1/* linux/drivers/usb/gadget/s3c-hsotg.c
2 *
3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4 *		http://www.samsung.com
5 *
6 * Copyright 2008 Openmoko, Inc.
7 * Copyright 2008 Simtec Electronics
8 *      Ben Dooks <ben@simtec.co.uk>
9 *      http://armlinux.simtec.co.uk/
10 *
11 * S3C USB2.0 High-speed / OtG driver
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16*/
17
18#include <linux/kernel.h>
19#include <linux/module.h>
20#include <linux/spinlock.h>
21#include <linux/interrupt.h>
22#include <linux/platform_device.h>
23#include <linux/dma-mapping.h>
24#include <linux/debugfs.h>
25#include <linux/seq_file.h>
26#include <linux/delay.h>
27#include <linux/io.h>
28#include <linux/slab.h>
29#include <linux/clk.h>
30
31#include <linux/usb/ch9.h>
32#include <linux/usb/gadget.h>
33
34#include <mach/map.h>
35
36#include <plat/regs-usb-hsotg-phy.h>
37#include <plat/regs-usb-hsotg.h>
38#include <mach/regs-sys.h>
39#include <plat/udc-hs.h>
40#include <plat/cpu.h>
41
42#define DMA_ADDR_INVALID (~((dma_addr_t)0))
43
44/* EP0_MPS_LIMIT
45 *
46 * Unfortunately there seems to be a limit of the amount of data that can
47 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
48 * packets (which practically means 1 packet and 63 bytes of data) when the
49 * MPS is set to 64.
50 *
51 * This means if we are wanting to move >127 bytes of data, we need to
52 * split the transactions up, but just doing one packet at a time does
53 * not work (this may be an implicit DATA0 PID on first packet of the
54 * transaction) and doing 2 packets is outside the controller's limits.
55 *
56 * If we try to lower the MPS size for EP0, then no transfers work properly
57 * for EP0, and the system will fail basic enumeration. As no cause for this
58 * has currently been found, we cannot support any large IN transfers for
59 * EP0.
60 */
61#define EP0_MPS_LIMIT	64
62
63struct s3c_hsotg;
64struct s3c_hsotg_req;
65
66/**
67 * struct s3c_hsotg_ep - driver endpoint definition.
68 * @ep: The gadget layer representation of the endpoint.
69 * @name: The driver generated name for the endpoint.
70 * @queue: Queue of requests for this endpoint.
71 * @parent: Reference back to the parent device structure.
72 * @req: The current request that the endpoint is processing. This is
73 *       used to indicate an request has been loaded onto the endpoint
74 *       and has yet to be completed (maybe due to data move, or simply
75 *	 awaiting an ack from the core all the data has been completed).
76 * @debugfs: File entry for debugfs file for this endpoint.
77 * @lock: State lock to protect contents of endpoint.
78 * @dir_in: Set to true if this endpoint is of the IN direction, which
79 *	    means that it is sending data to the Host.
80 * @index: The index for the endpoint registers.
81 * @name: The name array passed to the USB core.
82 * @halted: Set if the endpoint has been halted.
83 * @periodic: Set if this is a periodic ep, such as Interrupt
84 * @sent_zlp: Set if we've sent a zero-length packet.
85 * @total_data: The total number of data bytes done.
86 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
87 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
88 * @last_load: The offset of data for the last start of request.
89 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
90 *
91 * This is the driver's state for each registered enpoint, allowing it
92 * to keep track of transactions that need doing. Each endpoint has a
93 * lock to protect the state, to try and avoid using an overall lock
94 * for the host controller as much as possible.
95 *
96 * For periodic IN endpoints, we have fifo_size and fifo_load to try
97 * and keep track of the amount of data in the periodic FIFO for each
98 * of these as we don't have a status register that tells us how much
99 * is in each of them. (note, this may actually be useless information
100 * as in shared-fifo mode periodic in acts like a single-frame packet
101 * buffer than a fifo)
102 */
103struct s3c_hsotg_ep {
104	struct usb_ep		ep;
105	struct list_head	queue;
106	struct s3c_hsotg	*parent;
107	struct s3c_hsotg_req	*req;
108	struct dentry		*debugfs;
109
110	spinlock_t		lock;
111
112	unsigned long		total_data;
113	unsigned int		size_loaded;
114	unsigned int		last_load;
115	unsigned int		fifo_load;
116	unsigned short		fifo_size;
117
118	unsigned char		dir_in;
119	unsigned char		index;
120
121	unsigned int		halted:1;
122	unsigned int		periodic:1;
123	unsigned int		sent_zlp:1;
124
125	char			name[10];
126};
127
128#define S3C_HSOTG_EPS	(8+1)	/* limit to 9 for the moment */
129
130/**
131 * struct s3c_hsotg - driver state.
132 * @dev: The parent device supplied to the probe function
133 * @driver: USB gadget driver
134 * @plat: The platform specific configuration data.
135 * @regs: The memory area mapped for accessing registers.
136 * @regs_res: The resource that was allocated when claiming register space.
137 * @irq: The IRQ number we are using
138 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
139 * @debug_root: root directrory for debugfs.
140 * @debug_file: main status file for debugfs.
141 * @debug_fifo: FIFO status file for debugfs.
142 * @ep0_reply: Request used for ep0 reply.
143 * @ep0_buff: Buffer for EP0 reply data, if needed.
144 * @ctrl_buff: Buffer for EP0 control requests.
145 * @ctrl_req: Request for EP0 control packets.
146 * @eps: The endpoints being supplied to the gadget framework
147 */
148struct s3c_hsotg {
149	struct device		 *dev;
150	struct usb_gadget_driver *driver;
151	struct s3c_hsotg_plat	 *plat;
152
153	void __iomem		*regs;
154	struct resource		*regs_res;
155	int			irq;
156	struct clk		*clk;
157
158	unsigned int		dedicated_fifos:1;
159
160	struct dentry		*debug_root;
161	struct dentry		*debug_file;
162	struct dentry		*debug_fifo;
163
164	struct usb_request	*ep0_reply;
165	struct usb_request	*ctrl_req;
166	u8			ep0_buff[8];
167	u8			ctrl_buff[8];
168
169	struct usb_gadget	gadget;
170	struct s3c_hsotg_ep	eps[];
171};
172
173/**
174 * struct s3c_hsotg_req - data transfer request
175 * @req: The USB gadget request
176 * @queue: The list of requests for the endpoint this is queued for.
177 * @in_progress: Has already had size/packets written to core
178 * @mapped: DMA buffer for this request has been mapped via dma_map_single().
179 */
180struct s3c_hsotg_req {
181	struct usb_request	req;
182	struct list_head	queue;
183	unsigned char		in_progress;
184	unsigned char		mapped;
185};
186
187/* conversion functions */
188static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
189{
190	return container_of(req, struct s3c_hsotg_req, req);
191}
192
193static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
194{
195	return container_of(ep, struct s3c_hsotg_ep, ep);
196}
197
198static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
199{
200	return container_of(gadget, struct s3c_hsotg, gadget);
201}
202
203static inline void __orr32(void __iomem *ptr, u32 val)
204{
205	writel(readl(ptr) | val, ptr);
206}
207
208static inline void __bic32(void __iomem *ptr, u32 val)
209{
210	writel(readl(ptr) & ~val, ptr);
211}
212
213/* forward decleration of functions */
214static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);
215
216/**
217 * using_dma - return the DMA status of the driver.
218 * @hsotg: The driver state.
219 *
220 * Return true if we're using DMA.
221 *
222 * Currently, we have the DMA support code worked into everywhere
223 * that needs it, but the AMBA DMA implementation in the hardware can
224 * only DMA from 32bit aligned addresses. This means that gadgets such
225 * as the CDC Ethernet cannot work as they often pass packets which are
226 * not 32bit aligned.
227 *
228 * Unfortunately the choice to use DMA or not is global to the controller
229 * and seems to be only settable when the controller is being put through
230 * a core reset. This means we either need to fix the gadgets to take
231 * account of DMA alignment, or add bounce buffers (yuerk).
232 *
233 * Until this issue is sorted out, we always return 'false'.
234 */
235static inline bool using_dma(struct s3c_hsotg *hsotg)
236{
237	return false;	/* support is not complete */
238}
239
240/**
241 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
242 * @hsotg: The device state
243 * @ints: A bitmask of the interrupts to enable
244 */
245static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
246{
247	u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
248	u32 new_gsintmsk;
249
250	new_gsintmsk = gsintmsk | ints;
251
252	if (new_gsintmsk != gsintmsk) {
253		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
254		writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
255	}
256}
257
258/**
259 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
260 * @hsotg: The device state
261 * @ints: A bitmask of the interrupts to enable
262 */
263static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
264{
265	u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
266	u32 new_gsintmsk;
267
268	new_gsintmsk = gsintmsk & ~ints;
269
270	if (new_gsintmsk != gsintmsk)
271		writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
272}
273
274/**
275 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
276 * @hsotg: The device state
277 * @ep: The endpoint index
278 * @dir_in: True if direction is in.
279 * @en: The enable value, true to enable
280 *
281 * Set or clear the mask for an individual endpoint's interrupt
282 * request.
283 */
284static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
285				 unsigned int ep, unsigned int dir_in,
286				 unsigned int en)
287{
288	unsigned long flags;
289	u32 bit = 1 << ep;
290	u32 daint;
291
292	if (!dir_in)
293		bit <<= 16;
294
295	local_irq_save(flags);
296	daint = readl(hsotg->regs + S3C_DAINTMSK);
297	if (en)
298		daint |= bit;
299	else
300		daint &= ~bit;
301	writel(daint, hsotg->regs + S3C_DAINTMSK);
302	local_irq_restore(flags);
303}
304
305/**
306 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
307 * @hsotg: The device instance.
308 */
309static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
310{
311	unsigned int ep;
312	unsigned int addr;
313	unsigned int size;
314	int timeout;
315	u32 val;
316
317	/* the ryu 2.6.24 release ahs
318	   writel(0x1C0, hsotg->regs + S3C_GRXFSIZ);
319	   writel(S3C_GNPTXFSIZ_NPTxFStAddr(0x200) |
320		S3C_GNPTXFSIZ_NPTxFDep(0x1C0),
321		hsotg->regs + S3C_GNPTXFSIZ);
322	*/
323
324	/* set FIFO sizes to 2048/1024 */
325
326	writel(2048, hsotg->regs + S3C_GRXFSIZ);
327	writel(S3C_GNPTXFSIZ_NPTxFStAddr(2048) |
328	       S3C_GNPTXFSIZ_NPTxFDep(1024),
329	       hsotg->regs + S3C_GNPTXFSIZ);
330
331	/* arange all the rest of the TX FIFOs, as some versions of this
332	 * block have overlapping default addresses. This also ensures
333	 * that if the settings have been changed, then they are set to
334	 * known values. */
335
336	/* start at the end of the GNPTXFSIZ, rounded up */
337	addr = 2048 + 1024;
338	size = 768;
339
340	/* currently we allocate TX FIFOs for all possible endpoints,
341	 * and assume that they are all the same size. */
342
343	for (ep = 0; ep <= 15; ep++) {
344		val = addr;
345		val |= size << S3C_DPTXFSIZn_DPTxFSize_SHIFT;
346		addr += size;
347
348		writel(val, hsotg->regs + S3C_DPTXFSIZn(ep));
349	}
350
351	/* according to p428 of the design guide, we need to ensure that
352	 * all fifos are flushed before continuing */
353
354	writel(S3C_GRSTCTL_TxFNum(0x10) | S3C_GRSTCTL_TxFFlsh |
355	       S3C_GRSTCTL_RxFFlsh, hsotg->regs + S3C_GRSTCTL);
356
357	/* wait until the fifos are both flushed */
358	timeout = 100;
359	while (1) {
360		val = readl(hsotg->regs + S3C_GRSTCTL);
361
362		if ((val & (S3C_GRSTCTL_TxFFlsh | S3C_GRSTCTL_RxFFlsh)) == 0)
363			break;
364
365		if (--timeout == 0) {
366			dev_err(hsotg->dev,
367				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
368				__func__, val);
369		}
370
371		udelay(1);
372	}
373
374	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
375}
376
377/**
378 * @ep: USB endpoint to allocate request for.
379 * @flags: Allocation flags
380 *
381 * Allocate a new USB request structure appropriate for the specified endpoint
382 */
383static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
384						      gfp_t flags)
385{
386	struct s3c_hsotg_req *req;
387
388	req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
389	if (!req)
390		return NULL;
391
392	INIT_LIST_HEAD(&req->queue);
393
394	req->req.dma = DMA_ADDR_INVALID;
395	return &req->req;
396}
397
398/**
399 * is_ep_periodic - return true if the endpoint is in periodic mode.
400 * @hs_ep: The endpoint to query.
401 *
402 * Returns true if the endpoint is in periodic mode, meaning it is being
403 * used for an Interrupt or ISO transfer.
404 */
405static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
406{
407	return hs_ep->periodic;
408}
409
410/**
411 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
412 * @hsotg: The device state.
413 * @hs_ep: The endpoint for the request
414 * @hs_req: The request being processed.
415 *
416 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
417 * of a request to ensure the buffer is ready for access by the caller.
418*/
419static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
420				struct s3c_hsotg_ep *hs_ep,
421				struct s3c_hsotg_req *hs_req)
422{
423	struct usb_request *req = &hs_req->req;
424	enum dma_data_direction dir;
425
426	dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
427
428	/* ignore this if we're not moving any data */
429	if (hs_req->req.length == 0)
430		return;
431
432	if (hs_req->mapped) {
433		/* we mapped this, so unmap and remove the dma */
434
435		dma_unmap_single(hsotg->dev, req->dma, req->length, dir);
436
437		req->dma = DMA_ADDR_INVALID;
438		hs_req->mapped = 0;
439	} else {
440		dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
441	}
442}
443
444/**
445 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
446 * @hsotg: The controller state.
447 * @hs_ep: The endpoint we're going to write for.
448 * @hs_req: The request to write data for.
449 *
450 * This is called when the TxFIFO has some space in it to hold a new
451 * transmission and we have something to give it. The actual setup of
452 * the data size is done elsewhere, so all we have to do is to actually
453 * write the data.
454 *
455 * The return value is zero if there is more space (or nothing was done)
456 * otherwise -ENOSPC is returned if the FIFO space was used up.
457 *
458 * This routine is only needed for PIO
459*/
460static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
461				struct s3c_hsotg_ep *hs_ep,
462				struct s3c_hsotg_req *hs_req)
463{
464	bool periodic = is_ep_periodic(hs_ep);
465	u32 gnptxsts = readl(hsotg->regs + S3C_GNPTXSTS);
466	int buf_pos = hs_req->req.actual;
467	int to_write = hs_ep->size_loaded;
468	void *data;
469	int can_write;
470	int pkt_round;
471
472	to_write -= (buf_pos - hs_ep->last_load);
473
474	/* if there's nothing to write, get out early */
475	if (to_write == 0)
476		return 0;
477
478	if (periodic && !hsotg->dedicated_fifos) {
479		u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
480		int size_left;
481		int size_done;
482
483		/* work out how much data was loaded so we can calculate
484		 * how much data is left in the fifo. */
485
486		size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
487
488		/* if shared fifo, we cannot write anything until the
489		 * previous data has been completely sent.
490		 */
491		if (hs_ep->fifo_load != 0) {
492			s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
493			return -ENOSPC;
494		}
495
496		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
497			__func__, size_left,
498			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
499
500		/* how much of the data has moved */
501		size_done = hs_ep->size_loaded - size_left;
502
503		/* how much data is left in the fifo */
504		can_write = hs_ep->fifo_load - size_done;
505		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
506			__func__, can_write);
507
508		can_write = hs_ep->fifo_size - can_write;
509		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
510			__func__, can_write);
511
512		if (can_write <= 0) {
513			s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
514			return -ENOSPC;
515		}
516	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
517		can_write = readl(hsotg->regs + S3C_DTXFSTS(hs_ep->index));
518
519		can_write &= 0xffff;
520		can_write *= 4;
521	} else {
522		if (S3C_GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts) == 0) {
523			dev_dbg(hsotg->dev,
524				"%s: no queue slots available (0x%08x)\n",
525				__func__, gnptxsts);
526
527			s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
528			return -ENOSPC;
529		}
530
531		can_write = S3C_GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts);
532		can_write *= 4;	/* fifo size is in 32bit quantities. */
533	}
534
535	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, mps %d\n",
536		 __func__, gnptxsts, can_write, to_write, hs_ep->ep.maxpacket);
537
538	/* limit to 512 bytes of data, it seems at least on the non-periodic
539	 * FIFO, requests of >512 cause the endpoint to get stuck with a
540	 * fragment of the end of the transfer in it.
541	 */
542	if (can_write > 512)
543		can_write = 512;
544
545	/* limit the write to one max-packet size worth of data, but allow
546	 * the transfer to return that it did not run out of fifo space
547	 * doing it. */
548	if (to_write > hs_ep->ep.maxpacket) {
549		to_write = hs_ep->ep.maxpacket;
550
551		s3c_hsotg_en_gsint(hsotg,
552				   periodic ? S3C_GINTSTS_PTxFEmp :
553				   S3C_GINTSTS_NPTxFEmp);
554	}
555
556	/* see if we can write data */
557
558	if (to_write > can_write) {
559		to_write = can_write;
560		pkt_round = to_write % hs_ep->ep.maxpacket;
561
562		/* Not sure, but we probably shouldn't be writing partial
563		 * packets into the FIFO, so round the write down to an
564		 * exact number of packets.
565		 *
566		 * Note, we do not currently check to see if we can ever
567		 * write a full packet or not to the FIFO.
568		 */
569
570		if (pkt_round)
571			to_write -= pkt_round;
572
573		/* enable correct FIFO interrupt to alert us when there
574		 * is more room left. */
575
576		s3c_hsotg_en_gsint(hsotg,
577				   periodic ? S3C_GINTSTS_PTxFEmp :
578				   S3C_GINTSTS_NPTxFEmp);
579	}
580
581	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
582		 to_write, hs_req->req.length, can_write, buf_pos);
583
584	if (to_write <= 0)
585		return -ENOSPC;
586
587	hs_req->req.actual = buf_pos + to_write;
588	hs_ep->total_data += to_write;
589
590	if (periodic)
591		hs_ep->fifo_load += to_write;
592
593	to_write = DIV_ROUND_UP(to_write, 4);
594	data = hs_req->req.buf + buf_pos;
595
596	writesl(hsotg->regs + S3C_EPFIFO(hs_ep->index), data, to_write);
597
598	return (to_write >= can_write) ? -ENOSPC : 0;
599}
600
601/**
602 * get_ep_limit - get the maximum data legnth for this endpoint
603 * @hs_ep: The endpoint
604 *
605 * Return the maximum data that can be queued in one go on a given endpoint
606 * so that transfers that are too long can be split.
607 */
608static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
609{
610	int index = hs_ep->index;
611	unsigned maxsize;
612	unsigned maxpkt;
613
614	if (index != 0) {
615		maxsize = S3C_DxEPTSIZ_XferSize_LIMIT + 1;
616		maxpkt = S3C_DxEPTSIZ_PktCnt_LIMIT + 1;
617	} else {
618		maxsize = 64+64;
619		if (hs_ep->dir_in)
620			maxpkt = S3C_DIEPTSIZ0_PktCnt_LIMIT + 1;
621		else
622			maxpkt = 2;
623	}
624
625	/* we made the constant loading easier above by using +1 */
626	maxpkt--;
627	maxsize--;
628
629	/* constrain by packet count if maxpkts*pktsize is greater
630	 * than the length register size. */
631
632	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
633		maxsize = maxpkt * hs_ep->ep.maxpacket;
634
635	return maxsize;
636}
637
638/**
639 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
640 * @hsotg: The controller state.
641 * @hs_ep: The endpoint to process a request for
642 * @hs_req: The request to start.
643 * @continuing: True if we are doing more for the current request.
644 *
645 * Start the given request running by setting the endpoint registers
646 * appropriately, and writing any data to the FIFOs.
647 */
648static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
649				struct s3c_hsotg_ep *hs_ep,
650				struct s3c_hsotg_req *hs_req,
651				bool continuing)
652{
653	struct usb_request *ureq = &hs_req->req;
654	int index = hs_ep->index;
655	int dir_in = hs_ep->dir_in;
656	u32 epctrl_reg;
657	u32 epsize_reg;
658	u32 epsize;
659	u32 ctrl;
660	unsigned length;
661	unsigned packets;
662	unsigned maxreq;
663
664	if (index != 0) {
665		if (hs_ep->req && !continuing) {
666			dev_err(hsotg->dev, "%s: active request\n", __func__);
667			WARN_ON(1);
668			return;
669		} else if (hs_ep->req != hs_req && continuing) {
670			dev_err(hsotg->dev,
671				"%s: continue different req\n", __func__);
672			WARN_ON(1);
673			return;
674		}
675	}
676
677	epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
678	epsize_reg = dir_in ? S3C_DIEPTSIZ(index) : S3C_DOEPTSIZ(index);
679
680	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
681		__func__, readl(hsotg->regs + epctrl_reg), index,
682		hs_ep->dir_in ? "in" : "out");
683
684	/* If endpoint is stalled, we will restart request later */
685	ctrl = readl(hsotg->regs + epctrl_reg);
686
687	if (ctrl & S3C_DxEPCTL_Stall) {
688		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
689		return;
690	}
691
692	length = ureq->length - ureq->actual;
693
694	if (0)
695		dev_dbg(hsotg->dev,
696			"REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n",
697			ureq->buf, length, ureq->dma,
698			ureq->no_interrupt, ureq->zero, ureq->short_not_ok);
699
700	maxreq = get_ep_limit(hs_ep);
701	if (length > maxreq) {
702		int round = maxreq % hs_ep->ep.maxpacket;
703
704		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
705			__func__, length, maxreq, round);
706
707		/* round down to multiple of packets */
708		if (round)
709			maxreq -= round;
710
711		length = maxreq;
712	}
713
714	if (length)
715		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
716	else
717		packets = 1;	/* send one packet if length is zero. */
718
719	if (dir_in && index != 0)
720		epsize = S3C_DxEPTSIZ_MC(1);
721	else
722		epsize = 0;
723
724	if (index != 0 && ureq->zero) {
725		/* test for the packets being exactly right for the
726		 * transfer */
727
728		if (length == (packets * hs_ep->ep.maxpacket))
729			packets++;
730	}
731
732	epsize |= S3C_DxEPTSIZ_PktCnt(packets);
733	epsize |= S3C_DxEPTSIZ_XferSize(length);
734
735	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
736		__func__, packets, length, ureq->length, epsize, epsize_reg);
737
738	/* store the request as the current one we're doing */
739	hs_ep->req = hs_req;
740
741	/* write size / packets */
742	writel(epsize, hsotg->regs + epsize_reg);
743
744	if (using_dma(hsotg)) {
745		unsigned int dma_reg;
746
747		/* write DMA address to control register, buffer already
748		 * synced by s3c_hsotg_ep_queue().  */
749
750		dma_reg = dir_in ? S3C_DIEPDMA(index) : S3C_DOEPDMA(index);
751		writel(ureq->dma, hsotg->regs + dma_reg);
752
753		dev_dbg(hsotg->dev, "%s: 0x%08x => 0x%08x\n",
754			__func__, ureq->dma, dma_reg);
755	}
756
757	ctrl |= S3C_DxEPCTL_EPEna;	/* ensure ep enabled */
758	ctrl |= S3C_DxEPCTL_USBActEp;
759	ctrl |= S3C_DxEPCTL_CNAK;	/* clear NAK set by core */
760
761	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
762	writel(ctrl, hsotg->regs + epctrl_reg);
763
764	/* set these, it seems that DMA support increments past the end
765	 * of the packet buffer so we need to calculate the length from
766	 * this information. */
767	hs_ep->size_loaded = length;
768	hs_ep->last_load = ureq->actual;
769
770	if (dir_in && !using_dma(hsotg)) {
771		/* set these anyway, we may need them for non-periodic in */
772		hs_ep->fifo_load = 0;
773
774		s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
775	}
776
777	/* clear the INTknTXFEmpMsk when we start request, more as a aide
778	 * to debugging to see what is going on. */
779	if (dir_in)
780		writel(S3C_DIEPMSK_INTknTXFEmpMsk,
781		       hsotg->regs + S3C_DIEPINT(index));
782
783	/* Note, trying to clear the NAK here causes problems with transmit
784	 * on the S3C6400 ending up with the TXFIFO becoming full. */
785
786	/* check ep is enabled */
787	if (!(readl(hsotg->regs + epctrl_reg) & S3C_DxEPCTL_EPEna))
788		dev_warn(hsotg->dev,
789			 "ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
790			 index, readl(hsotg->regs + epctrl_reg));
791
792	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n",
793		__func__, readl(hsotg->regs + epctrl_reg));
794}
795
796/**
797 * s3c_hsotg_map_dma - map the DMA memory being used for the request
798 * @hsotg: The device state.
799 * @hs_ep: The endpoint the request is on.
800 * @req: The request being processed.
801 *
802 * We've been asked to queue a request, so ensure that the memory buffer
803 * is correctly setup for DMA. If we've been passed an extant DMA address
804 * then ensure the buffer has been synced to memory. If our buffer has no
805 * DMA memory, then we map the memory and mark our request to allow us to
806 * cleanup on completion.
807*/
808static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
809			     struct s3c_hsotg_ep *hs_ep,
810			     struct usb_request *req)
811{
812	enum dma_data_direction dir;
813	struct s3c_hsotg_req *hs_req = our_req(req);
814
815	dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
816
817	/* if the length is zero, ignore the DMA data */
818	if (hs_req->req.length == 0)
819		return 0;
820
821	if (req->dma == DMA_ADDR_INVALID) {
822		dma_addr_t dma;
823
824		dma = dma_map_single(hsotg->dev, req->buf, req->length, dir);
825
826		if (unlikely(dma_mapping_error(hsotg->dev, dma)))
827			goto dma_error;
828
829		if (dma & 3) {
830			dev_err(hsotg->dev, "%s: unaligned dma buffer\n",
831				__func__);
832
833			dma_unmap_single(hsotg->dev, dma, req->length, dir);
834			return -EINVAL;
835		}
836
837		hs_req->mapped = 1;
838		req->dma = dma;
839	} else {
840		dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
841		hs_req->mapped = 0;
842	}
843
844	return 0;
845
846dma_error:
847	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
848		__func__, req->buf, req->length);
849
850	return -EIO;
851}
852
853static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
854			      gfp_t gfp_flags)
855{
856	struct s3c_hsotg_req *hs_req = our_req(req);
857	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
858	struct s3c_hsotg *hs = hs_ep->parent;
859	unsigned long irqflags;
860	bool first;
861
862	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
863		ep->name, req, req->length, req->buf, req->no_interrupt,
864		req->zero, req->short_not_ok);
865
866	/* initialise status of the request */
867	INIT_LIST_HEAD(&hs_req->queue);
868	req->actual = 0;
869	req->status = -EINPROGRESS;
870
871	/* if we're using DMA, sync the buffers as necessary */
872	if (using_dma(hs)) {
873		int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
874		if (ret)
875			return ret;
876	}
877
878	spin_lock_irqsave(&hs_ep->lock, irqflags);
879
880	first = list_empty(&hs_ep->queue);
881	list_add_tail(&hs_req->queue, &hs_ep->queue);
882
883	if (first)
884		s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
885
886	spin_unlock_irqrestore(&hs_ep->lock, irqflags);
887
888	return 0;
889}
890
891static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
892				      struct usb_request *req)
893{
894	struct s3c_hsotg_req *hs_req = our_req(req);
895
896	kfree(hs_req);
897}
898
899/**
900 * s3c_hsotg_complete_oursetup - setup completion callback
901 * @ep: The endpoint the request was on.
902 * @req: The request completed.
903 *
904 * Called on completion of any requests the driver itself
905 * submitted that need cleaning up.
906 */
907static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
908					struct usb_request *req)
909{
910	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
911	struct s3c_hsotg *hsotg = hs_ep->parent;
912
913	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
914
915	s3c_hsotg_ep_free_request(ep, req);
916}
917
918/**
919 * ep_from_windex - convert control wIndex value to endpoint
920 * @hsotg: The driver state.
921 * @windex: The control request wIndex field (in host order).
922 *
923 * Convert the given wIndex into a pointer to an driver endpoint
924 * structure, or return NULL if it is not a valid endpoint.
925*/
926static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
927					   u32 windex)
928{
929	struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
930	int dir = (windex & USB_DIR_IN) ? 1 : 0;
931	int idx = windex & 0x7F;
932
933	if (windex >= 0x100)
934		return NULL;
935
936	if (idx > S3C_HSOTG_EPS)
937		return NULL;
938
939	if (idx && ep->dir_in != dir)
940		return NULL;
941
942	return ep;
943}
944
945/**
946 * s3c_hsotg_send_reply - send reply to control request
947 * @hsotg: The device state
948 * @ep: Endpoint 0
949 * @buff: Buffer for request
950 * @length: Length of reply.
951 *
952 * Create a request and queue it on the given endpoint. This is useful as
953 * an internal method of sending replies to certain control requests, etc.
954 */
955static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
956				struct s3c_hsotg_ep *ep,
957				void *buff,
958				int length)
959{
960	struct usb_request *req;
961	int ret;
962
963	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
964
965	req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
966	hsotg->ep0_reply = req;
967	if (!req) {
968		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
969		return -ENOMEM;
970	}
971
972	req->buf = hsotg->ep0_buff;
973	req->length = length;
974	req->zero = 1; /* always do zero-length final transfer */
975	req->complete = s3c_hsotg_complete_oursetup;
976
977	if (length)
978		memcpy(req->buf, buff, length);
979	else
980		ep->sent_zlp = 1;
981
982	ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
983	if (ret) {
984		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
985		return ret;
986	}
987
988	return 0;
989}
990
991/**
992 * s3c_hsotg_process_req_status - process request GET_STATUS
993 * @hsotg: The device state
994 * @ctrl: USB control request
995 */
996static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
997					struct usb_ctrlrequest *ctrl)
998{
999	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1000	struct s3c_hsotg_ep *ep;
1001	__le16 reply;
1002	int ret;
1003
1004	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1005
1006	if (!ep0->dir_in) {
1007		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1008		return -EINVAL;
1009	}
1010
1011	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1012	case USB_RECIP_DEVICE:
1013		reply = cpu_to_le16(0); /* bit 0 => self powered,
1014					 * bit 1 => remote wakeup */
1015		break;
1016
1017	case USB_RECIP_INTERFACE:
1018		/* currently, the data result should be zero */
1019		reply = cpu_to_le16(0);
1020		break;
1021
1022	case USB_RECIP_ENDPOINT:
1023		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1024		if (!ep)
1025			return -ENOENT;
1026
1027		reply = cpu_to_le16(ep->halted ? 1 : 0);
1028		break;
1029
1030	default:
1031		return 0;
1032	}
1033
1034	if (le16_to_cpu(ctrl->wLength) != 2)
1035		return -EINVAL;
1036
1037	ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
1038	if (ret) {
1039		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1040		return ret;
1041	}
1042
1043	return 1;
1044}
1045
1046static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
1047
1048/**
1049 * get_ep_head - return the first request on the endpoint
1050 * @hs_ep: The controller endpoint to get
1051 *
1052 * Get the first request on the endpoint.
1053 */
1054static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
1055{
1056	if (list_empty(&hs_ep->queue))
1057		return NULL;
1058
1059	return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
1060}
1061
1062/**
1063 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
1064 * @hsotg: The device state
1065 * @ctrl: USB control request
1066 */
1067static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
1068					 struct usb_ctrlrequest *ctrl)
1069{
1070	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1071	struct s3c_hsotg_req *hs_req;
1072	bool restart;
1073	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1074	struct s3c_hsotg_ep *ep;
1075	int ret;
1076
1077	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1078		__func__, set ? "SET" : "CLEAR");
1079
1080	if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
1081		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1082		if (!ep) {
1083			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1084				__func__, le16_to_cpu(ctrl->wIndex));
1085			return -ENOENT;
1086		}
1087
1088		switch (le16_to_cpu(ctrl->wValue)) {
1089		case USB_ENDPOINT_HALT:
1090			s3c_hsotg_ep_sethalt(&ep->ep, set);
1091
1092			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1093			if (ret) {
1094				dev_err(hsotg->dev,
1095					"%s: failed to send reply\n", __func__);
1096				return ret;
1097			}
1098
1099			if (!set) {
1100				/*
1101				 * If we have request in progress,
1102				 * then complete it
1103				 */
1104				if (ep->req) {
1105					hs_req = ep->req;
1106					ep->req = NULL;
1107					list_del_init(&hs_req->queue);
1108					hs_req->req.complete(&ep->ep,
1109							     &hs_req->req);
1110				}
1111
1112				/* If we have pending request, then start it */
1113				restart = !list_empty(&ep->queue);
1114				if (restart) {
1115					hs_req = get_ep_head(ep);
1116					s3c_hsotg_start_req(hsotg, ep,
1117							    hs_req, false);
1118				}
1119			}
1120
1121			break;
1122
1123		default:
1124			return -ENOENT;
1125		}
1126	} else
1127		return -ENOENT;  /* currently only deal with endpoint */
1128
1129	return 1;
1130}
1131
1132/**
1133 * s3c_hsotg_process_control - process a control request
1134 * @hsotg: The device state
1135 * @ctrl: The control request received
1136 *
1137 * The controller has received the SETUP phase of a control request, and
1138 * needs to work out what to do next (and whether to pass it on to the
1139 * gadget driver).
1140 */
1141static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
1142				      struct usb_ctrlrequest *ctrl)
1143{
1144	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1145	int ret = 0;
1146	u32 dcfg;
1147
1148	ep0->sent_zlp = 0;
1149
1150	dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
1151		 ctrl->bRequest, ctrl->bRequestType,
1152		 ctrl->wValue, ctrl->wLength);
1153
1154	/* record the direction of the request, for later use when enquing
1155	 * packets onto EP0. */
1156
1157	ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
1158	dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);
1159
1160	/* if we've no data with this request, then the last part of the
1161	 * transaction is going to implicitly be IN. */
1162	if (ctrl->wLength == 0)
1163		ep0->dir_in = 1;
1164
1165	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1166		switch (ctrl->bRequest) {
1167		case USB_REQ_SET_ADDRESS:
1168			dcfg = readl(hsotg->regs + S3C_DCFG);
1169			dcfg &= ~S3C_DCFG_DevAddr_MASK;
1170			dcfg |= ctrl->wValue << S3C_DCFG_DevAddr_SHIFT;
1171			writel(dcfg, hsotg->regs + S3C_DCFG);
1172
1173			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1174
1175			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1176			return;
1177
1178		case USB_REQ_GET_STATUS:
1179			ret = s3c_hsotg_process_req_status(hsotg, ctrl);
1180			break;
1181
1182		case USB_REQ_CLEAR_FEATURE:
1183		case USB_REQ_SET_FEATURE:
1184			ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
1185			break;
1186		}
1187	}
1188
1189	/* as a fallback, try delivering it to the driver to deal with */
1190
1191	if (ret == 0 && hsotg->driver) {
1192		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1193		if (ret < 0)
1194			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1195	}
1196
1197	/* the request is either unhandlable, or is not formatted correctly
1198	 * so respond with a STALL for the status stage to indicate failure.
1199	 */
1200
1201	if (ret < 0) {
1202		u32 reg;
1203		u32 ctrl;
1204
1205		dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1206		reg = (ep0->dir_in) ? S3C_DIEPCTL0 : S3C_DOEPCTL0;
1207
1208		/* S3C_DxEPCTL_Stall will be cleared by EP once it has
1209		 * taken effect, so no need to clear later. */
1210
1211		ctrl = readl(hsotg->regs + reg);
1212		ctrl |= S3C_DxEPCTL_Stall;
1213		ctrl |= S3C_DxEPCTL_CNAK;
1214		writel(ctrl, hsotg->regs + reg);
1215
1216		dev_dbg(hsotg->dev,
1217			"written DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
1218			ctrl, reg, readl(hsotg->regs + reg));
1219
1220		/* don't believe we need to anything more to get the EP
1221		 * to reply with a STALL packet */
1222	}
1223}
1224
1225static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
1226
1227/**
1228 * s3c_hsotg_complete_setup - completion of a setup transfer
1229 * @ep: The endpoint the request was on.
1230 * @req: The request completed.
1231 *
1232 * Called on completion of any requests the driver itself submitted for
1233 * EP0 setup packets
1234 */
1235static void s3c_hsotg_complete_setup(struct usb_ep *ep,
1236				     struct usb_request *req)
1237{
1238	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1239	struct s3c_hsotg *hsotg = hs_ep->parent;
1240
1241	if (req->status < 0) {
1242		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1243		return;
1244	}
1245
1246	if (req->actual == 0)
1247		s3c_hsotg_enqueue_setup(hsotg);
1248	else
1249		s3c_hsotg_process_control(hsotg, req->buf);
1250}
1251
1252/**
1253 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
1254 * @hsotg: The device state.
1255 *
1256 * Enqueue a request on EP0 if necessary to received any SETUP packets
1257 * received from the host.
1258 */
1259static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
1260{
1261	struct usb_request *req = hsotg->ctrl_req;
1262	struct s3c_hsotg_req *hs_req = our_req(req);
1263	int ret;
1264
1265	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1266
1267	req->zero = 0;
1268	req->length = 8;
1269	req->buf = hsotg->ctrl_buff;
1270	req->complete = s3c_hsotg_complete_setup;
1271
1272	if (!list_empty(&hs_req->queue)) {
1273		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1274		return;
1275	}
1276
1277	hsotg->eps[0].dir_in = 0;
1278
1279	ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
1280	if (ret < 0) {
1281		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1282		/* Don't think there's much we can do other than watch the
1283		 * driver fail. */
1284	}
1285}
1286
1287/**
1288 * s3c_hsotg_complete_request - complete a request given to us
1289 * @hsotg: The device state.
1290 * @hs_ep: The endpoint the request was on.
1291 * @hs_req: The request to complete.
1292 * @result: The result code (0 => Ok, otherwise errno)
1293 *
1294 * The given request has finished, so call the necessary completion
1295 * if it has one and then look to see if we can start a new request
1296 * on the endpoint.
1297 *
1298 * Note, expects the ep to already be locked as appropriate.
1299*/
1300static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
1301				       struct s3c_hsotg_ep *hs_ep,
1302				       struct s3c_hsotg_req *hs_req,
1303				       int result)
1304{
1305	bool restart;
1306
1307	if (!hs_req) {
1308		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1309		return;
1310	}
1311
1312	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1313		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1314
1315	/* only replace the status if we've not already set an error
1316	 * from a previous transaction */
1317
1318	if (hs_req->req.status == -EINPROGRESS)
1319		hs_req->req.status = result;
1320
1321	hs_ep->req = NULL;
1322	list_del_init(&hs_req->queue);
1323
1324	if (using_dma(hsotg))
1325		s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1326
1327	/* call the complete request with the locks off, just in case the
1328	 * request tries to queue more work for this endpoint. */
1329
1330	if (hs_req->req.complete) {
1331		spin_unlock(&hs_ep->lock);
1332		hs_req->req.complete(&hs_ep->ep, &hs_req->req);
1333		spin_lock(&hs_ep->lock);
1334	}
1335
1336	/* Look to see if there is anything else to do. Note, the completion
1337	 * of the previous request may have caused a new request to be started
1338	 * so be careful when doing this. */
1339
1340	if (!hs_ep->req && result >= 0) {
1341		restart = !list_empty(&hs_ep->queue);
1342		if (restart) {
1343			hs_req = get_ep_head(hs_ep);
1344			s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1345		}
1346	}
1347}
1348
1349/**
1350 * s3c_hsotg_complete_request_lock - complete a request given to us (locked)
1351 * @hsotg: The device state.
1352 * @hs_ep: The endpoint the request was on.
1353 * @hs_req: The request to complete.
1354 * @result: The result code (0 => Ok, otherwise errno)
1355 *
1356 * See s3c_hsotg_complete_request(), but called with the endpoint's
1357 * lock held.
1358*/
1359static void s3c_hsotg_complete_request_lock(struct s3c_hsotg *hsotg,
1360					    struct s3c_hsotg_ep *hs_ep,
1361					    struct s3c_hsotg_req *hs_req,
1362					    int result)
1363{
1364	unsigned long flags;
1365
1366	spin_lock_irqsave(&hs_ep->lock, flags);
1367	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1368	spin_unlock_irqrestore(&hs_ep->lock, flags);
1369}
1370
1371/**
1372 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
1373 * @hsotg: The device state.
1374 * @ep_idx: The endpoint index for the data
1375 * @size: The size of data in the fifo, in bytes
1376 *
1377 * The FIFO status shows there is data to read from the FIFO for a given
1378 * endpoint, so sort out whether we need to read the data into a request
1379 * that has been made for that endpoint.
1380 */
1381static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
1382{
1383	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
1384	struct s3c_hsotg_req *hs_req = hs_ep->req;
1385	void __iomem *fifo = hsotg->regs + S3C_EPFIFO(ep_idx);
1386	int to_read;
1387	int max_req;
1388	int read_ptr;
1389
1390	if (!hs_req) {
1391		u32 epctl = readl(hsotg->regs + S3C_DOEPCTL(ep_idx));
1392		int ptr;
1393
1394		dev_warn(hsotg->dev,
1395			 "%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
1396			 __func__, size, ep_idx, epctl);
1397
1398		/* dump the data from the FIFO, we've nothing we can do */
1399		for (ptr = 0; ptr < size; ptr += 4)
1400			(void)readl(fifo);
1401
1402		return;
1403	}
1404
1405	spin_lock(&hs_ep->lock);
1406
1407	to_read = size;
1408	read_ptr = hs_req->req.actual;
1409	max_req = hs_req->req.length - read_ptr;
1410
1411	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1412		__func__, to_read, max_req, read_ptr, hs_req->req.length);
1413
1414	if (to_read > max_req) {
1415		/* more data appeared than we where willing
1416		 * to deal with in this request.
1417		 */
1418
1419		/* currently we don't deal this */
1420		WARN_ON_ONCE(1);
1421	}
1422
1423	hs_ep->total_data += to_read;
1424	hs_req->req.actual += to_read;
1425	to_read = DIV_ROUND_UP(to_read, 4);
1426
1427	/* note, we might over-write the buffer end by 3 bytes depending on
1428	 * alignment of the data. */
1429	readsl(fifo, hs_req->req.buf + read_ptr, to_read);
1430
1431	spin_unlock(&hs_ep->lock);
1432}
1433
1434/**
1435 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
1436 * @hsotg: The device instance
1437 * @req: The request currently on this endpoint
1438 *
1439 * Generate a zero-length IN packet request for terminating a SETUP
1440 * transaction.
1441 *
1442 * Note, since we don't write any data to the TxFIFO, then it is
1443 * currently believed that we do not need to wait for any space in
1444 * the TxFIFO.
1445 */
1446static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
1447			       struct s3c_hsotg_req *req)
1448{
1449	u32 ctrl;
1450
1451	if (!req) {
1452		dev_warn(hsotg->dev, "%s: no request?\n", __func__);
1453		return;
1454	}
1455
1456	if (req->req.length == 0) {
1457		hsotg->eps[0].sent_zlp = 1;
1458		s3c_hsotg_enqueue_setup(hsotg);
1459		return;
1460	}
1461
1462	hsotg->eps[0].dir_in = 1;
1463	hsotg->eps[0].sent_zlp = 1;
1464
1465	dev_dbg(hsotg->dev, "sending zero-length packet\n");
1466
1467	/* issue a zero-sized packet to terminate this */
1468	writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
1469	       S3C_DxEPTSIZ_XferSize(0), hsotg->regs + S3C_DIEPTSIZ(0));
1470
1471	ctrl = readl(hsotg->regs + S3C_DIEPCTL0);
1472	ctrl |= S3C_DxEPCTL_CNAK;  /* clear NAK set by core */
1473	ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */
1474	ctrl |= S3C_DxEPCTL_USBActEp;
1475	writel(ctrl, hsotg->regs + S3C_DIEPCTL0);
1476}
1477
1478/**
1479 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1480 * @hsotg: The device instance
1481 * @epnum: The endpoint received from
1482 * @was_setup: Set if processing a SetupDone event.
1483 *
1484 * The RXFIFO has delivered an OutDone event, which means that the data
1485 * transfer for an OUT endpoint has been completed, either by a short
1486 * packet or by the finish of a transfer.
1487*/
1488static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
1489				     int epnum, bool was_setup)
1490{
1491	u32 epsize = readl(hsotg->regs + S3C_DOEPTSIZ(epnum));
1492	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
1493	struct s3c_hsotg_req *hs_req = hs_ep->req;
1494	struct usb_request *req = &hs_req->req;
1495	unsigned size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
1496	int result = 0;
1497
1498	if (!hs_req) {
1499		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1500		return;
1501	}
1502
1503	if (using_dma(hsotg)) {
1504		unsigned size_done;
1505
1506		/* Calculate the size of the transfer by checking how much
1507		 * is left in the endpoint size register and then working it
1508		 * out from the amount we loaded for the transfer.
1509		 *
1510		 * We need to do this as DMA pointers are always 32bit aligned
1511		 * so may overshoot/undershoot the transfer.
1512		 */
1513
1514		size_done = hs_ep->size_loaded - size_left;
1515		size_done += hs_ep->last_load;
1516
1517		req->actual = size_done;
1518	}
1519
1520	/* if there is more request to do, schedule new transfer */
1521	if (req->actual < req->length && size_left == 0) {
1522		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1523		return;
1524	}
1525
1526	if (req->actual < req->length && req->short_not_ok) {
1527		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1528			__func__, req->actual, req->length);
1529
1530		/* todo - what should we return here? there's no one else
1531		 * even bothering to check the status. */
1532	}
1533
1534	if (epnum == 0) {
1535		if (!was_setup && req->complete != s3c_hsotg_complete_setup)
1536			s3c_hsotg_send_zlp(hsotg, hs_req);
1537	}
1538
1539	s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, result);
1540}
1541
1542/**
1543 * s3c_hsotg_read_frameno - read current frame number
1544 * @hsotg: The device instance
1545 *
1546 * Return the current frame number
1547*/
1548static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
1549{
1550	u32 dsts;
1551
1552	dsts = readl(hsotg->regs + S3C_DSTS);
1553	dsts &= S3C_DSTS_SOFFN_MASK;
1554	dsts >>= S3C_DSTS_SOFFN_SHIFT;
1555
1556	return dsts;
1557}
1558
1559/**
1560 * s3c_hsotg_handle_rx - RX FIFO has data
1561 * @hsotg: The device instance
1562 *
1563 * The IRQ handler has detected that the RX FIFO has some data in it
1564 * that requires processing, so find out what is in there and do the
1565 * appropriate read.
1566 *
1567 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1568 * chunks, so if you have x packets received on an endpoint you'll get x
1569 * FIFO events delivered, each with a packet's worth of data in it.
1570 *
1571 * When using DMA, we should not be processing events from the RXFIFO
1572 * as the actual data should be sent to the memory directly and we turn
1573 * on the completion interrupts to get notifications of transfer completion.
1574 */
1575static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
1576{
1577	u32 grxstsr = readl(hsotg->regs + S3C_GRXSTSP);
1578	u32 epnum, status, size;
1579
1580	WARN_ON(using_dma(hsotg));
1581
1582	epnum = grxstsr & S3C_GRXSTS_EPNum_MASK;
1583	status = grxstsr & S3C_GRXSTS_PktSts_MASK;
1584
1585	size = grxstsr & S3C_GRXSTS_ByteCnt_MASK;
1586	size >>= S3C_GRXSTS_ByteCnt_SHIFT;
1587
1588	if (1)
1589		dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1590			__func__, grxstsr, size, epnum);
1591
1592#define __status(x) ((x) >> S3C_GRXSTS_PktSts_SHIFT)
1593
1594	switch (status >> S3C_GRXSTS_PktSts_SHIFT) {
1595	case __status(S3C_GRXSTS_PktSts_GlobalOutNAK):
1596		dev_dbg(hsotg->dev, "GlobalOutNAK\n");
1597		break;
1598
1599	case __status(S3C_GRXSTS_PktSts_OutDone):
1600		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1601			s3c_hsotg_read_frameno(hsotg));
1602
1603		if (!using_dma(hsotg))
1604			s3c_hsotg_handle_outdone(hsotg, epnum, false);
1605		break;
1606
1607	case __status(S3C_GRXSTS_PktSts_SetupDone):
1608		dev_dbg(hsotg->dev,
1609			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1610			s3c_hsotg_read_frameno(hsotg),
1611			readl(hsotg->regs + S3C_DOEPCTL(0)));
1612
1613		s3c_hsotg_handle_outdone(hsotg, epnum, true);
1614		break;
1615
1616	case __status(S3C_GRXSTS_PktSts_OutRX):
1617		s3c_hsotg_rx_data(hsotg, epnum, size);
1618		break;
1619
1620	case __status(S3C_GRXSTS_PktSts_SetupRX):
1621		dev_dbg(hsotg->dev,
1622			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1623			s3c_hsotg_read_frameno(hsotg),
1624			readl(hsotg->regs + S3C_DOEPCTL(0)));
1625
1626		s3c_hsotg_rx_data(hsotg, epnum, size);
1627		break;
1628
1629	default:
1630		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1631			 __func__, grxstsr);
1632
1633		s3c_hsotg_dump(hsotg);
1634		break;
1635	}
1636}
1637
1638/**
1639 * s3c_hsotg_ep0_mps - turn max packet size into register setting
1640 * @mps: The maximum packet size in bytes.
1641*/
1642static u32 s3c_hsotg_ep0_mps(unsigned int mps)
1643{
1644	switch (mps) {
1645	case 64:
1646		return S3C_D0EPCTL_MPS_64;
1647	case 32:
1648		return S3C_D0EPCTL_MPS_32;
1649	case 16:
1650		return S3C_D0EPCTL_MPS_16;
1651	case 8:
1652		return S3C_D0EPCTL_MPS_8;
1653	}
1654
1655	/* bad max packet size, warn and return invalid result */
1656	WARN_ON(1);
1657	return (u32)-1;
1658}
1659
1660/**
1661 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1662 * @hsotg: The driver state.
1663 * @ep: The index number of the endpoint
1664 * @mps: The maximum packet size in bytes
1665 *
1666 * Configure the maximum packet size for the given endpoint, updating
1667 * the hardware control registers to reflect this.
1668 */
1669static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
1670				       unsigned int ep, unsigned int mps)
1671{
1672	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
1673	void __iomem *regs = hsotg->regs;
1674	u32 mpsval;
1675	u32 reg;
1676
1677	if (ep == 0) {
1678		/* EP0 is a special case */
1679		mpsval = s3c_hsotg_ep0_mps(mps);
1680		if (mpsval > 3)
1681			goto bad_mps;
1682	} else {
1683		if (mps >= S3C_DxEPCTL_MPS_LIMIT+1)
1684			goto bad_mps;
1685
1686		mpsval = mps;
1687	}
1688
1689	hs_ep->ep.maxpacket = mps;
1690
1691	/* update both the in and out endpoint controldir_ registers, even
1692	 * if one of the directions may not be in use. */
1693
1694	reg = readl(regs + S3C_DIEPCTL(ep));
1695	reg &= ~S3C_DxEPCTL_MPS_MASK;
1696	reg |= mpsval;
1697	writel(reg, regs + S3C_DIEPCTL(ep));
1698
1699	reg = readl(regs + S3C_DOEPCTL(ep));
1700	reg &= ~S3C_DxEPCTL_MPS_MASK;
1701	reg |= mpsval;
1702	writel(reg, regs + S3C_DOEPCTL(ep));
1703
1704	return;
1705
1706bad_mps:
1707	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1708}
1709
1710/**
1711 * s3c_hsotg_txfifo_flush - flush Tx FIFO
1712 * @hsotg: The driver state
1713 * @idx: The index for the endpoint (0..15)
1714 */
1715static void s3c_hsotg_txfifo_flush(struct s3c_hsotg *hsotg, unsigned int idx)
1716{
1717	int timeout;
1718	int val;
1719
1720	writel(S3C_GRSTCTL_TxFNum(idx) | S3C_GRSTCTL_TxFFlsh,
1721		hsotg->regs + S3C_GRSTCTL);
1722
1723	/* wait until the fifo is flushed */
1724	timeout = 100;
1725
1726	while (1) {
1727		val = readl(hsotg->regs + S3C_GRSTCTL);
1728
1729		if ((val & (S3C_GRSTCTL_TxFFlsh)) == 0)
1730			break;
1731
1732		if (--timeout == 0) {
1733			dev_err(hsotg->dev,
1734				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
1735				__func__, val);
1736		}
1737
1738		udelay(1);
1739	}
1740}
1741
1742/**
1743 * s3c_hsotg_trytx - check to see if anything needs transmitting
1744 * @hsotg: The driver state
1745 * @hs_ep: The driver endpoint to check.
1746 *
1747 * Check to see if there is a request that has data to send, and if so
1748 * make an attempt to write data into the FIFO.
1749 */
1750static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
1751			   struct s3c_hsotg_ep *hs_ep)
1752{
1753	struct s3c_hsotg_req *hs_req = hs_ep->req;
1754
1755	if (!hs_ep->dir_in || !hs_req)
1756		return 0;
1757
1758	if (hs_req->req.actual < hs_req->req.length) {
1759		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1760			hs_ep->index);
1761		return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1762	}
1763
1764	return 0;
1765}
1766
1767/**
1768 * s3c_hsotg_complete_in - complete IN transfer
1769 * @hsotg: The device state.
1770 * @hs_ep: The endpoint that has just completed.
1771 *
1772 * An IN transfer has been completed, update the transfer's state and then
1773 * call the relevant completion routines.
1774 */
1775static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
1776				  struct s3c_hsotg_ep *hs_ep)
1777{
1778	struct s3c_hsotg_req *hs_req = hs_ep->req;
1779	u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
1780	int size_left, size_done;
1781
1782	if (!hs_req) {
1783		dev_dbg(hsotg->dev, "XferCompl but no req\n");
1784		return;
1785	}
1786
1787	/* Calculate the size of the transfer by checking how much is left
1788	 * in the endpoint size register and then working it out from
1789	 * the amount we loaded for the transfer.
1790	 *
1791	 * We do this even for DMA, as the transfer may have incremented
1792	 * past the end of the buffer (DMA transfers are always 32bit
1793	 * aligned).
1794	 */
1795
1796	size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
1797
1798	size_done = hs_ep->size_loaded - size_left;
1799	size_done += hs_ep->last_load;
1800
1801	if (hs_req->req.actual != size_done)
1802		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1803			__func__, hs_req->req.actual, size_done);
1804
1805	hs_req->req.actual = size_done;
1806
1807	/* if we did all of the transfer, and there is more data left
1808	 * around, then try restarting the rest of the request */
1809
1810	if (!size_left && hs_req->req.actual < hs_req->req.length) {
1811		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1812		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1813	} else
1814		s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, 0);
1815}
1816
1817/**
1818 * s3c_hsotg_epint - handle an in/out endpoint interrupt
1819 * @hsotg: The driver state
1820 * @idx: The index for the endpoint (0..15)
1821 * @dir_in: Set if this is an IN endpoint
1822 *
1823 * Process and clear any interrupt pending for an individual endpoint
1824*/
1825static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
1826			    int dir_in)
1827{
1828	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1829	u32 epint_reg = dir_in ? S3C_DIEPINT(idx) : S3C_DOEPINT(idx);
1830	u32 epctl_reg = dir_in ? S3C_DIEPCTL(idx) : S3C_DOEPCTL(idx);
1831	u32 epsiz_reg = dir_in ? S3C_DIEPTSIZ(idx) : S3C_DOEPTSIZ(idx);
1832	u32 ints;
1833
1834	ints = readl(hsotg->regs + epint_reg);
1835
1836	/* Clear endpoint interrupts */
1837	writel(ints, hsotg->regs + epint_reg);
1838
1839	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1840		__func__, idx, dir_in ? "in" : "out", ints);
1841
1842	if (ints & S3C_DxEPINT_XferCompl) {
1843		dev_dbg(hsotg->dev,
1844			"%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
1845			__func__, readl(hsotg->regs + epctl_reg),
1846			readl(hsotg->regs + epsiz_reg));
1847
1848		/* we get OutDone from the FIFO, so we only need to look
1849		 * at completing IN requests here */
1850		if (dir_in) {
1851			s3c_hsotg_complete_in(hsotg, hs_ep);
1852
1853			if (idx == 0 && !hs_ep->req)
1854				s3c_hsotg_enqueue_setup(hsotg);
1855		} else if (using_dma(hsotg)) {
1856			/* We're using DMA, we need to fire an OutDone here
1857			 * as we ignore the RXFIFO. */
1858
1859			s3c_hsotg_handle_outdone(hsotg, idx, false);
1860		}
1861	}
1862
1863	if (ints & S3C_DxEPINT_EPDisbld) {
1864		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
1865
1866		if (dir_in) {
1867			int epctl = readl(hsotg->regs + epctl_reg);
1868
1869			s3c_hsotg_txfifo_flush(hsotg, idx);
1870
1871			if ((epctl & S3C_DxEPCTL_Stall) &&
1872				(epctl & S3C_DxEPCTL_EPType_Bulk)) {
1873				int dctl = readl(hsotg->regs + S3C_DCTL);
1874
1875				dctl |= S3C_DCTL_CGNPInNAK;
1876				writel(dctl, hsotg->regs + S3C_DCTL);
1877			}
1878		}
1879	}
1880
1881	if (ints & S3C_DxEPINT_AHBErr)
1882		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
1883
1884	if (ints & S3C_DxEPINT_Setup) {  /* Setup or Timeout */
1885		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
1886
1887		if (using_dma(hsotg) && idx == 0) {
1888			/* this is the notification we've received a
1889			 * setup packet. In non-DMA mode we'd get this
1890			 * from the RXFIFO, instead we need to process
1891			 * the setup here. */
1892
1893			if (dir_in)
1894				WARN_ON_ONCE(1);
1895			else
1896				s3c_hsotg_handle_outdone(hsotg, 0, true);
1897		}
1898	}
1899
1900	if (ints & S3C_DxEPINT_Back2BackSetup)
1901		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
1902
1903	if (dir_in) {
1904		/* not sure if this is important, but we'll clear it anyway
1905		 */
1906		if (ints & S3C_DIEPMSK_INTknTXFEmpMsk) {
1907			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
1908				__func__, idx);
1909		}
1910
1911		/* this probably means something bad is happening */
1912		if (ints & S3C_DIEPMSK_INTknEPMisMsk) {
1913			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
1914				 __func__, idx);
1915		}
1916
1917		/* FIFO has space or is empty (see GAHBCFG) */
1918		if (hsotg->dedicated_fifos &&
1919		    ints & S3C_DIEPMSK_TxFIFOEmpty) {
1920			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
1921				__func__, idx);
1922			s3c_hsotg_trytx(hsotg, hs_ep);
1923		}
1924	}
1925}
1926
1927/**
1928 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
1929 * @hsotg: The device state.
1930 *
1931 * Handle updating the device settings after the enumeration phase has
1932 * been completed.
1933*/
1934static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
1935{
1936	u32 dsts = readl(hsotg->regs + S3C_DSTS);
1937	int ep0_mps = 0, ep_mps;
1938
1939	/* This should signal the finish of the enumeration phase
1940	 * of the USB handshaking, so we should now know what rate
1941	 * we connected at. */
1942
1943	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
1944
1945	/* note, since we're limited by the size of transfer on EP0, and
1946	 * it seems IN transfers must be a even number of packets we do
1947	 * not advertise a 64byte MPS on EP0. */
1948
1949	/* catch both EnumSpd_FS and EnumSpd_FS48 */
1950	switch (dsts & S3C_DSTS_EnumSpd_MASK) {
1951	case S3C_DSTS_EnumSpd_FS:
1952	case S3C_DSTS_EnumSpd_FS48:
1953		hsotg->gadget.speed = USB_SPEED_FULL;
1954		ep0_mps = EP0_MPS_LIMIT;
1955		ep_mps = 64;
1956		break;
1957
1958	case S3C_DSTS_EnumSpd_HS:
1959		hsotg->gadget.speed = USB_SPEED_HIGH;
1960		ep0_mps = EP0_MPS_LIMIT;
1961		ep_mps = 512;
1962		break;
1963
1964	case S3C_DSTS_EnumSpd_LS:
1965		hsotg->gadget.speed = USB_SPEED_LOW;
1966		/* note, we don't actually support LS in this driver at the
1967		 * moment, and the documentation seems to imply that it isn't
1968		 * supported by the PHYs on some of the devices.
1969		 */
1970		break;
1971	}
1972	dev_info(hsotg->dev, "new device is %s\n",
1973		 usb_speed_string(hsotg->gadget.speed));
1974
1975	/* we should now know the maximum packet size for an
1976	 * endpoint, so set the endpoints to a default value. */
1977
1978	if (ep0_mps) {
1979		int i;
1980		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
1981		for (i = 1; i < S3C_HSOTG_EPS; i++)
1982			s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
1983	}
1984
1985	/* ensure after enumeration our EP0 is active */
1986
1987	s3c_hsotg_enqueue_setup(hsotg);
1988
1989	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
1990		readl(hsotg->regs + S3C_DIEPCTL0),
1991		readl(hsotg->regs + S3C_DOEPCTL0));
1992}
1993
1994/**
1995 * kill_all_requests - remove all requests from the endpoint's queue
1996 * @hsotg: The device state.
1997 * @ep: The endpoint the requests may be on.
1998 * @result: The result code to use.
1999 * @force: Force removal of any current requests
2000 *
2001 * Go through the requests on the given endpoint and mark them
2002 * completed with the given result code.
2003 */
2004static void kill_all_requests(struct s3c_hsotg *hsotg,
2005			      struct s3c_hsotg_ep *ep,
2006			      int result, bool force)
2007{
2008	struct s3c_hsotg_req *req, *treq;
2009	unsigned long flags;
2010
2011	spin_lock_irqsave(&ep->lock, flags);
2012
2013	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2014		/* currently, we can't do much about an already
2015		 * running request on an in endpoint */
2016
2017		if (ep->req == req && ep->dir_in && !force)
2018			continue;
2019
2020		s3c_hsotg_complete_request(hsotg, ep, req,
2021					   result);
2022	}
2023
2024	spin_unlock_irqrestore(&ep->lock, flags);
2025}
2026
2027#define call_gadget(_hs, _entry) \
2028	if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN &&	\
2029	    (_hs)->driver && (_hs)->driver->_entry)	\
2030		(_hs)->driver->_entry(&(_hs)->gadget);
2031
2032/**
2033 * s3c_hsotg_disconnect_irq - disconnect irq service
2034 * @hsotg: The device state.
2035 *
2036 * A disconnect IRQ has been received, meaning that the host has
2037 * lost contact with the bus. Remove all current transactions
2038 * and signal the gadget driver that this has happened.
2039*/
2040static void s3c_hsotg_disconnect_irq(struct s3c_hsotg *hsotg)
2041{
2042	unsigned ep;
2043
2044	for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
2045		kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);
2046
2047	call_gadget(hsotg, disconnect);
2048}
2049
2050/**
2051 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2052 * @hsotg: The device state:
2053 * @periodic: True if this is a periodic FIFO interrupt
2054 */
2055static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
2056{
2057	struct s3c_hsotg_ep *ep;
2058	int epno, ret;
2059
2060	/* look through for any more data to transmit */
2061
2062	for (epno = 0; epno < S3C_HSOTG_EPS; epno++) {
2063		ep = &hsotg->eps[epno];
2064
2065		if (!ep->dir_in)
2066			continue;
2067
2068		if ((periodic && !ep->periodic) ||
2069		    (!periodic && ep->periodic))
2070			continue;
2071
2072		ret = s3c_hsotg_trytx(hsotg, ep);
2073		if (ret < 0)
2074			break;
2075	}
2076}
2077
2078static struct s3c_hsotg *our_hsotg;
2079
2080/* IRQ flags which will trigger a retry around the IRQ loop */
2081#define IRQ_RETRY_MASK (S3C_GINTSTS_NPTxFEmp | \
2082			S3C_GINTSTS_PTxFEmp |  \
2083			S3C_GINTSTS_RxFLvl)
2084
2085/**
2086 * s3c_hsotg_irq - handle device interrupt
2087 * @irq: The IRQ number triggered
2088 * @pw: The pw value when registered the handler.
2089 */
2090static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
2091{
2092	struct s3c_hsotg *hsotg = pw;
2093	int retry_count = 8;
2094	u32 gintsts;
2095	u32 gintmsk;
2096
2097irq_retry:
2098	gintsts = readl(hsotg->regs + S3C_GINTSTS);
2099	gintmsk = readl(hsotg->regs + S3C_GINTMSK);
2100
2101	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2102		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2103
2104	gintsts &= gintmsk;
2105
2106	if (gintsts & S3C_GINTSTS_OTGInt) {
2107		u32 otgint = readl(hsotg->regs + S3C_GOTGINT);
2108
2109		dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);
2110
2111		writel(otgint, hsotg->regs + S3C_GOTGINT);
2112	}
2113
2114	if (gintsts & S3C_GINTSTS_DisconnInt) {
2115		dev_dbg(hsotg->dev, "%s: DisconnInt\n", __func__);
2116		writel(S3C_GINTSTS_DisconnInt, hsotg->regs + S3C_GINTSTS);
2117
2118		s3c_hsotg_disconnect_irq(hsotg);
2119	}
2120
2121	if (gintsts & S3C_GINTSTS_SessReqInt) {
2122		dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
2123		writel(S3C_GINTSTS_SessReqInt, hsotg->regs + S3C_GINTSTS);
2124	}
2125
2126	if (gintsts & S3C_GINTSTS_EnumDone) {
2127		writel(S3C_GINTSTS_EnumDone, hsotg->regs + S3C_GINTSTS);
2128
2129		s3c_hsotg_irq_enumdone(hsotg);
2130	}
2131
2132	if (gintsts & S3C_GINTSTS_ConIDStsChng) {
2133		dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
2134			readl(hsotg->regs + S3C_DSTS),
2135			readl(hsotg->regs + S3C_GOTGCTL));
2136
2137		writel(S3C_GINTSTS_ConIDStsChng, hsotg->regs + S3C_GINTSTS);
2138	}
2139
2140	if (gintsts & (S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt)) {
2141		u32 daint = readl(hsotg->regs + S3C_DAINT);
2142		u32 daint_out = daint >> S3C_DAINT_OutEP_SHIFT;
2143		u32 daint_in = daint & ~(daint_out << S3C_DAINT_OutEP_SHIFT);
2144		int ep;
2145
2146		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2147
2148		for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
2149			if (daint_out & 1)
2150				s3c_hsotg_epint(hsotg, ep, 0);
2151		}
2152
2153		for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
2154			if (daint_in & 1)
2155				s3c_hsotg_epint(hsotg, ep, 1);
2156		}
2157	}
2158
2159	if (gintsts & S3C_GINTSTS_USBRst) {
2160		dev_info(hsotg->dev, "%s: USBRst\n", __func__);
2161		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2162			readl(hsotg->regs + S3C_GNPTXSTS));
2163
2164		writel(S3C_GINTSTS_USBRst, hsotg->regs + S3C_GINTSTS);
2165
2166		kill_all_requests(hsotg, &hsotg->eps[0], -ECONNRESET, true);
2167
2168		/* it seems after a reset we can end up with a situation
2169		 * where the TXFIFO still has data in it... the docs
2170		 * suggest resetting all the fifos, so use the init_fifo
2171		 * code to relayout and flush the fifos.
2172		 */
2173
2174		s3c_hsotg_init_fifo(hsotg);
2175
2176		s3c_hsotg_enqueue_setup(hsotg);
2177	}
2178
2179	/* check both FIFOs */
2180
2181	if (gintsts & S3C_GINTSTS_NPTxFEmp) {
2182		dev_dbg(hsotg->dev, "NPTxFEmp\n");
2183
2184		/* Disable the interrupt to stop it happening again
2185		 * unless one of these endpoint routines decides that
2186		 * it needs re-enabling */
2187
2188		s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
2189		s3c_hsotg_irq_fifoempty(hsotg, false);
2190	}
2191
2192	if (gintsts & S3C_GINTSTS_PTxFEmp) {
2193		dev_dbg(hsotg->dev, "PTxFEmp\n");
2194
2195		/* See note in S3C_GINTSTS_NPTxFEmp */
2196
2197		s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
2198		s3c_hsotg_irq_fifoempty(hsotg, true);
2199	}
2200
2201	if (gintsts & S3C_GINTSTS_RxFLvl) {
2202		/* note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2203		 * we need to retry s3c_hsotg_handle_rx if this is still
2204		 * set. */
2205
2206		s3c_hsotg_handle_rx(hsotg);
2207	}
2208
2209	if (gintsts & S3C_GINTSTS_ModeMis) {
2210		dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
2211		writel(S3C_GINTSTS_ModeMis, hsotg->regs + S3C_GINTSTS);
2212	}
2213
2214	if (gintsts & S3C_GINTSTS_USBSusp) {
2215		dev_info(hsotg->dev, "S3C_GINTSTS_USBSusp\n");
2216		writel(S3C_GINTSTS_USBSusp, hsotg->regs + S3C_GINTSTS);
2217
2218		call_gadget(hsotg, suspend);
2219	}
2220
2221	if (gintsts & S3C_GINTSTS_WkUpInt) {
2222		dev_info(hsotg->dev, "S3C_GINTSTS_WkUpIn\n");
2223		writel(S3C_GINTSTS_WkUpInt, hsotg->regs + S3C_GINTSTS);
2224
2225		call_gadget(hsotg, resume);
2226	}
2227
2228	if (gintsts & S3C_GINTSTS_ErlySusp) {
2229		dev_dbg(hsotg->dev, "S3C_GINTSTS_ErlySusp\n");
2230		writel(S3C_GINTSTS_ErlySusp, hsotg->regs + S3C_GINTSTS);
2231	}
2232
2233	/* these next two seem to crop-up occasionally causing the core
2234	 * to shutdown the USB transfer, so try clearing them and logging
2235	 * the occurrence. */
2236
2237	if (gintsts & S3C_GINTSTS_GOUTNakEff) {
2238		dev_info(hsotg->dev, "GOUTNakEff triggered\n");
2239
2240		writel(S3C_DCTL_CGOUTNak, hsotg->regs + S3C_DCTL);
2241
2242		s3c_hsotg_dump(hsotg);
2243	}
2244
2245	if (gintsts & S3C_GINTSTS_GINNakEff) {
2246		dev_info(hsotg->dev, "GINNakEff triggered\n");
2247
2248		writel(S3C_DCTL_CGNPInNAK, hsotg->regs + S3C_DCTL);
2249
2250		s3c_hsotg_dump(hsotg);
2251	}
2252
2253	/* if we've had fifo events, we should try and go around the
2254	 * loop again to see if there's any point in returning yet. */
2255
2256	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2257			goto irq_retry;
2258
2259	return IRQ_HANDLED;
2260}
2261
2262/**
2263 * s3c_hsotg_ep_enable - enable the given endpoint
2264 * @ep: The USB endpint to configure
2265 * @desc: The USB endpoint descriptor to configure with.
2266 *
2267 * This is called from the USB gadget code's usb_ep_enable().
2268*/
2269static int s3c_hsotg_ep_enable(struct usb_ep *ep,
2270			       const struct usb_endpoint_descriptor *desc)
2271{
2272	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2273	struct s3c_hsotg *hsotg = hs_ep->parent;
2274	unsigned long flags;
2275	int index = hs_ep->index;
2276	u32 epctrl_reg;
2277	u32 epctrl;
2278	u32 mps;
2279	int dir_in;
2280	int ret = 0;
2281
2282	dev_dbg(hsotg->dev,
2283		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2284		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2285		desc->wMaxPacketSize, desc->bInterval);
2286
2287	/* not to be called for EP0 */
2288	WARN_ON(index == 0);
2289
2290	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2291	if (dir_in != hs_ep->dir_in) {
2292		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2293		return -EINVAL;
2294	}
2295
2296	mps = usb_endpoint_maxp(desc);
2297
2298	/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
2299
2300	epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
2301	epctrl = readl(hsotg->regs + epctrl_reg);
2302
2303	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2304		__func__, epctrl, epctrl_reg);
2305
2306	spin_lock_irqsave(&hs_ep->lock, flags);
2307
2308	epctrl &= ~(S3C_DxEPCTL_EPType_MASK | S3C_DxEPCTL_MPS_MASK);
2309	epctrl |= S3C_DxEPCTL_MPS(mps);
2310
2311	/* mark the endpoint as active, otherwise the core may ignore
2312	 * transactions entirely for this endpoint */
2313	epctrl |= S3C_DxEPCTL_USBActEp;
2314
2315	/* set the NAK status on the endpoint, otherwise we might try and
2316	 * do something with data that we've yet got a request to process
2317	 * since the RXFIFO will take data for an endpoint even if the
2318	 * size register hasn't been set.
2319	 */
2320
2321	epctrl |= S3C_DxEPCTL_SNAK;
2322
2323	/* update the endpoint state */
2324	hs_ep->ep.maxpacket = mps;
2325
2326	/* default, set to non-periodic */
2327	hs_ep->periodic = 0;
2328
2329	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2330	case USB_ENDPOINT_XFER_ISOC:
2331		dev_err(hsotg->dev, "no current ISOC support\n");
2332		ret = -EINVAL;
2333		goto out;
2334
2335	case USB_ENDPOINT_XFER_BULK:
2336		epctrl |= S3C_DxEPCTL_EPType_Bulk;
2337		break;
2338
2339	case USB_ENDPOINT_XFER_INT:
2340		if (dir_in) {
2341			/* Allocate our TxFNum by simply using the index
2342			 * of the endpoint for the moment. We could do
2343			 * something better if the host indicates how
2344			 * many FIFOs we are expecting to use. */
2345
2346			hs_ep->periodic = 1;
2347			epctrl |= S3C_DxEPCTL_TxFNum(index);
2348		}
2349
2350		epctrl |= S3C_DxEPCTL_EPType_Intterupt;
2351		break;
2352
2353	case USB_ENDPOINT_XFER_CONTROL:
2354		epctrl |= S3C_DxEPCTL_EPType_Control;
2355		break;
2356	}
2357
2358	/* if the hardware has dedicated fifos, we must give each IN EP
2359	 * a unique tx-fifo even if it is non-periodic.
2360	 */
2361	if (dir_in && hsotg->dedicated_fifos)
2362		epctrl |= S3C_DxEPCTL_TxFNum(index);
2363
2364	/* for non control endpoints, set PID to D0 */
2365	if (index)
2366		epctrl |= S3C_DxEPCTL_SetD0PID;
2367
2368	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2369		__func__, epctrl);
2370
2371	writel(epctrl, hsotg->regs + epctrl_reg);
2372	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2373		__func__, readl(hsotg->regs + epctrl_reg));
2374
2375	/* enable the endpoint interrupt */
2376	s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2377
2378out:
2379	spin_unlock_irqrestore(&hs_ep->lock, flags);
2380	return ret;
2381}
2382
2383static int s3c_hsotg_ep_disable(struct usb_ep *ep)
2384{
2385	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2386	struct s3c_hsotg *hsotg = hs_ep->parent;
2387	int dir_in = hs_ep->dir_in;
2388	int index = hs_ep->index;
2389	unsigned long flags;
2390	u32 epctrl_reg;
2391	u32 ctrl;
2392
2393	dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2394
2395	if (ep == &hsotg->eps[0].ep) {
2396		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2397		return -EINVAL;
2398	}
2399
2400	epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
2401
2402	/* terminate all requests with shutdown */
2403	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);
2404
2405	spin_lock_irqsave(&hs_ep->lock, flags);
2406
2407	ctrl = readl(hsotg->regs + epctrl_reg);
2408	ctrl &= ~S3C_DxEPCTL_EPEna;
2409	ctrl &= ~S3C_DxEPCTL_USBActEp;
2410	ctrl |= S3C_DxEPCTL_SNAK;
2411
2412	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2413	writel(ctrl, hsotg->regs + epctrl_reg);
2414
2415	/* disable endpoint interrupts */
2416	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2417
2418	spin_unlock_irqrestore(&hs_ep->lock, flags);
2419	return 0;
2420}
2421
2422/**
2423 * on_list - check request is on the given endpoint
2424 * @ep: The endpoint to check.
2425 * @test: The request to test if it is on the endpoint.
2426*/
2427static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
2428{
2429	struct s3c_hsotg_req *req, *treq;
2430
2431	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2432		if (req == test)
2433			return true;
2434	}
2435
2436	return false;
2437}
2438
2439static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2440{
2441	struct s3c_hsotg_req *hs_req = our_req(req);
2442	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2443	struct s3c_hsotg *hs = hs_ep->parent;
2444	unsigned long flags;
2445
2446	dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2447
2448	spin_lock_irqsave(&hs_ep->lock, flags);
2449
2450	if (!on_list(hs_ep, hs_req)) {
2451		spin_unlock_irqrestore(&hs_ep->lock, flags);
2452		return -EINVAL;
2453	}
2454
2455	s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2456	spin_unlock_irqrestore(&hs_ep->lock, flags);
2457
2458	return 0;
2459}
2460
2461static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2462{
2463	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2464	struct s3c_hsotg *hs = hs_ep->parent;
2465	int index = hs_ep->index;
2466	unsigned long irqflags;
2467	u32 epreg;
2468	u32 epctl;
2469	u32 xfertype;
2470
2471	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2472
2473	spin_lock_irqsave(&hs_ep->lock, irqflags);
2474
2475	/* write both IN and OUT control registers */
2476
2477	epreg = S3C_DIEPCTL(index);
2478	epctl = readl(hs->regs + epreg);
2479
2480	if (value) {
2481		epctl |= S3C_DxEPCTL_Stall + S3C_DxEPCTL_SNAK;
2482		if (epctl & S3C_DxEPCTL_EPEna)
2483			epctl |= S3C_DxEPCTL_EPDis;
2484	} else {
2485		epctl &= ~S3C_DxEPCTL_Stall;
2486		xfertype = epctl & S3C_DxEPCTL_EPType_MASK;
2487		if (xfertype == S3C_DxEPCTL_EPType_Bulk ||
2488			xfertype == S3C_DxEPCTL_EPType_Intterupt)
2489				epctl |= S3C_DxEPCTL_SetD0PID;
2490	}
2491
2492	writel(epctl, hs->regs + epreg);
2493
2494	epreg = S3C_DOEPCTL(index);
2495	epctl = readl(hs->regs + epreg);
2496
2497	if (value)
2498		epctl |= S3C_DxEPCTL_Stall;
2499	else {
2500		epctl &= ~S3C_DxEPCTL_Stall;
2501		xfertype = epctl & S3C_DxEPCTL_EPType_MASK;
2502		if (xfertype == S3C_DxEPCTL_EPType_Bulk ||
2503			xfertype == S3C_DxEPCTL_EPType_Intterupt)
2504				epctl |= S3C_DxEPCTL_SetD0PID;
2505	}
2506
2507	writel(epctl, hs->regs + epreg);
2508
2509	spin_unlock_irqrestore(&hs_ep->lock, irqflags);
2510
2511	return 0;
2512}
2513
2514static struct usb_ep_ops s3c_hsotg_ep_ops = {
2515	.enable		= s3c_hsotg_ep_enable,
2516	.disable	= s3c_hsotg_ep_disable,
2517	.alloc_request	= s3c_hsotg_ep_alloc_request,
2518	.free_request	= s3c_hsotg_ep_free_request,
2519	.queue		= s3c_hsotg_ep_queue,
2520	.dequeue	= s3c_hsotg_ep_dequeue,
2521	.set_halt	= s3c_hsotg_ep_sethalt,
2522	/* note, don't believe we have any call for the fifo routines */
2523};
2524
2525/**
2526 * s3c_hsotg_corereset - issue softreset to the core
2527 * @hsotg: The device state
2528 *
2529 * Issue a soft reset to the core, and await the core finishing it.
2530*/
2531static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
2532{
2533	int timeout;
2534	u32 grstctl;
2535
2536	dev_dbg(hsotg->dev, "resetting core\n");
2537
2538	/* issue soft reset */
2539	writel(S3C_GRSTCTL_CSftRst, hsotg->regs + S3C_GRSTCTL);
2540
2541	timeout = 1000;
2542	do {
2543		grstctl = readl(hsotg->regs + S3C_GRSTCTL);
2544	} while ((grstctl & S3C_GRSTCTL_CSftRst) && timeout-- > 0);
2545
2546	if (grstctl & S3C_GRSTCTL_CSftRst) {
2547		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
2548		return -EINVAL;
2549	}
2550
2551	timeout = 1000;
2552
2553	while (1) {
2554		u32 grstctl = readl(hsotg->regs + S3C_GRSTCTL);
2555
2556		if (timeout-- < 0) {
2557			dev_info(hsotg->dev,
2558				 "%s: reset failed, GRSTCTL=%08x\n",
2559				 __func__, grstctl);
2560			return -ETIMEDOUT;
2561		}
2562
2563		if (!(grstctl & S3C_GRSTCTL_AHBIdle))
2564			continue;
2565
2566		break;		/* reset done */
2567	}
2568
2569	dev_dbg(hsotg->dev, "reset successful\n");
2570	return 0;
2571}
2572
2573static int s3c_hsotg_start(struct usb_gadget_driver *driver,
2574		int (*bind)(struct usb_gadget *))
2575{
2576	struct s3c_hsotg *hsotg = our_hsotg;
2577	int ret;
2578
2579	if (!hsotg) {
2580		printk(KERN_ERR "%s: called with no device\n", __func__);
2581		return -ENODEV;
2582	}
2583
2584	if (!driver) {
2585		dev_err(hsotg->dev, "%s: no driver\n", __func__);
2586		return -EINVAL;
2587	}
2588
2589	if (driver->max_speed < USB_SPEED_FULL)
2590		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
2591
2592	if (!bind || !driver->setup) {
2593		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
2594		return -EINVAL;
2595	}
2596
2597	WARN_ON(hsotg->driver);
2598
2599	driver->driver.bus = NULL;
2600	hsotg->driver = driver;
2601	hsotg->gadget.dev.driver = &driver->driver;
2602	hsotg->gadget.dev.dma_mask = hsotg->dev->dma_mask;
2603	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2604
2605	ret = device_add(&hsotg->gadget.dev);
2606	if (ret) {
2607		dev_err(hsotg->dev, "failed to register gadget device\n");
2608		goto err;
2609	}
2610
2611	ret = bind(&hsotg->gadget);
2612	if (ret) {
2613		dev_err(hsotg->dev, "failed bind %s\n", driver->driver.name);
2614
2615		hsotg->gadget.dev.driver = NULL;
2616		hsotg->driver = NULL;
2617		goto err;
2618	}
2619
2620	/* we must now enable ep0 ready for host detection and then
2621	 * set configuration. */
2622
2623	s3c_hsotg_corereset(hsotg);
2624
2625	/* set the PLL on, remove the HNP/SRP and set the PHY */
2626	writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) |
2627	       (0x5 << 10), hsotg->regs + S3C_GUSBCFG);
2628
2629	/* looks like soft-reset changes state of FIFOs */
2630	s3c_hsotg_init_fifo(hsotg);
2631
2632	__orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
2633
2634	writel(1 << 18 | S3C_DCFG_DevSpd_HS,  hsotg->regs + S3C_DCFG);
2635
2636	/* Clear any pending OTG interrupts */
2637	writel(0xffffffff, hsotg->regs + S3C_GOTGINT);
2638
2639	/* Clear any pending interrupts */
2640	writel(0xffffffff, hsotg->regs + S3C_GINTSTS);
2641
2642	writel(S3C_GINTSTS_DisconnInt | S3C_GINTSTS_SessReqInt |
2643	       S3C_GINTSTS_ConIDStsChng | S3C_GINTSTS_USBRst |
2644	       S3C_GINTSTS_EnumDone | S3C_GINTSTS_OTGInt |
2645	       S3C_GINTSTS_USBSusp | S3C_GINTSTS_WkUpInt |
2646	       S3C_GINTSTS_GOUTNakEff | S3C_GINTSTS_GINNakEff |
2647	       S3C_GINTSTS_ErlySusp,
2648	       hsotg->regs + S3C_GINTMSK);
2649
2650	if (using_dma(hsotg))
2651		writel(S3C_GAHBCFG_GlblIntrEn | S3C_GAHBCFG_DMAEn |
2652		       S3C_GAHBCFG_HBstLen_Incr4,
2653		       hsotg->regs + S3C_GAHBCFG);
2654	else
2655		writel(S3C_GAHBCFG_GlblIntrEn, hsotg->regs + S3C_GAHBCFG);
2656
2657	/* Enabling INTknTXFEmpMsk here seems to be a big mistake, we end
2658	 * up being flooded with interrupts if the host is polling the
2659	 * endpoint to try and read data. */
2660
2661	writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
2662	       S3C_DIEPMSK_INTknEPMisMsk |
2663	       S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk |
2664	       ((hsotg->dedicated_fifos) ? S3C_DIEPMSK_TxFIFOEmpty : 0),
2665	       hsotg->regs + S3C_DIEPMSK);
2666
2667	/* don't need XferCompl, we get that from RXFIFO in slave mode. In
2668	 * DMA mode we may need this. */
2669	writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
2670	       S3C_DOEPMSK_EPDisbldMsk |
2671	       (using_dma(hsotg) ? (S3C_DIEPMSK_XferComplMsk |
2672				   S3C_DIEPMSK_TimeOUTMsk) : 0),
2673	       hsotg->regs + S3C_DOEPMSK);
2674
2675	writel(0, hsotg->regs + S3C_DAINTMSK);
2676
2677	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2678		readl(hsotg->regs + S3C_DIEPCTL0),
2679		readl(hsotg->regs + S3C_DOEPCTL0));
2680
2681	/* enable in and out endpoint interrupts */
2682	s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt);
2683
2684	/* Enable the RXFIFO when in slave mode, as this is how we collect
2685	 * the data. In DMA mode, we get events from the FIFO but also
2686	 * things we cannot process, so do not use it. */
2687	if (!using_dma(hsotg))
2688		s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_RxFLvl);
2689
2690	/* Enable interrupts for EP0 in and out */
2691	s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2692	s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2693
2694	__orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
2695	udelay(10);  /* see openiboot */
2696	__bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
2697
2698	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + S3C_DCTL));
2699
2700	/* S3C_DxEPCTL_USBActEp says RO in manual, but seems to be set by
2701	   writing to the EPCTL register.. */
2702
2703	/* set to read 1 8byte packet */
2704	writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
2705	       S3C_DxEPTSIZ_XferSize(8), hsotg->regs + DOEPTSIZ0);
2706
2707	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2708	       S3C_DxEPCTL_CNAK | S3C_DxEPCTL_EPEna |
2709	       S3C_DxEPCTL_USBActEp,
2710	       hsotg->regs + S3C_DOEPCTL0);
2711
2712	/* enable, but don't activate EP0in */
2713	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2714	       S3C_DxEPCTL_USBActEp, hsotg->regs + S3C_DIEPCTL0);
2715
2716	s3c_hsotg_enqueue_setup(hsotg);
2717
2718	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2719		readl(hsotg->regs + S3C_DIEPCTL0),
2720		readl(hsotg->regs + S3C_DOEPCTL0));
2721
2722	/* clear global NAKs */
2723	writel(S3C_DCTL_CGOUTNak | S3C_DCTL_CGNPInNAK,
2724	       hsotg->regs + S3C_DCTL);
2725
2726	/* must be at-least 3ms to allow bus to see disconnect */
2727	msleep(3);
2728
2729	/* remove the soft-disconnect and let's go */
2730	__bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
2731
2732	/* report to the user, and return */
2733
2734	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
2735	return 0;
2736
2737err:
2738	hsotg->driver = NULL;
2739	hsotg->gadget.dev.driver = NULL;
2740	return ret;
2741}
2742
2743static int s3c_hsotg_stop(struct usb_gadget_driver *driver)
2744{
2745	struct s3c_hsotg *hsotg = our_hsotg;
2746	int ep;
2747
2748	if (!hsotg)
2749		return -ENODEV;
2750
2751	if (!driver || driver != hsotg->driver || !driver->unbind)
2752		return -EINVAL;
2753
2754	/* all endpoints should be shutdown */
2755	for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
2756		s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
2757
2758	call_gadget(hsotg, disconnect);
2759
2760	driver->unbind(&hsotg->gadget);
2761	hsotg->driver = NULL;
2762	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2763
2764	device_del(&hsotg->gadget.dev);
2765
2766	dev_info(hsotg->dev, "unregistered gadget driver '%s'\n",
2767		 driver->driver.name);
2768
2769	return 0;
2770}
2771
2772static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
2773{
2774	return s3c_hsotg_read_frameno(to_hsotg(gadget));
2775}
2776
2777static struct usb_gadget_ops s3c_hsotg_gadget_ops = {
2778	.get_frame	= s3c_hsotg_gadget_getframe,
2779	.start		= s3c_hsotg_start,
2780	.stop		= s3c_hsotg_stop,
2781};
2782
2783/**
2784 * s3c_hsotg_initep - initialise a single endpoint
2785 * @hsotg: The device state.
2786 * @hs_ep: The endpoint to be initialised.
2787 * @epnum: The endpoint number
2788 *
2789 * Initialise the given endpoint (as part of the probe and device state
2790 * creation) to give to the gadget driver. Setup the endpoint name, any
2791 * direction information and other state that may be required.
2792 */
2793static void __devinit s3c_hsotg_initep(struct s3c_hsotg *hsotg,
2794				       struct s3c_hsotg_ep *hs_ep,
2795				       int epnum)
2796{
2797	u32 ptxfifo;
2798	char *dir;
2799
2800	if (epnum == 0)
2801		dir = "";
2802	else if ((epnum % 2) == 0) {
2803		dir = "out";
2804	} else {
2805		dir = "in";
2806		hs_ep->dir_in = 1;
2807	}
2808
2809	hs_ep->index = epnum;
2810
2811	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
2812
2813	INIT_LIST_HEAD(&hs_ep->queue);
2814	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
2815
2816	spin_lock_init(&hs_ep->lock);
2817
2818	/* add to the list of endpoints known by the gadget driver */
2819	if (epnum)
2820		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
2821
2822	hs_ep->parent = hsotg;
2823	hs_ep->ep.name = hs_ep->name;
2824	hs_ep->ep.maxpacket = epnum ? 512 : EP0_MPS_LIMIT;
2825	hs_ep->ep.ops = &s3c_hsotg_ep_ops;
2826
2827	/* Read the FIFO size for the Periodic TX FIFO, even if we're
2828	 * an OUT endpoint, we may as well do this if in future the
2829	 * code is changed to make each endpoint's direction changeable.
2830	 */
2831
2832	ptxfifo = readl(hsotg->regs + S3C_DPTXFSIZn(epnum));
2833	hs_ep->fifo_size = S3C_DPTXFSIZn_DPTxFSize_GET(ptxfifo) * 4;
2834
2835	/* if we're using dma, we need to set the next-endpoint pointer
2836	 * to be something valid.
2837	 */
2838
2839	if (using_dma(hsotg)) {
2840		u32 next = S3C_DxEPCTL_NextEp((epnum + 1) % 15);
2841		writel(next, hsotg->regs + S3C_DIEPCTL(epnum));
2842		writel(next, hsotg->regs + S3C_DOEPCTL(epnum));
2843	}
2844}
2845
2846/**
2847 * s3c_hsotg_otgreset - reset the OtG phy block
2848 * @hsotg: The host state.
2849 *
2850 * Power up the phy, set the basic configuration and start the PHY.
2851 */
2852static void s3c_hsotg_otgreset(struct s3c_hsotg *hsotg)
2853{
2854	struct clk *xusbxti;
2855	u32 pwr, osc;
2856
2857	pwr = readl(S3C_PHYPWR);
2858	pwr &= ~0x19;
2859	writel(pwr, S3C_PHYPWR);
2860	mdelay(1);
2861
2862	osc = hsotg->plat->is_osc ? S3C_PHYCLK_EXT_OSC : 0;
2863
2864	xusbxti = clk_get(hsotg->dev, "xusbxti");
2865	if (xusbxti && !IS_ERR(xusbxti)) {
2866		switch (clk_get_rate(xusbxti)) {
2867		case 12*MHZ:
2868			osc |= S3C_PHYCLK_CLKSEL_12M;
2869			break;
2870		case 24*MHZ:
2871			osc |= S3C_PHYCLK_CLKSEL_24M;
2872			break;
2873		default:
2874		case 48*MHZ:
2875			/* default reference clock */
2876			break;
2877		}
2878		clk_put(xusbxti);
2879	}
2880
2881	writel(osc | 0x10, S3C_PHYCLK);
2882
2883	/* issue a full set of resets to the otg and core */
2884
2885	writel(S3C_RSTCON_PHY, S3C_RSTCON);
2886	udelay(20);	/* at-least 10uS */
2887	writel(0, S3C_RSTCON);
2888}
2889
2890
2891static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
2892{
2893	u32 cfg4;
2894
2895	/* unmask subset of endpoint interrupts */
2896
2897	writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
2898	       S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk,
2899	       hsotg->regs + S3C_DIEPMSK);
2900
2901	writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
2902	       S3C_DOEPMSK_EPDisbldMsk | S3C_DOEPMSK_XferComplMsk,
2903	       hsotg->regs + S3C_DOEPMSK);
2904
2905	writel(0, hsotg->regs + S3C_DAINTMSK);
2906
2907	/* Be in disconnected state until gadget is registered */
2908	__orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
2909
2910	if (0) {
2911		/* post global nak until we're ready */
2912		writel(S3C_DCTL_SGNPInNAK | S3C_DCTL_SGOUTNak,
2913		       hsotg->regs + S3C_DCTL);
2914	}
2915
2916	/* setup fifos */
2917
2918	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2919		readl(hsotg->regs + S3C_GRXFSIZ),
2920		readl(hsotg->regs + S3C_GNPTXFSIZ));
2921
2922	s3c_hsotg_init_fifo(hsotg);
2923
2924	/* set the PLL on, remove the HNP/SRP and set the PHY */
2925	writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) | (0x5 << 10),
2926	       hsotg->regs + S3C_GUSBCFG);
2927
2928	writel(using_dma(hsotg) ? S3C_GAHBCFG_DMAEn : 0x0,
2929	       hsotg->regs + S3C_GAHBCFG);
2930
2931	/* check hardware configuration */
2932
2933	cfg4 = readl(hsotg->regs + 0x50);
2934	hsotg->dedicated_fifos = (cfg4 >> 25) & 1;
2935
2936	dev_info(hsotg->dev, "%s fifos\n",
2937		 hsotg->dedicated_fifos ? "dedicated" : "shared");
2938}
2939
2940static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
2941{
2942#ifdef DEBUG
2943	struct device *dev = hsotg->dev;
2944	void __iomem *regs = hsotg->regs;
2945	u32 val;
2946	int idx;
2947
2948	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
2949		 readl(regs + S3C_DCFG), readl(regs + S3C_DCTL),
2950		 readl(regs + S3C_DIEPMSK));
2951
2952	dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
2953		 readl(regs + S3C_GAHBCFG), readl(regs + 0x44));
2954
2955	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2956		 readl(regs + S3C_GRXFSIZ), readl(regs + S3C_GNPTXFSIZ));
2957
2958	/* show periodic fifo settings */
2959
2960	for (idx = 1; idx <= 15; idx++) {
2961		val = readl(regs + S3C_DPTXFSIZn(idx));
2962		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
2963			 val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
2964			 val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
2965	}
2966
2967	for (idx = 0; idx < 15; idx++) {
2968		dev_info(dev,
2969			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
2970			 readl(regs + S3C_DIEPCTL(idx)),
2971			 readl(regs + S3C_DIEPTSIZ(idx)),
2972			 readl(regs + S3C_DIEPDMA(idx)));
2973
2974		val = readl(regs + S3C_DOEPCTL(idx));
2975		dev_info(dev,
2976			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
2977			 idx, readl(regs + S3C_DOEPCTL(idx)),
2978			 readl(regs + S3C_DOEPTSIZ(idx)),
2979			 readl(regs + S3C_DOEPDMA(idx)));
2980
2981	}
2982
2983	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
2984		 readl(regs + S3C_DVBUSDIS), readl(regs + S3C_DVBUSPULSE));
2985#endif
2986}
2987
2988
2989/**
2990 * state_show - debugfs: show overall driver and device state.
2991 * @seq: The seq file to write to.
2992 * @v: Unused parameter.
2993 *
2994 * This debugfs entry shows the overall state of the hardware and
2995 * some general information about each of the endpoints available
2996 * to the system.
2997 */
2998static int state_show(struct seq_file *seq, void *v)
2999{
3000	struct s3c_hsotg *hsotg = seq->private;
3001	void __iomem *regs = hsotg->regs;
3002	int idx;
3003
3004	seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3005		 readl(regs + S3C_DCFG),
3006		 readl(regs + S3C_DCTL),
3007		 readl(regs + S3C_DSTS));
3008
3009	seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3010		   readl(regs + S3C_DIEPMSK), readl(regs + S3C_DOEPMSK));
3011
3012	seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3013		   readl(regs + S3C_GINTMSK),
3014		   readl(regs + S3C_GINTSTS));
3015
3016	seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3017		   readl(regs + S3C_DAINTMSK),
3018		   readl(regs + S3C_DAINT));
3019
3020	seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3021		   readl(regs + S3C_GNPTXSTS),
3022		   readl(regs + S3C_GRXSTSR));
3023
3024	seq_printf(seq, "\nEndpoint status:\n");
3025
3026	for (idx = 0; idx < 15; idx++) {
3027		u32 in, out;
3028
3029		in = readl(regs + S3C_DIEPCTL(idx));
3030		out = readl(regs + S3C_DOEPCTL(idx));
3031
3032		seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
3033			   idx, in, out);
3034
3035		in = readl(regs + S3C_DIEPTSIZ(idx));
3036		out = readl(regs + S3C_DOEPTSIZ(idx));
3037
3038		seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
3039			   in, out);
3040
3041		seq_printf(seq, "\n");
3042	}
3043
3044	return 0;
3045}
3046
3047static int state_open(struct inode *inode, struct file *file)
3048{
3049	return single_open(file, state_show, inode->i_private);
3050}
3051
3052static const struct file_operations state_fops = {
3053	.owner		= THIS_MODULE,
3054	.open		= state_open,
3055	.read		= seq_read,
3056	.llseek		= seq_lseek,
3057	.release	= single_release,
3058};
3059
3060/**
3061 * fifo_show - debugfs: show the fifo information
3062 * @seq: The seq_file to write data to.
3063 * @v: Unused parameter.
3064 *
3065 * Show the FIFO information for the overall fifo and all the
3066 * periodic transmission FIFOs.
3067*/
3068static int fifo_show(struct seq_file *seq, void *v)
3069{
3070	struct s3c_hsotg *hsotg = seq->private;
3071	void __iomem *regs = hsotg->regs;
3072	u32 val;
3073	int idx;
3074
3075	seq_printf(seq, "Non-periodic FIFOs:\n");
3076	seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + S3C_GRXFSIZ));
3077
3078	val = readl(regs + S3C_GNPTXFSIZ);
3079	seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3080		   val >> S3C_GNPTXFSIZ_NPTxFDep_SHIFT,
3081		   val & S3C_GNPTXFSIZ_NPTxFStAddr_MASK);
3082
3083	seq_printf(seq, "\nPeriodic TXFIFOs:\n");
3084
3085	for (idx = 1; idx <= 15; idx++) {
3086		val = readl(regs + S3C_DPTXFSIZn(idx));
3087
3088		seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3089			   val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
3090			   val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
3091	}
3092
3093	return 0;
3094}
3095
3096static int fifo_open(struct inode *inode, struct file *file)
3097{
3098	return single_open(file, fifo_show, inode->i_private);
3099}
3100
3101static const struct file_operations fifo_fops = {
3102	.owner		= THIS_MODULE,
3103	.open		= fifo_open,
3104	.read		= seq_read,
3105	.llseek		= seq_lseek,
3106	.release	= single_release,
3107};
3108
3109
3110static const char *decode_direction(int is_in)
3111{
3112	return is_in ? "in" : "out";
3113}
3114
3115/**
3116 * ep_show - debugfs: show the state of an endpoint.
3117 * @seq: The seq_file to write data to.
3118 * @v: Unused parameter.
3119 *
3120 * This debugfs entry shows the state of the given endpoint (one is
3121 * registered for each available).
3122*/
3123static int ep_show(struct seq_file *seq, void *v)
3124{
3125	struct s3c_hsotg_ep *ep = seq->private;
3126	struct s3c_hsotg *hsotg = ep->parent;
3127	struct s3c_hsotg_req *req;
3128	void __iomem *regs = hsotg->regs;
3129	int index = ep->index;
3130	int show_limit = 15;
3131	unsigned long flags;
3132
3133	seq_printf(seq, "Endpoint index %d, named %s,  dir %s:\n",
3134		   ep->index, ep->ep.name, decode_direction(ep->dir_in));
3135
3136	/* first show the register state */
3137
3138	seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3139		   readl(regs + S3C_DIEPCTL(index)),
3140		   readl(regs + S3C_DOEPCTL(index)));
3141
3142	seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3143		   readl(regs + S3C_DIEPDMA(index)),
3144		   readl(regs + S3C_DOEPDMA(index)));
3145
3146	seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3147		   readl(regs + S3C_DIEPINT(index)),
3148		   readl(regs + S3C_DOEPINT(index)));
3149
3150	seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3151		   readl(regs + S3C_DIEPTSIZ(index)),
3152		   readl(regs + S3C_DOEPTSIZ(index)));
3153
3154	seq_printf(seq, "\n");
3155	seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
3156	seq_printf(seq, "total_data=%ld\n", ep->total_data);
3157
3158	seq_printf(seq, "request list (%p,%p):\n",
3159		   ep->queue.next, ep->queue.prev);
3160
3161	spin_lock_irqsave(&ep->lock, flags);
3162
3163	list_for_each_entry(req, &ep->queue, queue) {
3164		if (--show_limit < 0) {
3165			seq_printf(seq, "not showing more requests...\n");
3166			break;
3167		}
3168
3169		seq_printf(seq, "%c req %p: %d bytes @%p, ",
3170			   req == ep->req ? '*' : ' ',
3171			   req, req->req.length, req->req.buf);
3172		seq_printf(seq, "%d done, res %d\n",
3173			   req->req.actual, req->req.status);
3174	}
3175
3176	spin_unlock_irqrestore(&ep->lock, flags);
3177
3178	return 0;
3179}
3180
3181static int ep_open(struct inode *inode, struct file *file)
3182{
3183	return single_open(file, ep_show, inode->i_private);
3184}
3185
3186static const struct file_operations ep_fops = {
3187	.owner		= THIS_MODULE,
3188	.open		= ep_open,
3189	.read		= seq_read,
3190	.llseek		= seq_lseek,
3191	.release	= single_release,
3192};
3193
3194/**
3195 * s3c_hsotg_create_debug - create debugfs directory and files
3196 * @hsotg: The driver state
3197 *
3198 * Create the debugfs files to allow the user to get information
3199 * about the state of the system. The directory name is created
3200 * with the same name as the device itself, in case we end up
3201 * with multiple blocks in future systems.
3202*/
3203static void __devinit s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
3204{
3205	struct dentry *root;
3206	unsigned epidx;
3207
3208	root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
3209	hsotg->debug_root = root;
3210	if (IS_ERR(root)) {
3211		dev_err(hsotg->dev, "cannot create debug root\n");
3212		return;
3213	}
3214
3215	/* create general state file */
3216
3217	hsotg->debug_file = debugfs_create_file("state", 0444, root,
3218						hsotg, &state_fops);
3219
3220	if (IS_ERR(hsotg->debug_file))
3221		dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
3222
3223	hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
3224						hsotg, &fifo_fops);
3225
3226	if (IS_ERR(hsotg->debug_fifo))
3227		dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
3228
3229	/* create one file for each endpoint */
3230
3231	for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
3232		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3233
3234		ep->debugfs = debugfs_create_file(ep->name, 0444,
3235						  root, ep, &ep_fops);
3236
3237		if (IS_ERR(ep->debugfs))
3238			dev_err(hsotg->dev, "failed to create %s debug file\n",
3239				ep->name);
3240	}
3241}
3242
3243/**
3244 * s3c_hsotg_delete_debug - cleanup debugfs entries
3245 * @hsotg: The driver state
3246 *
3247 * Cleanup (remove) the debugfs files for use on module exit.
3248*/
3249static void __devexit s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
3250{
3251	unsigned epidx;
3252
3253	for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
3254		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3255		debugfs_remove(ep->debugfs);
3256	}
3257
3258	debugfs_remove(hsotg->debug_file);
3259	debugfs_remove(hsotg->debug_fifo);
3260	debugfs_remove(hsotg->debug_root);
3261}
3262
3263/**
3264 * s3c_hsotg_gate - set the hardware gate for the block
3265 * @pdev: The device we bound to
3266 * @on: On or off.
3267 *
3268 * Set the hardware gate setting into the block. If we end up on
3269 * something other than an S3C64XX, then we might need to change this
3270 * to using a platform data callback, or some other mechanism.
3271 */
3272static void s3c_hsotg_gate(struct platform_device *pdev, bool on)
3273{
3274	unsigned long flags;
3275	u32 others;
3276
3277	local_irq_save(flags);
3278
3279	others = __raw_readl(S3C64XX_OTHERS);
3280	if (on)
3281		others |= S3C64XX_OTHERS_USBMASK;
3282	else
3283		others &= ~S3C64XX_OTHERS_USBMASK;
3284	__raw_writel(others, S3C64XX_OTHERS);
3285
3286	local_irq_restore(flags);
3287}
3288
3289static struct s3c_hsotg_plat s3c_hsotg_default_pdata;
3290
3291static int __devinit s3c_hsotg_probe(struct platform_device *pdev)
3292{
3293	struct s3c_hsotg_plat *plat = pdev->dev.platform_data;
3294	struct device *dev = &pdev->dev;
3295	struct s3c_hsotg *hsotg;
3296	struct resource *res;
3297	int epnum;
3298	int ret;
3299
3300	if (!plat)
3301		plat = &s3c_hsotg_default_pdata;
3302
3303	hsotg = kzalloc(sizeof(struct s3c_hsotg) +
3304			sizeof(struct s3c_hsotg_ep) * S3C_HSOTG_EPS,
3305			GFP_KERNEL);
3306	if (!hsotg) {
3307		dev_err(dev, "cannot get memory\n");
3308		return -ENOMEM;
3309	}
3310
3311	hsotg->dev = dev;
3312	hsotg->plat = plat;
3313
3314	hsotg->clk = clk_get(&pdev->dev, "otg");
3315	if (IS_ERR(hsotg->clk)) {
3316		dev_err(dev, "cannot get otg clock\n");
3317		ret = PTR_ERR(hsotg->clk);
3318		goto err_mem;
3319	}
3320
3321	platform_set_drvdata(pdev, hsotg);
3322
3323	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3324	if (!res) {
3325		dev_err(dev, "cannot find register resource 0\n");
3326		ret = -EINVAL;
3327		goto err_clk;
3328	}
3329
3330	hsotg->regs_res = request_mem_region(res->start, resource_size(res),
3331					     dev_name(dev));
3332	if (!hsotg->regs_res) {
3333		dev_err(dev, "cannot reserve registers\n");
3334		ret = -ENOENT;
3335		goto err_clk;
3336	}
3337
3338	hsotg->regs = ioremap(res->start, resource_size(res));
3339	if (!hsotg->regs) {
3340		dev_err(dev, "cannot map registers\n");
3341		ret = -ENXIO;
3342		goto err_regs_res;
3343	}
3344
3345	ret = platform_get_irq(pdev, 0);
3346	if (ret < 0) {
3347		dev_err(dev, "cannot find IRQ\n");
3348		goto err_regs;
3349	}
3350
3351	hsotg->irq = ret;
3352
3353	ret = request_irq(ret, s3c_hsotg_irq, 0, dev_name(dev), hsotg);
3354	if (ret < 0) {
3355		dev_err(dev, "cannot claim IRQ\n");
3356		goto err_regs;
3357	}
3358
3359	dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);
3360
3361	device_initialize(&hsotg->gadget.dev);
3362
3363	dev_set_name(&hsotg->gadget.dev, "gadget");
3364
3365	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3366	hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
3367	hsotg->gadget.name = dev_name(dev);
3368
3369	hsotg->gadget.dev.parent = dev;
3370	hsotg->gadget.dev.dma_mask = dev->dma_mask;
3371
3372	/* setup endpoint information */
3373
3374	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3375	hsotg->gadget.ep0 = &hsotg->eps[0].ep;
3376
3377	/* allocate EP0 request */
3378
3379	hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
3380						     GFP_KERNEL);
3381	if (!hsotg->ctrl_req) {
3382		dev_err(dev, "failed to allocate ctrl req\n");
3383		goto err_regs;
3384	}
3385
3386	/* reset the system */
3387
3388	clk_enable(hsotg->clk);
3389
3390	s3c_hsotg_gate(pdev, true);
3391
3392	s3c_hsotg_otgreset(hsotg);
3393	s3c_hsotg_corereset(hsotg);
3394	s3c_hsotg_init(hsotg);
3395
3396	/* initialise the endpoints now the core has been initialised */
3397	for (epnum = 0; epnum < S3C_HSOTG_EPS; epnum++)
3398		s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);
3399
3400	ret = usb_add_gadget_udc(&pdev->dev, &hsotg->gadget);
3401	if (ret)
3402		goto err_add_udc;
3403
3404	s3c_hsotg_create_debug(hsotg);
3405
3406	s3c_hsotg_dump(hsotg);
3407
3408	our_hsotg = hsotg;
3409	return 0;
3410
3411err_add_udc:
3412	s3c_hsotg_gate(pdev, false);
3413	clk_disable(hsotg->clk);
3414	clk_put(hsotg->clk);
3415
3416err_regs:
3417	iounmap(hsotg->regs);
3418
3419err_regs_res:
3420	release_resource(hsotg->regs_res);
3421	kfree(hsotg->regs_res);
3422err_clk:
3423	clk_put(hsotg->clk);
3424err_mem:
3425	kfree(hsotg);
3426	return ret;
3427}
3428
3429static int __devexit s3c_hsotg_remove(struct platform_device *pdev)
3430{
3431	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
3432
3433	usb_del_gadget_udc(&hsotg->gadget);
3434
3435	s3c_hsotg_delete_debug(hsotg);
3436
3437	usb_gadget_unregister_driver(hsotg->driver);
3438
3439	free_irq(hsotg->irq, hsotg);
3440	iounmap(hsotg->regs);
3441
3442	release_resource(hsotg->regs_res);
3443	kfree(hsotg->regs_res);
3444
3445	s3c_hsotg_gate(pdev, false);
3446
3447	clk_disable(hsotg->clk);
3448	clk_put(hsotg->clk);
3449
3450	kfree(hsotg);
3451	return 0;
3452}
3453
3454#if 1
3455#define s3c_hsotg_suspend NULL
3456#define s3c_hsotg_resume NULL
3457#endif
3458
3459static struct platform_driver s3c_hsotg_driver = {
3460	.driver		= {
3461		.name	= "s3c-hsotg",
3462		.owner	= THIS_MODULE,
3463	},
3464	.probe		= s3c_hsotg_probe,
3465	.remove		= __devexit_p(s3c_hsotg_remove),
3466	.suspend	= s3c_hsotg_suspend,
3467	.resume		= s3c_hsotg_resume,
3468};
3469
3470module_platform_driver(s3c_hsotg_driver);
3471
3472MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
3473MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
3474MODULE_LICENSE("GPL");
3475MODULE_ALIAS("platform:s3c-hsotg");
3476