1/*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23#include <linux/pci.h>
24#include <linux/irq.h>
25#include <linux/log2.h>
26#include <linux/module.h>
27#include <linux/moduleparam.h>
28#include <linux/slab.h>
29
30#include "xhci.h"
31
32#define DRIVER_AUTHOR "Sarah Sharp"
33#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
34
35/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
36static int link_quirk;
37module_param(link_quirk, int, S_IRUGO | S_IWUSR);
38MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
39
40/* TODO: copied from ehci-hcd.c - can this be refactored? */
41/*
42 * handshake - spin reading hc until handshake completes or fails
43 * @ptr: address of hc register to be read
44 * @mask: bits to look at in result of read
45 * @done: value of those bits when handshake succeeds
46 * @usec: timeout in microseconds
47 *
48 * Returns negative errno, or zero on success
49 *
50 * Success happens when the "mask" bits have the specified value (hardware
51 * handshake done).  There are two failure modes:  "usec" have passed (major
52 * hardware flakeout), or the register reads as all-ones (hardware removed).
53 */
54static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
55		      u32 mask, u32 done, int usec)
56{
57	u32	result;
58
59	do {
60		result = xhci_readl(xhci, ptr);
61		if (result == ~(u32)0)		/* card removed */
62			return -ENODEV;
63		result &= mask;
64		if (result == done)
65			return 0;
66		udelay(1);
67		usec--;
68	} while (usec > 0);
69	return -ETIMEDOUT;
70}
71
72/*
73 * Disable interrupts and begin the xHCI halting process.
74 */
75void xhci_quiesce(struct xhci_hcd *xhci)
76{
77	u32 halted;
78	u32 cmd;
79	u32 mask;
80
81	mask = ~(XHCI_IRQS);
82	halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
83	if (!halted)
84		mask &= ~CMD_RUN;
85
86	cmd = xhci_readl(xhci, &xhci->op_regs->command);
87	cmd &= mask;
88	xhci_writel(xhci, cmd, &xhci->op_regs->command);
89}
90
91/*
92 * Force HC into halt state.
93 *
94 * Disable any IRQs and clear the run/stop bit.
95 * HC will complete any current and actively pipelined transactions, and
96 * should halt within 16 ms of the run/stop bit being cleared.
97 * Read HC Halted bit in the status register to see when the HC is finished.
98 */
99int xhci_halt(struct xhci_hcd *xhci)
100{
101	int ret;
102	xhci_dbg(xhci, "// Halt the HC\n");
103	xhci_quiesce(xhci);
104
105	ret = handshake(xhci, &xhci->op_regs->status,
106			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
107	if (!ret)
108		xhci->xhc_state |= XHCI_STATE_HALTED;
109	return ret;
110}
111
112/*
113 * Set the run bit and wait for the host to be running.
114 */
115static int xhci_start(struct xhci_hcd *xhci)
116{
117	u32 temp;
118	int ret;
119
120	temp = xhci_readl(xhci, &xhci->op_regs->command);
121	temp |= (CMD_RUN);
122	xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
123			temp);
124	xhci_writel(xhci, temp, &xhci->op_regs->command);
125
126	/*
127	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
128	 * running.
129	 */
130	ret = handshake(xhci, &xhci->op_regs->status,
131			STS_HALT, 0, XHCI_MAX_HALT_USEC);
132	if (ret == -ETIMEDOUT)
133		xhci_err(xhci, "Host took too long to start, "
134				"waited %u microseconds.\n",
135				XHCI_MAX_HALT_USEC);
136	if (!ret)
137		xhci->xhc_state &= ~XHCI_STATE_HALTED;
138	return ret;
139}
140
141/*
142 * Reset a halted HC.
143 *
144 * This resets pipelines, timers, counters, state machines, etc.
145 * Transactions will be terminated immediately, and operational registers
146 * will be set to their defaults.
147 */
148int xhci_reset(struct xhci_hcd *xhci)
149{
150	u32 command;
151	u32 state;
152	int ret;
153
154	state = xhci_readl(xhci, &xhci->op_regs->status);
155	if ((state & STS_HALT) == 0) {
156		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
157		return 0;
158	}
159
160	xhci_dbg(xhci, "// Reset the HC\n");
161	command = xhci_readl(xhci, &xhci->op_regs->command);
162	command |= CMD_RESET;
163	xhci_writel(xhci, command, &xhci->op_regs->command);
164
165	ret = handshake(xhci, &xhci->op_regs->command,
166			CMD_RESET, 0, 250 * 1000);
167	if (ret)
168		return ret;
169
170	xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
171	/*
172	 * xHCI cannot write to any doorbells or operational registers other
173	 * than status until the "Controller Not Ready" flag is cleared.
174	 */
175	return handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000);
176}
177
178#ifdef CONFIG_PCI
179static int xhci_free_msi(struct xhci_hcd *xhci)
180{
181	int i;
182
183	if (!xhci->msix_entries)
184		return -EINVAL;
185
186	for (i = 0; i < xhci->msix_count; i++)
187		if (xhci->msix_entries[i].vector)
188			free_irq(xhci->msix_entries[i].vector,
189					xhci_to_hcd(xhci));
190	return 0;
191}
192
193/*
194 * Set up MSI
195 */
196static int xhci_setup_msi(struct xhci_hcd *xhci)
197{
198	int ret;
199	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
200
201	ret = pci_enable_msi(pdev);
202	if (ret) {
203		xhci_dbg(xhci, "failed to allocate MSI entry\n");
204		return ret;
205	}
206
207	ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
208				0, "xhci_hcd", xhci_to_hcd(xhci));
209	if (ret) {
210		xhci_dbg(xhci, "disable MSI interrupt\n");
211		pci_disable_msi(pdev);
212	}
213
214	return ret;
215}
216
217/*
218 * Free IRQs
219 * free all IRQs request
220 */
221static void xhci_free_irq(struct xhci_hcd *xhci)
222{
223	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
224	int ret;
225
226	/* return if using legacy interrupt */
227	if (xhci_to_hcd(xhci)->irq >= 0)
228		return;
229
230	ret = xhci_free_msi(xhci);
231	if (!ret)
232		return;
233	if (pdev->irq >= 0)
234		free_irq(pdev->irq, xhci_to_hcd(xhci));
235
236	return;
237}
238
239/*
240 * Set up MSI-X
241 */
242static int xhci_setup_msix(struct xhci_hcd *xhci)
243{
244	int i, ret = 0;
245	struct usb_hcd *hcd = xhci_to_hcd(xhci);
246	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
247
248	/*
249	 * calculate number of msi-x vectors supported.
250	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
251	 *   with max number of interrupters based on the xhci HCSPARAMS1.
252	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
253	 *   Add additional 1 vector to ensure always available interrupt.
254	 */
255	xhci->msix_count = min(num_online_cpus() + 1,
256				HCS_MAX_INTRS(xhci->hcs_params1));
257
258	xhci->msix_entries =
259		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
260				GFP_KERNEL);
261	if (!xhci->msix_entries) {
262		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
263		return -ENOMEM;
264	}
265
266	for (i = 0; i < xhci->msix_count; i++) {
267		xhci->msix_entries[i].entry = i;
268		xhci->msix_entries[i].vector = 0;
269	}
270
271	ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
272	if (ret) {
273		xhci_dbg(xhci, "Failed to enable MSI-X\n");
274		goto free_entries;
275	}
276
277	for (i = 0; i < xhci->msix_count; i++) {
278		ret = request_irq(xhci->msix_entries[i].vector,
279				(irq_handler_t)xhci_msi_irq,
280				0, "xhci_hcd", xhci_to_hcd(xhci));
281		if (ret)
282			goto disable_msix;
283	}
284
285	hcd->msix_enabled = 1;
286	return ret;
287
288disable_msix:
289	xhci_dbg(xhci, "disable MSI-X interrupt\n");
290	xhci_free_irq(xhci);
291	pci_disable_msix(pdev);
292free_entries:
293	kfree(xhci->msix_entries);
294	xhci->msix_entries = NULL;
295	return ret;
296}
297
298/* Free any IRQs and disable MSI-X */
299static void xhci_cleanup_msix(struct xhci_hcd *xhci)
300{
301	struct usb_hcd *hcd = xhci_to_hcd(xhci);
302	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
303
304	xhci_free_irq(xhci);
305
306	if (xhci->msix_entries) {
307		pci_disable_msix(pdev);
308		kfree(xhci->msix_entries);
309		xhci->msix_entries = NULL;
310	} else {
311		pci_disable_msi(pdev);
312	}
313
314	hcd->msix_enabled = 0;
315	return;
316}
317
318static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
319{
320	int i;
321
322	if (xhci->msix_entries) {
323		for (i = 0; i < xhci->msix_count; i++)
324			synchronize_irq(xhci->msix_entries[i].vector);
325	}
326}
327
328static int xhci_try_enable_msi(struct usb_hcd *hcd)
329{
330	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
331	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
332	int ret;
333
334	/*
335	 * Some Fresco Logic host controllers advertise MSI, but fail to
336	 * generate interrupts.  Don't even try to enable MSI.
337	 */
338	if (xhci->quirks & XHCI_BROKEN_MSI)
339		return 0;
340
341	/* unregister the legacy interrupt */
342	if (hcd->irq)
343		free_irq(hcd->irq, hcd);
344	hcd->irq = -1;
345
346	ret = xhci_setup_msix(xhci);
347	if (ret)
348		/* fall back to msi*/
349		ret = xhci_setup_msi(xhci);
350
351	if (!ret)
352		/* hcd->irq is -1, we have MSI */
353		return 0;
354
355	if (!pdev->irq) {
356		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
357		return -EINVAL;
358	}
359
360	/* fall back to legacy interrupt*/
361	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
362			hcd->irq_descr, hcd);
363	if (ret) {
364		xhci_err(xhci, "request interrupt %d failed\n",
365				pdev->irq);
366		return ret;
367	}
368	hcd->irq = pdev->irq;
369	return 0;
370}
371
372#else
373
374static int xhci_try_enable_msi(struct usb_hcd *hcd)
375{
376	return 0;
377}
378
379static void xhci_cleanup_msix(struct xhci_hcd *xhci)
380{
381}
382
383static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
384{
385}
386
387#endif
388
389/*
390 * Initialize memory for HCD and xHC (one-time init).
391 *
392 * Program the PAGESIZE register, initialize the device context array, create
393 * device contexts (?), set up a command ring segment (or two?), create event
394 * ring (one for now).
395 */
396int xhci_init(struct usb_hcd *hcd)
397{
398	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
399	int retval = 0;
400
401	xhci_dbg(xhci, "xhci_init\n");
402	spin_lock_init(&xhci->lock);
403	if (xhci->hci_version == 0x95 && link_quirk) {
404		xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
405		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
406	} else {
407		xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
408	}
409	retval = xhci_mem_init(xhci, GFP_KERNEL);
410	xhci_dbg(xhci, "Finished xhci_init\n");
411
412	return retval;
413}
414
415/*-------------------------------------------------------------------------*/
416
417
418#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
419static void xhci_event_ring_work(unsigned long arg)
420{
421	unsigned long flags;
422	int temp;
423	u64 temp_64;
424	struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
425	int i, j;
426
427	xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
428
429	spin_lock_irqsave(&xhci->lock, flags);
430	temp = xhci_readl(xhci, &xhci->op_regs->status);
431	xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
432	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
433			(xhci->xhc_state & XHCI_STATE_HALTED)) {
434		xhci_dbg(xhci, "HW died, polling stopped.\n");
435		spin_unlock_irqrestore(&xhci->lock, flags);
436		return;
437	}
438
439	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
440	xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
441	xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
442	xhci->error_bitmask = 0;
443	xhci_dbg(xhci, "Event ring:\n");
444	xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
445	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
446	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
447	temp_64 &= ~ERST_PTR_MASK;
448	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
449	xhci_dbg(xhci, "Command ring:\n");
450	xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
451	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
452	xhci_dbg_cmd_ptrs(xhci);
453	for (i = 0; i < MAX_HC_SLOTS; ++i) {
454		if (!xhci->devs[i])
455			continue;
456		for (j = 0; j < 31; ++j) {
457			xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
458		}
459	}
460	spin_unlock_irqrestore(&xhci->lock, flags);
461
462	if (!xhci->zombie)
463		mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
464	else
465		xhci_dbg(xhci, "Quit polling the event ring.\n");
466}
467#endif
468
469static int xhci_run_finished(struct xhci_hcd *xhci)
470{
471	if (xhci_start(xhci)) {
472		xhci_halt(xhci);
473		return -ENODEV;
474	}
475	xhci->shared_hcd->state = HC_STATE_RUNNING;
476
477	if (xhci->quirks & XHCI_NEC_HOST)
478		xhci_ring_cmd_db(xhci);
479
480	xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
481	return 0;
482}
483
484/*
485 * Start the HC after it was halted.
486 *
487 * This function is called by the USB core when the HC driver is added.
488 * Its opposite is xhci_stop().
489 *
490 * xhci_init() must be called once before this function can be called.
491 * Reset the HC, enable device slot contexts, program DCBAAP, and
492 * set command ring pointer and event ring pointer.
493 *
494 * Setup MSI-X vectors and enable interrupts.
495 */
496int xhci_run(struct usb_hcd *hcd)
497{
498	u32 temp;
499	u64 temp_64;
500	int ret;
501	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
502
503	/* Start the xHCI host controller running only after the USB 2.0 roothub
504	 * is setup.
505	 */
506
507	hcd->uses_new_polling = 1;
508	if (!usb_hcd_is_primary_hcd(hcd))
509		return xhci_run_finished(xhci);
510
511	xhci_dbg(xhci, "xhci_run\n");
512
513	ret = xhci_try_enable_msi(hcd);
514	if (ret)
515		return ret;
516
517#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
518	init_timer(&xhci->event_ring_timer);
519	xhci->event_ring_timer.data = (unsigned long) xhci;
520	xhci->event_ring_timer.function = xhci_event_ring_work;
521	/* Poll the event ring */
522	xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
523	xhci->zombie = 0;
524	xhci_dbg(xhci, "Setting event ring polling timer\n");
525	add_timer(&xhci->event_ring_timer);
526#endif
527
528	xhci_dbg(xhci, "Command ring memory map follows:\n");
529	xhci_debug_ring(xhci, xhci->cmd_ring);
530	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
531	xhci_dbg_cmd_ptrs(xhci);
532
533	xhci_dbg(xhci, "ERST memory map follows:\n");
534	xhci_dbg_erst(xhci, &xhci->erst);
535	xhci_dbg(xhci, "Event ring:\n");
536	xhci_debug_ring(xhci, xhci->event_ring);
537	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
538	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
539	temp_64 &= ~ERST_PTR_MASK;
540	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
541
542	xhci_dbg(xhci, "// Set the interrupt modulation register\n");
543	temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
544	temp &= ~ER_IRQ_INTERVAL_MASK;
545	temp |= (u32) 160;
546	xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
547
548	/* Set the HCD state before we enable the irqs */
549	temp = xhci_readl(xhci, &xhci->op_regs->command);
550	temp |= (CMD_EIE);
551	xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
552			temp);
553	xhci_writel(xhci, temp, &xhci->op_regs->command);
554
555	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
556	xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
557			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
558	xhci_writel(xhci, ER_IRQ_ENABLE(temp),
559			&xhci->ir_set->irq_pending);
560	xhci_print_ir_set(xhci, 0);
561
562	if (xhci->quirks & XHCI_NEC_HOST)
563		xhci_queue_vendor_command(xhci, 0, 0, 0,
564				TRB_TYPE(TRB_NEC_GET_FW));
565
566	xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
567	return 0;
568}
569
570static void xhci_only_stop_hcd(struct usb_hcd *hcd)
571{
572	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
573
574	spin_lock_irq(&xhci->lock);
575	xhci_halt(xhci);
576
577	/* The shared_hcd is going to be deallocated shortly (the USB core only
578	 * calls this function when allocation fails in usb_add_hcd(), or
579	 * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
580	 */
581	xhci->shared_hcd = NULL;
582	spin_unlock_irq(&xhci->lock);
583}
584
585/*
586 * Stop xHCI driver.
587 *
588 * This function is called by the USB core when the HC driver is removed.
589 * Its opposite is xhci_run().
590 *
591 * Disable device contexts, disable IRQs, and quiesce the HC.
592 * Reset the HC, finish any completed transactions, and cleanup memory.
593 */
594void xhci_stop(struct usb_hcd *hcd)
595{
596	u32 temp;
597	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
598
599	if (!usb_hcd_is_primary_hcd(hcd)) {
600		xhci_only_stop_hcd(xhci->shared_hcd);
601		return;
602	}
603
604	spin_lock_irq(&xhci->lock);
605	/* Make sure the xHC is halted for a USB3 roothub
606	 * (xhci_stop() could be called as part of failed init).
607	 */
608	xhci_halt(xhci);
609	xhci_reset(xhci);
610	spin_unlock_irq(&xhci->lock);
611
612	xhci_cleanup_msix(xhci);
613
614#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
615	/* Tell the event ring poll function not to reschedule */
616	xhci->zombie = 1;
617	del_timer_sync(&xhci->event_ring_timer);
618#endif
619
620	if (xhci->quirks & XHCI_AMD_PLL_FIX)
621		usb_amd_dev_put();
622
623	xhci_dbg(xhci, "// Disabling event ring interrupts\n");
624	temp = xhci_readl(xhci, &xhci->op_regs->status);
625	xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
626	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
627	xhci_writel(xhci, ER_IRQ_DISABLE(temp),
628			&xhci->ir_set->irq_pending);
629	xhci_print_ir_set(xhci, 0);
630
631	xhci_dbg(xhci, "cleaning up memory\n");
632	xhci_mem_cleanup(xhci);
633	xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
634		    xhci_readl(xhci, &xhci->op_regs->status));
635}
636
637/*
638 * Shutdown HC (not bus-specific)
639 *
640 * This is called when the machine is rebooting or halting.  We assume that the
641 * machine will be powered off, and the HC's internal state will be reset.
642 * Don't bother to free memory.
643 *
644 * This will only ever be called with the main usb_hcd (the USB3 roothub).
645 */
646void xhci_shutdown(struct usb_hcd *hcd)
647{
648	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
649
650	spin_lock_irq(&xhci->lock);
651	xhci_halt(xhci);
652	spin_unlock_irq(&xhci->lock);
653
654	xhci_cleanup_msix(xhci);
655
656	xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
657		    xhci_readl(xhci, &xhci->op_regs->status));
658}
659
660#ifdef CONFIG_PM
661static void xhci_save_registers(struct xhci_hcd *xhci)
662{
663	xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
664	xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
665	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
666	xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
667	xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
668	xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
669	xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
670	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
671	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
672}
673
674static void xhci_restore_registers(struct xhci_hcd *xhci)
675{
676	xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
677	xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
678	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
679	xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
680	xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
681	xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
682	xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
683	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
684}
685
686static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
687{
688	u64	val_64;
689
690	/* step 2: initialize command ring buffer */
691	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
692	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
693		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
694				      xhci->cmd_ring->dequeue) &
695		 (u64) ~CMD_RING_RSVD_BITS) |
696		xhci->cmd_ring->cycle_state;
697	xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
698			(long unsigned long) val_64);
699	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
700}
701
702/*
703 * The whole command ring must be cleared to zero when we suspend the host.
704 *
705 * The host doesn't save the command ring pointer in the suspend well, so we
706 * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
707 * aligned, because of the reserved bits in the command ring dequeue pointer
708 * register.  Therefore, we can't just set the dequeue pointer back in the
709 * middle of the ring (TRBs are 16-byte aligned).
710 */
711static void xhci_clear_command_ring(struct xhci_hcd *xhci)
712{
713	struct xhci_ring *ring;
714	struct xhci_segment *seg;
715
716	ring = xhci->cmd_ring;
717	seg = ring->deq_seg;
718	do {
719		memset(seg->trbs, 0,
720			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
721		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
722			cpu_to_le32(~TRB_CYCLE);
723		seg = seg->next;
724	} while (seg != ring->deq_seg);
725
726	/* Reset the software enqueue and dequeue pointers */
727	ring->deq_seg = ring->first_seg;
728	ring->dequeue = ring->first_seg->trbs;
729	ring->enq_seg = ring->deq_seg;
730	ring->enqueue = ring->dequeue;
731
732	/*
733	 * Ring is now zeroed, so the HW should look for change of ownership
734	 * when the cycle bit is set to 1.
735	 */
736	ring->cycle_state = 1;
737
738	/*
739	 * Reset the hardware dequeue pointer.
740	 * Yes, this will need to be re-written after resume, but we're paranoid
741	 * and want to make sure the hardware doesn't access bogus memory
742	 * because, say, the BIOS or an SMI started the host without changing
743	 * the command ring pointers.
744	 */
745	xhci_set_cmd_ring_deq(xhci);
746}
747
748/*
749 * Stop HC (not bus-specific)
750 *
751 * This is called when the machine transition into S3/S4 mode.
752 *
753 */
754int xhci_suspend(struct xhci_hcd *xhci)
755{
756	int			rc = 0;
757	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
758	u32			command;
759
760	spin_lock_irq(&xhci->lock);
761	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
762	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
763	/* step 1: stop endpoint */
764	/* skipped assuming that port suspend has done */
765
766	/* step 2: clear Run/Stop bit */
767	command = xhci_readl(xhci, &xhci->op_regs->command);
768	command &= ~CMD_RUN;
769	xhci_writel(xhci, command, &xhci->op_regs->command);
770	if (handshake(xhci, &xhci->op_regs->status,
771		      STS_HALT, STS_HALT, 100*100)) {
772		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
773		spin_unlock_irq(&xhci->lock);
774		return -ETIMEDOUT;
775	}
776	xhci_clear_command_ring(xhci);
777
778	/* step 3: save registers */
779	xhci_save_registers(xhci);
780
781	/* step 4: set CSS flag */
782	command = xhci_readl(xhci, &xhci->op_regs->command);
783	command |= CMD_CSS;
784	xhci_writel(xhci, command, &xhci->op_regs->command);
785	if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10*100)) {
786		xhci_warn(xhci, "WARN: xHC CMD_CSS timeout\n");
787		spin_unlock_irq(&xhci->lock);
788		return -ETIMEDOUT;
789	}
790	spin_unlock_irq(&xhci->lock);
791
792	/* step 5: remove core well power */
793	/* synchronize irq when using MSI-X */
794	xhci_msix_sync_irqs(xhci);
795
796	return rc;
797}
798
799/*
800 * start xHC (not bus-specific)
801 *
802 * This is called when the machine transition from S3/S4 mode.
803 *
804 */
805int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
806{
807	u32			command, temp = 0;
808	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
809	struct usb_hcd		*secondary_hcd;
810	int			retval = 0;
811
812	/* Wait a bit if either of the roothubs need to settle from the
813	 * transition into bus suspend.
814	 */
815	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
816			time_before(jiffies,
817				xhci->bus_state[1].next_statechange))
818		msleep(100);
819
820	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
821	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
822
823	spin_lock_irq(&xhci->lock);
824	if (xhci->quirks & XHCI_RESET_ON_RESUME)
825		hibernated = true;
826
827	if (!hibernated) {
828		/* step 1: restore register */
829		xhci_restore_registers(xhci);
830		/* step 2: initialize command ring buffer */
831		xhci_set_cmd_ring_deq(xhci);
832		/* step 3: restore state and start state*/
833		/* step 3: set CRS flag */
834		command = xhci_readl(xhci, &xhci->op_regs->command);
835		command |= CMD_CRS;
836		xhci_writel(xhci, command, &xhci->op_regs->command);
837		if (handshake(xhci, &xhci->op_regs->status,
838			      STS_RESTORE, 0, 10*100)) {
839			xhci_dbg(xhci, "WARN: xHC CMD_CSS timeout\n");
840			spin_unlock_irq(&xhci->lock);
841			return -ETIMEDOUT;
842		}
843		temp = xhci_readl(xhci, &xhci->op_regs->status);
844	}
845
846	/* If restore operation fails, re-initialize the HC during resume */
847	if ((temp & STS_SRE) || hibernated) {
848		/* Let the USB core know _both_ roothubs lost power. */
849		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
850		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
851
852		xhci_dbg(xhci, "Stop HCD\n");
853		xhci_halt(xhci);
854		xhci_reset(xhci);
855		spin_unlock_irq(&xhci->lock);
856		xhci_cleanup_msix(xhci);
857
858#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
859		/* Tell the event ring poll function not to reschedule */
860		xhci->zombie = 1;
861		del_timer_sync(&xhci->event_ring_timer);
862#endif
863
864		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
865		temp = xhci_readl(xhci, &xhci->op_regs->status);
866		xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
867		temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
868		xhci_writel(xhci, ER_IRQ_DISABLE(temp),
869				&xhci->ir_set->irq_pending);
870		xhci_print_ir_set(xhci, 0);
871
872		xhci_dbg(xhci, "cleaning up memory\n");
873		xhci_mem_cleanup(xhci);
874		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
875			    xhci_readl(xhci, &xhci->op_regs->status));
876
877		/* USB core calls the PCI reinit and start functions twice:
878		 * first with the primary HCD, and then with the secondary HCD.
879		 * If we don't do the same, the host will never be started.
880		 */
881		if (!usb_hcd_is_primary_hcd(hcd))
882			secondary_hcd = hcd;
883		else
884			secondary_hcd = xhci->shared_hcd;
885
886		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
887		retval = xhci_init(hcd->primary_hcd);
888		if (retval)
889			return retval;
890		xhci_dbg(xhci, "Start the primary HCD\n");
891		retval = xhci_run(hcd->primary_hcd);
892		if (!retval) {
893			xhci_dbg(xhci, "Start the secondary HCD\n");
894			retval = xhci_run(secondary_hcd);
895		}
896		hcd->state = HC_STATE_SUSPENDED;
897		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
898		goto done;
899	}
900
901	/* step 4: set Run/Stop bit */
902	command = xhci_readl(xhci, &xhci->op_regs->command);
903	command |= CMD_RUN;
904	xhci_writel(xhci, command, &xhci->op_regs->command);
905	handshake(xhci, &xhci->op_regs->status, STS_HALT,
906		  0, 250 * 1000);
907
908	/* step 5: walk topology and initialize portsc,
909	 * portpmsc and portli
910	 */
911	/* this is done in bus_resume */
912
913	/* step 6: restart each of the previously
914	 * Running endpoints by ringing their doorbells
915	 */
916
917	spin_unlock_irq(&xhci->lock);
918
919 done:
920	if (retval == 0) {
921		usb_hcd_resume_root_hub(hcd);
922		usb_hcd_resume_root_hub(xhci->shared_hcd);
923	}
924	return retval;
925}
926#endif	/* CONFIG_PM */
927
928/*-------------------------------------------------------------------------*/
929
930/**
931 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
932 * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
933 * value to right shift 1 for the bitmask.
934 *
935 * Index  = (epnum * 2) + direction - 1,
936 * where direction = 0 for OUT, 1 for IN.
937 * For control endpoints, the IN index is used (OUT index is unused), so
938 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
939 */
940unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
941{
942	unsigned int index;
943	if (usb_endpoint_xfer_control(desc))
944		index = (unsigned int) (usb_endpoint_num(desc)*2);
945	else
946		index = (unsigned int) (usb_endpoint_num(desc)*2) +
947			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
948	return index;
949}
950
951/* Find the flag for this endpoint (for use in the control context).  Use the
952 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
953 * bit 1, etc.
954 */
955unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
956{
957	return 1 << (xhci_get_endpoint_index(desc) + 1);
958}
959
960/* Find the flag for this endpoint (for use in the control context).  Use the
961 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
962 * bit 1, etc.
963 */
964unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
965{
966	return 1 << (ep_index + 1);
967}
968
969/* Compute the last valid endpoint context index.  Basically, this is the
970 * endpoint index plus one.  For slot contexts with more than valid endpoint,
971 * we find the most significant bit set in the added contexts flags.
972 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
973 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
974 */
975unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
976{
977	return fls(added_ctxs) - 1;
978}
979
980/* Returns 1 if the arguments are OK;
981 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
982 */
983static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
984		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
985		const char *func) {
986	struct xhci_hcd	*xhci;
987	struct xhci_virt_device	*virt_dev;
988
989	if (!hcd || (check_ep && !ep) || !udev) {
990		printk(KERN_DEBUG "xHCI %s called with invalid args\n",
991				func);
992		return -EINVAL;
993	}
994	if (!udev->parent) {
995		printk(KERN_DEBUG "xHCI %s called for root hub\n",
996				func);
997		return 0;
998	}
999
1000	xhci = hcd_to_xhci(hcd);
1001	if (xhci->xhc_state & XHCI_STATE_HALTED)
1002		return -ENODEV;
1003
1004	if (check_virt_dev) {
1005		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1006			printk(KERN_DEBUG "xHCI %s called with unaddressed "
1007						"device\n", func);
1008			return -EINVAL;
1009		}
1010
1011		virt_dev = xhci->devs[udev->slot_id];
1012		if (virt_dev->udev != udev) {
1013			printk(KERN_DEBUG "xHCI %s called with udev and "
1014					  "virt_dev does not match\n", func);
1015			return -EINVAL;
1016		}
1017	}
1018
1019	return 1;
1020}
1021
1022static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1023		struct usb_device *udev, struct xhci_command *command,
1024		bool ctx_change, bool must_succeed);
1025
1026/*
1027 * Full speed devices may have a max packet size greater than 8 bytes, but the
1028 * USB core doesn't know that until it reads the first 8 bytes of the
1029 * descriptor.  If the usb_device's max packet size changes after that point,
1030 * we need to issue an evaluate context command and wait on it.
1031 */
1032static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1033		unsigned int ep_index, struct urb *urb)
1034{
1035	struct xhci_container_ctx *in_ctx;
1036	struct xhci_container_ctx *out_ctx;
1037	struct xhci_input_control_ctx *ctrl_ctx;
1038	struct xhci_ep_ctx *ep_ctx;
1039	int max_packet_size;
1040	int hw_max_packet_size;
1041	int ret = 0;
1042
1043	out_ctx = xhci->devs[slot_id]->out_ctx;
1044	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1045	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1046	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1047	if (hw_max_packet_size != max_packet_size) {
1048		xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1049		xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1050				max_packet_size);
1051		xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1052				hw_max_packet_size);
1053		xhci_dbg(xhci, "Issuing evaluate context command.\n");
1054
1055		/* Set up the modified control endpoint 0 */
1056		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1057				xhci->devs[slot_id]->out_ctx, ep_index);
1058		in_ctx = xhci->devs[slot_id]->in_ctx;
1059		ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1060		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1061		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1062
1063		/* Set up the input context flags for the command */
1064		/* FIXME: This won't work if a non-default control endpoint
1065		 * changes max packet sizes.
1066		 */
1067		ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1068		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1069		ctrl_ctx->drop_flags = 0;
1070
1071		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1072		xhci_dbg_ctx(xhci, in_ctx, ep_index);
1073		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1074		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1075
1076		ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1077				true, false);
1078
1079		/* Clean up the input context for later use by bandwidth
1080		 * functions.
1081		 */
1082		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1083	}
1084	return ret;
1085}
1086
1087/*
1088 * non-error returns are a promise to giveback() the urb later
1089 * we drop ownership so next owner (or urb unlink) can get it
1090 */
1091int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1092{
1093	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1094	struct xhci_td *buffer;
1095	unsigned long flags;
1096	int ret = 0;
1097	unsigned int slot_id, ep_index;
1098	struct urb_priv	*urb_priv;
1099	int size, i;
1100
1101	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1102					true, true, __func__) <= 0)
1103		return -EINVAL;
1104
1105	slot_id = urb->dev->slot_id;
1106	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1107
1108	if (!HCD_HW_ACCESSIBLE(hcd)) {
1109		if (!in_interrupt())
1110			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1111		ret = -ESHUTDOWN;
1112		goto exit;
1113	}
1114
1115	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1116		size = urb->number_of_packets;
1117	else
1118		size = 1;
1119
1120	urb_priv = kzalloc(sizeof(struct urb_priv) +
1121				  size * sizeof(struct xhci_td *), mem_flags);
1122	if (!urb_priv)
1123		return -ENOMEM;
1124
1125	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1126	if (!buffer) {
1127		kfree(urb_priv);
1128		return -ENOMEM;
1129	}
1130
1131	for (i = 0; i < size; i++) {
1132		urb_priv->td[i] = buffer;
1133		buffer++;
1134	}
1135
1136	urb_priv->length = size;
1137	urb_priv->td_cnt = 0;
1138	urb->hcpriv = urb_priv;
1139
1140	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1141		/* Check to see if the max packet size for the default control
1142		 * endpoint changed during FS device enumeration
1143		 */
1144		if (urb->dev->speed == USB_SPEED_FULL) {
1145			ret = xhci_check_maxpacket(xhci, slot_id,
1146					ep_index, urb);
1147			if (ret < 0) {
1148				xhci_urb_free_priv(xhci, urb_priv);
1149				urb->hcpriv = NULL;
1150				return ret;
1151			}
1152		}
1153
1154		/* We have a spinlock and interrupts disabled, so we must pass
1155		 * atomic context to this function, which may allocate memory.
1156		 */
1157		spin_lock_irqsave(&xhci->lock, flags);
1158		if (xhci->xhc_state & XHCI_STATE_DYING)
1159			goto dying;
1160		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1161				slot_id, ep_index);
1162		if (ret)
1163			goto free_priv;
1164		spin_unlock_irqrestore(&xhci->lock, flags);
1165	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1166		spin_lock_irqsave(&xhci->lock, flags);
1167		if (xhci->xhc_state & XHCI_STATE_DYING)
1168			goto dying;
1169		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1170				EP_GETTING_STREAMS) {
1171			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1172					"is transitioning to using streams.\n");
1173			ret = -EINVAL;
1174		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1175				EP_GETTING_NO_STREAMS) {
1176			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1177					"is transitioning to "
1178					"not having streams.\n");
1179			ret = -EINVAL;
1180		} else {
1181			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1182					slot_id, ep_index);
1183		}
1184		if (ret)
1185			goto free_priv;
1186		spin_unlock_irqrestore(&xhci->lock, flags);
1187	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1188		spin_lock_irqsave(&xhci->lock, flags);
1189		if (xhci->xhc_state & XHCI_STATE_DYING)
1190			goto dying;
1191		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1192				slot_id, ep_index);
1193		if (ret)
1194			goto free_priv;
1195		spin_unlock_irqrestore(&xhci->lock, flags);
1196	} else {
1197		spin_lock_irqsave(&xhci->lock, flags);
1198		if (xhci->xhc_state & XHCI_STATE_DYING)
1199			goto dying;
1200		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1201				slot_id, ep_index);
1202		if (ret)
1203			goto free_priv;
1204		spin_unlock_irqrestore(&xhci->lock, flags);
1205	}
1206exit:
1207	return ret;
1208dying:
1209	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1210			"non-responsive xHCI host.\n",
1211			urb->ep->desc.bEndpointAddress, urb);
1212	ret = -ESHUTDOWN;
1213free_priv:
1214	xhci_urb_free_priv(xhci, urb_priv);
1215	urb->hcpriv = NULL;
1216	spin_unlock_irqrestore(&xhci->lock, flags);
1217	return ret;
1218}
1219
1220/* Get the right ring for the given URB.
1221 * If the endpoint supports streams, boundary check the URB's stream ID.
1222 * If the endpoint doesn't support streams, return the singular endpoint ring.
1223 */
1224static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1225		struct urb *urb)
1226{
1227	unsigned int slot_id;
1228	unsigned int ep_index;
1229	unsigned int stream_id;
1230	struct xhci_virt_ep *ep;
1231
1232	slot_id = urb->dev->slot_id;
1233	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1234	stream_id = urb->stream_id;
1235	ep = &xhci->devs[slot_id]->eps[ep_index];
1236	/* Common case: no streams */
1237	if (!(ep->ep_state & EP_HAS_STREAMS))
1238		return ep->ring;
1239
1240	if (stream_id == 0) {
1241		xhci_warn(xhci,
1242				"WARN: Slot ID %u, ep index %u has streams, "
1243				"but URB has no stream ID.\n",
1244				slot_id, ep_index);
1245		return NULL;
1246	}
1247
1248	if (stream_id < ep->stream_info->num_streams)
1249		return ep->stream_info->stream_rings[stream_id];
1250
1251	xhci_warn(xhci,
1252			"WARN: Slot ID %u, ep index %u has "
1253			"stream IDs 1 to %u allocated, "
1254			"but stream ID %u is requested.\n",
1255			slot_id, ep_index,
1256			ep->stream_info->num_streams - 1,
1257			stream_id);
1258	return NULL;
1259}
1260
1261/*
1262 * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1263 * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1264 * should pick up where it left off in the TD, unless a Set Transfer Ring
1265 * Dequeue Pointer is issued.
1266 *
1267 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1268 * the ring.  Since the ring is a contiguous structure, they can't be physically
1269 * removed.  Instead, there are two options:
1270 *
1271 *  1) If the HC is in the middle of processing the URB to be canceled, we
1272 *     simply move the ring's dequeue pointer past those TRBs using the Set
1273 *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1274 *     when drivers timeout on the last submitted URB and attempt to cancel.
1275 *
1276 *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1277 *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1278 *     HC will need to invalidate the any TRBs it has cached after the stop
1279 *     endpoint command, as noted in the xHCI 0.95 errata.
1280 *
1281 *  3) The TD may have completed by the time the Stop Endpoint Command
1282 *     completes, so software needs to handle that case too.
1283 *
1284 * This function should protect against the TD enqueueing code ringing the
1285 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1286 * It also needs to account for multiple cancellations on happening at the same
1287 * time for the same endpoint.
1288 *
1289 * Note that this function can be called in any context, or so says
1290 * usb_hcd_unlink_urb()
1291 */
1292int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1293{
1294	unsigned long flags;
1295	int ret, i;
1296	u32 temp;
1297	struct xhci_hcd *xhci;
1298	struct urb_priv	*urb_priv;
1299	struct xhci_td *td;
1300	unsigned int ep_index;
1301	struct xhci_ring *ep_ring;
1302	struct xhci_virt_ep *ep;
1303
1304	xhci = hcd_to_xhci(hcd);
1305	spin_lock_irqsave(&xhci->lock, flags);
1306	/* Make sure the URB hasn't completed or been unlinked already */
1307	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1308	if (ret || !urb->hcpriv)
1309		goto done;
1310	temp = xhci_readl(xhci, &xhci->op_regs->status);
1311	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1312		xhci_dbg(xhci, "HW died, freeing TD.\n");
1313		urb_priv = urb->hcpriv;
1314		for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1315			td = urb_priv->td[i];
1316			if (!list_empty(&td->td_list))
1317				list_del_init(&td->td_list);
1318			if (!list_empty(&td->cancelled_td_list))
1319				list_del_init(&td->cancelled_td_list);
1320		}
1321
1322		usb_hcd_unlink_urb_from_ep(hcd, urb);
1323		spin_unlock_irqrestore(&xhci->lock, flags);
1324		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1325		xhci_urb_free_priv(xhci, urb_priv);
1326		return ret;
1327	}
1328	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1329			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1330		xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1331				"non-responsive xHCI host.\n",
1332				urb->ep->desc.bEndpointAddress, urb);
1333		/* Let the stop endpoint command watchdog timer (which set this
1334		 * state) finish cleaning up the endpoint TD lists.  We must
1335		 * have caught it in the middle of dropping a lock and giving
1336		 * back an URB.
1337		 */
1338		goto done;
1339	}
1340
1341	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1342	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1343	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1344	if (!ep_ring) {
1345		ret = -EINVAL;
1346		goto done;
1347	}
1348
1349	urb_priv = urb->hcpriv;
1350	i = urb_priv->td_cnt;
1351	if (i < urb_priv->length)
1352		xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1353				"starting at offset 0x%llx\n",
1354				urb, urb->dev->devpath,
1355				urb->ep->desc.bEndpointAddress,
1356				(unsigned long long) xhci_trb_virt_to_dma(
1357					urb_priv->td[i]->start_seg,
1358					urb_priv->td[i]->first_trb));
1359
1360	for (; i < urb_priv->length; i++) {
1361		td = urb_priv->td[i];
1362		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1363	}
1364
1365	/* Queue a stop endpoint command, but only if this is
1366	 * the first cancellation to be handled.
1367	 */
1368	if (!(ep->ep_state & EP_HALT_PENDING)) {
1369		ep->ep_state |= EP_HALT_PENDING;
1370		ep->stop_cmds_pending++;
1371		ep->stop_cmd_timer.expires = jiffies +
1372			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1373		add_timer(&ep->stop_cmd_timer);
1374		xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1375		xhci_ring_cmd_db(xhci);
1376	}
1377done:
1378	spin_unlock_irqrestore(&xhci->lock, flags);
1379	return ret;
1380}
1381
1382/* Drop an endpoint from a new bandwidth configuration for this device.
1383 * Only one call to this function is allowed per endpoint before
1384 * check_bandwidth() or reset_bandwidth() must be called.
1385 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1386 * add the endpoint to the schedule with possibly new parameters denoted by a
1387 * different endpoint descriptor in usb_host_endpoint.
1388 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1389 * not allowed.
1390 *
1391 * The USB core will not allow URBs to be queued to an endpoint that is being
1392 * disabled, so there's no need for mutual exclusion to protect
1393 * the xhci->devs[slot_id] structure.
1394 */
1395int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1396		struct usb_host_endpoint *ep)
1397{
1398	struct xhci_hcd *xhci;
1399	struct xhci_container_ctx *in_ctx, *out_ctx;
1400	struct xhci_input_control_ctx *ctrl_ctx;
1401	struct xhci_slot_ctx *slot_ctx;
1402	unsigned int last_ctx;
1403	unsigned int ep_index;
1404	struct xhci_ep_ctx *ep_ctx;
1405	u32 drop_flag;
1406	u32 new_add_flags, new_drop_flags, new_slot_info;
1407	int ret;
1408
1409	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1410	if (ret <= 0)
1411		return ret;
1412	xhci = hcd_to_xhci(hcd);
1413	if (xhci->xhc_state & XHCI_STATE_DYING)
1414		return -ENODEV;
1415
1416	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1417	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1418	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1419		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1420				__func__, drop_flag);
1421		return 0;
1422	}
1423
1424	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1425	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1426	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1427	ep_index = xhci_get_endpoint_index(&ep->desc);
1428	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1429	/* If the HC already knows the endpoint is disabled,
1430	 * or the HCD has noted it is disabled, ignore this request
1431	 */
1432	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1433	     cpu_to_le32(EP_STATE_DISABLED)) ||
1434	    le32_to_cpu(ctrl_ctx->drop_flags) &
1435	    xhci_get_endpoint_flag(&ep->desc)) {
1436		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1437				__func__, ep);
1438		return 0;
1439	}
1440
1441	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1442	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1443
1444	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1445	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1446
1447	last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1448	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1449	/* Update the last valid endpoint context, if we deleted the last one */
1450	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1451	    LAST_CTX(last_ctx)) {
1452		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1453		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1454	}
1455	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1456
1457	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1458
1459	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1460			(unsigned int) ep->desc.bEndpointAddress,
1461			udev->slot_id,
1462			(unsigned int) new_drop_flags,
1463			(unsigned int) new_add_flags,
1464			(unsigned int) new_slot_info);
1465	return 0;
1466}
1467
1468/* Add an endpoint to a new possible bandwidth configuration for this device.
1469 * Only one call to this function is allowed per endpoint before
1470 * check_bandwidth() or reset_bandwidth() must be called.
1471 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1472 * add the endpoint to the schedule with possibly new parameters denoted by a
1473 * different endpoint descriptor in usb_host_endpoint.
1474 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1475 * not allowed.
1476 *
1477 * The USB core will not allow URBs to be queued to an endpoint until the
1478 * configuration or alt setting is installed in the device, so there's no need
1479 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1480 */
1481int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1482		struct usb_host_endpoint *ep)
1483{
1484	struct xhci_hcd *xhci;
1485	struct xhci_container_ctx *in_ctx, *out_ctx;
1486	unsigned int ep_index;
1487	struct xhci_ep_ctx *ep_ctx;
1488	struct xhci_slot_ctx *slot_ctx;
1489	struct xhci_input_control_ctx *ctrl_ctx;
1490	u32 added_ctxs;
1491	unsigned int last_ctx;
1492	u32 new_add_flags, new_drop_flags, new_slot_info;
1493	struct xhci_virt_device *virt_dev;
1494	int ret = 0;
1495
1496	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1497	if (ret <= 0) {
1498		/* So we won't queue a reset ep command for a root hub */
1499		ep->hcpriv = NULL;
1500		return ret;
1501	}
1502	xhci = hcd_to_xhci(hcd);
1503	if (xhci->xhc_state & XHCI_STATE_DYING)
1504		return -ENODEV;
1505
1506	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1507	last_ctx = xhci_last_valid_endpoint(added_ctxs);
1508	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1509		/* FIXME when we have to issue an evaluate endpoint command to
1510		 * deal with ep0 max packet size changing once we get the
1511		 * descriptors
1512		 */
1513		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1514				__func__, added_ctxs);
1515		return 0;
1516	}
1517
1518	virt_dev = xhci->devs[udev->slot_id];
1519	in_ctx = virt_dev->in_ctx;
1520	out_ctx = virt_dev->out_ctx;
1521	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1522	ep_index = xhci_get_endpoint_index(&ep->desc);
1523	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1524
1525	/* If this endpoint is already in use, and the upper layers are trying
1526	 * to add it again without dropping it, reject the addition.
1527	 */
1528	if (virt_dev->eps[ep_index].ring &&
1529			!(le32_to_cpu(ctrl_ctx->drop_flags) &
1530				xhci_get_endpoint_flag(&ep->desc))) {
1531		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1532				"without dropping it.\n",
1533				(unsigned int) ep->desc.bEndpointAddress);
1534		return -EINVAL;
1535	}
1536
1537	/* If the HCD has already noted the endpoint is enabled,
1538	 * ignore this request.
1539	 */
1540	if (le32_to_cpu(ctrl_ctx->add_flags) &
1541	    xhci_get_endpoint_flag(&ep->desc)) {
1542		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1543				__func__, ep);
1544		return 0;
1545	}
1546
1547	/*
1548	 * Configuration and alternate setting changes must be done in
1549	 * process context, not interrupt context (or so documenation
1550	 * for usb_set_interface() and usb_set_configuration() claim).
1551	 */
1552	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1553		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1554				__func__, ep->desc.bEndpointAddress);
1555		return -ENOMEM;
1556	}
1557
1558	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1559	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1560
1561	/* If xhci_endpoint_disable() was called for this endpoint, but the
1562	 * xHC hasn't been notified yet through the check_bandwidth() call,
1563	 * this re-adds a new state for the endpoint from the new endpoint
1564	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1565	 * drop flags alone.
1566	 */
1567	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1568
1569	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1570	/* Update the last valid endpoint context, if we just added one past */
1571	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1572	    LAST_CTX(last_ctx)) {
1573		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1574		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1575	}
1576	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1577
1578	/* Store the usb_device pointer for later use */
1579	ep->hcpriv = udev;
1580
1581	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1582			(unsigned int) ep->desc.bEndpointAddress,
1583			udev->slot_id,
1584			(unsigned int) new_drop_flags,
1585			(unsigned int) new_add_flags,
1586			(unsigned int) new_slot_info);
1587	return 0;
1588}
1589
1590static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1591{
1592	struct xhci_input_control_ctx *ctrl_ctx;
1593	struct xhci_ep_ctx *ep_ctx;
1594	struct xhci_slot_ctx *slot_ctx;
1595	int i;
1596
1597	/* When a device's add flag and drop flag are zero, any subsequent
1598	 * configure endpoint command will leave that endpoint's state
1599	 * untouched.  Make sure we don't leave any old state in the input
1600	 * endpoint contexts.
1601	 */
1602	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1603	ctrl_ctx->drop_flags = 0;
1604	ctrl_ctx->add_flags = 0;
1605	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1606	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1607	/* Endpoint 0 is always valid */
1608	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1609	for (i = 1; i < 31; ++i) {
1610		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1611		ep_ctx->ep_info = 0;
1612		ep_ctx->ep_info2 = 0;
1613		ep_ctx->deq = 0;
1614		ep_ctx->tx_info = 0;
1615	}
1616}
1617
1618static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1619		struct usb_device *udev, u32 *cmd_status)
1620{
1621	int ret;
1622
1623	switch (*cmd_status) {
1624	case COMP_ENOMEM:
1625		dev_warn(&udev->dev, "Not enough host controller resources "
1626				"for new device state.\n");
1627		ret = -ENOMEM;
1628		/* FIXME: can we allocate more resources for the HC? */
1629		break;
1630	case COMP_BW_ERR:
1631	case COMP_2ND_BW_ERR:
1632		dev_warn(&udev->dev, "Not enough bandwidth "
1633				"for new device state.\n");
1634		ret = -ENOSPC;
1635		/* FIXME: can we go back to the old state? */
1636		break;
1637	case COMP_TRB_ERR:
1638		/* the HCD set up something wrong */
1639		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1640				"add flag = 1, "
1641				"and endpoint is not disabled.\n");
1642		ret = -EINVAL;
1643		break;
1644	case COMP_DEV_ERR:
1645		dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1646				"configure command.\n");
1647		ret = -ENODEV;
1648		break;
1649	case COMP_SUCCESS:
1650		dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1651		ret = 0;
1652		break;
1653	default:
1654		xhci_err(xhci, "ERROR: unexpected command completion "
1655				"code 0x%x.\n", *cmd_status);
1656		ret = -EINVAL;
1657		break;
1658	}
1659	return ret;
1660}
1661
1662static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1663		struct usb_device *udev, u32 *cmd_status)
1664{
1665	int ret;
1666	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1667
1668	switch (*cmd_status) {
1669	case COMP_EINVAL:
1670		dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1671				"context command.\n");
1672		ret = -EINVAL;
1673		break;
1674	case COMP_EBADSLT:
1675		dev_warn(&udev->dev, "WARN: slot not enabled for"
1676				"evaluate context command.\n");
1677	case COMP_CTX_STATE:
1678		dev_warn(&udev->dev, "WARN: invalid context state for "
1679				"evaluate context command.\n");
1680		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1681		ret = -EINVAL;
1682		break;
1683	case COMP_DEV_ERR:
1684		dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1685				"context command.\n");
1686		ret = -ENODEV;
1687		break;
1688	case COMP_MEL_ERR:
1689		/* Max Exit Latency too large error */
1690		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1691		ret = -EINVAL;
1692		break;
1693	case COMP_SUCCESS:
1694		dev_dbg(&udev->dev, "Successful evaluate context command\n");
1695		ret = 0;
1696		break;
1697	default:
1698		xhci_err(xhci, "ERROR: unexpected command completion "
1699				"code 0x%x.\n", *cmd_status);
1700		ret = -EINVAL;
1701		break;
1702	}
1703	return ret;
1704}
1705
1706static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1707		struct xhci_container_ctx *in_ctx)
1708{
1709	struct xhci_input_control_ctx *ctrl_ctx;
1710	u32 valid_add_flags;
1711	u32 valid_drop_flags;
1712
1713	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1714	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1715	 * (bit 1).  The default control endpoint is added during the Address
1716	 * Device command and is never removed until the slot is disabled.
1717	 */
1718	valid_add_flags = ctrl_ctx->add_flags >> 2;
1719	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1720
1721	/* Use hweight32 to count the number of ones in the add flags, or
1722	 * number of endpoints added.  Don't count endpoints that are changed
1723	 * (both added and dropped).
1724	 */
1725	return hweight32(valid_add_flags) -
1726		hweight32(valid_add_flags & valid_drop_flags);
1727}
1728
1729static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1730		struct xhci_container_ctx *in_ctx)
1731{
1732	struct xhci_input_control_ctx *ctrl_ctx;
1733	u32 valid_add_flags;
1734	u32 valid_drop_flags;
1735
1736	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1737	valid_add_flags = ctrl_ctx->add_flags >> 2;
1738	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1739
1740	return hweight32(valid_drop_flags) -
1741		hweight32(valid_add_flags & valid_drop_flags);
1742}
1743
1744/*
1745 * We need to reserve the new number of endpoints before the configure endpoint
1746 * command completes.  We can't subtract the dropped endpoints from the number
1747 * of active endpoints until the command completes because we can oversubscribe
1748 * the host in this case:
1749 *
1750 *  - the first configure endpoint command drops more endpoints than it adds
1751 *  - a second configure endpoint command that adds more endpoints is queued
1752 *  - the first configure endpoint command fails, so the config is unchanged
1753 *  - the second command may succeed, even though there isn't enough resources
1754 *
1755 * Must be called with xhci->lock held.
1756 */
1757static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1758		struct xhci_container_ctx *in_ctx)
1759{
1760	u32 added_eps;
1761
1762	added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1763	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1764		xhci_dbg(xhci, "Not enough ep ctxs: "
1765				"%u active, need to add %u, limit is %u.\n",
1766				xhci->num_active_eps, added_eps,
1767				xhci->limit_active_eps);
1768		return -ENOMEM;
1769	}
1770	xhci->num_active_eps += added_eps;
1771	xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1772			xhci->num_active_eps);
1773	return 0;
1774}
1775
1776/*
1777 * The configure endpoint was failed by the xHC for some other reason, so we
1778 * need to revert the resources that failed configuration would have used.
1779 *
1780 * Must be called with xhci->lock held.
1781 */
1782static void xhci_free_host_resources(struct xhci_hcd *xhci,
1783		struct xhci_container_ctx *in_ctx)
1784{
1785	u32 num_failed_eps;
1786
1787	num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1788	xhci->num_active_eps -= num_failed_eps;
1789	xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1790			num_failed_eps,
1791			xhci->num_active_eps);
1792}
1793
1794/*
1795 * Now that the command has completed, clean up the active endpoint count by
1796 * subtracting out the endpoints that were dropped (but not changed).
1797 *
1798 * Must be called with xhci->lock held.
1799 */
1800static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1801		struct xhci_container_ctx *in_ctx)
1802{
1803	u32 num_dropped_eps;
1804
1805	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1806	xhci->num_active_eps -= num_dropped_eps;
1807	if (num_dropped_eps)
1808		xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1809				num_dropped_eps,
1810				xhci->num_active_eps);
1811}
1812
1813unsigned int xhci_get_block_size(struct usb_device *udev)
1814{
1815	switch (udev->speed) {
1816	case USB_SPEED_LOW:
1817	case USB_SPEED_FULL:
1818		return FS_BLOCK;
1819	case USB_SPEED_HIGH:
1820		return HS_BLOCK;
1821	case USB_SPEED_SUPER:
1822		return SS_BLOCK;
1823	case USB_SPEED_UNKNOWN:
1824	case USB_SPEED_WIRELESS:
1825	default:
1826		/* Should never happen */
1827		return 1;
1828	}
1829}
1830
1831unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1832{
1833	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1834		return LS_OVERHEAD;
1835	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1836		return FS_OVERHEAD;
1837	return HS_OVERHEAD;
1838}
1839
1840/* If we are changing a LS/FS device under a HS hub,
1841 * make sure (if we are activating a new TT) that the HS bus has enough
1842 * bandwidth for this new TT.
1843 */
1844static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
1845		struct xhci_virt_device *virt_dev,
1846		int old_active_eps)
1847{
1848	struct xhci_interval_bw_table *bw_table;
1849	struct xhci_tt_bw_info *tt_info;
1850
1851	/* Find the bandwidth table for the root port this TT is attached to. */
1852	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
1853	tt_info = virt_dev->tt_info;
1854	/* If this TT already had active endpoints, the bandwidth for this TT
1855	 * has already been added.  Removing all periodic endpoints (and thus
1856	 * making the TT enactive) will only decrease the bandwidth used.
1857	 */
1858	if (old_active_eps)
1859		return 0;
1860	if (old_active_eps == 0 && tt_info->active_eps != 0) {
1861		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
1862			return -ENOMEM;
1863		return 0;
1864	}
1865	/* Not sure why we would have no new active endpoints...
1866	 *
1867	 * Maybe because of an Evaluate Context change for a hub update or a
1868	 * control endpoint 0 max packet size change?
1869	 * FIXME: skip the bandwidth calculation in that case.
1870	 */
1871	return 0;
1872}
1873
1874static int xhci_check_ss_bw(struct xhci_hcd *xhci,
1875		struct xhci_virt_device *virt_dev)
1876{
1877	unsigned int bw_reserved;
1878
1879	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
1880	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
1881		return -ENOMEM;
1882
1883	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
1884	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
1885		return -ENOMEM;
1886
1887	return 0;
1888}
1889
1890/*
1891 * This algorithm is a very conservative estimate of the worst-case scheduling
1892 * scenario for any one interval.  The hardware dynamically schedules the
1893 * packets, so we can't tell which microframe could be the limiting factor in
1894 * the bandwidth scheduling.  This only takes into account periodic endpoints.
1895 *
1896 * Obviously, we can't solve an NP complete problem to find the minimum worst
1897 * case scenario.  Instead, we come up with an estimate that is no less than
1898 * the worst case bandwidth used for any one microframe, but may be an
1899 * over-estimate.
1900 *
1901 * We walk the requirements for each endpoint by interval, starting with the
1902 * smallest interval, and place packets in the schedule where there is only one
1903 * possible way to schedule packets for that interval.  In order to simplify
1904 * this algorithm, we record the largest max packet size for each interval, and
1905 * assume all packets will be that size.
1906 *
1907 * For interval 0, we obviously must schedule all packets for each interval.
1908 * The bandwidth for interval 0 is just the amount of data to be transmitted
1909 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
1910 * the number of packets).
1911 *
1912 * For interval 1, we have two possible microframes to schedule those packets
1913 * in.  For this algorithm, if we can schedule the same number of packets for
1914 * each possible scheduling opportunity (each microframe), we will do so.  The
1915 * remaining number of packets will be saved to be transmitted in the gaps in
1916 * the next interval's scheduling sequence.
1917 *
1918 * As we move those remaining packets to be scheduled with interval 2 packets,
1919 * we have to double the number of remaining packets to transmit.  This is
1920 * because the intervals are actually powers of 2, and we would be transmitting
1921 * the previous interval's packets twice in this interval.  We also have to be
1922 * sure that when we look at the largest max packet size for this interval, we
1923 * also look at the largest max packet size for the remaining packets and take
1924 * the greater of the two.
1925 *
1926 * The algorithm continues to evenly distribute packets in each scheduling
1927 * opportunity, and push the remaining packets out, until we get to the last
1928 * interval.  Then those packets and their associated overhead are just added
1929 * to the bandwidth used.
1930 */
1931static int xhci_check_bw_table(struct xhci_hcd *xhci,
1932		struct xhci_virt_device *virt_dev,
1933		int old_active_eps)
1934{
1935	unsigned int bw_reserved;
1936	unsigned int max_bandwidth;
1937	unsigned int bw_used;
1938	unsigned int block_size;
1939	struct xhci_interval_bw_table *bw_table;
1940	unsigned int packet_size = 0;
1941	unsigned int overhead = 0;
1942	unsigned int packets_transmitted = 0;
1943	unsigned int packets_remaining = 0;
1944	unsigned int i;
1945
1946	if (virt_dev->udev->speed == USB_SPEED_SUPER)
1947		return xhci_check_ss_bw(xhci, virt_dev);
1948
1949	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
1950		max_bandwidth = HS_BW_LIMIT;
1951		/* Convert percent of bus BW reserved to blocks reserved */
1952		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
1953	} else {
1954		max_bandwidth = FS_BW_LIMIT;
1955		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
1956	}
1957
1958	bw_table = virt_dev->bw_table;
1959	/* We need to translate the max packet size and max ESIT payloads into
1960	 * the units the hardware uses.
1961	 */
1962	block_size = xhci_get_block_size(virt_dev->udev);
1963
1964	/* If we are manipulating a LS/FS device under a HS hub, double check
1965	 * that the HS bus has enough bandwidth if we are activing a new TT.
1966	 */
1967	if (virt_dev->tt_info) {
1968		xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
1969				virt_dev->real_port);
1970		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
1971			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
1972					"newly activated TT.\n");
1973			return -ENOMEM;
1974		}
1975		xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
1976				virt_dev->tt_info->slot_id,
1977				virt_dev->tt_info->ttport);
1978	} else {
1979		xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
1980				virt_dev->real_port);
1981	}
1982
1983	/* Add in how much bandwidth will be used for interval zero, or the
1984	 * rounded max ESIT payload + number of packets * largest overhead.
1985	 */
1986	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
1987		bw_table->interval_bw[0].num_packets *
1988		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
1989
1990	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
1991		unsigned int bw_added;
1992		unsigned int largest_mps;
1993		unsigned int interval_overhead;
1994
1995		/*
1996		 * How many packets could we transmit in this interval?
1997		 * If packets didn't fit in the previous interval, we will need
1998		 * to transmit that many packets twice within this interval.
1999		 */
2000		packets_remaining = 2 * packets_remaining +
2001			bw_table->interval_bw[i].num_packets;
2002
2003		/* Find the largest max packet size of this or the previous
2004		 * interval.
2005		 */
2006		if (list_empty(&bw_table->interval_bw[i].endpoints))
2007			largest_mps = 0;
2008		else {
2009			struct xhci_virt_ep *virt_ep;
2010			struct list_head *ep_entry;
2011
2012			ep_entry = bw_table->interval_bw[i].endpoints.next;
2013			virt_ep = list_entry(ep_entry,
2014					struct xhci_virt_ep, bw_endpoint_list);
2015			/* Convert to blocks, rounding up */
2016			largest_mps = DIV_ROUND_UP(
2017					virt_ep->bw_info.max_packet_size,
2018					block_size);
2019		}
2020		if (largest_mps > packet_size)
2021			packet_size = largest_mps;
2022
2023		/* Use the larger overhead of this or the previous interval. */
2024		interval_overhead = xhci_get_largest_overhead(
2025				&bw_table->interval_bw[i]);
2026		if (interval_overhead > overhead)
2027			overhead = interval_overhead;
2028
2029		/* How many packets can we evenly distribute across
2030		 * (1 << (i + 1)) possible scheduling opportunities?
2031		 */
2032		packets_transmitted = packets_remaining >> (i + 1);
2033
2034		/* Add in the bandwidth used for those scheduled packets */
2035		bw_added = packets_transmitted * (overhead + packet_size);
2036
2037		/* How many packets do we have remaining to transmit? */
2038		packets_remaining = packets_remaining % (1 << (i + 1));
2039
2040		/* What largest max packet size should those packets have? */
2041		/* If we've transmitted all packets, don't carry over the
2042		 * largest packet size.
2043		 */
2044		if (packets_remaining == 0) {
2045			packet_size = 0;
2046			overhead = 0;
2047		} else if (packets_transmitted > 0) {
2048			/* Otherwise if we do have remaining packets, and we've
2049			 * scheduled some packets in this interval, take the
2050			 * largest max packet size from endpoints with this
2051			 * interval.
2052			 */
2053			packet_size = largest_mps;
2054			overhead = interval_overhead;
2055		}
2056		/* Otherwise carry over packet_size and overhead from the last
2057		 * time we had a remainder.
2058		 */
2059		bw_used += bw_added;
2060		if (bw_used > max_bandwidth) {
2061			xhci_warn(xhci, "Not enough bandwidth. "
2062					"Proposed: %u, Max: %u\n",
2063				bw_used, max_bandwidth);
2064			return -ENOMEM;
2065		}
2066	}
2067	/*
2068	 * Ok, we know we have some packets left over after even-handedly
2069	 * scheduling interval 15.  We don't know which microframes they will
2070	 * fit into, so we over-schedule and say they will be scheduled every
2071	 * microframe.
2072	 */
2073	if (packets_remaining > 0)
2074		bw_used += overhead + packet_size;
2075
2076	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2077		unsigned int port_index = virt_dev->real_port - 1;
2078
2079		/* OK, we're manipulating a HS device attached to a
2080		 * root port bandwidth domain.  Include the number of active TTs
2081		 * in the bandwidth used.
2082		 */
2083		bw_used += TT_HS_OVERHEAD *
2084			xhci->rh_bw[port_index].num_active_tts;
2085	}
2086
2087	xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2088		"Available: %u " "percent\n",
2089		bw_used, max_bandwidth, bw_reserved,
2090		(max_bandwidth - bw_used - bw_reserved) * 100 /
2091		max_bandwidth);
2092
2093	bw_used += bw_reserved;
2094	if (bw_used > max_bandwidth) {
2095		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2096				bw_used, max_bandwidth);
2097		return -ENOMEM;
2098	}
2099
2100	bw_table->bw_used = bw_used;
2101	return 0;
2102}
2103
2104static bool xhci_is_async_ep(unsigned int ep_type)
2105{
2106	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2107					ep_type != ISOC_IN_EP &&
2108					ep_type != INT_IN_EP);
2109}
2110
2111static bool xhci_is_sync_in_ep(unsigned int ep_type)
2112{
2113	return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP);
2114}
2115
2116static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2117{
2118	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2119
2120	if (ep_bw->ep_interval == 0)
2121		return SS_OVERHEAD_BURST +
2122			(ep_bw->mult * ep_bw->num_packets *
2123					(SS_OVERHEAD + mps));
2124	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2125				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2126				1 << ep_bw->ep_interval);
2127
2128}
2129
2130void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2131		struct xhci_bw_info *ep_bw,
2132		struct xhci_interval_bw_table *bw_table,
2133		struct usb_device *udev,
2134		struct xhci_virt_ep *virt_ep,
2135		struct xhci_tt_bw_info *tt_info)
2136{
2137	struct xhci_interval_bw	*interval_bw;
2138	int normalized_interval;
2139
2140	if (xhci_is_async_ep(ep_bw->type))
2141		return;
2142
2143	if (udev->speed == USB_SPEED_SUPER) {
2144		if (xhci_is_sync_in_ep(ep_bw->type))
2145			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2146				xhci_get_ss_bw_consumed(ep_bw);
2147		else
2148			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2149				xhci_get_ss_bw_consumed(ep_bw);
2150		return;
2151	}
2152
2153	/* SuperSpeed endpoints never get added to intervals in the table, so
2154	 * this check is only valid for HS/FS/LS devices.
2155	 */
2156	if (list_empty(&virt_ep->bw_endpoint_list))
2157		return;
2158	/* For LS/FS devices, we need to translate the interval expressed in
2159	 * microframes to frames.
2160	 */
2161	if (udev->speed == USB_SPEED_HIGH)
2162		normalized_interval = ep_bw->ep_interval;
2163	else
2164		normalized_interval = ep_bw->ep_interval - 3;
2165
2166	if (normalized_interval == 0)
2167		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2168	interval_bw = &bw_table->interval_bw[normalized_interval];
2169	interval_bw->num_packets -= ep_bw->num_packets;
2170	switch (udev->speed) {
2171	case USB_SPEED_LOW:
2172		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2173		break;
2174	case USB_SPEED_FULL:
2175		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2176		break;
2177	case USB_SPEED_HIGH:
2178		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2179		break;
2180	case USB_SPEED_SUPER:
2181	case USB_SPEED_UNKNOWN:
2182	case USB_SPEED_WIRELESS:
2183		/* Should never happen because only LS/FS/HS endpoints will get
2184		 * added to the endpoint list.
2185		 */
2186		return;
2187	}
2188	if (tt_info)
2189		tt_info->active_eps -= 1;
2190	list_del_init(&virt_ep->bw_endpoint_list);
2191}
2192
2193static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2194		struct xhci_bw_info *ep_bw,
2195		struct xhci_interval_bw_table *bw_table,
2196		struct usb_device *udev,
2197		struct xhci_virt_ep *virt_ep,
2198		struct xhci_tt_bw_info *tt_info)
2199{
2200	struct xhci_interval_bw	*interval_bw;
2201	struct xhci_virt_ep *smaller_ep;
2202	int normalized_interval;
2203
2204	if (xhci_is_async_ep(ep_bw->type))
2205		return;
2206
2207	if (udev->speed == USB_SPEED_SUPER) {
2208		if (xhci_is_sync_in_ep(ep_bw->type))
2209			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2210				xhci_get_ss_bw_consumed(ep_bw);
2211		else
2212			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2213				xhci_get_ss_bw_consumed(ep_bw);
2214		return;
2215	}
2216
2217	/* For LS/FS devices, we need to translate the interval expressed in
2218	 * microframes to frames.
2219	 */
2220	if (udev->speed == USB_SPEED_HIGH)
2221		normalized_interval = ep_bw->ep_interval;
2222	else
2223		normalized_interval = ep_bw->ep_interval - 3;
2224
2225	if (normalized_interval == 0)
2226		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2227	interval_bw = &bw_table->interval_bw[normalized_interval];
2228	interval_bw->num_packets += ep_bw->num_packets;
2229	switch (udev->speed) {
2230	case USB_SPEED_LOW:
2231		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2232		break;
2233	case USB_SPEED_FULL:
2234		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2235		break;
2236	case USB_SPEED_HIGH:
2237		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2238		break;
2239	case USB_SPEED_SUPER:
2240	case USB_SPEED_UNKNOWN:
2241	case USB_SPEED_WIRELESS:
2242		/* Should never happen because only LS/FS/HS endpoints will get
2243		 * added to the endpoint list.
2244		 */
2245		return;
2246	}
2247
2248	if (tt_info)
2249		tt_info->active_eps += 1;
2250	/* Insert the endpoint into the list, largest max packet size first. */
2251	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2252			bw_endpoint_list) {
2253		if (ep_bw->max_packet_size >=
2254				smaller_ep->bw_info.max_packet_size) {
2255			/* Add the new ep before the smaller endpoint */
2256			list_add_tail(&virt_ep->bw_endpoint_list,
2257					&smaller_ep->bw_endpoint_list);
2258			return;
2259		}
2260	}
2261	/* Add the new endpoint at the end of the list. */
2262	list_add_tail(&virt_ep->bw_endpoint_list,
2263			&interval_bw->endpoints);
2264}
2265
2266void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2267		struct xhci_virt_device *virt_dev,
2268		int old_active_eps)
2269{
2270	struct xhci_root_port_bw_info *rh_bw_info;
2271	if (!virt_dev->tt_info)
2272		return;
2273
2274	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2275	if (old_active_eps == 0 &&
2276				virt_dev->tt_info->active_eps != 0) {
2277		rh_bw_info->num_active_tts += 1;
2278		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2279	} else if (old_active_eps != 0 &&
2280				virt_dev->tt_info->active_eps == 0) {
2281		rh_bw_info->num_active_tts -= 1;
2282		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2283	}
2284}
2285
2286static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2287		struct xhci_virt_device *virt_dev,
2288		struct xhci_container_ctx *in_ctx)
2289{
2290	struct xhci_bw_info ep_bw_info[31];
2291	int i;
2292	struct xhci_input_control_ctx *ctrl_ctx;
2293	int old_active_eps = 0;
2294
2295	if (virt_dev->tt_info)
2296		old_active_eps = virt_dev->tt_info->active_eps;
2297
2298	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2299
2300	for (i = 0; i < 31; i++) {
2301		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2302			continue;
2303
2304		/* Make a copy of the BW info in case we need to revert this */
2305		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2306				sizeof(ep_bw_info[i]));
2307		/* Drop the endpoint from the interval table if the endpoint is
2308		 * being dropped or changed.
2309		 */
2310		if (EP_IS_DROPPED(ctrl_ctx, i))
2311			xhci_drop_ep_from_interval_table(xhci,
2312					&virt_dev->eps[i].bw_info,
2313					virt_dev->bw_table,
2314					virt_dev->udev,
2315					&virt_dev->eps[i],
2316					virt_dev->tt_info);
2317	}
2318	/* Overwrite the information stored in the endpoints' bw_info */
2319	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2320	for (i = 0; i < 31; i++) {
2321		/* Add any changed or added endpoints to the interval table */
2322		if (EP_IS_ADDED(ctrl_ctx, i))
2323			xhci_add_ep_to_interval_table(xhci,
2324					&virt_dev->eps[i].bw_info,
2325					virt_dev->bw_table,
2326					virt_dev->udev,
2327					&virt_dev->eps[i],
2328					virt_dev->tt_info);
2329	}
2330
2331	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2332		/* Ok, this fits in the bandwidth we have.
2333		 * Update the number of active TTs.
2334		 */
2335		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2336		return 0;
2337	}
2338
2339	/* We don't have enough bandwidth for this, revert the stored info. */
2340	for (i = 0; i < 31; i++) {
2341		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2342			continue;
2343
2344		/* Drop the new copies of any added or changed endpoints from
2345		 * the interval table.
2346		 */
2347		if (EP_IS_ADDED(ctrl_ctx, i)) {
2348			xhci_drop_ep_from_interval_table(xhci,
2349					&virt_dev->eps[i].bw_info,
2350					virt_dev->bw_table,
2351					virt_dev->udev,
2352					&virt_dev->eps[i],
2353					virt_dev->tt_info);
2354		}
2355		/* Revert the endpoint back to its old information */
2356		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2357				sizeof(ep_bw_info[i]));
2358		/* Add any changed or dropped endpoints back into the table */
2359		if (EP_IS_DROPPED(ctrl_ctx, i))
2360			xhci_add_ep_to_interval_table(xhci,
2361					&virt_dev->eps[i].bw_info,
2362					virt_dev->bw_table,
2363					virt_dev->udev,
2364					&virt_dev->eps[i],
2365					virt_dev->tt_info);
2366	}
2367	return -ENOMEM;
2368}
2369
2370
2371/* Issue a configure endpoint command or evaluate context command
2372 * and wait for it to finish.
2373 */
2374static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2375		struct usb_device *udev,
2376		struct xhci_command *command,
2377		bool ctx_change, bool must_succeed)
2378{
2379	int ret;
2380	int timeleft;
2381	unsigned long flags;
2382	struct xhci_container_ctx *in_ctx;
2383	struct completion *cmd_completion;
2384	u32 *cmd_status;
2385	struct xhci_virt_device *virt_dev;
2386
2387	spin_lock_irqsave(&xhci->lock, flags);
2388	virt_dev = xhci->devs[udev->slot_id];
2389
2390	if (command)
2391		in_ctx = command->in_ctx;
2392	else
2393		in_ctx = virt_dev->in_ctx;
2394
2395	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2396			xhci_reserve_host_resources(xhci, in_ctx)) {
2397		spin_unlock_irqrestore(&xhci->lock, flags);
2398		xhci_warn(xhci, "Not enough host resources, "
2399				"active endpoint contexts = %u\n",
2400				xhci->num_active_eps);
2401		return -ENOMEM;
2402	}
2403	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2404			xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2405		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2406			xhci_free_host_resources(xhci, in_ctx);
2407		spin_unlock_irqrestore(&xhci->lock, flags);
2408		xhci_warn(xhci, "Not enough bandwidth\n");
2409		return -ENOMEM;
2410	}
2411
2412	if (command) {
2413		cmd_completion = command->completion;
2414		cmd_status = &command->status;
2415		command->command_trb = xhci->cmd_ring->enqueue;
2416
2417		/* Enqueue pointer can be left pointing to the link TRB,
2418		 * we must handle that
2419		 */
2420		if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2421			command->command_trb =
2422				xhci->cmd_ring->enq_seg->next->trbs;
2423
2424		list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2425	} else {
2426		cmd_completion = &virt_dev->cmd_completion;
2427		cmd_status = &virt_dev->cmd_status;
2428	}
2429	init_completion(cmd_completion);
2430
2431	if (!ctx_change)
2432		ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2433				udev->slot_id, must_succeed);
2434	else
2435		ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2436				udev->slot_id);
2437	if (ret < 0) {
2438		if (command)
2439			list_del(&command->cmd_list);
2440		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2441			xhci_free_host_resources(xhci, in_ctx);
2442		spin_unlock_irqrestore(&xhci->lock, flags);
2443		xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2444		return -ENOMEM;
2445	}
2446	xhci_ring_cmd_db(xhci);
2447	spin_unlock_irqrestore(&xhci->lock, flags);
2448
2449	/* Wait for the configure endpoint command to complete */
2450	timeleft = wait_for_completion_interruptible_timeout(
2451			cmd_completion,
2452			USB_CTRL_SET_TIMEOUT);
2453	if (timeleft <= 0) {
2454		xhci_warn(xhci, "%s while waiting for %s command\n",
2455				timeleft == 0 ? "Timeout" : "Signal",
2456				ctx_change == 0 ?
2457					"configure endpoint" :
2458					"evaluate context");
2459		/* FIXME cancel the configure endpoint command */
2460		return -ETIME;
2461	}
2462
2463	if (!ctx_change)
2464		ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2465	else
2466		ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2467
2468	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2469		spin_lock_irqsave(&xhci->lock, flags);
2470		/* If the command failed, remove the reserved resources.
2471		 * Otherwise, clean up the estimate to include dropped eps.
2472		 */
2473		if (ret)
2474			xhci_free_host_resources(xhci, in_ctx);
2475		else
2476			xhci_finish_resource_reservation(xhci, in_ctx);
2477		spin_unlock_irqrestore(&xhci->lock, flags);
2478	}
2479	return ret;
2480}
2481
2482/* Called after one or more calls to xhci_add_endpoint() or
2483 * xhci_drop_endpoint().  If this call fails, the USB core is expected
2484 * to call xhci_reset_bandwidth().
2485 *
2486 * Since we are in the middle of changing either configuration or
2487 * installing a new alt setting, the USB core won't allow URBs to be
2488 * enqueued for any endpoint on the old config or interface.  Nothing
2489 * else should be touching the xhci->devs[slot_id] structure, so we
2490 * don't need to take the xhci->lock for manipulating that.
2491 */
2492int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2493{
2494	int i;
2495	int ret = 0;
2496	struct xhci_hcd *xhci;
2497	struct xhci_virt_device	*virt_dev;
2498	struct xhci_input_control_ctx *ctrl_ctx;
2499	struct xhci_slot_ctx *slot_ctx;
2500
2501	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2502	if (ret <= 0)
2503		return ret;
2504	xhci = hcd_to_xhci(hcd);
2505	if (xhci->xhc_state & XHCI_STATE_DYING)
2506		return -ENODEV;
2507
2508	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2509	virt_dev = xhci->devs[udev->slot_id];
2510
2511	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2512	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2513	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2514	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2515	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2516
2517	/* Don't issue the command if there's no endpoints to update. */
2518	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2519			ctrl_ctx->drop_flags == 0)
2520		return 0;
2521
2522	xhci_dbg(xhci, "New Input Control Context:\n");
2523	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2524	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2525		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2526
2527	ret = xhci_configure_endpoint(xhci, udev, NULL,
2528			false, false);
2529	if (ret) {
2530		/* Callee should call reset_bandwidth() */
2531		return ret;
2532	}
2533
2534	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2535	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2536		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2537
2538	/* Free any rings that were dropped, but not changed. */
2539	for (i = 1; i < 31; ++i) {
2540		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2541		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2542			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2543	}
2544	xhci_zero_in_ctx(xhci, virt_dev);
2545	/*
2546	 * Install any rings for completely new endpoints or changed endpoints,
2547	 * and free or cache any old rings from changed endpoints.
2548	 */
2549	for (i = 1; i < 31; ++i) {
2550		if (!virt_dev->eps[i].new_ring)
2551			continue;
2552		/* Only cache or free the old ring if it exists.
2553		 * It may not if this is the first add of an endpoint.
2554		 */
2555		if (virt_dev->eps[i].ring) {
2556			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2557		}
2558		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2559		virt_dev->eps[i].new_ring = NULL;
2560	}
2561
2562	return ret;
2563}
2564
2565void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2566{
2567	struct xhci_hcd *xhci;
2568	struct xhci_virt_device	*virt_dev;
2569	int i, ret;
2570
2571	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2572	if (ret <= 0)
2573		return;
2574	xhci = hcd_to_xhci(hcd);
2575
2576	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2577	virt_dev = xhci->devs[udev->slot_id];
2578	/* Free any rings allocated for added endpoints */
2579	for (i = 0; i < 31; ++i) {
2580		if (virt_dev->eps[i].new_ring) {
2581			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2582			virt_dev->eps[i].new_ring = NULL;
2583		}
2584	}
2585	xhci_zero_in_ctx(xhci, virt_dev);
2586}
2587
2588static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2589		struct xhci_container_ctx *in_ctx,
2590		struct xhci_container_ctx *out_ctx,
2591		u32 add_flags, u32 drop_flags)
2592{
2593	struct xhci_input_control_ctx *ctrl_ctx;
2594	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2595	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2596	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2597	xhci_slot_copy(xhci, in_ctx, out_ctx);
2598	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2599
2600	xhci_dbg(xhci, "Input Context:\n");
2601	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2602}
2603
2604static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2605		unsigned int slot_id, unsigned int ep_index,
2606		struct xhci_dequeue_state *deq_state)
2607{
2608	struct xhci_container_ctx *in_ctx;
2609	struct xhci_ep_ctx *ep_ctx;
2610	u32 added_ctxs;
2611	dma_addr_t addr;
2612
2613	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2614			xhci->devs[slot_id]->out_ctx, ep_index);
2615	in_ctx = xhci->devs[slot_id]->in_ctx;
2616	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2617	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2618			deq_state->new_deq_ptr);
2619	if (addr == 0) {
2620		xhci_warn(xhci, "WARN Cannot submit config ep after "
2621				"reset ep command\n");
2622		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2623				deq_state->new_deq_seg,
2624				deq_state->new_deq_ptr);
2625		return;
2626	}
2627	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2628
2629	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2630	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2631			xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2632}
2633
2634void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2635		struct usb_device *udev, unsigned int ep_index)
2636{
2637	struct xhci_dequeue_state deq_state;
2638	struct xhci_virt_ep *ep;
2639
2640	xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2641	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2642	/* We need to move the HW's dequeue pointer past this TD,
2643	 * or it will attempt to resend it on the next doorbell ring.
2644	 */
2645	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2646			ep_index, ep->stopped_stream, ep->stopped_td,
2647			&deq_state);
2648
2649	/* HW with the reset endpoint quirk will use the saved dequeue state to
2650	 * issue a configure endpoint command later.
2651	 */
2652	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2653		xhci_dbg(xhci, "Queueing new dequeue state\n");
2654		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2655				ep_index, ep->stopped_stream, &deq_state);
2656	} else {
2657		/* Better hope no one uses the input context between now and the
2658		 * reset endpoint completion!
2659		 * XXX: No idea how this hardware will react when stream rings
2660		 * are enabled.
2661		 */
2662		xhci_dbg(xhci, "Setting up input context for "
2663				"configure endpoint command\n");
2664		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2665				ep_index, &deq_state);
2666	}
2667}
2668
2669/* Deal with stalled endpoints.  The core should have sent the control message
2670 * to clear the halt condition.  However, we need to make the xHCI hardware
2671 * reset its sequence number, since a device will expect a sequence number of
2672 * zero after the halt condition is cleared.
2673 * Context: in_interrupt
2674 */
2675void xhci_endpoint_reset(struct usb_hcd *hcd,
2676		struct usb_host_endpoint *ep)
2677{
2678	struct xhci_hcd *xhci;
2679	struct usb_device *udev;
2680	unsigned int ep_index;
2681	unsigned long flags;
2682	int ret;
2683	struct xhci_virt_ep *virt_ep;
2684
2685	xhci = hcd_to_xhci(hcd);
2686	udev = (struct usb_device *) ep->hcpriv;
2687	/* Called with a root hub endpoint (or an endpoint that wasn't added
2688	 * with xhci_add_endpoint()
2689	 */
2690	if (!ep->hcpriv)
2691		return;
2692	ep_index = xhci_get_endpoint_index(&ep->desc);
2693	virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2694	if (!virt_ep->stopped_td) {
2695		xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2696				ep->desc.bEndpointAddress);
2697		return;
2698	}
2699	if (usb_endpoint_xfer_control(&ep->desc)) {
2700		xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2701		return;
2702	}
2703
2704	xhci_dbg(xhci, "Queueing reset endpoint command\n");
2705	spin_lock_irqsave(&xhci->lock, flags);
2706	ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2707	/*
2708	 * Can't change the ring dequeue pointer until it's transitioned to the
2709	 * stopped state, which is only upon a successful reset endpoint
2710	 * command.  Better hope that last command worked!
2711	 */
2712	if (!ret) {
2713		xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2714		kfree(virt_ep->stopped_td);
2715		xhci_ring_cmd_db(xhci);
2716	}
2717	virt_ep->stopped_td = NULL;
2718	virt_ep->stopped_trb = NULL;
2719	virt_ep->stopped_stream = 0;
2720	spin_unlock_irqrestore(&xhci->lock, flags);
2721
2722	if (ret)
2723		xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2724}
2725
2726static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2727		struct usb_device *udev, struct usb_host_endpoint *ep,
2728		unsigned int slot_id)
2729{
2730	int ret;
2731	unsigned int ep_index;
2732	unsigned int ep_state;
2733
2734	if (!ep)
2735		return -EINVAL;
2736	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2737	if (ret <= 0)
2738		return -EINVAL;
2739	if (ep->ss_ep_comp.bmAttributes == 0) {
2740		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2741				" descriptor for ep 0x%x does not support streams\n",
2742				ep->desc.bEndpointAddress);
2743		return -EINVAL;
2744	}
2745
2746	ep_index = xhci_get_endpoint_index(&ep->desc);
2747	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2748	if (ep_state & EP_HAS_STREAMS ||
2749			ep_state & EP_GETTING_STREAMS) {
2750		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2751				"already has streams set up.\n",
2752				ep->desc.bEndpointAddress);
2753		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2754				"dynamic stream context array reallocation.\n");
2755		return -EINVAL;
2756	}
2757	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2758		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2759				"endpoint 0x%x; URBs are pending.\n",
2760				ep->desc.bEndpointAddress);
2761		return -EINVAL;
2762	}
2763	return 0;
2764}
2765
2766static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2767		unsigned int *num_streams, unsigned int *num_stream_ctxs)
2768{
2769	unsigned int max_streams;
2770
2771	/* The stream context array size must be a power of two */
2772	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
2773	/*
2774	 * Find out how many primary stream array entries the host controller
2775	 * supports.  Later we may use secondary stream arrays (similar to 2nd
2776	 * level page entries), but that's an optional feature for xHCI host
2777	 * controllers. xHCs must support at least 4 stream IDs.
2778	 */
2779	max_streams = HCC_MAX_PSA(xhci->hcc_params);
2780	if (*num_stream_ctxs > max_streams) {
2781		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2782				max_streams);
2783		*num_stream_ctxs = max_streams;
2784		*num_streams = max_streams;
2785	}
2786}
2787
2788/* Returns an error code if one of the endpoint already has streams.
2789 * This does not change any data structures, it only checks and gathers
2790 * information.
2791 */
2792static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2793		struct usb_device *udev,
2794		struct usb_host_endpoint **eps, unsigned int num_eps,
2795		unsigned int *num_streams, u32 *changed_ep_bitmask)
2796{
2797	unsigned int max_streams;
2798	unsigned int endpoint_flag;
2799	int i;
2800	int ret;
2801
2802	for (i = 0; i < num_eps; i++) {
2803		ret = xhci_check_streams_endpoint(xhci, udev,
2804				eps[i], udev->slot_id);
2805		if (ret < 0)
2806			return ret;
2807
2808		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2809		if (max_streams < (*num_streams - 1)) {
2810			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2811					eps[i]->desc.bEndpointAddress,
2812					max_streams);
2813			*num_streams = max_streams+1;
2814		}
2815
2816		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2817		if (*changed_ep_bitmask & endpoint_flag)
2818			return -EINVAL;
2819		*changed_ep_bitmask |= endpoint_flag;
2820	}
2821	return 0;
2822}
2823
2824static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2825		struct usb_device *udev,
2826		struct usb_host_endpoint **eps, unsigned int num_eps)
2827{
2828	u32 changed_ep_bitmask = 0;
2829	unsigned int slot_id;
2830	unsigned int ep_index;
2831	unsigned int ep_state;
2832	int i;
2833
2834	slot_id = udev->slot_id;
2835	if (!xhci->devs[slot_id])
2836		return 0;
2837
2838	for (i = 0; i < num_eps; i++) {
2839		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2840		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2841		/* Are streams already being freed for the endpoint? */
2842		if (ep_state & EP_GETTING_NO_STREAMS) {
2843			xhci_warn(xhci, "WARN Can't disable streams for "
2844					"endpoint 0x%x\n, "
2845					"streams are being disabled already.",
2846					eps[i]->desc.bEndpointAddress);
2847			return 0;
2848		}
2849		/* Are there actually any streams to free? */
2850		if (!(ep_state & EP_HAS_STREAMS) &&
2851				!(ep_state & EP_GETTING_STREAMS)) {
2852			xhci_warn(xhci, "WARN Can't disable streams for "
2853					"endpoint 0x%x\n, "
2854					"streams are already disabled!",
2855					eps[i]->desc.bEndpointAddress);
2856			xhci_warn(xhci, "WARN xhci_free_streams() called "
2857					"with non-streams endpoint\n");
2858			return 0;
2859		}
2860		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
2861	}
2862	return changed_ep_bitmask;
2863}
2864
2865/*
2866 * The USB device drivers use this function (though the HCD interface in USB
2867 * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
2868 * coordinate mass storage command queueing across multiple endpoints (basically
2869 * a stream ID == a task ID).
2870 *
2871 * Setting up streams involves allocating the same size stream context array
2872 * for each endpoint and issuing a configure endpoint command for all endpoints.
2873 *
2874 * Don't allow the call to succeed if one endpoint only supports one stream
2875 * (which means it doesn't support streams at all).
2876 *
2877 * Drivers may get less stream IDs than they asked for, if the host controller
2878 * hardware or endpoints claim they can't support the number of requested
2879 * stream IDs.
2880 */
2881int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
2882		struct usb_host_endpoint **eps, unsigned int num_eps,
2883		unsigned int num_streams, gfp_t mem_flags)
2884{
2885	int i, ret;
2886	struct xhci_hcd *xhci;
2887	struct xhci_virt_device *vdev;
2888	struct xhci_command *config_cmd;
2889	unsigned int ep_index;
2890	unsigned int num_stream_ctxs;
2891	unsigned long flags;
2892	u32 changed_ep_bitmask = 0;
2893
2894	if (!eps)
2895		return -EINVAL;
2896
2897	/* Add one to the number of streams requested to account for
2898	 * stream 0 that is reserved for xHCI usage.
2899	 */
2900	num_streams += 1;
2901	xhci = hcd_to_xhci(hcd);
2902	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
2903			num_streams);
2904
2905	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2906	if (!config_cmd) {
2907		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2908		return -ENOMEM;
2909	}
2910
2911	/* Check to make sure all endpoints are not already configured for
2912	 * streams.  While we're at it, find the maximum number of streams that
2913	 * all the endpoints will support and check for duplicate endpoints.
2914	 */
2915	spin_lock_irqsave(&xhci->lock, flags);
2916	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
2917			num_eps, &num_streams, &changed_ep_bitmask);
2918	if (ret < 0) {
2919		xhci_free_command(xhci, config_cmd);
2920		spin_unlock_irqrestore(&xhci->lock, flags);
2921		return ret;
2922	}
2923	if (num_streams <= 1) {
2924		xhci_warn(xhci, "WARN: endpoints can't handle "
2925				"more than one stream.\n");
2926		xhci_free_command(xhci, config_cmd);
2927		spin_unlock_irqrestore(&xhci->lock, flags);
2928		return -EINVAL;
2929	}
2930	vdev = xhci->devs[udev->slot_id];
2931	/* Mark each endpoint as being in transition, so
2932	 * xhci_urb_enqueue() will reject all URBs.
2933	 */
2934	for (i = 0; i < num_eps; i++) {
2935		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2936		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
2937	}
2938	spin_unlock_irqrestore(&xhci->lock, flags);
2939
2940	/* Setup internal data structures and allocate HW data structures for
2941	 * streams (but don't install the HW structures in the input context
2942	 * until we're sure all memory allocation succeeded).
2943	 */
2944	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
2945	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
2946			num_stream_ctxs, num_streams);
2947
2948	for (i = 0; i < num_eps; i++) {
2949		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2950		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
2951				num_stream_ctxs,
2952				num_streams, mem_flags);
2953		if (!vdev->eps[ep_index].stream_info)
2954			goto cleanup;
2955		/* Set maxPstreams in endpoint context and update deq ptr to
2956		 * point to stream context array. FIXME
2957		 */
2958	}
2959
2960	/* Set up the input context for a configure endpoint command. */
2961	for (i = 0; i < num_eps; i++) {
2962		struct xhci_ep_ctx *ep_ctx;
2963
2964		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2965		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
2966
2967		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
2968				vdev->out_ctx, ep_index);
2969		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
2970				vdev->eps[ep_index].stream_info);
2971	}
2972	/* Tell the HW to drop its old copy of the endpoint context info
2973	 * and add the updated copy from the input context.
2974	 */
2975	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
2976			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2977
2978	/* Issue and wait for the configure endpoint command */
2979	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
2980			false, false);
2981
2982	/* xHC rejected the configure endpoint command for some reason, so we
2983	 * leave the old ring intact and free our internal streams data
2984	 * structure.
2985	 */
2986	if (ret < 0)
2987		goto cleanup;
2988
2989	spin_lock_irqsave(&xhci->lock, flags);
2990	for (i = 0; i < num_eps; i++) {
2991		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2992		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2993		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
2994			 udev->slot_id, ep_index);
2995		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
2996	}
2997	xhci_free_command(xhci, config_cmd);
2998	spin_unlock_irqrestore(&xhci->lock, flags);
2999
3000	/* Subtract 1 for stream 0, which drivers can't use */
3001	return num_streams - 1;
3002
3003cleanup:
3004	/* If it didn't work, free the streams! */
3005	for (i = 0; i < num_eps; i++) {
3006		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3007		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3008		vdev->eps[ep_index].stream_info = NULL;
3009		/* FIXME Unset maxPstreams in endpoint context and
3010		 * update deq ptr to point to normal string ring.
3011		 */
3012		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3013		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3014		xhci_endpoint_zero(xhci, vdev, eps[i]);
3015	}
3016	xhci_free_command(xhci, config_cmd);
3017	return -ENOMEM;
3018}
3019
3020/* Transition the endpoint from using streams to being a "normal" endpoint
3021 * without streams.
3022 *
3023 * Modify the endpoint context state, submit a configure endpoint command,
3024 * and free all endpoint rings for streams if that completes successfully.
3025 */
3026int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3027		struct usb_host_endpoint **eps, unsigned int num_eps,
3028		gfp_t mem_flags)
3029{
3030	int i, ret;
3031	struct xhci_hcd *xhci;
3032	struct xhci_virt_device *vdev;
3033	struct xhci_command *command;
3034	unsigned int ep_index;
3035	unsigned long flags;
3036	u32 changed_ep_bitmask;
3037
3038	xhci = hcd_to_xhci(hcd);
3039	vdev = xhci->devs[udev->slot_id];
3040
3041	/* Set up a configure endpoint command to remove the streams rings */
3042	spin_lock_irqsave(&xhci->lock, flags);
3043	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3044			udev, eps, num_eps);
3045	if (changed_ep_bitmask == 0) {
3046		spin_unlock_irqrestore(&xhci->lock, flags);
3047		return -EINVAL;
3048	}
3049
3050	/* Use the xhci_command structure from the first endpoint.  We may have
3051	 * allocated too many, but the driver may call xhci_free_streams() for
3052	 * each endpoint it grouped into one call to xhci_alloc_streams().
3053	 */
3054	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3055	command = vdev->eps[ep_index].stream_info->free_streams_command;
3056	for (i = 0; i < num_eps; i++) {
3057		struct xhci_ep_ctx *ep_ctx;
3058
3059		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3060		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3061		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3062			EP_GETTING_NO_STREAMS;
3063
3064		xhci_endpoint_copy(xhci, command->in_ctx,
3065				vdev->out_ctx, ep_index);
3066		xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3067				&vdev->eps[ep_index]);
3068	}
3069	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3070			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3071	spin_unlock_irqrestore(&xhci->lock, flags);
3072
3073	/* Issue and wait for the configure endpoint command,
3074	 * which must succeed.
3075	 */
3076	ret = xhci_configure_endpoint(xhci, udev, command,
3077			false, true);
3078
3079	/* xHC rejected the configure endpoint command for some reason, so we
3080	 * leave the streams rings intact.
3081	 */
3082	if (ret < 0)
3083		return ret;
3084
3085	spin_lock_irqsave(&xhci->lock, flags);
3086	for (i = 0; i < num_eps; i++) {
3087		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3088		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3089		vdev->eps[ep_index].stream_info = NULL;
3090		/* FIXME Unset maxPstreams in endpoint context and
3091		 * update deq ptr to point to normal string ring.
3092		 */
3093		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3094		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3095	}
3096	spin_unlock_irqrestore(&xhci->lock, flags);
3097
3098	return 0;
3099}
3100
3101/*
3102 * Deletes endpoint resources for endpoints that were active before a Reset
3103 * Device command, or a Disable Slot command.  The Reset Device command leaves
3104 * the control endpoint intact, whereas the Disable Slot command deletes it.
3105 *
3106 * Must be called with xhci->lock held.
3107 */
3108void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3109	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3110{
3111	int i;
3112	unsigned int num_dropped_eps = 0;
3113	unsigned int drop_flags = 0;
3114
3115	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3116		if (virt_dev->eps[i].ring) {
3117			drop_flags |= 1 << i;
3118			num_dropped_eps++;
3119		}
3120	}
3121	xhci->num_active_eps -= num_dropped_eps;
3122	if (num_dropped_eps)
3123		xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3124				"%u now active.\n",
3125				num_dropped_eps, drop_flags,
3126				xhci->num_active_eps);
3127}
3128
3129/*
3130 * This submits a Reset Device Command, which will set the device state to 0,
3131 * set the device address to 0, and disable all the endpoints except the default
3132 * control endpoint.  The USB core should come back and call
3133 * xhci_address_device(), and then re-set up the configuration.  If this is
3134 * called because of a usb_reset_and_verify_device(), then the old alternate
3135 * settings will be re-installed through the normal bandwidth allocation
3136 * functions.
3137 *
3138 * Wait for the Reset Device command to finish.  Remove all structures
3139 * associated with the endpoints that were disabled.  Clear the input device
3140 * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3141 *
3142 * If the virt_dev to be reset does not exist or does not match the udev,
3143 * it means the device is lost, possibly due to the xHC restore error and
3144 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3145 * re-allocate the device.
3146 */
3147int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3148{
3149	int ret, i;
3150	unsigned long flags;
3151	struct xhci_hcd *xhci;
3152	unsigned int slot_id;
3153	struct xhci_virt_device *virt_dev;
3154	struct xhci_command *reset_device_cmd;
3155	int timeleft;
3156	int last_freed_endpoint;
3157	struct xhci_slot_ctx *slot_ctx;
3158	int old_active_eps = 0;
3159
3160	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3161	if (ret <= 0)
3162		return ret;
3163	xhci = hcd_to_xhci(hcd);
3164	slot_id = udev->slot_id;
3165	virt_dev = xhci->devs[slot_id];
3166	if (!virt_dev) {
3167		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3168				"not exist. Re-allocate the device\n", slot_id);
3169		ret = xhci_alloc_dev(hcd, udev);
3170		if (ret == 1)
3171			return 0;
3172		else
3173			return -EINVAL;
3174	}
3175
3176	if (virt_dev->udev != udev) {
3177		/* If the virt_dev and the udev does not match, this virt_dev
3178		 * may belong to another udev.
3179		 * Re-allocate the device.
3180		 */
3181		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3182				"not match the udev. Re-allocate the device\n",
3183				slot_id);
3184		ret = xhci_alloc_dev(hcd, udev);
3185		if (ret == 1)
3186			return 0;
3187		else
3188			return -EINVAL;
3189	}
3190
3191	/* If device is not setup, there is no point in resetting it */
3192	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3193	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3194						SLOT_STATE_DISABLED)
3195		return 0;
3196
3197	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3198	/* Allocate the command structure that holds the struct completion.
3199	 * Assume we're in process context, since the normal device reset
3200	 * process has to wait for the device anyway.  Storage devices are
3201	 * reset as part of error handling, so use GFP_NOIO instead of
3202	 * GFP_KERNEL.
3203	 */
3204	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3205	if (!reset_device_cmd) {
3206		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3207		return -ENOMEM;
3208	}
3209
3210	/* Attempt to submit the Reset Device command to the command ring */
3211	spin_lock_irqsave(&xhci->lock, flags);
3212	reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3213
3214	/* Enqueue pointer can be left pointing to the link TRB,
3215	 * we must handle that
3216	 */
3217	if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3218		reset_device_cmd->command_trb =
3219			xhci->cmd_ring->enq_seg->next->trbs;
3220
3221	list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3222	ret = xhci_queue_reset_device(xhci, slot_id);
3223	if (ret) {
3224		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3225		list_del(&reset_device_cmd->cmd_list);
3226		spin_unlock_irqrestore(&xhci->lock, flags);
3227		goto command_cleanup;
3228	}
3229	xhci_ring_cmd_db(xhci);
3230	spin_unlock_irqrestore(&xhci->lock, flags);
3231
3232	/* Wait for the Reset Device command to finish */
3233	timeleft = wait_for_completion_interruptible_timeout(
3234			reset_device_cmd->completion,
3235			USB_CTRL_SET_TIMEOUT);
3236	if (timeleft <= 0) {
3237		xhci_warn(xhci, "%s while waiting for reset device command\n",
3238				timeleft == 0 ? "Timeout" : "Signal");
3239		spin_lock_irqsave(&xhci->lock, flags);
3240		/* The timeout might have raced with the event ring handler, so
3241		 * only delete from the list if the item isn't poisoned.
3242		 */
3243		if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3244			list_del(&reset_device_cmd->cmd_list);
3245		spin_unlock_irqrestore(&xhci->lock, flags);
3246		ret = -ETIME;
3247		goto command_cleanup;
3248	}
3249
3250	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3251	 * unless we tried to reset a slot ID that wasn't enabled,
3252	 * or the device wasn't in the addressed or configured state.
3253	 */
3254	ret = reset_device_cmd->status;
3255	switch (ret) {
3256	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3257	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3258		xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3259				slot_id,
3260				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3261		xhci_info(xhci, "Not freeing device rings.\n");
3262		/* Don't treat this as an error.  May change my mind later. */
3263		ret = 0;
3264		goto command_cleanup;
3265	case COMP_SUCCESS:
3266		xhci_dbg(xhci, "Successful reset device command.\n");
3267		break;
3268	default:
3269		if (xhci_is_vendor_info_code(xhci, ret))
3270			break;
3271		xhci_warn(xhci, "Unknown completion code %u for "
3272				"reset device command.\n", ret);
3273		ret = -EINVAL;
3274		goto command_cleanup;
3275	}
3276
3277	/* Free up host controller endpoint resources */
3278	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3279		spin_lock_irqsave(&xhci->lock, flags);
3280		/* Don't delete the default control endpoint resources */
3281		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3282		spin_unlock_irqrestore(&xhci->lock, flags);
3283	}
3284
3285	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3286	last_freed_endpoint = 1;
3287	for (i = 1; i < 31; ++i) {
3288		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3289
3290		if (ep->ep_state & EP_HAS_STREAMS) {
3291			xhci_free_stream_info(xhci, ep->stream_info);
3292			ep->stream_info = NULL;
3293			ep->ep_state &= ~EP_HAS_STREAMS;
3294		}
3295
3296		if (ep->ring) {
3297			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3298			last_freed_endpoint = i;
3299		}
3300		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3301			xhci_drop_ep_from_interval_table(xhci,
3302					&virt_dev->eps[i].bw_info,
3303					virt_dev->bw_table,
3304					udev,
3305					&virt_dev->eps[i],
3306					virt_dev->tt_info);
3307		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3308	}
3309	/* If necessary, update the number of active TTs on this root port */
3310	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3311
3312	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3313	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3314	ret = 0;
3315
3316command_cleanup:
3317	xhci_free_command(xhci, reset_device_cmd);
3318	return ret;
3319}
3320
3321/*
3322 * At this point, the struct usb_device is about to go away, the device has
3323 * disconnected, and all traffic has been stopped and the endpoints have been
3324 * disabled.  Free any HC data structures associated with that device.
3325 */
3326void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3327{
3328	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3329	struct xhci_virt_device *virt_dev;
3330	unsigned long flags;
3331	u32 state;
3332	int i, ret;
3333
3334	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3335	/* If the host is halted due to driver unload, we still need to free the
3336	 * device.
3337	 */
3338	if (ret <= 0 && ret != -ENODEV)
3339		return;
3340
3341	virt_dev = xhci->devs[udev->slot_id];
3342
3343	/* Stop any wayward timer functions (which may grab the lock) */
3344	for (i = 0; i < 31; ++i) {
3345		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3346		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3347	}
3348
3349	if (udev->usb2_hw_lpm_enabled) {
3350		xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3351		udev->usb2_hw_lpm_enabled = 0;
3352	}
3353
3354	spin_lock_irqsave(&xhci->lock, flags);
3355	/* Don't disable the slot if the host controller is dead. */
3356	state = xhci_readl(xhci, &xhci->op_regs->status);
3357	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3358			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3359		xhci_free_virt_device(xhci, udev->slot_id);
3360		spin_unlock_irqrestore(&xhci->lock, flags);
3361		return;
3362	}
3363
3364	if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3365		spin_unlock_irqrestore(&xhci->lock, flags);
3366		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3367		return;
3368	}
3369	xhci_ring_cmd_db(xhci);
3370	spin_unlock_irqrestore(&xhci->lock, flags);
3371	/*
3372	 * Event command completion handler will free any data structures
3373	 * associated with the slot.  XXX Can free sleep?
3374	 */
3375}
3376
3377/*
3378 * Checks if we have enough host controller resources for the default control
3379 * endpoint.
3380 *
3381 * Must be called with xhci->lock held.
3382 */
3383static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3384{
3385	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3386		xhci_dbg(xhci, "Not enough ep ctxs: "
3387				"%u active, need to add 1, limit is %u.\n",
3388				xhci->num_active_eps, xhci->limit_active_eps);
3389		return -ENOMEM;
3390	}
3391	xhci->num_active_eps += 1;
3392	xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3393			xhci->num_active_eps);
3394	return 0;
3395}
3396
3397
3398/*
3399 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3400 * timed out, or allocating memory failed.  Returns 1 on success.
3401 */
3402int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3403{
3404	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3405	unsigned long flags;
3406	int timeleft;
3407	int ret;
3408
3409	spin_lock_irqsave(&xhci->lock, flags);
3410	ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3411	if (ret) {
3412		spin_unlock_irqrestore(&xhci->lock, flags);
3413		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3414		return 0;
3415	}
3416	xhci_ring_cmd_db(xhci);
3417	spin_unlock_irqrestore(&xhci->lock, flags);
3418
3419	/* XXX: how much time for xHC slot assignment? */
3420	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3421			USB_CTRL_SET_TIMEOUT);
3422	if (timeleft <= 0) {
3423		xhci_warn(xhci, "%s while waiting for a slot\n",
3424				timeleft == 0 ? "Timeout" : "Signal");
3425		/* FIXME cancel the enable slot request */
3426		return 0;
3427	}
3428
3429	if (!xhci->slot_id) {
3430		xhci_err(xhci, "Error while assigning device slot ID\n");
3431		return 0;
3432	}
3433
3434	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3435		spin_lock_irqsave(&xhci->lock, flags);
3436		ret = xhci_reserve_host_control_ep_resources(xhci);
3437		if (ret) {
3438			spin_unlock_irqrestore(&xhci->lock, flags);
3439			xhci_warn(xhci, "Not enough host resources, "
3440					"active endpoint contexts = %u\n",
3441					xhci->num_active_eps);
3442			goto disable_slot;
3443		}
3444		spin_unlock_irqrestore(&xhci->lock, flags);
3445	}
3446	/* Use GFP_NOIO, since this function can be called from
3447	 * xhci_discover_or_reset_device(), which may be called as part of
3448	 * mass storage driver error handling.
3449	 */
3450	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3451		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3452		goto disable_slot;
3453	}
3454	udev->slot_id = xhci->slot_id;
3455	/* Is this a LS or FS device under a HS hub? */
3456	/* Hub or peripherial? */
3457	return 1;
3458
3459disable_slot:
3460	/* Disable slot, if we can do it without mem alloc */
3461	spin_lock_irqsave(&xhci->lock, flags);
3462	if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3463		xhci_ring_cmd_db(xhci);
3464	spin_unlock_irqrestore(&xhci->lock, flags);
3465	return 0;
3466}
3467
3468/*
3469 * Issue an Address Device command (which will issue a SetAddress request to
3470 * the device).
3471 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3472 * we should only issue and wait on one address command at the same time.
3473 *
3474 * We add one to the device address issued by the hardware because the USB core
3475 * uses address 1 for the root hubs (even though they're not really devices).
3476 */
3477int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3478{
3479	unsigned long flags;
3480	int timeleft;
3481	struct xhci_virt_device *virt_dev;
3482	int ret = 0;
3483	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3484	struct xhci_slot_ctx *slot_ctx;
3485	struct xhci_input_control_ctx *ctrl_ctx;
3486	u64 temp_64;
3487
3488	if (!udev->slot_id) {
3489		xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3490		return -EINVAL;
3491	}
3492
3493	virt_dev = xhci->devs[udev->slot_id];
3494
3495	if (WARN_ON(!virt_dev)) {
3496		/*
3497		 * In plug/unplug torture test with an NEC controller,
3498		 * a zero-dereference was observed once due to virt_dev = 0.
3499		 * Print useful debug rather than crash if it is observed again!
3500		 */
3501		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3502			udev->slot_id);
3503		return -EINVAL;
3504	}
3505
3506	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3507	/*
3508	 * If this is the first Set Address since device plug-in or
3509	 * virt_device realloaction after a resume with an xHCI power loss,
3510	 * then set up the slot context.
3511	 */
3512	if (!slot_ctx->dev_info)
3513		xhci_setup_addressable_virt_dev(xhci, udev);
3514	/* Otherwise, update the control endpoint ring enqueue pointer. */
3515	else
3516		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3517	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3518	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3519	ctrl_ctx->drop_flags = 0;
3520
3521	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3522	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3523
3524	spin_lock_irqsave(&xhci->lock, flags);
3525	ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3526					udev->slot_id);
3527	if (ret) {
3528		spin_unlock_irqrestore(&xhci->lock, flags);
3529		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3530		return ret;
3531	}
3532	xhci_ring_cmd_db(xhci);
3533	spin_unlock_irqrestore(&xhci->lock, flags);
3534
3535	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3536	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3537			USB_CTRL_SET_TIMEOUT);
3538	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3539	 * the SetAddress() "recovery interval" required by USB and aborting the
3540	 * command on a timeout.
3541	 */
3542	if (timeleft <= 0) {
3543		xhci_warn(xhci, "%s while waiting for address device command\n",
3544				timeleft == 0 ? "Timeout" : "Signal");
3545		/* FIXME cancel the address device command */
3546		return -ETIME;
3547	}
3548
3549	switch (virt_dev->cmd_status) {
3550	case COMP_CTX_STATE:
3551	case COMP_EBADSLT:
3552		xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3553				udev->slot_id);
3554		ret = -EINVAL;
3555		break;
3556	case COMP_TX_ERR:
3557		dev_warn(&udev->dev, "Device not responding to set address.\n");
3558		ret = -EPROTO;
3559		break;
3560	case COMP_DEV_ERR:
3561		dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3562				"device command.\n");
3563		ret = -ENODEV;
3564		break;
3565	case COMP_SUCCESS:
3566		xhci_dbg(xhci, "Successful Address Device command\n");
3567		break;
3568	default:
3569		xhci_err(xhci, "ERROR: unexpected command completion "
3570				"code 0x%x.\n", virt_dev->cmd_status);
3571		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3572		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3573		ret = -EINVAL;
3574		break;
3575	}
3576	if (ret) {
3577		return ret;
3578	}
3579	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3580	xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3581	xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3582		 udev->slot_id,
3583		 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3584		 (unsigned long long)
3585		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3586	xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3587			(unsigned long long)virt_dev->out_ctx->dma);
3588	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3589	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3590	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3591	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3592	/*
3593	 * USB core uses address 1 for the roothubs, so we add one to the
3594	 * address given back to us by the HC.
3595	 */
3596	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3597	/* Use kernel assigned address for devices; store xHC assigned
3598	 * address locally. */
3599	virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3600		+ 1;
3601	/* Zero the input context control for later use */
3602	ctrl_ctx->add_flags = 0;
3603	ctrl_ctx->drop_flags = 0;
3604
3605	xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3606
3607	return 0;
3608}
3609
3610#ifdef CONFIG_USB_SUSPEND
3611
3612/* BESL to HIRD Encoding array for USB2 LPM */
3613static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3614	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3615
3616/* Calculate HIRD/BESL for USB2 PORTPMSC*/
3617static int xhci_calculate_hird_besl(int u2del, bool use_besl)
3618{
3619	int hird;
3620
3621	if (use_besl) {
3622		for (hird = 0; hird < 16; hird++) {
3623			if (xhci_besl_encoding[hird] >= u2del)
3624				break;
3625		}
3626	} else {
3627		if (u2del <= 50)
3628			hird = 0;
3629		else
3630			hird = (u2del - 51) / 75 + 1;
3631
3632		if (hird > 15)
3633			hird = 15;
3634	}
3635
3636	return hird;
3637}
3638
3639static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3640					struct usb_device *udev)
3641{
3642	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3643	struct dev_info	*dev_info;
3644	__le32 __iomem	**port_array;
3645	__le32 __iomem	*addr, *pm_addr;
3646	u32		temp, dev_id;
3647	unsigned int	port_num;
3648	unsigned long	flags;
3649	int		u2del, hird;
3650	int		ret;
3651
3652	if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3653			!udev->lpm_capable)
3654		return -EINVAL;
3655
3656	/* we only support lpm for non-hub device connected to root hub yet */
3657	if (!udev->parent || udev->parent->parent ||
3658			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3659		return -EINVAL;
3660
3661	spin_lock_irqsave(&xhci->lock, flags);
3662
3663	/* Look for devices in lpm_failed_devs list */
3664	dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3665			le16_to_cpu(udev->descriptor.idProduct);
3666	list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3667		if (dev_info->dev_id == dev_id) {
3668			ret = -EINVAL;
3669			goto finish;
3670		}
3671	}
3672
3673	port_array = xhci->usb2_ports;
3674	port_num = udev->portnum - 1;
3675
3676	if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3677		xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3678		ret = -EINVAL;
3679		goto finish;
3680	}
3681
3682	/*
3683	 * Test USB 2.0 software LPM.
3684	 * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3685	 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3686	 * in the June 2011 errata release.
3687	 */
3688	xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3689	/*
3690	 * Set L1 Device Slot and HIRD/BESL.
3691	 * Check device's USB 2.0 extension descriptor to determine whether
3692	 * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3693	 */
3694	pm_addr = port_array[port_num] + 1;
3695	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3696	if (le32_to_cpu(udev->bos->ext_cap->bmAttributes) & (1 << 2))
3697		hird = xhci_calculate_hird_besl(u2del, 1);
3698	else
3699		hird = xhci_calculate_hird_besl(u2del, 0);
3700
3701	temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3702	xhci_writel(xhci, temp, pm_addr);
3703
3704	/* Set port link state to U2(L1) */
3705	addr = port_array[port_num];
3706	xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3707
3708	/* wait for ACK */
3709	spin_unlock_irqrestore(&xhci->lock, flags);
3710	msleep(10);
3711	spin_lock_irqsave(&xhci->lock, flags);
3712
3713	/* Check L1 Status */
3714	ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3715	if (ret != -ETIMEDOUT) {
3716		/* enter L1 successfully */
3717		temp = xhci_readl(xhci, addr);
3718		xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3719				port_num, temp);
3720		ret = 0;
3721	} else {
3722		temp = xhci_readl(xhci, pm_addr);
3723		xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3724				port_num, temp & PORT_L1S_MASK);
3725		ret = -EINVAL;
3726	}
3727
3728	/* Resume the port */
3729	xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3730
3731	spin_unlock_irqrestore(&xhci->lock, flags);
3732	msleep(10);
3733	spin_lock_irqsave(&xhci->lock, flags);
3734
3735	/* Clear PLC */
3736	xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3737
3738	/* Check PORTSC to make sure the device is in the right state */
3739	if (!ret) {
3740		temp = xhci_readl(xhci, addr);
3741		xhci_dbg(xhci, "resumed port %d status 0x%x\n",	port_num, temp);
3742		if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3743				(temp & PORT_PLS_MASK) != XDEV_U0) {
3744			xhci_dbg(xhci, "port L1 resume fail\n");
3745			ret = -EINVAL;
3746		}
3747	}
3748
3749	if (ret) {
3750		/* Insert dev to lpm_failed_devs list */
3751		xhci_warn(xhci, "device LPM test failed, may disconnect and "
3752				"re-enumerate\n");
3753		dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3754		if (!dev_info) {
3755			ret = -ENOMEM;
3756			goto finish;
3757		}
3758		dev_info->dev_id = dev_id;
3759		INIT_LIST_HEAD(&dev_info->list);
3760		list_add(&dev_info->list, &xhci->lpm_failed_devs);
3761	} else {
3762		xhci_ring_device(xhci, udev->slot_id);
3763	}
3764
3765finish:
3766	spin_unlock_irqrestore(&xhci->lock, flags);
3767	return ret;
3768}
3769
3770int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3771			struct usb_device *udev, int enable)
3772{
3773	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3774	__le32 __iomem	**port_array;
3775	__le32 __iomem	*pm_addr;
3776	u32		temp;
3777	unsigned int	port_num;
3778	unsigned long	flags;
3779	int		u2del, hird;
3780
3781	if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3782			!udev->lpm_capable)
3783		return -EPERM;
3784
3785	if (!udev->parent || udev->parent->parent ||
3786			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3787		return -EPERM;
3788
3789	if (udev->usb2_hw_lpm_capable != 1)
3790		return -EPERM;
3791
3792	spin_lock_irqsave(&xhci->lock, flags);
3793
3794	port_array = xhci->usb2_ports;
3795	port_num = udev->portnum - 1;
3796	pm_addr = port_array[port_num] + 1;
3797	temp = xhci_readl(xhci, pm_addr);
3798
3799	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
3800			enable ? "enable" : "disable", port_num);
3801
3802	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3803	if (le32_to_cpu(udev->bos->ext_cap->bmAttributes) & (1 << 2))
3804		hird = xhci_calculate_hird_besl(u2del, 1);
3805	else
3806		hird = xhci_calculate_hird_besl(u2del, 0);
3807
3808	if (enable) {
3809		temp &= ~PORT_HIRD_MASK;
3810		temp |= PORT_HIRD(hird) | PORT_RWE;
3811		xhci_writel(xhci, temp, pm_addr);
3812		temp = xhci_readl(xhci, pm_addr);
3813		temp |= PORT_HLE;
3814		xhci_writel(xhci, temp, pm_addr);
3815	} else {
3816		temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
3817		xhci_writel(xhci, temp, pm_addr);
3818	}
3819
3820	spin_unlock_irqrestore(&xhci->lock, flags);
3821	return 0;
3822}
3823
3824int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3825{
3826	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3827	int		ret;
3828
3829	ret = xhci_usb2_software_lpm_test(hcd, udev);
3830	if (!ret) {
3831		xhci_dbg(xhci, "software LPM test succeed\n");
3832		if (xhci->hw_lpm_support == 1) {
3833			udev->usb2_hw_lpm_capable = 1;
3834			ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
3835			if (!ret)
3836				udev->usb2_hw_lpm_enabled = 1;
3837		}
3838	}
3839
3840	return 0;
3841}
3842
3843#else
3844
3845int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3846				struct usb_device *udev, int enable)
3847{
3848	return 0;
3849}
3850
3851int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3852{
3853	return 0;
3854}
3855
3856#endif /* CONFIG_USB_SUSPEND */
3857
3858/* Once a hub descriptor is fetched for a device, we need to update the xHC's
3859 * internal data structures for the device.
3860 */
3861int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
3862			struct usb_tt *tt, gfp_t mem_flags)
3863{
3864	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3865	struct xhci_virt_device *vdev;
3866	struct xhci_command *config_cmd;
3867	struct xhci_input_control_ctx *ctrl_ctx;
3868	struct xhci_slot_ctx *slot_ctx;
3869	unsigned long flags;
3870	unsigned think_time;
3871	int ret;
3872
3873	/* Ignore root hubs */
3874	if (!hdev->parent)
3875		return 0;
3876
3877	vdev = xhci->devs[hdev->slot_id];
3878	if (!vdev) {
3879		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
3880		return -EINVAL;
3881	}
3882	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3883	if (!config_cmd) {
3884		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3885		return -ENOMEM;
3886	}
3887
3888	spin_lock_irqsave(&xhci->lock, flags);
3889	if (hdev->speed == USB_SPEED_HIGH &&
3890			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
3891		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
3892		xhci_free_command(xhci, config_cmd);
3893		spin_unlock_irqrestore(&xhci->lock, flags);
3894		return -ENOMEM;
3895	}
3896
3897	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
3898	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3899	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3900	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
3901	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
3902	if (tt->multi)
3903		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
3904	if (xhci->hci_version > 0x95) {
3905		xhci_dbg(xhci, "xHCI version %x needs hub "
3906				"TT think time and number of ports\n",
3907				(unsigned int) xhci->hci_version);
3908		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
3909		/* Set TT think time - convert from ns to FS bit times.
3910		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
3911		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
3912		 *
3913		 * xHCI 1.0: this field shall be 0 if the device is not a
3914		 * High-spped hub.
3915		 */
3916		think_time = tt->think_time;
3917		if (think_time != 0)
3918			think_time = (think_time / 666) - 1;
3919		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
3920			slot_ctx->tt_info |=
3921				cpu_to_le32(TT_THINK_TIME(think_time));
3922	} else {
3923		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
3924				"TT think time or number of ports\n",
3925				(unsigned int) xhci->hci_version);
3926	}
3927	slot_ctx->dev_state = 0;
3928	spin_unlock_irqrestore(&xhci->lock, flags);
3929
3930	xhci_dbg(xhci, "Set up %s for hub device.\n",
3931			(xhci->hci_version > 0x95) ?
3932			"configure endpoint" : "evaluate context");
3933	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
3934	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
3935
3936	/* Issue and wait for the configure endpoint or
3937	 * evaluate context command.
3938	 */
3939	if (xhci->hci_version > 0x95)
3940		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3941				false, false);
3942	else
3943		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3944				true, false);
3945
3946	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
3947	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
3948
3949	xhci_free_command(xhci, config_cmd);
3950	return ret;
3951}
3952
3953int xhci_get_frame(struct usb_hcd *hcd)
3954{
3955	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3956	/* EHCI mods by the periodic size.  Why? */
3957	return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
3958}
3959
3960int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
3961{
3962	struct xhci_hcd		*xhci;
3963	struct device		*dev = hcd->self.controller;
3964	int			retval;
3965	u32			temp;
3966
3967	hcd->self.sg_tablesize = TRBS_PER_SEGMENT - 2;
3968
3969	if (usb_hcd_is_primary_hcd(hcd)) {
3970		xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
3971		if (!xhci)
3972			return -ENOMEM;
3973		*((struct xhci_hcd **) hcd->hcd_priv) = xhci;
3974		xhci->main_hcd = hcd;
3975		/* Mark the first roothub as being USB 2.0.
3976		 * The xHCI driver will register the USB 3.0 roothub.
3977		 */
3978		hcd->speed = HCD_USB2;
3979		hcd->self.root_hub->speed = USB_SPEED_HIGH;
3980		/*
3981		 * USB 2.0 roothub under xHCI has an integrated TT,
3982		 * (rate matching hub) as opposed to having an OHCI/UHCI
3983		 * companion controller.
3984		 */
3985		hcd->has_tt = 1;
3986	} else {
3987		/* xHCI private pointer was set in xhci_pci_probe for the second
3988		 * registered roothub.
3989		 */
3990		xhci = hcd_to_xhci(hcd);
3991		temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
3992		if (HCC_64BIT_ADDR(temp)) {
3993			xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
3994			dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
3995		} else {
3996			dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
3997		}
3998		return 0;
3999	}
4000
4001	xhci->cap_regs = hcd->regs;
4002	xhci->op_regs = hcd->regs +
4003		HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4004	xhci->run_regs = hcd->regs +
4005		(xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4006	/* Cache read-only capability registers */
4007	xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4008	xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4009	xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4010	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4011	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4012	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4013	xhci_print_registers(xhci);
4014
4015	get_quirks(dev, xhci);
4016
4017	/* Make sure the HC is halted. */
4018	retval = xhci_halt(xhci);
4019	if (retval)
4020		goto error;
4021
4022	xhci_dbg(xhci, "Resetting HCD\n");
4023	/* Reset the internal HC memory state and registers. */
4024	retval = xhci_reset(xhci);
4025	if (retval)
4026		goto error;
4027	xhci_dbg(xhci, "Reset complete\n");
4028
4029	temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4030	if (HCC_64BIT_ADDR(temp)) {
4031		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4032		dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4033	} else {
4034		dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4035	}
4036
4037	xhci_dbg(xhci, "Calling HCD init\n");
4038	/* Initialize HCD and host controller data structures. */
4039	retval = xhci_init(hcd);
4040	if (retval)
4041		goto error;
4042	xhci_dbg(xhci, "Called HCD init\n");
4043	return 0;
4044error:
4045	kfree(xhci);
4046	return retval;
4047}
4048
4049MODULE_DESCRIPTION(DRIVER_DESC);
4050MODULE_AUTHOR(DRIVER_AUTHOR);
4051MODULE_LICENSE("GPL");
4052
4053static int __init xhci_hcd_init(void)
4054{
4055	int retval;
4056
4057	retval = xhci_register_pci();
4058	if (retval < 0) {
4059		printk(KERN_DEBUG "Problem registering PCI driver.");
4060		return retval;
4061	}
4062	/*
4063	 * Check the compiler generated sizes of structures that must be laid
4064	 * out in specific ways for hardware access.
4065	 */
4066	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4067	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4068	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4069	/* xhci_device_control has eight fields, and also
4070	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4071	 */
4072	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4073	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4074	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4075	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4076	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4077	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4078	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4079	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4080	return 0;
4081}
4082module_init(xhci_hcd_init);
4083
4084static void __exit xhci_hcd_cleanup(void)
4085{
4086	xhci_unregister_pci();
4087}
4088module_exit(xhci_hcd_cleanup);
4089