1/* 2 * linux/arch/alpha/kernel/core_t2.c 3 * 4 * Written by Jay A Estabrook (jestabro@amt.tay1.dec.com). 5 * December 1996. 6 * 7 * based on CIA code by David A Rusling (david.rusling@reo.mts.dec.com) 8 * 9 * Code common to all T2 core logic chips. 10 */ 11 12#define __EXTERN_INLINE 13#include <asm/io.h> 14#include <asm/core_t2.h> 15#undef __EXTERN_INLINE 16 17#include <linux/types.h> 18#include <linux/pci.h> 19#include <linux/sched.h> 20#include <linux/init.h> 21 22#include <asm/ptrace.h> 23#include <asm/delay.h> 24#include <asm/mce.h> 25 26#include "proto.h" 27#include "pci_impl.h" 28 29/* For dumping initial DMA window settings. */ 30#define DEBUG_PRINT_INITIAL_SETTINGS 0 31 32/* For dumping final DMA window settings. */ 33#define DEBUG_PRINT_FINAL_SETTINGS 0 34 35/* 36 * By default, we direct-map starting at 2GB, in order to allow the 37 * maximum size direct-map window (2GB) to match the maximum amount of 38 * memory (2GB) that can be present on SABLEs. But that limits the 39 * floppy to DMA only via the scatter/gather window set up for 8MB 40 * ISA DMA, since the maximum ISA DMA address is 2GB-1. 41 * 42 * For now, this seems a reasonable trade-off: even though most SABLEs 43 * have less than 1GB of memory, floppy usage/performance will not 44 * really be affected by forcing it to go via scatter/gather... 45 */ 46#define T2_DIRECTMAP_2G 1 47 48#if T2_DIRECTMAP_2G 49# define T2_DIRECTMAP_START 0x80000000UL 50# define T2_DIRECTMAP_LENGTH 0x80000000UL 51#else 52# define T2_DIRECTMAP_START 0x40000000UL 53# define T2_DIRECTMAP_LENGTH 0x40000000UL 54#endif 55 56/* The ISA scatter/gather window settings. */ 57#define T2_ISA_SG_START 0x00800000UL 58#define T2_ISA_SG_LENGTH 0x00800000UL 59 60/* 61 * NOTE: Herein lie back-to-back mb instructions. They are magic. 62 * One plausible explanation is that the i/o controller does not properly 63 * handle the system transaction. Another involves timing. Ho hum. 64 */ 65 66/* 67 * BIOS32-style PCI interface: 68 */ 69 70#define DEBUG_CONFIG 0 71 72#if DEBUG_CONFIG 73# define DBG(args) printk args 74#else 75# define DBG(args) 76#endif 77 78static volatile unsigned int t2_mcheck_any_expected; 79static volatile unsigned int t2_mcheck_last_taken; 80 81/* Place to save the DMA Window registers as set up by SRM 82 for restoration during shutdown. */ 83static struct 84{ 85 struct { 86 unsigned long wbase; 87 unsigned long wmask; 88 unsigned long tbase; 89 } window[2]; 90 unsigned long hae_1; 91 unsigned long hae_2; 92 unsigned long hae_3; 93 unsigned long hae_4; 94 unsigned long hbase; 95} t2_saved_config __attribute((common)); 96 97/* 98 * Given a bus, device, and function number, compute resulting 99 * configuration space address and setup the T2_HAXR2 register 100 * accordingly. It is therefore not safe to have concurrent 101 * invocations to configuration space access routines, but there 102 * really shouldn't be any need for this. 103 * 104 * Type 0: 105 * 106 * 3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1 107 * 3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0 108 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 109 * | | |D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|0| 110 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 111 * 112 * 31:11 Device select bit. 113 * 10:8 Function number 114 * 7:2 Register number 115 * 116 * Type 1: 117 * 118 * 3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1 119 * 3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0 120 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 121 * | | | | | | | | | | |B|B|B|B|B|B|B|B|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|1| 122 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 123 * 124 * 31:24 reserved 125 * 23:16 bus number (8 bits = 128 possible buses) 126 * 15:11 Device number (5 bits) 127 * 10:8 function number 128 * 7:2 register number 129 * 130 * Notes: 131 * The function number selects which function of a multi-function device 132 * (e.g., SCSI and Ethernet). 133 * 134 * The register selects a DWORD (32 bit) register offset. Hence it 135 * doesn't get shifted by 2 bits as we want to "drop" the bottom two 136 * bits. 137 */ 138 139static int 140mk_conf_addr(struct pci_bus *pbus, unsigned int device_fn, int where, 141 unsigned long *pci_addr, unsigned char *type1) 142{ 143 unsigned long addr; 144 u8 bus = pbus->number; 145 146 DBG(("mk_conf_addr(bus=%d, dfn=0x%x, where=0x%x," 147 " addr=0x%lx, type1=0x%x)\n", 148 bus, device_fn, where, pci_addr, type1)); 149 150 if (bus == 0) { 151 int device = device_fn >> 3; 152 153 /* Type 0 configuration cycle. */ 154 155 if (device > 8) { 156 DBG(("mk_conf_addr: device (%d)>20, returning -1\n", 157 device)); 158 return -1; 159 } 160 161 *type1 = 0; 162 addr = (0x0800L << device) | ((device_fn & 7) << 8) | (where); 163 } else { 164 /* Type 1 configuration cycle. */ 165 *type1 = 1; 166 addr = (bus << 16) | (device_fn << 8) | (where); 167 } 168 *pci_addr = addr; 169 DBG(("mk_conf_addr: returning pci_addr 0x%lx\n", addr)); 170 return 0; 171} 172 173/* 174 * NOTE: both conf_read() and conf_write() may set HAE_3 when needing 175 * to do type1 access. This is protected by the use of spinlock IRQ 176 * primitives in the wrapper functions pci_{read,write}_config_*() 177 * defined in drivers/pci/pci.c. 178 */ 179static unsigned int 180conf_read(unsigned long addr, unsigned char type1) 181{ 182 unsigned int value, cpu, taken; 183 unsigned long t2_cfg = 0; 184 185 cpu = smp_processor_id(); 186 187 DBG(("conf_read(addr=0x%lx, type1=%d)\n", addr, type1)); 188 189 /* If Type1 access, must set T2 CFG. */ 190 if (type1) { 191 t2_cfg = *(vulp)T2_HAE_3 & ~0xc0000000UL; 192 *(vulp)T2_HAE_3 = 0x40000000UL | t2_cfg; 193 mb(); 194 } 195 mb(); 196 draina(); 197 198 mcheck_expected(cpu) = 1; 199 mcheck_taken(cpu) = 0; 200 t2_mcheck_any_expected |= (1 << cpu); 201 mb(); 202 203 /* Access configuration space. */ 204 value = *(vuip)addr; 205 mb(); 206 mb(); /* magic */ 207 208 /* Wait for possible mcheck. Also, this lets other CPUs clear 209 their mchecks as well, as they can reliably tell when 210 another CPU is in the midst of handling a real mcheck via 211 the "taken" function. */ 212 udelay(100); 213 214 if ((taken = mcheck_taken(cpu))) { 215 mcheck_taken(cpu) = 0; 216 t2_mcheck_last_taken |= (1 << cpu); 217 value = 0xffffffffU; 218 mb(); 219 } 220 mcheck_expected(cpu) = 0; 221 t2_mcheck_any_expected = 0; 222 mb(); 223 224 /* If Type1 access, must reset T2 CFG so normal IO space ops work. */ 225 if (type1) { 226 *(vulp)T2_HAE_3 = t2_cfg; 227 mb(); 228 } 229 230 return value; 231} 232 233static void 234conf_write(unsigned long addr, unsigned int value, unsigned char type1) 235{ 236 unsigned int cpu, taken; 237 unsigned long t2_cfg = 0; 238 239 cpu = smp_processor_id(); 240 241 /* If Type1 access, must set T2 CFG. */ 242 if (type1) { 243 t2_cfg = *(vulp)T2_HAE_3 & ~0xc0000000UL; 244 *(vulp)T2_HAE_3 = t2_cfg | 0x40000000UL; 245 mb(); 246 } 247 mb(); 248 draina(); 249 250 mcheck_expected(cpu) = 1; 251 mcheck_taken(cpu) = 0; 252 t2_mcheck_any_expected |= (1 << cpu); 253 mb(); 254 255 /* Access configuration space. */ 256 *(vuip)addr = value; 257 mb(); 258 mb(); /* magic */ 259 260 /* Wait for possible mcheck. Also, this lets other CPUs clear 261 their mchecks as well, as they can reliably tell when 262 this CPU is in the midst of handling a real mcheck via 263 the "taken" function. */ 264 udelay(100); 265 266 if ((taken = mcheck_taken(cpu))) { 267 mcheck_taken(cpu) = 0; 268 t2_mcheck_last_taken |= (1 << cpu); 269 mb(); 270 } 271 mcheck_expected(cpu) = 0; 272 t2_mcheck_any_expected = 0; 273 mb(); 274 275 /* If Type1 access, must reset T2 CFG so normal IO space ops work. */ 276 if (type1) { 277 *(vulp)T2_HAE_3 = t2_cfg; 278 mb(); 279 } 280} 281 282static int 283t2_read_config(struct pci_bus *bus, unsigned int devfn, int where, 284 int size, u32 *value) 285{ 286 unsigned long addr, pci_addr; 287 unsigned char type1; 288 int shift; 289 long mask; 290 291 if (mk_conf_addr(bus, devfn, where, &pci_addr, &type1)) 292 return PCIBIOS_DEVICE_NOT_FOUND; 293 294 mask = (size - 1) * 8; 295 shift = (where & 3) * 8; 296 addr = (pci_addr << 5) + mask + T2_CONF; 297 *value = conf_read(addr, type1) >> (shift); 298 return PCIBIOS_SUCCESSFUL; 299} 300 301static int 302t2_write_config(struct pci_bus *bus, unsigned int devfn, int where, int size, 303 u32 value) 304{ 305 unsigned long addr, pci_addr; 306 unsigned char type1; 307 long mask; 308 309 if (mk_conf_addr(bus, devfn, where, &pci_addr, &type1)) 310 return PCIBIOS_DEVICE_NOT_FOUND; 311 312 mask = (size - 1) * 8; 313 addr = (pci_addr << 5) + mask + T2_CONF; 314 conf_write(addr, value << ((where & 3) * 8), type1); 315 return PCIBIOS_SUCCESSFUL; 316} 317 318struct pci_ops t2_pci_ops = 319{ 320 .read = t2_read_config, 321 .write = t2_write_config, 322}; 323 324static void __init 325t2_direct_map_window1(unsigned long base, unsigned long length) 326{ 327 unsigned long temp; 328 329 __direct_map_base = base; 330 __direct_map_size = length; 331 332 temp = (base & 0xfff00000UL) | ((base + length - 1) >> 20); 333 *(vulp)T2_WBASE1 = temp | 0x80000UL; /* OR in ENABLE bit */ 334 temp = (length - 1) & 0xfff00000UL; 335 *(vulp)T2_WMASK1 = temp; 336 *(vulp)T2_TBASE1 = 0; 337 338#if DEBUG_PRINT_FINAL_SETTINGS 339 printk("%s: setting WBASE1=0x%lx WMASK1=0x%lx TBASE1=0x%lx\n", 340 __func__, *(vulp)T2_WBASE1, *(vulp)T2_WMASK1, *(vulp)T2_TBASE1); 341#endif 342} 343 344static void __init 345t2_sg_map_window2(struct pci_controller *hose, 346 unsigned long base, 347 unsigned long length) 348{ 349 unsigned long temp; 350 351 /* Note we can only do 1 SG window, as the other is for direct, so 352 do an ISA SG area, especially for the floppy. */ 353 hose->sg_isa = iommu_arena_new(hose, base, length, 0); 354 hose->sg_pci = NULL; 355 356 temp = (base & 0xfff00000UL) | ((base + length - 1) >> 20); 357 *(vulp)T2_WBASE2 = temp | 0xc0000UL; /* OR in ENABLE/SG bits */ 358 temp = (length - 1) & 0xfff00000UL; 359 *(vulp)T2_WMASK2 = temp; 360 *(vulp)T2_TBASE2 = virt_to_phys(hose->sg_isa->ptes) >> 1; 361 mb(); 362 363 t2_pci_tbi(hose, 0, -1); /* flush TLB all */ 364 365#if DEBUG_PRINT_FINAL_SETTINGS 366 printk("%s: setting WBASE2=0x%lx WMASK2=0x%lx TBASE2=0x%lx\n", 367 __func__, *(vulp)T2_WBASE2, *(vulp)T2_WMASK2, *(vulp)T2_TBASE2); 368#endif 369} 370 371static void __init 372t2_save_configuration(void) 373{ 374#if DEBUG_PRINT_INITIAL_SETTINGS 375 printk("%s: HAE_1 was 0x%lx\n", __func__, srm_hae); /* HW is 0 */ 376 printk("%s: HAE_2 was 0x%lx\n", __func__, *(vulp)T2_HAE_2); 377 printk("%s: HAE_3 was 0x%lx\n", __func__, *(vulp)T2_HAE_3); 378 printk("%s: HAE_4 was 0x%lx\n", __func__, *(vulp)T2_HAE_4); 379 printk("%s: HBASE was 0x%lx\n", __func__, *(vulp)T2_HBASE); 380 381 printk("%s: WBASE1=0x%lx WMASK1=0x%lx TBASE1=0x%lx\n", __func__, 382 *(vulp)T2_WBASE1, *(vulp)T2_WMASK1, *(vulp)T2_TBASE1); 383 printk("%s: WBASE2=0x%lx WMASK2=0x%lx TBASE2=0x%lx\n", __func__, 384 *(vulp)T2_WBASE2, *(vulp)T2_WMASK2, *(vulp)T2_TBASE2); 385#endif 386 387 /* 388 * Save the DMA Window registers. 389 */ 390 t2_saved_config.window[0].wbase = *(vulp)T2_WBASE1; 391 t2_saved_config.window[0].wmask = *(vulp)T2_WMASK1; 392 t2_saved_config.window[0].tbase = *(vulp)T2_TBASE1; 393 t2_saved_config.window[1].wbase = *(vulp)T2_WBASE2; 394 t2_saved_config.window[1].wmask = *(vulp)T2_WMASK2; 395 t2_saved_config.window[1].tbase = *(vulp)T2_TBASE2; 396 397 t2_saved_config.hae_1 = srm_hae; /* HW is already set to 0 */ 398 t2_saved_config.hae_2 = *(vulp)T2_HAE_2; 399 t2_saved_config.hae_3 = *(vulp)T2_HAE_3; 400 t2_saved_config.hae_4 = *(vulp)T2_HAE_4; 401 t2_saved_config.hbase = *(vulp)T2_HBASE; 402} 403 404void __init 405t2_init_arch(void) 406{ 407 struct pci_controller *hose; 408 struct resource *hae_mem; 409 unsigned long temp; 410 unsigned int i; 411 412 for (i = 0; i < NR_CPUS; i++) { 413 mcheck_expected(i) = 0; 414 mcheck_taken(i) = 0; 415 } 416 t2_mcheck_any_expected = 0; 417 t2_mcheck_last_taken = 0; 418 419 /* Enable scatter/gather TLB use. */ 420 temp = *(vulp)T2_IOCSR; 421 if (!(temp & (0x1UL << 26))) { 422 printk("t2_init_arch: enabling SG TLB, IOCSR was 0x%lx\n", 423 temp); 424 *(vulp)T2_IOCSR = temp | (0x1UL << 26); 425 mb(); 426 *(vulp)T2_IOCSR; /* read it back to make sure */ 427 } 428 429 t2_save_configuration(); 430 431 /* 432 * Create our single hose. 433 */ 434 pci_isa_hose = hose = alloc_pci_controller(); 435 hose->io_space = &ioport_resource; 436 hae_mem = alloc_resource(); 437 hae_mem->start = 0; 438 hae_mem->end = T2_MEM_R1_MASK; 439 hae_mem->name = pci_hae0_name; 440 if (request_resource(&iomem_resource, hae_mem) < 0) 441 printk(KERN_ERR "Failed to request HAE_MEM\n"); 442 hose->mem_space = hae_mem; 443 hose->index = 0; 444 445 hose->sparse_mem_base = T2_SPARSE_MEM - IDENT_ADDR; 446 hose->dense_mem_base = T2_DENSE_MEM - IDENT_ADDR; 447 hose->sparse_io_base = T2_IO - IDENT_ADDR; 448 hose->dense_io_base = 0; 449 450 /* 451 * Set up the PCI->physical memory translation windows. 452 * 453 * Window 1 is direct mapped. 454 * Window 2 is scatter/gather (for ISA). 455 */ 456 457 t2_direct_map_window1(T2_DIRECTMAP_START, T2_DIRECTMAP_LENGTH); 458 459 /* Always make an ISA DMA window. */ 460 t2_sg_map_window2(hose, T2_ISA_SG_START, T2_ISA_SG_LENGTH); 461 462 *(vulp)T2_HBASE = 0x0; /* Disable HOLES. */ 463 464 /* Zero HAE. */ 465 *(vulp)T2_HAE_1 = 0; mb(); /* Sparse MEM HAE */ 466 *(vulp)T2_HAE_2 = 0; mb(); /* Sparse I/O HAE */ 467 *(vulp)T2_HAE_3 = 0; mb(); /* Config Space HAE */ 468 469 /* 470 * We also now zero out HAE_4, the dense memory HAE, so that 471 * we need not account for its "offset" when accessing dense 472 * memory resources which we allocated in our normal way. This 473 * HAE would need to stay untouched were we to keep the SRM 474 * resource settings. 475 * 476 * Thus we can now run standard X servers on SABLE/LYNX. :-) 477 */ 478 *(vulp)T2_HAE_4 = 0; mb(); 479} 480 481void 482t2_kill_arch(int mode) 483{ 484 /* 485 * Restore the DMA Window registers. 486 */ 487 *(vulp)T2_WBASE1 = t2_saved_config.window[0].wbase; 488 *(vulp)T2_WMASK1 = t2_saved_config.window[0].wmask; 489 *(vulp)T2_TBASE1 = t2_saved_config.window[0].tbase; 490 *(vulp)T2_WBASE2 = t2_saved_config.window[1].wbase; 491 *(vulp)T2_WMASK2 = t2_saved_config.window[1].wmask; 492 *(vulp)T2_TBASE2 = t2_saved_config.window[1].tbase; 493 mb(); 494 495 *(vulp)T2_HAE_1 = srm_hae; 496 *(vulp)T2_HAE_2 = t2_saved_config.hae_2; 497 *(vulp)T2_HAE_3 = t2_saved_config.hae_3; 498 *(vulp)T2_HAE_4 = t2_saved_config.hae_4; 499 *(vulp)T2_HBASE = t2_saved_config.hbase; 500 mb(); 501 *(vulp)T2_HBASE; /* READ it back to ensure WRITE occurred. */ 502} 503 504void 505t2_pci_tbi(struct pci_controller *hose, dma_addr_t start, dma_addr_t end) 506{ 507 unsigned long t2_iocsr; 508 509 t2_iocsr = *(vulp)T2_IOCSR; 510 511 /* set the TLB Clear bit */ 512 *(vulp)T2_IOCSR = t2_iocsr | (0x1UL << 28); 513 mb(); 514 *(vulp)T2_IOCSR; /* read it back to make sure */ 515 516 /* clear the TLB Clear bit */ 517 *(vulp)T2_IOCSR = t2_iocsr & ~(0x1UL << 28); 518 mb(); 519 *(vulp)T2_IOCSR; /* read it back to make sure */ 520} 521 522#define SIC_SEIC (1UL << 33) /* System Event Clear */ 523 524static void 525t2_clear_errors(int cpu) 526{ 527 struct sable_cpu_csr *cpu_regs; 528 529 cpu_regs = (struct sable_cpu_csr *)T2_CPUn_BASE(cpu); 530 531 cpu_regs->sic &= ~SIC_SEIC; 532 533 /* Clear CPU errors. */ 534 cpu_regs->bcce |= cpu_regs->bcce; 535 cpu_regs->cbe |= cpu_regs->cbe; 536 cpu_regs->bcue |= cpu_regs->bcue; 537 cpu_regs->dter |= cpu_regs->dter; 538 539 *(vulp)T2_CERR1 |= *(vulp)T2_CERR1; 540 *(vulp)T2_PERR1 |= *(vulp)T2_PERR1; 541 542 mb(); 543 mb(); /* magic */ 544} 545 546/* 547 * SABLE seems to have a "broadcast" style machine check, in that all 548 * CPUs receive it. And, the issuing CPU, in the case of PCI Config 549 * space read/write faults, will also receive a second mcheck, upon 550 * lowering IPL during completion processing in pci_read_config_byte() 551 * et al. 552 * 553 * Hence all the taken/expected/any_expected/last_taken stuff... 554 */ 555void 556t2_machine_check(unsigned long vector, unsigned long la_ptr) 557{ 558 int cpu = smp_processor_id(); 559#ifdef CONFIG_VERBOSE_MCHECK 560 struct el_common *mchk_header = (struct el_common *)la_ptr; 561#endif 562 563 /* Clear the error before any reporting. */ 564 mb(); 565 mb(); /* magic */ 566 draina(); 567 t2_clear_errors(cpu); 568 569 /* This should not actually be done until the logout frame is 570 examined, but, since we don't do that, go on and do this... */ 571 wrmces(0x7); 572 mb(); 573 574 /* Now, do testing for the anomalous conditions. */ 575 if (!mcheck_expected(cpu) && t2_mcheck_any_expected) { 576 /* 577 * FUNKY: Received mcheck on a CPU and not 578 * expecting it, but another CPU is expecting one. 579 * 580 * Just dismiss it for now on this CPU... 581 */ 582#ifdef CONFIG_VERBOSE_MCHECK 583 if (alpha_verbose_mcheck > 1) { 584 printk("t2_machine_check(cpu%d): any_expected 0x%x -" 585 " (assumed) spurious -" 586 " code 0x%x\n", cpu, t2_mcheck_any_expected, 587 (unsigned int)mchk_header->code); 588 } 589#endif 590 return; 591 } 592 593 if (!mcheck_expected(cpu) && !t2_mcheck_any_expected) { 594 if (t2_mcheck_last_taken & (1 << cpu)) { 595#ifdef CONFIG_VERBOSE_MCHECK 596 if (alpha_verbose_mcheck > 1) { 597 printk("t2_machine_check(cpu%d): last_taken 0x%x - " 598 "unexpected mcheck - code 0x%x\n", 599 cpu, t2_mcheck_last_taken, 600 (unsigned int)mchk_header->code); 601 } 602#endif 603 t2_mcheck_last_taken = 0; 604 mb(); 605 return; 606 } else { 607 t2_mcheck_last_taken = 0; 608 mb(); 609 } 610 } 611 612#ifdef CONFIG_VERBOSE_MCHECK 613 if (alpha_verbose_mcheck > 1) { 614 printk("%s t2_mcheck(cpu%d): last_taken 0x%x - " 615 "any_expected 0x%x - code 0x%x\n", 616 (mcheck_expected(cpu) ? "EX" : "UN"), cpu, 617 t2_mcheck_last_taken, t2_mcheck_any_expected, 618 (unsigned int)mchk_header->code); 619 } 620#endif 621 622 process_mcheck_info(vector, la_ptr, "T2", mcheck_expected(cpu)); 623} 624