux/slab.h>
29#include <linux/completion.h>
30#include <linux/utsname.h>
31#include <linux/mm.h>
32#include <asm/io.h>
33#include <linux/device.h>
34#include <linux/dma-mapping.h>
35#include <linux/mutex.h>
36#include <asm/irq.h>
37#include <asm/byteorder.h>
38#include <asm/unaligned.h>
39#include <linux/platform_device.h>
40#include <linux/workqueue.h>
41
42#include <linux/usb.h>
43#include <linux/usb/hcd.h>
44
45#include "usb.h"
46
47
48/*-------------------------------------------------------------------------*/
49
50/*
51 * USB Host Controller Driver framework
52 *
53 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
54 * HCD-specific behaviors/bugs.
55 *
56 * This does error checks, tracks devices and urbs, and delegates to a
57 * "hc_driver" only for code (and data) that really needs to know about
58 * hardware differences.  That includes root hub registers, i/o queues,
59 * and so on ... but as little else as possible.
60 *
61 * Shared code includes most of the "root hub" code (these are emulated,
62 * though each HC's hardware works differently) and PCI glue, plus request
63 * tracking overhead.  The HCD code should only block on spinlocks or on
64 * hardware handshaking; blocking on software events (such as other kernel
65 * threads releasing resources, or completing actions) is all generic.
66 *
67 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
68 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
69 * only by the hub driver ... and that neither should be seen or used by
70 * usb client device drivers.
71 *
72 * Contributors of ideas or unattributed patches include: David Brownell,
73 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
74 *
75 * HISTORY:
76 * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
77 *		associated cleanup.  "usb_hcd" still != "usb_bus".
78 * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
79 */
80
81/*-------------------------------------------------------------------------*/
82
83/* Keep track of which host controller drivers are loaded */
84unsigned long usb_hcds_loaded;
85EXPORT_SYMBOL_GPL(usb_hcds_loaded);
86
87/* host controllers we manage */
88LIST_HEAD (usb_bus_list);
89EXPORT_SYMBOL_GPL (usb_bus_list);
90
91/* used when allocating bus numbers */
92#define USB_MAXBUS		64
93struct usb_busmap {
94	unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
95};
96static struct usb_busmap busmap;
97
98/* used when updating list of hcds */
99DEFINE_MUTEX(usb_bus_list_lock);	/* exported only for usbfs */
100EXPORT_SYMBOL_GPL (usb_bus_list_lock);
101
102/* used for controlling access to virtual root hubs */
103static DEFINE_SPINLOCK(hcd_root_hub_lock);
104
105/* used when updating an endpoint's URB list */
106static DEFINE_SPINLOCK(hcd_urb_list_lock);
107
108/* used to protect against unlinking URBs after the device is gone */
109static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
110
111/* wait queue for synchronous unlinks */
112DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
113
114static inline int is_root_hub(struct usb_device *udev)
115{
116	return (udev->parent == NULL);
117}
118
119/*-------------------------------------------------------------------------*/
120
121/*
122 * Sharable chunks of root hub code.
123 */
124
125/*-------------------------------------------------------------------------*/
126
127#define KERNEL_REL	((LINUX_VERSION_CODE >> 16) & 0x0ff)
128#define KERNEL_VER	((LINUX_VERSION_CODE >> 8) & 0x0ff)
129
130/* usb 3.0 root hub device descriptor */
131static const u8 usb3_rh_dev_descriptor[18] = {
132	0x12,       /*  __u8  bLength; */
133	0x01,       /*  __u8  bDescriptorType; Device */
134	0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
135
136	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
137	0x00,	    /*  __u8  bDeviceSubClass; */
138	0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
139	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
140
141	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
142	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
143	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
144
145	0x03,       /*  __u8  iManufacturer; */
146	0x02,       /*  __u8  iProduct; */
147	0x01,       /*  __u8  iSerialNumber; */
148	0x01        /*  __u8  bNumConfigurations; */
149};
150
151/* usb 2.0 root hub device descriptor */
152static const u8 usb2_rh_dev_descriptor [18] = {
153	0x12,       /*  __u8  bLength; */
154	0x01,       /*  __u8  bDescriptorType; Device */
155	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
156
157	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
158	0x00,	    /*  __u8  bDeviceSubClass; */
159	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
160	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
161
162	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
163	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
164	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
165
166	0x03,       /*  __u8  iManufacturer; */
167	0x02,       /*  __u8  iProduct; */
168	0x01,       /*  __u8  iSerialNumber; */
169	0x01        /*  __u8  bNumConfigurations; */
170};
171
172/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
173
174/* usb 1.1 root hub device descriptor */
175static const u8 usb11_rh_dev_descriptor [18] = {
176	0x12,       /*  __u8  bLength; */
177	0x01,       /*  __u8  bDescriptorType; Device */
178	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
179
180	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
181	0x00,	    /*  __u8  bDeviceSubClass; */
182	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
183	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
184
185	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
186	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
187	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
188
189	0x03,       /*  __u8  iManufacturer; */
190	0x02,       /*  __u8  iProduct; */
191	0x01,       /*  __u8  iSerialNumber; */
192	0x01        /*  __u8  bNumConfigurations; */
193};
194
195
196/*-------------------------------------------------------------------------*/
197
198/* Configuration descriptors for our root hubs */
199
200static const u8 fs_rh_config_descriptor [] = {
201
202	/* one configuration */
203	0x09,       /*  __u8  bLength; */
204	0x02,       /*  __u8  bDescriptorType; Configuration */
205	0x19, 0x00, /*  __le16 wTotalLength; */
206	0x01,       /*  __u8  bNumInterfaces; (1) */
207	0x01,       /*  __u8  bConfigurationValue; */
208	0x00,       /*  __u8  iConfiguration; */
209	0xc0,       /*  __u8  bmAttributes;
210				 Bit 7: must be set,
211				     6: Self-powered,
212				     5: Remote wakeup,
213				     4..0: resvd */
214	0x00,       /*  __u8  MaxPower; */
215
216	/* USB 1.1:
217	 * USB 2.0, single TT organization (mandatory):
218	 *	one interface, protocol 0
219	 *
220	 * USB 2.0, multiple TT organization (optional):
221	 *	two interfaces, protocols 1 (like single TT)
222	 *	and 2 (multiple TT mode) ... config is
223	 *	sometimes settable
224	 *	NOT IMPLEMENTED
225	 */
226
227	/* one interface */
228	0x09,       /*  __u8  if_bLength; */
229	0x04,       /*  __u8  if_bDescriptorType; Interface */
230	0x00,       /*  __u8  if_bInterfaceNumber; */
231	0x00,       /*  __u8  if_bAlternateSetting; */
232	0x01,       /*  __u8  if_bNumEndpoints; */
233	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
234	0x00,       /*  __u8  if_bInterfaceSubClass; */
235	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
236	0x00,       /*  __u8  if_iInterface; */
237
238	/* one endpoint (status change endpoint) */
239	0x07,       /*  __u8  ep_bLength; */
240	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
241	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
242 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
243 	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
244	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
245};
246
247static const u8 hs_rh_config_descriptor [] = {
248
249	/* one configuration */
250	0x09,       /*  __u8  bLength; */
251	0x02,       /*  __u8  bDescriptorType; Configuration */
252	0x19, 0x00, /*  __le16 wTotalLength; */
253	0x01,       /*  __u8  bNumInterfaces; (1) */
254	0x01,       /*  __u8  bConfigurationValue; */
255	0x00,       /*  __u8  iConfiguration; */
256	0xc0,       /*  __u8  bmAttributes;
257				 Bit 7: must be set,
258				     6: Self-powered,
259				     5: Remote wakeup,
260				     4..0: resvd */
261	0x00,       /*  __u8  MaxPower; */
262
263	/* USB 1.1:
264	 * USB 2.0, single TT organization (mandatory):
265	 *	one interface, protocol 0
266	 *
267	 * USB 2.0, multiple TT organization (optional):
268	 *	two interfaces, protocols 1 (like single TT)
269	 *	and 2 (multiple TT mode) ... config is
270	 *	sometimes settable
271	 *	NOT IMPLEMENTED
272	 */
273
274	/* one interface */
275	0x09,       /*  __u8  if_bLength; */
276	0x04,       /*  __u8  if_bDescriptorType; Interface */
277	0x00,       /*  __u8  if_bInterfaceNumber; */
278	0x00,       /*  __u8  if_bAlternateSetting; */
279	0x01,       /*  __u8  if_bNumEndpoints; */
280	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
281	0x00,       /*  __u8  if_bInterfaceSubClass; */
282	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
283	0x00,       /*  __u8  if_iInterface; */
284
285	/* one endpoint (status change endpoint) */
286	0x07,       /*  __u8  ep_bLength; */
287	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
288	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
289 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
290		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
291		     * see hub.c:hub_configure() for details. */
292	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
293	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
294};
295
296static const u8 ss_rh_config_descriptor[] = {
297	/* one configuration */
298	0x09,       /*  __u8  bLength; */
299	0x02,       /*  __u8  bDescriptorType; Configuration */
300	0x1f, 0x00, /*  __le16 wTotalLength; */
301	0x01,       /*  __u8  bNumInterfaces; (1) */
302	0x01,       /*  __u8  bConfigurationValue; */
303	0x00,       /*  __u8  iConfiguration; */
304	0xc0,       /*  __u8  bmAttributes;
305				 Bit 7: must be set,
306				     6: Self-powered,
307				     5: Remote wakeup,
308				     4..0: resvd */
309	0x00,       /*  __u8  MaxPower; */
310
311	/* one interface */
312	0x09,       /*  __u8  if_bLength; */
313	0x04,       /*  __u8  if_bDescriptorType; Interface */
314	0x00,       /*  __u8  if_bInterfaceNumber; */
315	0x00,       /*  __u8  if_bAlternateSetting; */
316	0x01,       /*  __u8  if_bNumEndpoints; */
317	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
318	0x00,       /*  __u8  if_bInterfaceSubClass; */
319	0x00,       /*  __u8  if_bInterfaceProtocol; */
320	0x00,       /*  __u8  if_iInterface; */
321
322	/* one endpoint (status change endpoint) */
323	0x07,       /*  __u8  ep_bLength; */
324	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
325	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
326	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
327		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
328		     * see hub.c:hub_configure() for details. */
329	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
330	0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
331
332	/* one SuperSpeed endpoint companion descriptor */
333	0x06,        /* __u8 ss_bLength */
334	0x30,        /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
335	0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
336	0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
337	0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
338};
339
340/* authorized_default behaviour:
341 * -1 is authorized for all devices except wireless (old behaviour)
342 * 0 is unauthorized for all devices
343 * 1 is authorized for all devices
344 */
345static int authorized_default = -1;
346module_param(authorized_default, int, S_IRUGO|S_IWUSR);
347MODULE_PARM_DESC(authorized_default,
348		"Default USB device authorization: 0 is not authorized, 1 is "
349		"authorized, -1 is authorized except for wireless USB (default, "
350		"old behaviour");
351/*-------------------------------------------------------------------------*/
352
353/**
354 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
355 * @s: Null-terminated ASCII (actually ISO-8859-1) string
356 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
357 * @len: Length (in bytes; may be odd) of descriptor buffer.
358 *
359 * The return value is the number of bytes filled in: 2 + 2*strlen(s) or
360 * buflen, whichever is less.
361 *
362 * USB String descriptors can contain at most 126 characters; input
363 * strings longer than that are truncated.
364 */
365static unsigned
366ascii2desc(char const *s, u8 *buf, unsigned len)
367{
368	unsigned n, t = 2 + 2*strlen(s);
369
370	if (t > 254)
371		t = 254;	/* Longest possible UTF string descriptor */
372	if (len > t)
373		len = t;
374
375	t += USB_DT_STRING << 8;	/* Now t is first 16 bits to store */
376
377	n = len;
378	while (n--) {
379		*buf++ = t;
380		if (!n--)
381			break;
382		*buf++ = t >> 8;
383		t = (unsigned char)*s++;
384	}
385	return len;
386}
387
388/**
389 * rh_string() - provides string descriptors for root hub
390 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
391 * @hcd: the host controller for this root hub
392 * @data: buffer for output packet
393 * @len: length of the provided buffer
394 *
395 * Produces either a manufacturer, product or serial number string for the
396 * virtual root hub device.
397 * Returns the number of bytes filled in: the length of the descriptor or
398 * of the provided buffer, whichever is less.
399 */
400static unsigned
401rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
402{
403	char buf[100];
404	char const *s;
405	static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
406
407	// language ids
408	switch (id) {
409	case 0:
410		/* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
411		/* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
412		if (len > 4)
413			len = 4;
414		memcpy(data, langids, len);
415		return len;
416	case 1:
417		/* Serial number */
418		s = hcd->self.bus_name;
419		break;
420	case 2:
421		/* Product name */
422		s = hcd->product_desc;
423		break;
424	case 3:
425		/* Manufacturer */
426		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
427			init_utsname()->release, hcd->driver->description);
428		s = buf;
429		break;
430	default:
431		/* Can't happen; caller guarantees it */
432		return 0;
433	}
434
435	return ascii2desc(s, data, len);
436}
437
438
439/* Root hub control transfers execute synchronously */
440static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
441{
442	struct usb_ctrlrequest *cmd;
443 	u16		typeReq, wValue, wIndex, wLength;
444	u8		*ubuf = urb->transfer_buffer;
445	/*
446	 * tbuf should be as big as the BOS descriptor and
447	 * the USB hub descriptor.
448	 */
449	u8		tbuf[USB_DT_BOS_SIZE + USB_DT_USB_SS_CAP_SIZE]
450		__attribute__((aligned(4)));
451	const u8	*bufp = tbuf;
452	unsigned	len = 0;
453	int		status;
454	u8		patch_wakeup = 0;
455	u8		patch_protocol = 0;
456
457	might_sleep();
458
459	spin_lock_irq(&hcd_root_hub_lock);
460	status = usb_hcd_link_urb_to_ep(hcd, urb);
461	spin_unlock_irq(&hcd_root_hub_lock);
462	if (status)
463		return status;
464	urb->hcpriv = hcd;	/* Indicate it's queued */
465
466	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
467	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
468	wValue   = le16_to_cpu (cmd->wValue);
469	wIndex   = le16_to_cpu (cmd->wIndex);
470	wLength  = le16_to_cpu (cmd->wLength);
471
472	if (wLength > urb->transfer_buffer_length)
473		goto error;
474
475	urb->actual_length = 0;
476	switch (typeReq) {
477
478	/* DEVICE REQUESTS */
479
480	/* The root hub's remote wakeup enable bit is implemented using
481	 * driver model wakeup flags.  If this system supports wakeup
482	 * through USB, userspace may change the default "allow wakeup"
483	 * policy through sysfs or these calls.
484	 *
485	 * Most root hubs support wakeup from downstream devices, for
486	 * runtime power management (disabling USB clocks and reducing
487	 * VBUS power usage).  However, not all of them do so; silicon,
488	 * board, and BIOS bugs here are not uncommon, so these can't
489	 * be treated quite like external hubs.
490	 *
491	 * Likewise, not all root hubs will pass wakeup events upstream,
492	 * to wake up the whole system.  So don't assume root hub and
493	 * controller capabilities are identical.
494	 */
495
496	case DeviceRequest | USB_REQ_GET_STATUS:
497		tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
498					<< USB_DEVICE_REMOTE_WAKEUP)
499				| (1 << USB_DEVICE_SELF_POWERED);
500		tbuf [1] = 0;
501		len = 2;
502		break;
503	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
504		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
505			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
506		else
507			goto error;
508		break;
509	case DeviceOutRequest | USB_REQ_SET_FEATURE:
510		if (device_can_wakeup(&hcd->self.root_hub->dev)
511				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
512			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
513		else
514			goto error;
515		break;
516	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
517		tbuf [0] = 1;
518		len = 1;
519			/* FALLTHROUGH */
520	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
521		break;
522	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
523		switch (wValue & 0xff00) {
524		case USB_DT_DEVICE << 8:
525			switch (hcd->speed) {
526			case HCD_USB3:
527				bufp = usb3_rh_dev_descriptor;
528				break;
529			case HCD_USB2:
530				bufp = usb2_rh_dev_descriptor;
531				break;
532			case HCD_USB11:
533				bufp = usb11_rh_dev_descriptor;
534				break;
535			default:
536				goto error;
537			}
538			len = 18;
539			if (hcd->has_tt)
540				patch_protocol = 1;
541			break;
542		case USB_DT_CONFIG << 8:
543			switch (hcd->speed) {
544			case HCD_USB3:
545				bufp = ss_rh_config_descriptor;
546				len = sizeof ss_rh_config_descriptor;
547				break;
548			case HCD_USB2:
549				bufp = hs_rh_config_descriptor;
550				len = sizeof hs_rh_config_descriptor;
551				break;
552			case HCD_USB11:
553				bufp = fs_rh_config_descriptor;
554				len = sizeof fs_rh_config_descriptor;
555				break;
556			default:
557				goto error;
558			}
559			if (device_can_wakeup(&hcd->self.root_hub->dev))
560				patch_wakeup = 1;
561			break;
562		case USB_DT_STRING << 8:
563			if ((wValue & 0xff) < 4)
564				urb->actual_length = rh_string(wValue & 0xff,
565						hcd, ubuf, wLength);
566			else /* unsupported IDs --> "protocol stall" */
567				goto error;
568			break;
569		case USB_DT_BOS << 8:
570			goto nongeneric;
571		default:
572			goto error;
573		}
574		break;
575	case DeviceRequest | USB_REQ_GET_INTERFACE:
576		tbuf [0] = 0;
577		len = 1;
578			/* FALLTHROUGH */
579	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
580		break;
581	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
582		// wValue == urb->dev->devaddr
583		dev_dbg (hcd->self.controller, "root hub device address %d\n",
584			wValue);
585		break;
586
587	/* INTERFACE REQUESTS (no defined feature/status flags) */
588
589	/* ENDPOINT REQUESTS */
590
591	case EndpointRequest | USB_REQ_GET_STATUS:
592		// ENDPOINT_HALT flag
593		tbuf [0] = 0;
594		tbuf [1] = 0;
595		len = 2;
596			/* FALLTHROUGH */
597	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
598	case EndpointOutRequest | USB_REQ_SET_FEATURE:
599		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
600		break;
601
602	/* CLASS REQUESTS (and errors) */
603
604	default:
605nongeneric:
606		/* non-generic request */
607		switch (typeReq) {
608		case GetHubStatus:
609		case GetPortStatus:
610			len = 4;
611			break;
612		case GetHubDescriptor:
613			len = sizeof (struct usb_hub_descriptor);
614			break;
615		case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
616			/* len is returned by hub_control */
617			break;
618		}
619		status = hcd->driver->hub_control (hcd,
620			typeReq, wValue, wIndex,
621			tbuf, wLength);
622		break;
623error:
624		/* "protocol stall" on error */
625		status = -EPIPE;
626	}
627
628	if (status < 0) {
629		len = 0;
630		if (status != -EPIPE) {
631			dev_dbg (hcd->self.controller,
632				"CTRL: TypeReq=0x%x val=0x%x "
633				"idx=0x%x len=%d ==> %d\n",
634				typeReq, wValue, wIndex,
635				wLength, status);
636		}
637	} else if (status > 0) {
638		/* hub_control may return the length of data copied. */
639		len = status;
640		status = 0;
641	}
642	if (len) {
643		if (urb->transfer_buffer_length < len)
644			len = urb->transfer_buffer_length;
645		urb->actual_length = len;
646		// always USB_DIR_IN, toward host
647		memcpy (ubuf, bufp, len);
648
649		/* report whether RH hardware supports remote wakeup */
650		if (patch_wakeup &&
651				len > offsetof (struct usb_config_descriptor,
652						bmAttributes))
653			((struct usb_config_descriptor *)ubuf)->bmAttributes
654				|= USB_CONFIG_ATT_WAKEUP;
655
656		/* report whether RH hardware has an integrated TT */
657		if (patch_protocol &&
658				len > offsetof(struct usb_device_descriptor,
659						bDeviceProtocol))
660			((struct usb_device_descriptor *) ubuf)->
661				bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
662	}
663
664	/* any errors get returned through the urb completion */
665	spin_lock_irq(&hcd_root_hub_lock);
666	usb_hcd_unlink_urb_from_ep(hcd, urb);
667
668	/* This peculiar use of spinlocks echoes what real HC drivers do.
669	 * Avoiding calls to local_irq_disable/enable makes the code
670	 * RT-friendly.
671	 */
672	spin_unlock(&hcd_root_hub_lock);
673	usb_hcd_giveback_urb(hcd, urb, status);
674	spin_lock(&hcd_root_hub_lock);
675
676	spin_unlock_irq(&hcd_root_hub_lock);
677	return 0;
678}
679
680/*-------------------------------------------------------------------------*/
681
682/*
683 * Root Hub interrupt transfers are polled using a timer if the
684 * driver requests it; otherwise the driver is responsible for
685 * calling usb_hcd_poll_rh_status() when an event occurs.
686 *
687 * Completions are called in_interrupt(), but they may or may not
688 * be in_irq().
689 */
690void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
691{
692	struct urb	*urb;
693	int		length;
694	unsigned long	flags;
695	char		buffer[6];	/* Any root hubs with > 31 ports? */
696
697	if (unlikely(!hcd->rh_pollable))
698		return;
699	if (!hcd->uses_new_polling && !hcd->status_urb)
700		return;
701
702	length = hcd->driver->hub_status_data(hcd, buffer);
703	if (length > 0) {
704
705		/* try to complete the status urb */
706		spin_lock_irqsave(&hcd_root_hub_lock, flags);
707		urb = hcd->status_urb;
708		if (urb) {
709			clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
710			hcd->status_urb = NULL;
711			urb->actual_length = length;
712			memcpy(urb->transfer_buffer, buffer, length);
713
714			usb_hcd_unlink_urb_from_ep(hcd, urb);
715			spin_unlock(&hcd_root_hub_lock);
716			usb_hcd_giveback_urb(hcd, urb, 0);
717			spin_lock(&hcd_root_hub_lock);
718		} else {
719			length = 0;
720			set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
721		}
722		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
723	}
724
725	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
726	 * exceed that limit if HZ is 100. The math is more clunky than
727	 * maybe expected, this is to make sure that all timers for USB devices
728	 * fire at the same time to give the CPU a break in between */
729	if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
730			(length == 0 && hcd->status_urb != NULL))
731		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
732}
733EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
734
735/* timer callback */
736static void rh_timer_func (unsigned long _hcd)
737{
738	usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
739}
740
741/*-------------------------------------------------------------------------*/
742
743static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
744{
745	int		retval;
746	unsigned long	flags;
747	unsigned	len = 1 + (urb->dev->maxchild / 8);
748
749	spin_lock_irqsave (&hcd_root_hub_lock, flags);
750	if (hcd->status_urb || urb->transfer_buffer_length < len) {
751		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
752		retval = -EINVAL;
753		goto done;
754	}
755
756	retval = usb_hcd_link_urb_to_ep(hcd, urb);
757	if (retval)
758		goto done;
759
760	hcd->status_urb = urb;
761	urb->hcpriv = hcd;	/* indicate it's queued */
762	if (!hcd->uses_new_polling)
763		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
764
765	/* If a status change has already occurred, report it ASAP */
766	else if (HCD_POLL_PENDING(hcd))
767		mod_timer(&hcd->rh_timer, jiffies);
768	retval = 0;
769 done:
770	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
771	return retval;
772}
773
774static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
775{
776	if (usb_endpoint_xfer_int(&urb->ep->desc))
777		return rh_queue_status (hcd, urb);
778	if (usb_endpoint_xfer_control(&urb->ep->desc))
779		return rh_call_control (hcd, urb);
780	return -EINVAL;
781}
782
783/*-------------------------------------------------------------------------*/
784
785/* Unlinks of root-hub control URBs are legal, but they don't do anything
786 * since these URBs always execute synchronously.
787 */
788static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
789{
790	unsigned long	flags;
791	int		rc;
792
793	spin_lock_irqsave(&hcd_root_hub_lock, flags);
794	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
795	if (rc)
796		goto done;
797
798	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
799		;	/* Do nothing */
800
801	} else {				/* Status URB */
802		if (!hcd->uses_new_polling)
803			del_timer (&hcd->rh_timer);
804		if (urb == hcd->status_urb) {
805			hcd->status_urb = NULL;
806			usb_hcd_unlink_urb_from_ep(hcd, urb);
807
808			spin_unlock(&hcd_root_hub_lock);
809			usb_hcd_giveback_urb(hcd, urb, status);
810			spin_lock(&hcd_root_hub_lock);
811		}
812	}
813 done:
814	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
815	return rc;
816}
817
818
819
820/*
821 * Show & store the current value of authorized_default
822 */
823static ssize_t usb_host_authorized_default_show(struct device *dev,
824						struct device_attribute *attr,
825						char *buf)
826{
827	struct usb_device *rh_usb_dev = to_usb_device(dev);
828	struct usb_bus *usb_bus = rh_usb_dev->bus;
829	struct usb_hcd *usb_hcd;
830
831	if (usb_bus == NULL)	/* FIXME: not sure if this case is possible */
832		return -ENODEV;
833	usb_hcd = bus_to_hcd(usb_bus);
834	return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
835}
836
837static ssize_t usb_host_authorized_default_store(struct device *dev,
838						 struct device_attribute *attr,
839						 const char *buf, size_t size)
840{
841	ssize_t result;
842	unsigned val;
843	struct usb_device *rh_usb_dev = to_usb_device(dev);
844	struct usb_bus *usb_bus = rh_usb_dev->bus;
845	struct usb_hcd *usb_hcd;
846
847	if (usb_bus == NULL)	/* FIXME: not sure if this case is possible */
848		return -ENODEV;
849	usb_hcd = bus_to_hcd(usb_bus);
850	result = sscanf(buf, "%u\n", &val);
851	if (result == 1) {
852		usb_hcd->authorized_default = val? 1 : 0;
853		result = size;
854	}
855	else
856		result = -EINVAL;
857	return result;
858}
859
860static DEVICE_ATTR(authorized_default, 0644,
861	    usb_host_authorized_default_show,
862	    usb_host_authorized_default_store);
863
864
865/* Group all the USB bus attributes */
866static struct attribute *usb_bus_attrs[] = {
867		&dev_attr_authorized_default.attr,
868		NULL,
869};
870
871static struct attribute_group usb_bus_attr_group = {
872	.name = NULL,	/* we want them in the same directory */
873	.attrs = usb_bus_attrs,
874};
875
876
877
878/*-------------------------------------------------------------------------*/
879
880/**
881 * usb_bus_init - shared initialization code
882 * @bus: the bus structure being initialized
883 *
884 * This code is used to initialize a usb_bus structure, memory for which is
885 * separately managed.
886 */
887static void usb_bus_init (struct usb_bus *bus)
888{
889	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
890
891	bus->devnum_next = 1;
892
893	bus->root_hub = NULL;
894	bus->busnum = -1;
895	bus->bandwidth_allocated = 0;
896	bus->bandwidth_int_reqs  = 0;
897	bus->bandwidth_isoc_reqs = 0;
898
899	INIT_LIST_HEAD (&bus->bus_list);
900}
901
902/*-------------------------------------------------------------------------*/
903
904/**
905 * usb_register_bus - registers the USB host controller with the usb core
906 * @bus: pointer to the bus to register
907 * Context: !in_interrupt()
908 *
909 * Assigns a bus number, and links the controller into usbcore data
910 * structures so that it can be seen by scanning the bus list.
911 */
912static int usb_register_bus(struct usb_bus *bus)
913{
914	int result = -E2BIG;
915	int busnum;
916
917	mutex_lock(&usb_bus_list_lock);
918	busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
919	if (busnum >= USB_MAXBUS) {
920		printk (KERN_ERR "%s: too many buses\n", usbcore_name);
921		goto error_find_busnum;
922	}
923	set_bit (busnum, busmap.busmap);
924	bus->busnum = busnum;
925
926	/* Add it to the local list of buses */
927	list_add (&bus->bus_list, &usb_bus_list);
928	mutex_unlock(&usb_bus_list_lock);
929
930	usb_notify_add_bus(bus);
931
932	dev_info (bus->controller, "new USB bus registered, assigned bus "
933		  "number %d\n", bus->busnum);
934	return 0;
935
936error_find_busnum:
937	mutex_unlock(&usb_bus_list_lock);
938	return result;
939}
940
941/**
942 * usb_deregister_bus - deregisters the USB host controller
943 * @bus: pointer to the bus to deregister
944 * Context: !in_interrupt()
945 *
946 * Recycles the bus number, and unlinks the controller from usbcore data
947 * structures so that it won't be seen by scanning the bus list.
948 */
949static void usb_deregister_bus (struct usb_bus *bus)
950{
951	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
952
953	/*
954	 * NOTE: make sure that all the devices are removed by the
955	 * controller code, as well as having it call this when cleaning
956	 * itself up
957	 */
958	mutex_lock(&usb_bus_list_lock);
959	list_del (&bus->bus_list);
960	mutex_unlock(&usb_bus_list_lock);
961
962	usb_notify_remove_bus(bus);
963
964	clear_bit (bus->busnum, busmap.busmap);
965}
966
967/**
968 * register_root_hub - called by usb_add_hcd() to register a root hub
969 * @hcd: host controller for this root hub
970 *
971 * This function registers the root hub with the USB subsystem.  It sets up
972 * the device properly in the device tree and then calls usb_new_device()
973 * to register the usb device.  It also assigns the root hub's USB address
974 * (always 1).
975 */
976static int register_root_hub(struct usb_hcd *hcd)
977{
978	struct device *parent_dev = hcd->self.controller;
979	struct usb_device *usb_dev = hcd->self.root_hub;
980	const int devnum = 1;
981	int retval;
982
983	usb_dev->devnum = devnum;
984	usb_dev->bus->devnum_next = devnum + 1;
985	memset (&usb_dev->bus->devmap.devicemap, 0,
986			sizeof usb_dev->bus->devmap.devicemap);
987	set_bit (devnum, usb_dev->bus->devmap.devicemap);
988	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
989
990	mutex_lock(&usb_bus_list_lock);
991
992	usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
993	retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
994	if (retval != sizeof usb_dev->descriptor) {
995		mutex_unlock(&usb_bus_list_lock);
996		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
997				dev_name(&usb_dev->dev), retval);
998		return (retval < 0) ? retval : -EMSGSIZE;
999	}
1000
1001	retval = usb_new_device (usb_dev);
1002	if (retval) {
1003		dev_err (parent_dev, "can't register root hub for %s, %d\n",
1004				dev_name(&usb_dev->dev), retval);
1005	}
1006	mutex_unlock(&usb_bus_list_lock);
1007
1008	if (retval == 0) {
1009		spin_lock_irq (&hcd_root_hub_lock);
1010		hcd->rh_registered = 1;
1011		spin_unlock_irq (&hcd_root_hub_lock);
1012
1013		/* Did the HC die before the root hub was registered? */
1014		if (HCD_DEAD(hcd))
1015			usb_hc_died (hcd);	/* This time clean up */
1016	}
1017
1018	return retval;
1019}
1020
1021
1022/*-------------------------------------------------------------------------*/
1023
1024/**
1025 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1026 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1027 * @is_input: true iff the transaction sends data to the host
1028 * @isoc: true for isochronous transactions, false for interrupt ones
1029 * @bytecount: how many bytes in the transaction.
1030 *
1031 * Returns approximate bus time in nanoseconds for a periodic transaction.
1032 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1033 * scheduled in software, this function is only used for such scheduling.
1034 */
1035long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1036{
1037	unsigned long	tmp;
1038
1039	switch (speed) {
1040	case USB_SPEED_LOW: 	/* INTR only */
1041		if (is_input) {
1042			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1043			return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1044		} else {
1045			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1046			return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1047		}
1048	case USB_SPEED_FULL:	/* ISOC or INTR */
1049		if (isoc) {
1050			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1051			return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
1052		} else {
1053			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1054			return (9107L + BW_HOST_DELAY + tmp);
1055		}
1056	case USB_SPEED_HIGH:	/* ISOC or INTR */
1057		// FIXME adjust for input vs output
1058		if (isoc)
1059			tmp = HS_NSECS_ISO (bytecount);
1060		else
1061			tmp = HS_NSECS (bytecount);
1062		return tmp;
1063	default:
1064		pr_debug ("%s: bogus device speed!\n", usbcore_name);
1065		return -1;
1066	}
1067}
1068EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1069
1070
1071/*-------------------------------------------------------------------------*/
1072
1073/*
1074 * Generic HC operations.
1075 */
1076
1077/*-------------------------------------------------------------------------*/
1078
1079/**
1080 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1081 * @hcd: host controller to which @urb was submitted
1082 * @urb: URB being submitted
1083 *
1084 * Host controller drivers should call this routine in their enqueue()
1085 * method.  The HCD's private spinlock must be held and interrupts must
1086 * be disabled.  The actions carried out here are required for URB
1087 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1088 *
1089 * Returns 0 for no error, otherwise a negative error code (in which case
1090 * the enqueue() method must fail).  If no error occurs but enqueue() fails
1091 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1092 * the private spinlock and returning.
1093 */
1094int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1095{
1096	int		rc = 0;
1097
1098	spin_lock(&hcd_urb_list_lock);
1099
1100	/* Check that the URB isn't being killed */
1101	if (unlikely(atomic_read(&urb->reject))) {
1102		rc = -EPERM;
1103		goto done;
1104	}
1105
1106	if (unlikely(!urb->ep->enabled)) {
1107		rc = -ENOENT;
1108		goto done;
1109	}
1110
1111	if (unlikely(!urb->dev->can_submit)) {
1112		rc = -EHOSTUNREACH;
1113		goto done;
1114	}
1115
1116	/*
1117	 * Check the host controller's state and add the URB to the
1118	 * endpoint's queue.
1119	 */
1120	if (HCD_RH_RUNNING(hcd)) {
1121		urb->unlinked = 0;
1122		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1123	} else {
1124		rc = -ESHUTDOWN;
1125		goto done;
1126	}
1127 done:
1128	spin_unlock(&hcd_urb_list_lock);
1129	return rc;
1130}
1131EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1132
1133/**
1134 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1135 * @hcd: host controller to which @urb was submitted
1136 * @urb: URB being checked for unlinkability
1137 * @status: error code to store in @urb if the unlink succeeds
1138 *
1139 * Host controller drivers should call this routine in their dequeue()
1140 * method.  The HCD's private spinlock must be held and interrupts must
1141 * be disabled.  The actions carried out here are required for making
1142 * sure than an unlink is valid.
1143 *
1144 * Returns 0 for no error, otherwise a negative error code (in which case
1145 * the dequeue() method must fail).  The possible error codes are:
1146 *
1147 *	-EIDRM: @urb was not submitted or has already completed.
1148 *		The completion function may not have been called yet.
1149 *
1150 *	-EBUSY: @urb has already been unlinked.
1151 */
1152int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1153		int status)
1154{
1155	struct list_head	*tmp;
1156
1157	/* insist the urb is still queued */
1158	list_for_each(tmp, &urb->ep->urb_list) {
1159		if (tmp == &urb->urb_list)
1160			break;
1161	}
1162	if (tmp != &urb->urb_list)
1163		return -EIDRM;
1164
1165	/* Any status except -EINPROGRESS means something already started to
1166	 * unlink this URB from the hardware.  So there's no more work to do.
1167	 */
1168	if (urb->unlinked)
1169		return -EBUSY;
1170	urb->unlinked = status;
1171	return 0;
1172}
1173EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1174
1175/**
1176 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1177 * @hcd: host controller to which @urb was submitted
1178 * @urb: URB being unlinked
1179 *
1180 * Host controller drivers should call this routine before calling
1181 * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1182 * interrupts must be disabled.  The actions carried out here are required
1183 * for URB completion.
1184 */
1185void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1186{
1187	/* clear all state linking urb to this dev (and hcd) */
1188	spin_lock(&hcd_urb_list_lock);
1189	list_del_init(&urb->urb_list);
1190	spin_unlock(&hcd_urb_list_lock);
1191}
1192EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1193
1194/*
1195 * Some usb host controllers can only perform dma using a small SRAM area.
1196 * The usb core itself is however optimized for host controllers that can dma
1197 * using regular system memory - like pci devices doing bus mastering.
1198 *
1199 * To support host controllers with limited dma capabilites we provide dma
1200 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1201 * For this to work properly the host controller code must first use the
1202 * function dma_declare_coherent_memory() to point out which memory area
1203 * that should be used for dma allocations.
1204 *
1205 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1206 * dma using dma_alloc_coherent() which in turn allocates from the memory
1207 * area pointed out with dma_declare_coherent_memory().
1208 *
1209 * So, to summarize...
1210 *
1211 * - We need "local" memory, canonical example being
1212 *   a small SRAM on a discrete controller being the
1213 *   only memory that the controller can read ...
1214 *   (a) "normal" kernel memory is no good, and
1215 *   (b) there's not enough to share
1216 *
1217 * - The only *portable* hook for such stuff in the
1218 *   DMA framework is dma_declare_coherent_memory()
1219 *
1220 * - So we use that, even though the primary requirement
1221 *   is that the memory be "local" (hence addressible
1222 *   by that device), not "coherent".
1223 *
1224 */
1225
1226static int hcd_alloc_coherent(struct usb_bus *bus,
1227			      gfp_t mem_flags, dma_addr_t *dma_handle,
1228			      void **vaddr_handle, size_t size,
1229			      enum dma_data_direction dir)
1230{
1231	unsigned char *vaddr;
1232
1233	if (*vaddr_handle == NULL) {
1234		WARN_ON_ONCE(1);
1235		return -EFAULT;
1236	}
1237
1238	vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1239				 mem_flags, dma_handle);
1240	if (!vaddr)
1241		return -ENOMEM;
1242
1243	/*
1244	 * Store the virtual address of the buffer at the end
1245	 * of the allocated dma buffer. The size of the buffer
1246	 * may be uneven so use unaligned functions instead
1247	 * of just rounding up. It makes sense to optimize for
1248	 * memory footprint over access speed since the amount
1249	 * of memory available for dma may be limited.
1250	 */
1251	put_unaligned((unsigned long)*vaddr_handle,
1252		      (unsigned long *)(vaddr + size));
1253
1254	if (dir == DMA_TO_DEVICE)
1255		memcpy(vaddr, *vaddr_handle, size);
1256
1257	*vaddr_handle = vaddr;
1258	return 0;
1259}
1260
1261static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1262			      void **vaddr_handle, size_t size,
1263			      enum dma_data_direction dir)
1264{
1265	unsigned char *vaddr = *vaddr_handle;
1266
1267	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1268
1269	if (dir == DMA_FROM_DEVICE)
1270		memcpy(vaddr, *vaddr_handle, size);
1271
1272	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1273
1274	*vaddr_handle = vaddr;
1275	*dma_handle = 0;
1276}
1277
1278void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1279{
1280	if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1281		dma_unmap_single(hcd->self.controller,
1282				urb->setup_dma,
1283				sizeof(struct usb_ctrlrequest),
1284				DMA_TO_DEVICE);
1285	else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1286		hcd_free_coherent(urb->dev->bus,
1287				&urb->setup_dma,
1288				(void **) &urb->setup_packet,
1289				sizeof(struct usb_ctrlrequest),
1290				DMA_TO_DEVICE);
1291
1292	/* Make it safe to call this routine more than once */
1293	urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1294}
1295EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1296
1297static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1298{
1299	if (hcd->driver->unmap_urb_for_dma)
1300		hcd->driver->unmap_urb_for_dma(hcd, urb);
1301	else
1302		usb_hcd_unmap_urb_for_dma(hcd, urb);
1303}
1304
1305void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1306{
1307	enum dma_data_direction dir;
1308
1309	usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1310
1311	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1312	if (urb->transfer_flags & URB_DMA_MAP_SG)
1313		dma_unmap_sg(hcd->self.controller,
1314				urb->sg,
1315				urb->num_sgs,
1316				dir);
1317	else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1318		dma_unmap_page(hcd->self.controller,
1319				urb->transfer_dma,
1320				urb->transfer_buffer_length,
1321				dir);
1322	else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1323		dma_unmap_single(hcd->self.controller,
1324				urb->transfer_dma,
1325				urb->transfer_buffer_length,
1326				dir);
1327	else if (urb->transfer_flags & URB_MAP_LOCAL)
1328		hcd_free_coherent(urb->dev->bus,
1329				&urb->transfer_dma,
1330				&urb->transfer_buffer,
1331				urb->transfer_buffer_length,
1332				dir);
1333
1334	/* Make it safe to call this routine more than once */
1335	urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1336			URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1337}
1338EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1339
1340static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1341			   gfp_t mem_flags)
1342{
1343	if (hcd->driver->map_urb_for_dma)
1344		return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1345	else
1346		return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1347}
1348
1349int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1350			    gfp_t mem_flags)
1351{
1352	enum dma_data_direction dir;
1353	int ret = 0;
1354
1355	/* Map the URB's buffers for DMA access.
1356	 * Lower level HCD code should use *_dma exclusively,
1357	 * unless it uses pio or talks to another transport,
1358	 * or uses the provided scatter gather list for bulk.
1359	 */
1360
1361	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1362		if (hcd->self.uses_pio_for_control)
1363			return ret;
1364		if (hcd->self.uses_dma) {
1365			urb->setup_dma = dma_map_single(
1366					hcd->self.controller,
1367					urb->setup_packet,
1368					sizeof(struct usb_ctrlrequest),
1369					DMA_TO_DEVICE);
1370			if (dma_mapping_error(hcd->self.controller,
1371						urb->setup_dma))
1372				return -EAGAIN;
1373			urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1374		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1375			ret = hcd_alloc_coherent(
1376					urb->dev->bus, mem_flags,
1377					&urb->setup_dma,
1378					(void **)&urb->setup_packet,
1379					sizeof(struct usb_ctrlrequest),
1380					DMA_TO_DEVICE);
1381			if (ret)
1382				return ret;
1383			urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1384		}
1385	}
1386
1387	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1388	if (urb->transfer_buffer_length != 0
1389	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1390		if (hcd->self.uses_dma) {
1391			if (urb->num_sgs) {
1392				int n = dma_map_sg(
1393						hcd->self.controller,
1394						urb->sg,
1395						urb->num_sgs,
1396						dir);
1397				if (n <= 0)
1398					ret = -EAGAIN;
1399				else
1400					urb->transfer_flags |= URB_DMA_MAP_SG;
1401				urb->num_mapped_sgs = n;
1402				if (n != urb->num_sgs)
1403					urb->transfer_flags |=
1404							URB_DMA_SG_COMBINED;
1405			} else if (urb->sg) {
1406				struct scatterlist *sg = urb->sg;
1407				urb->transfer_dma = dma_map_page(
1408						hcd->self.controller,
1409						sg_page(sg),
1410						sg->offset,
1411						urb->transfer_buffer_length,
1412						dir);
1413				if (dma_mapping_error(hcd->self.controller,
1414						urb->transfer_dma))
1415					ret = -EAGAIN;
1416				else
1417					urb->transfer_flags |= URB_DMA_MAP_PAGE;
1418			} else {
1419				urb->transfer_dma = dma_map_single(
1420						hcd->self.controller,
1421						urb->transfer_buffer,
1422						urb->transfer_buffer_length,
1423						dir);
1424				if (dma_mapping_error(hcd->self.controller,
1425						urb->transfer_dma))
1426					ret = -EAGAIN;
1427				else
1428					urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1429			}
1430		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1431			ret = hcd_alloc_coherent(
1432					urb->dev->bus, mem_flags,
1433					&urb->transfer_dma,
1434					&urb->transfer_buffer,
1435					urb->transfer_buffer_length,
1436					dir);
1437			if (ret == 0)
1438				urb->transfer_flags |= URB_MAP_LOCAL;
1439		}
1440		if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1441				URB_SETUP_MAP_LOCAL)))
1442			usb_hcd_unmap_urb_for_dma(hcd, urb);
1443	}
1444	return ret;
1445}
1446EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1447
1448/*-------------------------------------------------------------------------*/
1449
1450/* may be called in any context with a valid urb->dev usecount
1451 * caller surrenders "ownership" of urb
1452 * expects usb_submit_urb() to have sanity checked and conditioned all
1453 * inputs in the urb
1454 */
1455int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1456{
1457	int			status;
1458	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1459
1460	/* increment urb's reference count as part of giving it to the HCD
1461	 * (which will control it).  HCD guarantees that it either returns
1462	 * an error or calls giveback(), but not both.
1463	 */
1464	usb_get_urb(urb);
1465	atomic_inc(&urb->use_count);
1466	atomic_inc(&urb->dev->urbnum);
1467	usbmon_urb_submit(&hcd->self, urb);
1468
1469	/* NOTE requirements on root-hub callers (usbfs and the hub
1470	 * driver, for now):  URBs' urb->transfer_buffer must be
1471	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1472	 * they could clobber root hub response data.  Also, control
1473	 * URBs must be submitted in process context with interrupts
1474	 * enabled.
1475	 */
1476
1477	if (is_root_hub(urb->dev)) {
1478		status = rh_urb_enqueue(hcd, urb);
1479	} else {
1480		status = map_urb_for_dma(hcd, urb, mem_flags);
1481		if (likely(status == 0)) {
1482			status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1483			if (unlikely(status))
1484				unmap_urb_for_dma(hcd, urb);
1485		}
1486	}
1487
1488	if (unlikely(status)) {
1489		usbmon_urb_submit_error(&hcd->self, urb, status);
1490		urb->hcpriv = NULL;
1491		INIT_LIST_HEAD(&urb->urb_list);
1492		atomic_dec(&urb->use_count);
1493		atomic_dec(&urb->dev->urbnum);
1494		if (atomic_read(&urb->reject))
1495			wake_up(&usb_kill_urb_queue);
1496		usb_put_urb(urb);
1497	}
1498	return status;
1499}
1500
1501/*-------------------------------------------------------------------------*/
1502
1503/* this makes the hcd giveback() the urb more quickly, by kicking it
1504 * off hardware queues (which may take a while) and returning it as
1505 * soon as practical.  we've already set up the urb's return status,
1506 * but we can't know if the callback completed already.
1507 */
1508static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1509{
1510	int		value;
1511
1512	if (is_root_hub(urb->dev))
1513		value = usb_rh_urb_dequeue(hcd, urb, status);
1514	else {
1515
1516		/* The only reason an HCD might fail this call is if
1517		 * it has not yet fully queued the urb to begin with.
1518		 * Such failures should be harmless. */
1519		value = hcd->driver->urb_dequeue(hcd, urb, status);
1520	}
1521	return value;
1522}
1523
1524/*
1525 * called in any context
1526 *
1527 * caller guarantees urb won't be recycled till both unlink()
1528 * and the urb's completion function return
1529 */
1530int usb_hcd_unlink_urb (struct urb *urb, int status)
1531{
1532	struct usb_hcd		*hcd;
1533	int			retval = -EIDRM;
1534	unsigned long		flags;
1535
1536	/* Prevent the device and bus from going away while
1537	 * the unlink is carried out.  If they are already gone
1538	 * then urb->use_count must be 0, since disconnected
1539	 * devices can't have any active URBs.
1540	 */
1541	spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1542	if (atomic_read(&urb->use_count) > 0) {
1543		retval = 0;
1544		usb_get_dev(urb->dev);
1545	}
1546	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1547	if (retval == 0) {
1548		hcd = bus_to_hcd(urb->dev->bus);
1549		retval = unlink1(hcd, urb, status);
1550		usb_put_dev(urb->dev);
1551	}
1552
1553	if (retval == 0)
1554		retval = -EINPROGRESS;
1555	else if (retval != -EIDRM && retval != -EBUSY)
1556		dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1557				urb, retval);
1558	return retval;
1559}
1560
1561/*-------------------------------------------------------------------------*/
1562
1563/**
1564 * usb_hcd_giveback_urb - return URB from HCD to device driver
1565 * @hcd: host controller returning the URB
1566 * @urb: urb being returned to the USB device driver.
1567 * @status: completion status code for the URB.
1568 * Context: in_interrupt()
1569 *
1570 * This hands the URB from HCD to its USB device driver, using its
1571 * completion function.  The HCD has freed all per-urb resources
1572 * (and is done using urb->hcpriv).  It also released all HCD locks;
1573 * the device driver won't cause problems if it frees, modifies,
1574 * or resubmits this URB.
1575 *
1576 * If @urb was unlinked, the value of @status will be overridden by
1577 * @urb->unlinked.  Erroneous short transfers are detected in case
1578 * the HCD hasn't checked for them.
1579 */
1580void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1581{
1582	urb->hcpriv = NULL;
1583	if (unlikely(urb->unlinked))
1584		status = urb->unlinked;
1585	else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1586			urb->actual_length < urb->transfer_buffer_length &&
1587			!status))
1588		status = -EREMOTEIO;
1589
1590	unmap_urb_for_dma(hcd, urb);
1591	usbmon_urb_complete(&hcd->self, urb, status);
1592	usb_unanchor_urb(urb);
1593
1594	/* pass ownership to the completion handler */
1595	urb->status = status;
1596	urb->complete (urb);
1597	atomic_dec (&urb->use_count);
1598	if (unlikely(atomic_read(&urb->reject)))
1599		wake_up (&usb_kill_urb_queue);
1600	usb_put_urb (urb);
1601}
1602EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1603
1604/*-------------------------------------------------------------------------*/
1605
1606/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1607 * queue to drain completely.  The caller must first insure that no more
1608 * URBs can be submitted for this endpoint.
1609 */
1610void usb_hcd_flush_endpoint(struct usb_device *udev,
1611		struct usb_host_endpoint *ep)
1612{
1613	struct usb_hcd		*hcd;
1614	struct urb		*urb;
1615
1616	if (!ep)
1617		return;
1618	might_sleep();
1619	hcd = bus_to_hcd(udev->bus);
1620
1621	/* No more submits can occur */
1622	spin_lock_irq(&hcd_urb_list_lock);
1623rescan:
1624	list_for_each_entry (urb, &ep->urb_list, urb_list) {
1625		int	is_in;
1626
1627		if (urb->unlinked)
1628			continue;
1629		usb_get_urb (urb);
1630		is_in = usb_urb_dir_in(urb);
1631		spin_unlock(&hcd_urb_list_lock);
1632
1633		/* kick hcd */
1634		unlink1(hcd, urb, -ESHUTDOWN);
1635		dev_dbg (hcd->self.controller,
1636			"shutdown urb %p ep%d%s%s\n",
1637			urb, usb_endpoint_num(&ep->desc),
1638			is_in ? "in" : "out",
1639			({	char *s;
1640
1641				 switch (usb_endpoint_type(&ep->desc)) {
1642				 case USB_ENDPOINT_XFER_CONTROL:
1643					s = ""; break;
1644				 case USB_ENDPOINT_XFER_BULK:
1645					s = "-bulk"; break;
1646				 case USB_ENDPOINT_XFER_INT:
1647					s = "-intr"; break;
1648				 default:
1649			 		s = "-iso"; break;
1650				};
1651				s;
1652			}));
1653		usb_put_urb (urb);
1654
1655		/* list contents may have changed */
1656		spin_lock(&hcd_urb_list_lock);
1657		goto rescan;
1658	}
1659	spin_unlock_irq(&hcd_urb_list_lock);
1660
1661	/* Wait until the endpoint queue is completely empty */
1662	while (!list_empty (&ep->urb_list)) {
1663		spin_lock_irq(&hcd_urb_list_lock);
1664
1665		/* The list may have changed while we acquired the spinlock */
1666		urb = NULL;
1667		if (!list_empty (&ep->urb_list)) {
1668			urb = list_entry (ep->urb_list.prev, struct urb,
1669					urb_list);
1670			usb_get_urb (urb);
1671		}
1672		spin_unlock_irq(&hcd_urb_list_lock);
1673
1674		if (urb) {
1675			usb_kill_urb (urb);
1676			usb_put_urb (urb);
1677		}
1678	}
1679}
1680
1681/**
1682 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1683 *				the bus bandwidth
1684 * @udev: target &usb_device
1685 * @new_config: new configuration to install
1686 * @cur_alt: the current alternate interface setting
1687 * @new_alt: alternate interface setting that is being installed
1688 *
1689 * To change configurations, pass in the new configuration in new_config,
1690 * and pass NULL for cur_alt and new_alt.
1691 *
1692 * To reset a device's configuration (put the device in the ADDRESSED state),
1693 * pass in NULL for new_config, cur_alt, and new_alt.
1694 *
1695 * To change alternate interface settings, pass in NULL for new_config,
1696 * pass in the current alternate interface setting in cur_alt,
1697 * and pass in the new alternate interface setting in new_alt.
1698 *
1699 * Returns an error if the requested bandwidth change exceeds the
1700 * bus bandwidth or host controller internal resources.
1701 */
1702int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1703		struct usb_host_config *new_config,
1704		struct usb_host_interface *cur_alt,
1705		struct usb_host_interface *new_alt)
1706{
1707	int num_intfs, i, j;
1708	struct usb_host_interface *alt = NULL;
1709	int ret = 0;
1710	struct usb_hcd *hcd;
1711	struct usb_host_endpoint *ep;
1712
1713	hcd = bus_to_hcd(udev->bus);
1714	if (!hcd->driver->check_bandwidth)
1715		return 0;
1716
1717	/* Configuration is being removed - set configuration 0 */
1718	if (!new_config && !cur_alt) {
1719		for (i = 1; i < 16; ++i) {
1720			ep = udev->ep_out[i];
1721			if (ep)
1722				hcd->driver->drop_endpoint(hcd, udev, ep);
1723			ep = udev->ep_in[i];
1724			if (ep)
1725				hcd->driver->drop_endpoint(hcd, udev, ep);
1726		}
1727		hcd->driver->check_bandwidth(hcd, udev);
1728		return 0;
1729	}
1730	/* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1731	 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1732	 * of the bus.  There will always be bandwidth for endpoint 0, so it's
1733	 * ok to exclude it.
1734	 */
1735	if (new_config) {
1736		num_intfs = new_config->desc.bNumInterfaces;
1737		/* Remove endpoints (except endpoint 0, which is always on the
1738		 * schedule) from the old config from the schedule
1739		 */
1740		for (i = 1; i < 16; ++i) {
1741			ep = udev->ep_out[i];
1742			if (ep) {
1743				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1744				if (ret < 0)
1745					goto reset;
1746			}
1747			ep = udev->ep_in[i];
1748			if (ep) {
1749				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1750				if (ret < 0)
1751					goto reset;
1752			}
1753		}
1754		for (i = 0; i < num_intfs; ++i) {
1755			struct usb_host_interface *first_alt;
1756			int iface_num;
1757
1758			first_alt = &new_config->intf_cache[i]->altsetting[0];
1759			iface_num = first_alt->desc.bInterfaceNumber;
1760			/* Set up endpoints for alternate interface setting 0 */
1761			alt = usb_find_alt_setting(new_config, iface_num, 0);
1762			if (!alt)
1763				/* No alt setting 0? Pick the first setting. */
1764				alt = first_alt;
1765
1766			for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1767				ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1768				if (ret < 0)
1769					goto reset;
1770			}
1771		}
1772	}
1773	if (cur_alt && new_alt) {
1774		struct usb_interface *iface = usb_ifnum_to_if(udev,
1775				cur_alt->desc.bInterfaceNumber);
1776
1777		if (!iface)
1778			return -EINVAL;
1779		if (iface->resetting_device) {
1780			/*
1781			 * The USB core just reset the device, so the xHCI host
1782			 * and the device will think alt setting 0 is installed.
1783			 * However, the USB core will pass in the alternate
1784			 * setting installed before the reset as cur_alt.  Dig
1785			 * out the alternate setting 0 structure, or the first
1786			 * alternate setting if a broken device doesn't have alt
1787			 * setting 0.
1788			 */
1789			cur_alt = usb_altnum_to_altsetting(iface, 0);
1790			if (!cur_alt)
1791				cur_alt = &iface->altsetting[0];
1792		}
1793
1794		/* Drop all the endpoints in the current alt setting */
1795		for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1796			ret = hcd->driver->drop_endpoint(hcd, udev,
1797					&cur_alt->endpoint[i]);
1798			if (ret < 0)
1799				goto reset;
1800		}
1801		/* Add all the endpoints in the new alt setting */
1802		for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1803			ret = hcd->driver->add_endpoint(hcd, udev,
1804					&new_alt->endpoint[i]);
1805			if (ret < 0)
1806				goto reset;
1807		}
1808	}
1809	ret = hcd->driver->check_bandwidth(hcd, udev);
1810reset:
1811	if (ret < 0)
1812		hcd->driver->reset_bandwidth(hcd, udev);
1813	return ret;
1814}
1815
1816/* Disables the endpoint: synchronizes with the hcd to make sure all
1817 * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1818 * have been called previously.  Use for set_configuration, set_interface,
1819 * driver removal, physical disconnect.
1820 *
1821 * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1822 * type, maxpacket size, toggle, halt status, and scheduling.
1823 */
1824void usb_hcd_disable_endpoint(struct usb_device *udev,
1825		struct usb_host_endpoint *ep)
1826{
1827	struct usb_hcd		*hcd;
1828
1829	might_sleep();
1830	hcd = bus_to_hcd(udev->bus);
1831	if (hcd->driver->endpoint_disable)
1832		hcd->driver->endpoint_disable(hcd, ep);
1833}
1834
1835/**
1836 * usb_hcd_reset_endpoint - reset host endpoint state
1837 * @udev: USB device.
1838 * @ep:   the endpoint to reset.
1839 *
1840 * Resets any host endpoint state such as the toggle bit, sequence
1841 * number and current window.
1842 */
1843void usb_hcd_reset_endpoint(struct usb_device *udev,
1844			    struct usb_host_endpoint *ep)
1845{
1846	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1847
1848	if (hcd->driver->endpoint_reset)
1849		hcd->driver->endpoint_reset(hcd, ep);
1850	else {
1851		int epnum = usb_endpoint_num(&ep->desc);
1852		int is_out = usb_endpoint_dir_out(&ep->desc);
1853		int is_control = usb_endpoint_xfer_control(&ep->desc);
1854
1855		usb_settoggle(udev, epnum, is_out, 0);
1856		if (is_control)
1857			usb_settoggle(udev, epnum, !is_out, 0);
1858	}
1859}
1860
1861/**
1862 * usb_alloc_streams - allocate bulk endpoint stream IDs.
1863 * @interface:		alternate setting that includes all endpoints.
1864 * @eps:		array of endpoints that need streams.
1865 * @num_eps:		number of endpoints in the array.
1866 * @num_streams:	number of streams to allocate.
1867 * @mem_flags:		flags hcd should use to allocate memory.
1868 *
1869 * Sets up a group of bulk endpoints to have num_streams stream IDs available.
1870 * Drivers may queue multiple transfers to different stream IDs, which may
1871 * complete in a different order than they were queued.
1872 */
1873int usb_alloc_streams(struct usb_interface *interface,
1874		struct usb_host_endpoint **eps, unsigned int num_eps,
1875		unsigned int num_streams, gfp_t mem_flags)
1876{
1877	struct usb_hcd *hcd;
1878	struct usb_device *dev;
1879	int i;
1880
1881	dev = interface_to_usbdev(interface);
1882	hcd = bus_to_hcd(dev->bus);
1883	if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
1884		return -EINVAL;
1885	if (dev->speed != USB_SPEED_SUPER)
1886		return -EINVAL;
1887
1888	/* Streams only apply to bulk endpoints. */
1889	for (i = 0; i < num_eps; i++)
1890		if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
1891			return -EINVAL;
1892
1893	return hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
1894			num_streams, mem_flags);
1895}
1896EXPORT_SYMBOL_GPL(usb_alloc_streams);
1897
1898/**
1899 * usb_free_streams - free bulk endpoint stream IDs.
1900 * @interface:	alternate setting that includes all endpoints.
1901 * @eps:	array of endpoints to remove streams from.
1902 * @num_eps:	number of endpoints in the array.
1903 * @mem_flags:	flags hcd should use to allocate memory.
1904 *
1905 * Reverts a group of bulk endpoints back to not using stream IDs.
1906 * Can fail if we are given bad arguments, or HCD is broken.
1907 */
1908void usb_free_streams(struct usb_interface *interface,
1909		struct usb_host_endpoint **eps, unsigned int num_eps,
1910		gfp_t mem_flags)
1911{
1912	struct usb_hcd *hcd;
1913	struct usb_device *dev;
1914	int i;
1915
1916	dev = interface_to_usbdev(interface);
1917	hcd = bus_to_hcd(dev->bus);
1918	if (dev->speed != USB_SPEED_SUPER)
1919		return;
1920
1921	/* Streams only apply to bulk endpoints. */
1922	for (i = 0; i < num_eps; i++)
1923		if (!eps[i] || !usb_endpoint_xfer_bulk(&eps[i]->desc))
1924			return;
1925
1926	hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
1927}
1928EXPORT_SYMBOL_GPL(usb_free_streams);
1929
1930/* Protect against drivers that try to unlink URBs after the device
1931 * is gone, by waiting until all unlinks for @udev are finished.
1932 * Since we don't currently track URBs by device, simply wait until
1933 * nothing is running in the locked region of usb_hcd_unlink_urb().
1934 */
1935void usb_hcd_synchronize_unlinks(struct usb_device *udev)
1936{
1937	spin_lock_irq(&hcd_urb_unlink_lock);
1938	spin_unlock_irq(&hcd_urb_unlink_lock);
1939}
1940
1941/*-------------------------------------------------------------------------*/
1942
1943/* called in any context */
1944int usb_hcd_get_frame_number (struct usb_device *udev)
1945{
1946	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
1947
1948	if (!HCD_RH_RUNNING(hcd))
1949		return -ESHUTDOWN;
1950	return hcd->driver->get_frame_number (hcd);
1951}
1952
1953/*-------------------------------------------------------------------------*/
1954
1955#ifdef	CONFIG_PM
1956
1957int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
1958{
1959	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self);
1960	int		status;
1961	int		old_state = hcd->state;
1962
1963	dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
1964			(PMSG_IS_AUTO(msg) ? "auto-" : ""),
1965			rhdev->do_remote_wakeup);
1966	if (HCD_DEAD(hcd)) {
1967		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
1968		return 0;
1969	}
1970
1971	if (!hcd->driver->bus_suspend) {
1972		status = -ENOENT;
1973	} else {
1974		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
1975		hcd->state = HC_STATE_QUIESCING;
1976		status = hcd->driver->bus_suspend(hcd);
1977	}
1978	if (status == 0) {
1979		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1980		hcd->state = HC_STATE_SUSPENDED;
1981	} else {
1982		spin_lock_irq(&hcd_root_hub_lock);
1983		if (!HCD_DEAD(hcd)) {
1984			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
1985			hcd->state = old_state;
1986		}
1987		spin_unlock_irq(&hcd_root_hub_lock);
1988		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1989				"suspend", status);
1990	}
1991	return status;
1992}
1993
1994int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
1995{
1996	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self);
1997	int		status;
1998	int		old_state = hcd->state;
1999
2000	dev_dbg(&rhdev->dev, "usb %sresume\n",
2001			(PMSG_IS_AUTO(msg) ? "auto-" : ""));
2002	if (HCD_DEAD(hcd)) {
2003		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2004		return 0;
2005	}
2006	if (!hcd->driver->bus_resume)
2007		return -ENOENT;
2008	if (HCD_RH_RUNNING(hcd))
2009		return 0;
2010
2011	hcd->state = HC_STATE_RESUMING;
2012	status = hcd->driver->bus_resume(hcd);
2013	clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2014	if (status == 0) {
2015		/* TRSMRCY = 10 msec */
2016		msleep(10);
2017		spin_lock_irq(&hcd_root_hub_lock);
2018		if (!HCD_DEAD(hcd)) {
2019			usb_set_device_state(rhdev, rhdev->actconfig
2020					? USB_STATE_CONFIGURED
2021					: USB_STATE_ADDRESS);
2022			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2023			hcd->state = HC_STATE_RUNNING;
2024		}
2025		spin_unlock_irq(&hcd_root_hub_lock);
2026	} else {
2027		hcd->state = old_state;
2028		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2029				"resume", status);
2030		if (status != -ESHUTDOWN)
2031			usb_hc_died(hcd);
2032	}
2033	return status;
2034}
2035
2036#endif	/* CONFIG_PM */
2037
2038#ifdef	CONFIG_USB_SUSPEND
2039
2040/* Workqueue routine for root-hub remote wakeup */
2041static void hcd_resume_work(struct work_struct *work)
2042{
2043	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2044	struct usb_device *udev = hcd->self.root_hub;
2045
2046	usb_lock_device(udev);
2047	usb_remote_wakeup(udev);
2048	usb_unlock_device(udev);
2049}
2050
2051/**
2052 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2053 * @hcd: host controller for this root hub
2054 *
2055 * The USB host controller calls this function when its root hub is
2056 * suspended (with the remote wakeup feature enabled) and a remote
2057 * wakeup request is received.  The routine submits a workqueue request
2058 * to resume the root hub (that is, manage its downstream ports again).
2059 */
2060void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2061{
2062	unsigned long flags;
2063
2064	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2065	if (hcd->rh_registered) {
2066		set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2067		queue_work(pm_wq, &hcd->wakeup_work);
2068	}
2069	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2070}
2071EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2072
2073#endif	/* CONFIG_USB_SUSPEND */
2074
2075/*-------------------------------------------------------------------------*/
2076
2077#ifdef	CONFIG_USB_OTG
2078
2079/**
2080 * usb_bus_start_enum - start immediate enumeration (for OTG)
2081 * @bus: the bus (must use hcd framework)
2082 * @port_num: 1-based number of port; usually bus->otg_port
2083 * Context: in_interrupt()
2084 *
2085 * Starts enumeration, with an immediate reset followed later by
2086 * khubd identifying and possibly configuring the device.
2087 * This is needed by OTG controller drivers, where it helps meet
2088 * HNP protocol timing requirements for starting a port reset.
2089 */
2090int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2091{
2092	struct usb_hcd		*hcd;
2093	int			status = -EOPNOTSUPP;
2094
2095	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2096	 * boards with root hubs hooked up to internal devices (instead of
2097	 * just the OTG port) may need more attention to resetting...
2098	 */
2099	hcd = container_of (bus, struct usb_hcd, self);
2100	if (port_num && hcd->driver->start_port_reset)
2101		status = hcd->driver->start_port_reset(hcd, port_num);
2102
2103	/* run khubd shortly after (first) root port reset finishes;
2104	 * it may issue others, until at least 50 msecs have passed.
2105	 */
2106	if (status == 0)
2107		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2108	return status;
2109}
2110EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2111
2112#endif
2113
2114/*-------------------------------------------------------------------------*/
2115
2116/**
2117 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2118 * @irq: the IRQ being raised
2119 * @__hcd: pointer to the HCD whose IRQ is being signaled
2120 *
2121 * If the controller isn't HALTed, calls the driver's irq handler.
2122 * Checks whether the controller is now dead.
2123 */
2124irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2125{
2126	struct usb_hcd		*hcd = __hcd;
2127	unsigned long		flags;
2128	irqreturn_t		rc;
2129
2130	/* IRQF_DISABLED doesn't work correctly with shared IRQs
2131	 * when the first handler doesn't use it.  So let's just
2132	 * assume it's never used.
2133	 */
2134	local_irq_save(flags);
2135
2136	if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2137		rc = IRQ_NONE;
2138	else if (hcd->driver->irq(hcd) == IRQ_NONE)
2139		rc = IRQ_NONE;
2140	else
2141		rc = IRQ_HANDLED;
2142
2143	local_irq_restore(flags);
2144	return rc;
2145}
2146EXPORT_SYMBOL_GPL(usb_hcd_irq);
2147
2148/*-------------------------------------------------------------------------*/
2149
2150/**
2151 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2152 * @hcd: pointer to the HCD representing the controller
2153 *
2154 * This is called by bus glue to report a USB host controller that died
2155 * while operations may still have been pending.  It's called automatically
2156 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2157 *
2158 * Only call this function with the primary HCD.
2159 */
2160void usb_hc_died (struct usb_hcd *hcd)
2161{
2162	unsigned long flags;
2163
2164	dev_err (hcd->self.controller, "HC died; cleaning up\n");
2165
2166	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2167	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2168	set_bit(HCD_FLAG_DEAD, &hcd->flags);
2169	if (hcd->rh_registered) {
2170		clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2171
2172		/* make khubd clean up old urbs and devices */
2173		usb_set_device_state (hcd->self.root_hub,
2174				USB_STATE_NOTATTACHED);
2175		usb_kick_khubd (hcd->self.root_hub);
2176	}
2177	if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2178		hcd = hcd->shared_hcd;
2179		if (hcd->rh_registered) {
2180			clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2181
2182			/* make khubd clean up old urbs and devices */
2183			usb_set_device_state(hcd->self.root_hub,
2184					USB_STATE_NOTATTACHED);
2185			usb_kick_khubd(hcd->self.root_hub);
2186		}
2187	}
2188	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2189	/* Make sure that the other roothub is also deallocated. */
2190}
2191EXPORT_SYMBOL_GPL (usb_hc_died);
2192
2193/*-------------------------------------------------------------------------*/
2194
2195/**
2196 * usb_create_shared_hcd - create and initialize an HCD structure
2197 * @driver: HC driver that will use this hcd
2198 * @dev: device for this HC, stored in hcd->self.controller
2199 * @bus_name: value to store in hcd->self.bus_name
2200 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2201 *              PCI device.  Only allocate certain resources for the primary HCD
2202 * Context: !in_interrupt()
2203 *
2204 * Allocate a struct usb_hcd, with extra space at the end for the
2205 * HC driver's private data.  Initialize the generic members of the
2206 * hcd structure.
2207 *
2208 * If memory is unavailable, returns NULL.
2209 */
2210struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2211		struct device *dev, const char *bus_name,
2212		struct usb_hcd *primary_hcd)
2213{
2214	struct usb_hcd *hcd;
2215
2216	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2217	if (!hcd) {
2218		dev_dbg (dev, "hcd alloc failed\n");
2219		return NULL;
2220	}
2221	if (primary_hcd == NULL) {
2222		hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2223				GFP_KERNEL);
2224		if (!hcd->bandwidth_mutex) {
2225			kfree(hcd);
2226			dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2227			return NULL;
2228		}
2229		mutex_init(hcd->bandwidth_mutex);
2230		dev_set_drvdata(dev, hcd);
2231	} else {
2232		hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2233		hcd->primary_hcd = primary_hcd;
2234		primary_hcd->primary_hcd = primary_hcd;
2235		hcd->shared_hcd = primary_hcd;
2236		primary_hcd->shared_hcd = hcd;
2237	}
2238
2239	kref_init(&hcd->kref);
2240
2241	usb_bus_init(&hcd->self);
2242	hcd->self.controller = dev;
2243	hcd->self.bus_name = bus_name;
2244	hcd->self.uses_dma = (dev->dma_mask != NULL);
2245
2246	init_timer(&hcd->rh_timer);
2247	hcd->rh_timer.function = rh_timer_func;
2248	hcd->rh_timer.data = (unsigned long) hcd;
2249#ifdef CONFIG_USB_SUSPEND
2250	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2251#endif
2252
2253	hcd->driver = driver;
2254	hcd->speed = driver->flags & HCD_MASK;
2255	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2256			"USB Host Controller";
2257	return hcd;
2258}
2259EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2260
2261/**
2262 * usb_create_hcd - create and initialize an HCD structure
2263 * @driver: HC driver that will use this hcd
2264 * @dev: device for this HC, stored in hcd->self.controller
2265 * @bus_name: value to store in hcd->self.bus_name
2266 * Context: !in_interrupt()
2267 *
2268 * Allocate a struct usb_hcd, with extra space at the end for the
2269 * HC driver's private data.  Initialize the generic members of the
2270 * hcd structure.
2271 *
2272 * If memory is unavailable, returns NULL.
2273 */
2274struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2275		struct device *dev, const char *bus_name)
2276{
2277	return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2278}
2279EXPORT_SYMBOL_GPL(usb_create_hcd);
2280
2281/*
2282 * Roothubs that share one PCI device must also share the bandwidth mutex.
2283 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2284 * deallocated.
2285 *
2286 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2287 * freed.  When hcd_release() is called for the non-primary HCD, set the
2288 * primary_hcd's shared_hcd pointer to null (since the non-primary HCD will be
2289 * freed shortly).
2290 */
2291static void hcd_release (struct kref *kref)
2292{
2293	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2294
2295	if (usb_hcd_is_primary_hcd(hcd))
2296		kfree(hcd->bandwidth_mutex);
2297	else
2298		hcd->shared_hcd->shared_hcd = NULL;
2299	kfree(hcd);
2300}
2301
2302struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2303{
2304	if (hcd)
2305		kref_get (&hcd->kref);
2306	return hcd;
2307}
2308EXPORT_SYMBOL_GPL(usb_get_hcd);
2309
2310void usb_put_hcd (struct usb_hcd *hcd)
2311{
2312	if (hcd)
2313		kref_put (&hcd->kref, hcd_release);
2314}
2315EXPORT_SYMBOL_GPL(usb_put_hcd);
2316
2317int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2318{
2319	if (!hcd->primary_hcd)
2320		return 1;
2321	return hcd == hcd->primary_hcd;
2322}
2323EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2324
2325static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2326		unsigned int irqnum, unsigned long irqflags)
2327{
2328	int retval;
2329
2330	if (hcd->driver->irq) {
2331
2332		/* IRQF_DISABLED doesn't work as advertised when used together
2333		 * with IRQF_SHARED. As usb_hcd_irq() will always disable
2334		 * interrupts we can remove it here.
2335		 */
2336		if (irqflags & IRQF_SHARED)
2337			irqflags &= ~IRQF_DISABLED;
2338
2339		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2340				hcd->driver->description, hcd->self.busnum);
2341		retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2342				hcd->irq_descr, hcd);
2343		if (retval != 0) {
2344			dev_err(hcd->self.controller,
2345					"request interrupt %d failed\n",
2346					irqnum);
2347			return retval;
2348		}
2349		hcd->irq = irqnum;
2350		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2351				(hcd->driver->flags & HCD_MEMORY) ?
2352					"io mem" : "io base",
2353					(unsigned long long)hcd->rsrc_start);
2354	} else {
2355		hcd->irq = -1;
2356		if (hcd->rsrc_start)
2357			dev_info(hcd->self.controller, "%s 0x%08llx\n",
2358					(hcd->driver->flags & HCD_MEMORY) ?
2359					"io mem" : "io base",
2360					(unsigned long long)hcd->rsrc_start);
2361	}
2362	return 0;
2363}
2364
2365/**
2366 * usb_add_hcd - finish generic HCD structure initialization and register
2367 * @hcd: the usb_hcd structure to initialize
2368 * @irqnum: Interrupt line to allocate
2369 * @irqflags: Interrupt type flags
2370 *
2371 * Finish the remaining parts of generic HCD initialization: allocate the
2372 * buffers of consistent memory, register the bus, request the IRQ line,
2373 * and call the driver's reset() and start() routines.
2374 */
2375int usb_add_hcd(struct usb_hcd *hcd,
2376		unsigned int irqnum, unsigned long irqflags)
2377{
2378	int retval;
2379	struct usb_device *rhdev;
2380
2381	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2382
2383	/* Keep old behaviour if authorized_default is not in [0, 1]. */
2384	if (authorized_default < 0 || authorized_default > 1)
2385		hcd->authorized_default = hcd->wireless? 0 : 1;
2386	else
2387		hcd->authorized_default = authorized_default;
2388	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2389
2390	/* HC is in reset state, but accessible.  Now do the one-time init,
2391	 * bottom up so that hcds can customize the root hubs before khubd
2392	 * starts talking to them.  (Note, bus id is assigned early too.)
2393	 */
2394	if ((retval = hcd_buffer_create(hcd)) != 0) {
2395		dev_dbg(hcd->self.controller, "pool alloc failed\n");
2396		return retval;
2397	}
2398
2399	if ((retval = usb_register_bus(&hcd->self)) < 0)
2400		goto err_register_bus;
2401
2402	if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2403		dev_err(hcd->self.controller, "unable to allocate root hub\n");
2404		retval = -ENOMEM;
2405		goto err_allocate_root_hub;
2406	}
2407	hcd->self.root_hub = rhdev;
2408
2409	switch (hcd->speed) {
2410	case HCD_USB11:
2411		rhdev->speed = USB_SPEED_FULL;
2412		break;
2413	case HCD_USB2:
2414		rhdev->speed = USB_SPEED_HIGH;
2415		break;
2416	case HCD_USB3:
2417		rhdev->speed = USB_SPEED_SUPER;
2418		break;
2419	default:
2420		retval = -EINVAL;
2421		goto err_set_rh_speed;
2422	}
2423
2424	/* wakeup flag init defaults to "everything works" for root hubs,
2425	 * but drivers can override it in reset() if needed, along with
2426	 * recording the overall controller's system wakeup capability.
2427	 */
2428	device_set_wakeup_capable(&rhdev->dev, 1);
2429
2430	/* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2431	 * registered.  But since the controller can die at any time,
2432	 * let's initialize the flag before touching the hardware.
2433	 */
2434	set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2435
2436	/* "reset" is misnamed; its role is now one-time init. the controller
2437	 * should already have been reset (and boot firmware kicked off etc).
2438	 */
2439	if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2440		dev_err(hcd->self.controller, "can't setup\n");
2441		goto err_hcd_driver_setup;
2442	}
2443	hcd->rh_pollable = 1;
2444
2445	/* NOTE: root hub and controller capabilities may not be the same */
2446	if (device_can_wakeup(hcd->self.controller)
2447			&& device_can_wakeup(&hcd->self.root_hub->dev))
2448		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2449
2450	/* enable irqs just before we start the controller,
2451	 * if the BIOS provides legacy PCI irqs.
2452	 */
2453	if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2454		retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2455		if (retval)
2456			goto err_request_irq;
2457	}
2458
2459	hcd->state = HC_STATE_RUNNING;
2460	retval = hcd->driver->start(hcd);
2461	if (retval < 0) {
2462		dev_err(hcd->self.controller, "startup error %d\n", retval);
2463		goto err_hcd_driver_start;
2464	}
2465
2466	/* starting here, usbcore will pay attention to this root hub */
2467	rhdev->bus_mA = min(500u, hcd->power_budget);
2468	if ((retval = register_root_hub(hcd)) != 0)
2469		goto err_register_root_hub;
2470
2471	retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2472	if (retval < 0) {
2473		printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2474		       retval);
2475		goto error_create_attr_group;
2476	}
2477	if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2478		usb_hcd_poll_rh_status(hcd);
2479
2480	/*
2481	 * Host controllers don't generate their own wakeup requests;
2482	 * they only forward requests from the root hub.  Therefore
2483	 * controllers should always be enabled for remote wakeup.
2484	 */
2485	device_wakeup_enable(hcd->self.controller);
2486	return retval;
2487
2488error_create_attr_group:
2489	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2490	if (HC_IS_RUNNING(hcd->state))
2491		hcd->state = HC_STATE_QUIESCING;
2492	spin_lock_irq(&hcd_root_hub_lock);
2493	hcd->rh_registered = 0;
2494	spin_unlock_irq(&hcd_root_hub_lock);
2495
2496#ifdef CONFIG_USB_SUSPEND
2497	cancel_work_sync(&hcd->wakeup_work);
2498#endif
2499	mutex_lock(&usb_bus_list_lock);
2500	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2501	mutex_unlock(&usb_bus_list_lock);
2502err_register_root_hub:
2503	hcd->rh_pollable = 0;
2504	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2505	del_timer_sync(&hcd->rh_timer);
2506	hcd->driver->stop(hcd);
2507	hcd->state = HC_STATE_HALT;
2508	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2509	del_timer_sync(&hcd->rh_timer);
2510err_hcd_driver_start:
2511	if (usb_hcd_is_primary_hcd(hcd) && hcd->irq >= 0)
2512		free_irq(irqnum, hcd);
2513err_request_irq:
2514err_hcd_driver_setup:
2515err_set_rh_speed:
2516	usb_put_dev(hcd->self.root_hub);
2517err_allocate_root_hub:
2518	usb_deregister_bus(&hcd->self);
2519err_register_bus:
2520	hcd_buffer_destroy(hcd);
2521	return retval;
2522}
2523EXPORT_SYMBOL_GPL(usb_add_hcd);
2524
2525/**
2526 * usb_remove_hcd - shutdown processing for generic HCDs
2527 * @hcd: the usb_hcd structure to remove
2528 * Context: !in_interrupt()
2529 *
2530 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2531 * invoking the HCD's stop() method.
2532 */
2533void usb_remove_hcd(struct usb_hcd *hcd)
2534{
2535	struct usb_device *rhdev = hcd->self.root_hub;
2536
2537	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2538
2539	usb_get_dev(rhdev);
2540	sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2541
2542	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2543	if (HC_IS_RUNNING (hcd->state))
2544		hcd->state = HC_STATE_QUIESCING;
2545
2546	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2547	spin_lock_irq (&hcd_root_hub_lock);
2548	hcd->rh_registered = 0;
2549	spin_unlock_irq (&hcd_root_hub_lock);
2550
2551#ifdef CONFIG_USB_SUSPEND
2552	cancel_work_sync(&hcd->wakeup_work);
2553#endif
2554
2555	mutex_lock(&usb_bus_list_lock);
2556	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2557	mutex_unlock(&usb_bus_list_lock);
2558
2559	/* Prevent any more root-hub status calls from the timer.
2560	 * The HCD might still restart the timer (if a port status change
2561	 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2562	 * the hub_status_data() callback.
2563	 */
2564	hcd->rh_pollable = 0;
2565	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2566	del_timer_sync(&hcd->rh_timer);
2567
2568	hcd->driver->stop(hcd);
2569	hcd->state = HC_STATE_HALT;
2570
2571	/* In case the HCD restarted the timer, stop it again. */
2572	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2573	del_timer_sync(&hcd->rh_timer);
2574
2575	if (usb_hcd_is_primary_hcd(hcd)) {
2576		if (hcd->irq >= 0)
2577			free_irq(hcd->irq, hcd);
2578	}
2579
2580	usb_put_dev(hcd->self.root_hub);
2581	usb_deregister_bus(&hcd->self);
2582	hcd_buffer_destroy(hcd);
2583}
2584EXPORT_SYMBOL_GPL(usb_remove_hcd);
2585
2586void
2587usb_hcd_platform_shutdown(struct platform_device* dev)
2588{
2589	struct usb_hcd *hcd = platform_get_drvdata(dev);
2590
2591	if (hcd->driver->shutdown)
2592		hcd->driver->shutdown(hcd);
2593}
2594EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2595
2596/*-------------------------------------------------------------------------*/
2597
2598#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2599
2600struct usb_mon_operations *mon_ops;
2601
2602/*
2603 * The registration is unlocked.
2604 * We do it this way because we do not want to lock in hot paths.
2605 *
2606 * Notice that the code is minimally error-proof. Because usbmon needs
2607 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2608 */
2609
2610int usb_mon_register (struct usb_mon_operations *ops)
2611{
2612
2613	if (mon_ops)
2614		return -EBUSY;
2615
2616	mon_ops = ops;
2617	mb();
2618	return 0;
2619}
2620EXPORT_SYMBOL_GPL (usb_mon_register);
2621
2622void usb_mon_deregister (void)
2623{
2624
2625	if (mon_ops == NULL) {
2626		printk(KERN_ERR "USB: monitor was not registered\n");
2627		return;
2628	}
2629	mon_ops = NULL;
2630	mb();
2631}
2632EXPORT_SYMBOL_GPL (usb_mon_deregister);
2633
2634#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
2635