1/*
2 * Octeon Watchdog driver
3 *
4 * Copyright (C) 2007, 2008, 2009, 2010 Cavium Networks
5 *
6 * Some parts derived from wdt.c
7 *
8 *	(c) Copyright 1996-1997 Alan Cox <alan@lxorguk.ukuu.org.uk>,
9 *						All Rights Reserved.
10 *
11 *	This program is free software; you can redistribute it and/or
12 *	modify it under the terms of the GNU General Public License
13 *	as published by the Free Software Foundation; either version
14 *	2 of the License, or (at your option) any later version.
15 *
16 *	Neither Alan Cox nor CymruNet Ltd. admit liability nor provide
17 *	warranty for any of this software. This material is provided
18 *	"AS-IS" and at no charge.
19 *
20 *	(c) Copyright 1995    Alan Cox <alan@lxorguk.ukuu.org.uk>
21 *
22 * This file is subject to the terms and conditions of the GNU General Public
23 * License.  See the file "COPYING" in the main directory of this archive
24 * for more details.
25 *
26 *
27 * The OCTEON watchdog has a maximum timeout of 2^32 * io_clock.
28 * For most systems this is less than 10 seconds, so to allow for
29 * software to request longer watchdog heartbeats, we maintain software
30 * counters to count multiples of the base rate.  If the system locks
31 * up in such a manner that we can not run the software counters, the
32 * only result is a watchdog reset sooner than was requested.  But
33 * that is OK, because in this case userspace would likely not be able
34 * to do anything anyhow.
35 *
36 * The hardware watchdog interval we call the period.  The OCTEON
37 * watchdog goes through several stages, after the first period an
38 * irq is asserted, then if it is not reset, after the next period NMI
39 * is asserted, then after an additional period a chip wide soft reset.
40 * So for the software counters, we reset watchdog after each period
41 * and decrement the counter.  But for the last two periods we need to
42 * let the watchdog progress to the NMI stage so we disable the irq
43 * and let it proceed.  Once in the NMI, we print the register state
44 * to the serial port and then wait for the reset.
45 *
46 * A watchdog is maintained for each CPU in the system, that way if
47 * one CPU suffers a lockup, we also get a register dump and reset.
48 * The userspace ping resets the watchdog on all CPUs.
49 *
50 * Before userspace opens the watchdog device, we still run the
51 * watchdogs to catch any lockups that may be kernel related.
52 *
53 */
54
55#include <linux/miscdevice.h>
56#include <linux/interrupt.h>
57#include <linux/watchdog.h>
58#include <linux/cpumask.h>
59#include <linux/bitops.h>
60#include <linux/kernel.h>
61#include <linux/module.h>
62#include <linux/string.h>
63#include <linux/delay.h>
64#include <linux/cpu.h>
65#include <linux/smp.h>
66#include <linux/fs.h>
67#include <linux/irq.h>
68
69#include <asm/mipsregs.h>
70#include <asm/uasm.h>
71
72#include <asm/octeon/octeon.h>
73
74/* The count needed to achieve timeout_sec. */
75static unsigned int timeout_cnt;
76
77/* The maximum period supported. */
78static unsigned int max_timeout_sec;
79
80/* The current period.  */
81static unsigned int timeout_sec;
82
83/* Set to non-zero when userspace countdown mode active */
84static int do_coundown;
85static unsigned int countdown_reset;
86static unsigned int per_cpu_countdown[NR_CPUS];
87
88static cpumask_t irq_enabled_cpus;
89
90#define WD_TIMO 60			/* Default heartbeat = 60 seconds */
91
92static int heartbeat = WD_TIMO;
93module_param(heartbeat, int, S_IRUGO);
94MODULE_PARM_DESC(heartbeat,
95	"Watchdog heartbeat in seconds. (0 < heartbeat, default="
96				__MODULE_STRING(WD_TIMO) ")");
97
98static int nowayout = WATCHDOG_NOWAYOUT;
99module_param(nowayout, int, S_IRUGO);
100MODULE_PARM_DESC(nowayout,
101	"Watchdog cannot be stopped once started (default="
102				__MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
103
104static unsigned long octeon_wdt_is_open;
105static char expect_close;
106
107static u32 __initdata nmi_stage1_insns[64];
108/* We need one branch and therefore one relocation per target label. */
109static struct uasm_label __initdata labels[5];
110static struct uasm_reloc __initdata relocs[5];
111
112enum lable_id {
113	label_enter_bootloader = 1
114};
115
116/* Some CP0 registers */
117#define K0		26
118#define C0_CVMMEMCTL 11, 7
119#define C0_STATUS 12, 0
120#define C0_EBASE 15, 1
121#define C0_DESAVE 31, 0
122
123void octeon_wdt_nmi_stage2(void);
124
125static void __init octeon_wdt_build_stage1(void)
126{
127	int i;
128	int len;
129	u32 *p = nmi_stage1_insns;
130#ifdef CONFIG_HOTPLUG_CPU
131	struct uasm_label *l = labels;
132	struct uasm_reloc *r = relocs;
133#endif
134
135	/*
136	 * For the next few instructions running the debugger may
137	 * cause corruption of k0 in the saved registers. Since we're
138	 * about to crash, nobody probably cares.
139	 *
140	 * Save K0 into the debug scratch register
141	 */
142	uasm_i_dmtc0(&p, K0, C0_DESAVE);
143
144	uasm_i_mfc0(&p, K0, C0_STATUS);
145#ifdef CONFIG_HOTPLUG_CPU
146	uasm_il_bbit0(&p, &r, K0, ilog2(ST0_NMI), label_enter_bootloader);
147#endif
148	/* Force 64-bit addressing enabled */
149	uasm_i_ori(&p, K0, K0, ST0_UX | ST0_SX | ST0_KX);
150	uasm_i_mtc0(&p, K0, C0_STATUS);
151
152#ifdef CONFIG_HOTPLUG_CPU
153	uasm_i_mfc0(&p, K0, C0_EBASE);
154	/* Coreid number in K0 */
155	uasm_i_andi(&p, K0, K0, 0xf);
156	/* 8 * coreid in bits 16-31 */
157	uasm_i_dsll_safe(&p, K0, K0, 3 + 16);
158	uasm_i_ori(&p, K0, K0, 0x8001);
159	uasm_i_dsll_safe(&p, K0, K0, 16);
160	uasm_i_ori(&p, K0, K0, 0x0700);
161	uasm_i_drotr_safe(&p, K0, K0, 32);
162	/*
163	 * Should result in: 0x8001,0700,0000,8*coreid which is
164	 * CVMX_CIU_WDOGX(coreid) - 0x0500
165	 *
166	 * Now ld K0, CVMX_CIU_WDOGX(coreid)
167	 */
168	uasm_i_ld(&p, K0, 0x500, K0);
169	/*
170	 * If bit one set handle the NMI as a watchdog event.
171	 * otherwise transfer control to bootloader.
172	 */
173	uasm_il_bbit0(&p, &r, K0, 1, label_enter_bootloader);
174	uasm_i_nop(&p);
175#endif
176
177	/* Clear Dcache so cvmseg works right. */
178	uasm_i_cache(&p, 1, 0, 0);
179
180	/* Use K0 to do a read/modify/write of CVMMEMCTL */
181	uasm_i_dmfc0(&p, K0, C0_CVMMEMCTL);
182	/* Clear out the size of CVMSEG	*/
183	uasm_i_dins(&p, K0, 0, 0, 6);
184	/* Set CVMSEG to its largest value */
185	uasm_i_ori(&p, K0, K0, 0x1c0 | 54);
186	/* Store the CVMMEMCTL value */
187	uasm_i_dmtc0(&p, K0, C0_CVMMEMCTL);
188
189	/* Load the address of the second stage handler */
190	UASM_i_LA(&p, K0, (long)octeon_wdt_nmi_stage2);
191	uasm_i_jr(&p, K0);
192	uasm_i_dmfc0(&p, K0, C0_DESAVE);
193
194#ifdef CONFIG_HOTPLUG_CPU
195	uasm_build_label(&l, p, label_enter_bootloader);
196	/* Jump to the bootloader and restore K0 */
197	UASM_i_LA(&p, K0, (long)octeon_bootloader_entry_addr);
198	uasm_i_jr(&p, K0);
199	uasm_i_dmfc0(&p, K0, C0_DESAVE);
200#endif
201	uasm_resolve_relocs(relocs, labels);
202
203	len = (int)(p - nmi_stage1_insns);
204	pr_debug("Synthesized NMI stage 1 handler (%d instructions).\n", len);
205
206	pr_debug("\t.set push\n");
207	pr_debug("\t.set noreorder\n");
208	for (i = 0; i < len; i++)
209		pr_debug("\t.word 0x%08x\n", nmi_stage1_insns[i]);
210	pr_debug("\t.set pop\n");
211
212	if (len > 32)
213		panic("NMI stage 1 handler exceeds 32 instructions, was %d\n", len);
214}
215
216static int cpu2core(int cpu)
217{
218#ifdef CONFIG_SMP
219	return cpu_logical_map(cpu);
220#else
221	return cvmx_get_core_num();
222#endif
223}
224
225static int core2cpu(int coreid)
226{
227#ifdef CONFIG_SMP
228	return cpu_number_map(coreid);
229#else
230	return 0;
231#endif
232}
233
234/**
235 * Poke the watchdog when an interrupt is received
236 *
237 * @cpl:
238 * @dev_id:
239 *
240 * Returns
241 */
242static irqreturn_t octeon_wdt_poke_irq(int cpl, void *dev_id)
243{
244	unsigned int core = cvmx_get_core_num();
245	int cpu = core2cpu(core);
246
247	if (do_coundown) {
248		if (per_cpu_countdown[cpu] > 0) {
249			/* We're alive, poke the watchdog */
250			cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
251			per_cpu_countdown[cpu]--;
252		} else {
253			/* Bad news, you are about to reboot. */
254			disable_irq_nosync(cpl);
255			cpumask_clear_cpu(cpu, &irq_enabled_cpus);
256		}
257	} else {
258		/* Not open, just ping away... */
259		cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
260	}
261	return IRQ_HANDLED;
262}
263
264/* From setup.c */
265extern int prom_putchar(char c);
266
267/**
268 * Write a string to the uart
269 *
270 * @str:        String to write
271 */
272static void octeon_wdt_write_string(const char *str)
273{
274	/* Just loop writing one byte at a time */
275	while (*str)
276		prom_putchar(*str++);
277}
278
279/**
280 * Write a hex number out of the uart
281 *
282 * @value:      Number to display
283 * @digits:     Number of digits to print (1 to 16)
284 */
285static void octeon_wdt_write_hex(u64 value, int digits)
286{
287	int d;
288	int v;
289	for (d = 0; d < digits; d++) {
290		v = (value >> ((digits - d - 1) * 4)) & 0xf;
291		if (v >= 10)
292			prom_putchar('a' + v - 10);
293		else
294			prom_putchar('0' + v);
295	}
296}
297
298const char *reg_name[] = {
299	"$0", "at", "v0", "v1", "a0", "a1", "a2", "a3",
300	"a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
301	"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
302	"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
303};
304
305/**
306 * NMI stage 3 handler. NMIs are handled in the following manner:
307 * 1) The first NMI handler enables CVMSEG and transfers from
308 * the bootbus region into normal memory. It is careful to not
309 * destroy any registers.
310 * 2) The second stage handler uses CVMSEG to save the registers
311 * and create a stack for C code. It then calls the third level
312 * handler with one argument, a pointer to the register values.
313 * 3) The third, and final, level handler is the following C
314 * function that prints out some useful infomration.
315 *
316 * @reg:    Pointer to register state before the NMI
317 */
318void octeon_wdt_nmi_stage3(u64 reg[32])
319{
320	u64 i;
321
322	unsigned int coreid = cvmx_get_core_num();
323	/*
324	 * Save status and cause early to get them before any changes
325	 * might happen.
326	 */
327	u64 cp0_cause = read_c0_cause();
328	u64 cp0_status = read_c0_status();
329	u64 cp0_error_epc = read_c0_errorepc();
330	u64 cp0_epc = read_c0_epc();
331
332	/* Delay so output from all cores output is not jumbled together. */
333	__delay(100000000ull * coreid);
334
335	octeon_wdt_write_string("\r\n*** NMI Watchdog interrupt on Core 0x");
336	octeon_wdt_write_hex(coreid, 1);
337	octeon_wdt_write_string(" ***\r\n");
338	for (i = 0; i < 32; i++) {
339		octeon_wdt_write_string("\t");
340		octeon_wdt_write_string(reg_name[i]);
341		octeon_wdt_write_string("\t0x");
342		octeon_wdt_write_hex(reg[i], 16);
343		if (i & 1)
344			octeon_wdt_write_string("\r\n");
345	}
346	octeon_wdt_write_string("\terr_epc\t0x");
347	octeon_wdt_write_hex(cp0_error_epc, 16);
348
349	octeon_wdt_write_string("\tepc\t0x");
350	octeon_wdt_write_hex(cp0_epc, 16);
351	octeon_wdt_write_string("\r\n");
352
353	octeon_wdt_write_string("\tstatus\t0x");
354	octeon_wdt_write_hex(cp0_status, 16);
355	octeon_wdt_write_string("\tcause\t0x");
356	octeon_wdt_write_hex(cp0_cause, 16);
357	octeon_wdt_write_string("\r\n");
358
359	octeon_wdt_write_string("\tsum0\t0x");
360	octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_SUM0(coreid * 2)), 16);
361	octeon_wdt_write_string("\ten0\t0x");
362	octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)), 16);
363	octeon_wdt_write_string("\r\n");
364
365	octeon_wdt_write_string("*** Chip soft reset soon ***\r\n");
366}
367
368static void octeon_wdt_disable_interrupt(int cpu)
369{
370	unsigned int core;
371	unsigned int irq;
372	union cvmx_ciu_wdogx ciu_wdog;
373
374	core = cpu2core(cpu);
375
376	irq = OCTEON_IRQ_WDOG0 + core;
377
378	/* Poke the watchdog to clear out its state */
379	cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
380
381	/* Disable the hardware. */
382	ciu_wdog.u64 = 0;
383	cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
384
385	free_irq(irq, octeon_wdt_poke_irq);
386}
387
388static void octeon_wdt_setup_interrupt(int cpu)
389{
390	unsigned int core;
391	unsigned int irq;
392	union cvmx_ciu_wdogx ciu_wdog;
393
394	core = cpu2core(cpu);
395
396	/* Disable it before doing anything with the interrupts. */
397	ciu_wdog.u64 = 0;
398	cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
399
400	per_cpu_countdown[cpu] = countdown_reset;
401
402	irq = OCTEON_IRQ_WDOG0 + core;
403
404	if (request_irq(irq, octeon_wdt_poke_irq,
405			IRQF_NO_THREAD, "octeon_wdt", octeon_wdt_poke_irq))
406		panic("octeon_wdt: Couldn't obtain irq %d", irq);
407
408	cpumask_set_cpu(cpu, &irq_enabled_cpus);
409
410	/* Poke the watchdog to clear out its state */
411	cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
412
413	/* Finally enable the watchdog now that all handlers are installed */
414	ciu_wdog.u64 = 0;
415	ciu_wdog.s.len = timeout_cnt;
416	ciu_wdog.s.mode = 3;	/* 3 = Interrupt + NMI + Soft-Reset */
417	cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
418}
419
420static int octeon_wdt_cpu_callback(struct notifier_block *nfb,
421					   unsigned long action, void *hcpu)
422{
423	unsigned int cpu = (unsigned long)hcpu;
424
425	switch (action) {
426	case CPU_DOWN_PREPARE:
427		octeon_wdt_disable_interrupt(cpu);
428		break;
429	case CPU_ONLINE:
430	case CPU_DOWN_FAILED:
431		octeon_wdt_setup_interrupt(cpu);
432		break;
433	default:
434		break;
435	}
436	return NOTIFY_OK;
437}
438
439static void octeon_wdt_ping(void)
440{
441	int cpu;
442	int coreid;
443
444	for_each_online_cpu(cpu) {
445		coreid = cpu2core(cpu);
446		cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
447		per_cpu_countdown[cpu] = countdown_reset;
448		if ((countdown_reset || !do_coundown) &&
449		    !cpumask_test_cpu(cpu, &irq_enabled_cpus)) {
450			/* We have to enable the irq */
451			int irq = OCTEON_IRQ_WDOG0 + coreid;
452			enable_irq(irq);
453			cpumask_set_cpu(cpu, &irq_enabled_cpus);
454		}
455	}
456}
457
458static void octeon_wdt_calc_parameters(int t)
459{
460	unsigned int periods;
461
462	timeout_sec = max_timeout_sec;
463
464
465	/*
466	 * Find the largest interrupt period, that can evenly divide
467	 * the requested heartbeat time.
468	 */
469	while ((t % timeout_sec) != 0)
470		timeout_sec--;
471
472	periods = t / timeout_sec;
473
474	/*
475	 * The last two periods are after the irq is disabled, and
476	 * then to the nmi, so we subtract them off.
477	 */
478
479	countdown_reset = periods > 2 ? periods - 2 : 0;
480	heartbeat = t;
481	timeout_cnt = ((octeon_get_io_clock_rate() >> 8) * timeout_sec) >> 8;
482}
483
484static int octeon_wdt_set_heartbeat(int t)
485{
486	int cpu;
487	int coreid;
488	union cvmx_ciu_wdogx ciu_wdog;
489
490	if (t <= 0)
491		return -1;
492
493	octeon_wdt_calc_parameters(t);
494
495	for_each_online_cpu(cpu) {
496		coreid = cpu2core(cpu);
497		cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
498		ciu_wdog.u64 = 0;
499		ciu_wdog.s.len = timeout_cnt;
500		ciu_wdog.s.mode = 3;	/* 3 = Interrupt + NMI + Soft-Reset */
501		cvmx_write_csr(CVMX_CIU_WDOGX(coreid), ciu_wdog.u64);
502		cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
503	}
504	octeon_wdt_ping(); /* Get the irqs back on. */
505	return 0;
506}
507
508/**
509 *	octeon_wdt_write:
510 *	@file: file handle to the watchdog
511 *	@buf: buffer to write (unused as data does not matter here
512 *	@count: count of bytes
513 *	@ppos: pointer to the position to write. No seeks allowed
514 *
515 *	A write to a watchdog device is defined as a keepalive signal. Any
516 *	write of data will do, as we we don't define content meaning.
517 */
518
519static ssize_t octeon_wdt_write(struct file *file, const char __user *buf,
520				size_t count, loff_t *ppos)
521{
522	if (count) {
523		if (!nowayout) {
524			size_t i;
525
526			/* In case it was set long ago */
527			expect_close = 0;
528
529			for (i = 0; i != count; i++) {
530				char c;
531				if (get_user(c, buf + i))
532					return -EFAULT;
533				if (c == 'V')
534					expect_close = 1;
535			}
536		}
537		octeon_wdt_ping();
538	}
539	return count;
540}
541
542/**
543 *	octeon_wdt_ioctl:
544 *	@file: file handle to the device
545 *	@cmd: watchdog command
546 *	@arg: argument pointer
547 *
548 *	The watchdog API defines a common set of functions for all
549 *	watchdogs according to their available features. We only
550 *	actually usefully support querying capabilities and setting
551 *	the timeout.
552 */
553
554static long octeon_wdt_ioctl(struct file *file, unsigned int cmd,
555			     unsigned long arg)
556{
557	void __user *argp = (void __user *)arg;
558	int __user *p = argp;
559	int new_heartbeat;
560
561	static struct watchdog_info ident = {
562		.options =		WDIOF_SETTIMEOUT|
563					WDIOF_MAGICCLOSE|
564					WDIOF_KEEPALIVEPING,
565		.firmware_version =	1,
566		.identity =		"OCTEON",
567	};
568
569	switch (cmd) {
570	case WDIOC_GETSUPPORT:
571		return copy_to_user(argp, &ident, sizeof(ident)) ? -EFAULT : 0;
572	case WDIOC_GETSTATUS:
573	case WDIOC_GETBOOTSTATUS:
574		return put_user(0, p);
575	case WDIOC_KEEPALIVE:
576		octeon_wdt_ping();
577		return 0;
578	case WDIOC_SETTIMEOUT:
579		if (get_user(new_heartbeat, p))
580			return -EFAULT;
581		if (octeon_wdt_set_heartbeat(new_heartbeat))
582			return -EINVAL;
583		/* Fall through. */
584	case WDIOC_GETTIMEOUT:
585		return put_user(heartbeat, p);
586	default:
587		return -ENOTTY;
588	}
589}
590
591/**
592 *	octeon_wdt_open:
593 *	@inode: inode of device
594 *	@file: file handle to device
595 *
596 *	The watchdog device has been opened. The watchdog device is single
597 *	open and on opening we do a ping to reset the counters.
598 */
599
600static int octeon_wdt_open(struct inode *inode, struct file *file)
601{
602	if (test_and_set_bit(0, &octeon_wdt_is_open))
603		return -EBUSY;
604	/*
605	 *	Activate
606	 */
607	octeon_wdt_ping();
608	do_coundown = 1;
609	return nonseekable_open(inode, file);
610}
611
612/**
613 *	octeon_wdt_release:
614 *	@inode: inode to board
615 *	@file: file handle to board
616 *
617 *	The watchdog has a configurable API. There is a religious dispute
618 *	between people who want their watchdog to be able to shut down and
619 *	those who want to be sure if the watchdog manager dies the machine
620 *	reboots. In the former case we disable the counters, in the latter
621 *	case you have to open it again very soon.
622 */
623
624static int octeon_wdt_release(struct inode *inode, struct file *file)
625{
626	if (expect_close) {
627		do_coundown = 0;
628		octeon_wdt_ping();
629	} else {
630		pr_crit("octeon_wdt: WDT device closed unexpectedly.  WDT will not stop!\n");
631	}
632	clear_bit(0, &octeon_wdt_is_open);
633	expect_close = 0;
634	return 0;
635}
636
637static const struct file_operations octeon_wdt_fops = {
638	.owner		= THIS_MODULE,
639	.llseek		= no_llseek,
640	.write		= octeon_wdt_write,
641	.unlocked_ioctl	= octeon_wdt_ioctl,
642	.open		= octeon_wdt_open,
643	.release	= octeon_wdt_release,
644};
645
646static struct miscdevice octeon_wdt_miscdev = {
647	.minor	= WATCHDOG_MINOR,
648	.name	= "watchdog",
649	.fops	= &octeon_wdt_fops,
650};
651
652static struct notifier_block octeon_wdt_cpu_notifier = {
653	.notifier_call = octeon_wdt_cpu_callback,
654};
655
656
657/**
658 * Module/ driver initialization.
659 *
660 * Returns Zero on success
661 */
662static int __init octeon_wdt_init(void)
663{
664	int i;
665	int ret;
666	int cpu;
667	u64 *ptr;
668
669	/*
670	 * Watchdog time expiration length = The 16 bits of LEN
671	 * represent the most significant bits of a 24 bit decrementer
672	 * that decrements every 256 cycles.
673	 *
674	 * Try for a timeout of 5 sec, if that fails a smaller number
675	 * of even seconds,
676	 */
677	max_timeout_sec = 6;
678	do {
679		max_timeout_sec--;
680		timeout_cnt = ((octeon_get_io_clock_rate() >> 8) * max_timeout_sec) >> 8;
681	} while (timeout_cnt > 65535);
682
683	BUG_ON(timeout_cnt == 0);
684
685	octeon_wdt_calc_parameters(heartbeat);
686
687	pr_info("octeon_wdt: Initial granularity %d Sec.\n", timeout_sec);
688
689	ret = misc_register(&octeon_wdt_miscdev);
690	if (ret) {
691		pr_err("octeon_wdt: cannot register miscdev on minor=%d (err=%d)\n",
692			WATCHDOG_MINOR, ret);
693		goto out;
694	}
695
696	/* Build the NMI handler ... */
697	octeon_wdt_build_stage1();
698
699	/* ... and install it. */
700	ptr = (u64 *) nmi_stage1_insns;
701	for (i = 0; i < 16; i++) {
702		cvmx_write_csr(CVMX_MIO_BOOT_LOC_ADR, i * 8);
703		cvmx_write_csr(CVMX_MIO_BOOT_LOC_DAT, ptr[i]);
704	}
705	cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0x81fc0000);
706
707	cpumask_clear(&irq_enabled_cpus);
708
709	for_each_online_cpu(cpu)
710		octeon_wdt_setup_interrupt(cpu);
711
712	register_hotcpu_notifier(&octeon_wdt_cpu_notifier);
713out:
714	return ret;
715}
716
717/**
718 * Module / driver shutdown
719 */
720static void __exit octeon_wdt_cleanup(void)
721{
722	int cpu;
723
724	misc_deregister(&octeon_wdt_miscdev);
725
726	unregister_hotcpu_notifier(&octeon_wdt_cpu_notifier);
727
728	for_each_online_cpu(cpu) {
729		int core = cpu2core(cpu);
730		/* Disable the watchdog */
731		cvmx_write_csr(CVMX_CIU_WDOGX(core), 0);
732		/* Free the interrupt handler */
733		free_irq(OCTEON_IRQ_WDOG0 + core, octeon_wdt_poke_irq);
734	}
735	/*
736	 * Disable the boot-bus memory, the code it points to is soon
737	 * to go missing.
738	 */
739	cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
740}
741
742MODULE_LICENSE("GPL");
743MODULE_AUTHOR("Cavium Networks <support@caviumnetworks.com>");
744MODULE_DESCRIPTION("Cavium Networks Octeon Watchdog driver.");
745module_init(octeon_wdt_init);
746module_exit(octeon_wdt_cleanup);
747