1/*!**************************************************************************
2*!
3*! FILE NAME  : kgdb.c
4*!
5*! DESCRIPTION: Implementation of the gdb stub with respect to ETRAX 100.
6*!              It is a mix of arch/m68k/kernel/kgdb.c and cris_stub.c.
7*!
8*!---------------------------------------------------------------------------
9*! HISTORY
10*!
11*! DATE         NAME            CHANGES
12*! ----         ----            -------
13*! Apr 26 1999  Hendrik Ruijter Initial version.
14*! May  6 1999  Hendrik Ruijter Removed call to strlen in libc and removed
15*!                              struct assignment as it generates calls to
16*!                              memcpy in libc.
17*! Jun 17 1999  Hendrik Ruijter Added gdb 4.18 support. 'X', 'qC' and 'qL'.
18*! Jul 21 1999  Bjorn Wesen     eLinux port
19*!
20*!---------------------------------------------------------------------------
21*!
22*! (C) Copyright 1999, Axis Communications AB, LUND, SWEDEN
23*!
24*!**************************************************************************/
25/* @(#) cris_stub.c 1.3 06/17/99 */
26
27/*
28 *  kgdb usage notes:
29 *  -----------------
30 *
31 * If you select CONFIG_ETRAX_KGDB in the configuration, the kernel will be
32 * built with different gcc flags: "-g" is added to get debug infos, and
33 * "-fomit-frame-pointer" is omitted to make debugging easier. Since the
34 * resulting kernel will be quite big (approx. > 7 MB), it will be stripped
35 * before compresion. Such a kernel will behave just as usually, except if
36 * given a "debug=<device>" command line option. (Only serial devices are
37 * allowed for <device>, i.e. no printers or the like; possible values are
38 * machine depedend and are the same as for the usual debug device, the one
39 * for logging kernel messages.) If that option is given and the device can be
40 * initialized, the kernel will connect to the remote gdb in trap_init(). The
41 * serial parameters are fixed to 8N1 and 115200 bps, for easyness of
42 * implementation.
43 *
44 * To start a debugging session, start that gdb with the debugging kernel
45 * image (the one with the symbols, vmlinux.debug) named on the command line.
46 * This file will be used by gdb to get symbol and debugging infos about the
47 * kernel. Next, select remote debug mode by
48 *    target remote <device>
49 * where <device> is the name of the serial device over which the debugged
50 * machine is connected. Maybe you have to adjust the baud rate by
51 *    set remotebaud <rate>
52 * or also other parameters with stty:
53 *    shell stty ... </dev/...
54 * If the kernel to debug has already booted, it waited for gdb and now
55 * connects, and you'll see a breakpoint being reported. If the kernel isn't
56 * running yet, start it now. The order of gdb and the kernel doesn't matter.
57 * Another thing worth knowing about in the getting-started phase is how to
58 * debug the remote protocol itself. This is activated with
59 *    set remotedebug 1
60 * gdb will then print out each packet sent or received. You'll also get some
61 * messages about the gdb stub on the console of the debugged machine.
62 *
63 * If all that works, you can use lots of the usual debugging techniques on
64 * the kernel, e.g. inspecting and changing variables/memory, setting
65 * breakpoints, single stepping and so on. It's also possible to interrupt the
66 * debugged kernel by pressing C-c in gdb. Have fun! :-)
67 *
68 * The gdb stub is entered (and thus the remote gdb gets control) in the
69 * following situations:
70 *
71 *  - If breakpoint() is called. This is just after kgdb initialization, or if
72 *    a breakpoint() call has been put somewhere into the kernel source.
73 *    (Breakpoints can of course also be set the usual way in gdb.)
74 *    In eLinux, we call breakpoint() in init/main.c after IRQ initialization.
75 *
76 *  - If there is a kernel exception, i.e. bad_super_trap() or die_if_kernel()
77 *    are entered. All the CPU exceptions are mapped to (more or less..., see
78 *    the hard_trap_info array below) appropriate signal, which are reported
79 *    to gdb. die_if_kernel() is usually called after some kind of access
80 *    error and thus is reported as SIGSEGV.
81 *
82 *  - When panic() is called. This is reported as SIGABRT.
83 *
84 *  - If C-c is received over the serial line, which is treated as
85 *    SIGINT.
86 *
87 * Of course, all these signals are just faked for gdb, since there is no
88 * signal concept as such for the kernel. It also isn't possible --obviously--
89 * to set signal handlers from inside gdb, or restart the kernel with a
90 * signal.
91 *
92 * Current limitations:
93 *
94 *  - While the kernel is stopped, interrupts are disabled for safety reasons
95 *    (i.e., variables not changing magically or the like). But this also
96 *    means that the clock isn't running anymore, and that interrupts from the
97 *    hardware may get lost/not be served in time. This can cause some device
98 *    errors...
99 *
100 *  - When single-stepping, only one instruction of the current thread is
101 *    executed, but interrupts are allowed for that time and will be serviced
102 *    if pending. Be prepared for that.
103 *
104 *  - All debugging happens in kernel virtual address space. There's no way to
105 *    access physical memory not mapped in kernel space, or to access user
106 *    space. A way to work around this is using get_user_long & Co. in gdb
107 *    expressions, but only for the current process.
108 *
109 *  - Interrupting the kernel only works if interrupts are currently allowed,
110 *    and the interrupt of the serial line isn't blocked by some other means
111 *    (IPL too high, disabled, ...)
112 *
113 *  - The gdb stub is currently not reentrant, i.e. errors that happen therein
114 *    (e.g. accessing invalid memory) may not be caught correctly. This could
115 *    be removed in future by introducing a stack of struct registers.
116 *
117 */
118
119/*
120 *  To enable debugger support, two things need to happen.  One, a
121 *  call to kgdb_init() is necessary in order to allow any breakpoints
122 *  or error conditions to be properly intercepted and reported to gdb.
123 *  Two, a breakpoint needs to be generated to begin communication.  This
124 *  is most easily accomplished by a call to breakpoint().
125 *
126 *    The following gdb commands are supported:
127 *
128 * command          function                               Return value
129 *
130 *    g             return the value of the CPU registers  hex data or ENN
131 *    G             set the value of the CPU registers     OK or ENN
132 *
133 *    mAA..AA,LLLL  Read LLLL bytes at address AA..AA      hex data or ENN
134 *    MAA..AA,LLLL: Write LLLL bytes at address AA.AA      OK or ENN
135 *
136 *    c             Resume at current address              SNN   ( signal NN)
137 *    cAA..AA       Continue at address AA..AA             SNN
138 *
139 *    s             Step one instruction                   SNN
140 *    sAA..AA       Step one instruction from AA..AA       SNN
141 *
142 *    k             kill
143 *
144 *    ?             What was the last sigval ?             SNN   (signal NN)
145 *
146 *    bBB..BB	    Set baud rate to BB..BB		   OK or BNN, then sets
147 *							   baud rate
148 *
149 * All commands and responses are sent with a packet which includes a
150 * checksum.  A packet consists of
151 *
152 * $<packet info>#<checksum>.
153 *
154 * where
155 * <packet info> :: <characters representing the command or response>
156 * <checksum>    :: < two hex digits computed as modulo 256 sum of <packetinfo>>
157 *
158 * When a packet is received, it is first acknowledged with either '+' or '-'.
159 * '+' indicates a successful transfer.  '-' indicates a failed transfer.
160 *
161 * Example:
162 *
163 * Host:                  Reply:
164 * $m0,10#2a               +$00010203040506070809101112131415#42
165 *
166 */
167
168
169#include <linux/string.h>
170#include <linux/signal.h>
171#include <linux/kernel.h>
172#include <linux/delay.h>
173#include <linux/linkage.h>
174#include <linux/reboot.h>
175
176#include <asm/setup.h>
177#include <asm/ptrace.h>
178
179#include <arch/svinto.h>
180#include <asm/irq.h>
181
182static int kgdb_started = 0;
183
184/********************************* Register image ****************************/
185/* Use the order of registers as defined in "AXIS ETRAX CRIS Programmer's
186   Reference", p. 1-1, with the additional register definitions of the
187   ETRAX 100LX in cris-opc.h.
188   There are 16 general 32-bit registers, R0-R15, where R14 is the stack
189   pointer, SP, and R15 is the program counter, PC.
190   There are 16 special registers, P0-P15, where three of the unimplemented
191   registers, P0, P4 and P8, are reserved as zero-registers. A read from
192   any of these registers returns zero and a write has no effect. */
193
194typedef
195struct register_image
196{
197	/* Offset */
198	unsigned int     r0;   /* 0x00 */
199	unsigned int     r1;   /* 0x04 */
200	unsigned int     r2;   /* 0x08 */
201	unsigned int     r3;   /* 0x0C */
202	unsigned int     r4;   /* 0x10 */
203	unsigned int     r5;   /* 0x14 */
204	unsigned int     r6;   /* 0x18 */
205	unsigned int     r7;   /* 0x1C */
206	unsigned int     r8;   /* 0x20 Frame pointer */
207	unsigned int     r9;   /* 0x24 */
208	unsigned int    r10;   /* 0x28 */
209	unsigned int    r11;   /* 0x2C */
210	unsigned int    r12;   /* 0x30 */
211	unsigned int    r13;   /* 0x34 */
212	unsigned int     sp;   /* 0x38 Stack pointer */
213	unsigned int     pc;   /* 0x3C Program counter */
214
215        unsigned char    p0;   /* 0x40 8-bit zero-register */
216	unsigned char    vr;   /* 0x41 Version register */
217
218        unsigned short   p4;   /* 0x42 16-bit zero-register */
219	unsigned short  ccr;   /* 0x44 Condition code register */
220
221	unsigned int    mof;   /* 0x46 Multiply overflow register */
222
223        unsigned int     p8;   /* 0x4A 32-bit zero-register */
224	unsigned int    ibr;   /* 0x4E Interrupt base register */
225	unsigned int    irp;   /* 0x52 Interrupt return pointer */
226	unsigned int    srp;   /* 0x56 Subroutine return pointer */
227	unsigned int    bar;   /* 0x5A Breakpoint address register */
228	unsigned int   dccr;   /* 0x5E Double condition code register */
229	unsigned int    brp;   /* 0x62 Breakpoint return pointer (pc in caller) */
230	unsigned int    usp;   /* 0x66 User mode stack pointer */
231} registers;
232
233/************** Prototypes for local library functions ***********************/
234
235/* Copy of strcpy from libc. */
236static char *gdb_cris_strcpy (char *s1, const char *s2);
237
238/* Copy of strlen from libc. */
239static int gdb_cris_strlen (const char *s);
240
241/* Copy of memchr from libc. */
242static void *gdb_cris_memchr (const void *s, int c, int n);
243
244/* Copy of strtol from libc. Does only support base 16. */
245static int gdb_cris_strtol (const char *s, char **endptr, int base);
246
247/********************** Prototypes for local functions. **********************/
248/* Copy the content of a register image into another. The size n is
249   the size of the register image. Due to struct assignment generation of
250   memcpy in libc. */
251static void copy_registers (registers *dptr, registers *sptr, int n);
252
253/* Copy the stored registers from the stack. Put the register contents
254   of thread thread_id in the struct reg. */
255static void copy_registers_from_stack (int thread_id, registers *reg);
256
257/* Copy the registers to the stack. Put the register contents of thread
258   thread_id from struct reg to the stack. */
259static void copy_registers_to_stack (int thread_id, registers *reg);
260
261/* Write a value to a specified register regno in the register image
262   of the current thread. */
263static int write_register (int regno, char *val);
264
265/* Write a value to a specified register in the stack of a thread other
266   than the current thread. */
267static write_stack_register (int thread_id, int regno, char *valptr);
268
269/* Read a value from a specified register in the register image. Returns the
270   status of the read operation. The register value is returned in valptr. */
271static int read_register (char regno, unsigned int *valptr);
272
273/* Serial port, reads one character. ETRAX 100 specific. from debugport.c */
274int getDebugChar (void);
275
276/* Serial port, writes one character. ETRAX 100 specific. from debugport.c */
277void putDebugChar (int val);
278
279void enableDebugIRQ (void);
280
281/* Returns the integer equivalent of a hexadecimal character. */
282static int hex (char ch);
283
284/* Convert the memory, pointed to by mem into hexadecimal representation.
285   Put the result in buf, and return a pointer to the last character
286   in buf (null). */
287static char *mem2hex (char *buf, unsigned char *mem, int count);
288
289/* Convert the array, in hexadecimal representation, pointed to by buf into
290   binary representation. Put the result in mem, and return a pointer to
291   the character after the last byte written. */
292static unsigned char *hex2mem (unsigned char *mem, char *buf, int count);
293
294/* Put the content of the array, in binary representation, pointed to by buf
295   into memory pointed to by mem, and return a pointer to
296   the character after the last byte written. */
297static unsigned char *bin2mem (unsigned char *mem, unsigned char *buf, int count);
298
299/* Await the sequence $<data>#<checksum> and store <data> in the array buffer
300   returned. */
301static void getpacket (char *buffer);
302
303/* Send $<data>#<checksum> from the <data> in the array buffer. */
304static void putpacket (char *buffer);
305
306/* Build and send a response packet in order to inform the host the
307   stub is stopped. */
308static void stub_is_stopped (int sigval);
309
310/* All expected commands are sent from remote.c. Send a response according
311   to the description in remote.c. */
312static void handle_exception (int sigval);
313
314/* Performs a complete re-start from scratch. ETRAX specific. */
315static void kill_restart (void);
316
317/******************** Prototypes for global functions. ***********************/
318
319/* The string str is prepended with the GDB printout token and sent. */
320void putDebugString (const unsigned char *str, int length); /* used by etrax100ser.c */
321
322/* The hook for both static (compiled) and dynamic breakpoints set by GDB.
323   ETRAX 100 specific. */
324void handle_breakpoint (void);                          /* used by irq.c */
325
326/* The hook for an interrupt generated by GDB. ETRAX 100 specific. */
327void handle_interrupt (void);                           /* used by irq.c */
328
329/* A static breakpoint to be used at startup. */
330void breakpoint (void);                                 /* called by init/main.c */
331
332/* From osys_int.c, executing_task contains the number of the current
333   executing task in osys. Does not know of object-oriented threads. */
334extern unsigned char executing_task;
335
336/* The number of characters used for a 64 bit thread identifier. */
337#define HEXCHARS_IN_THREAD_ID 16
338
339/* Avoid warning as the internal_stack is not used in the C-code. */
340#define USEDVAR(name)    { if (name) { ; } }
341#define USEDFUN(name) { void (*pf)(void) = (void *)name; USEDVAR(pf) }
342
343/********************************** Packet I/O ******************************/
344/* BUFMAX defines the maximum number of characters in
345   inbound/outbound buffers */
346#define BUFMAX 512
347
348/* Run-length encoding maximum length. Send 64 at most. */
349#define RUNLENMAX 64
350
351/* The inbound/outbound buffers used in packet I/O */
352static char remcomInBuffer[BUFMAX];
353static char remcomOutBuffer[BUFMAX];
354
355/* Error and warning messages. */
356enum error_type
357{
358	SUCCESS, E01, E02, E03, E04, E05, E06, E07
359};
360static char *error_message[] =
361{
362	"",
363	"E01 Set current or general thread - H[c,g] - internal error.",
364	"E02 Change register content - P - cannot change read-only register.",
365	"E03 Thread is not alive.", /* T, not used. */
366	"E04 The command is not supported - [s,C,S,!,R,d,r] - internal error.",
367	"E05 Change register content - P - the register is not implemented..",
368	"E06 Change memory content - M - internal error.",
369	"E07 Change register content - P - the register is not stored on the stack"
370};
371/********************************* Register image ****************************/
372/* Use the order of registers as defined in "AXIS ETRAX CRIS Programmer's
373   Reference", p. 1-1, with the additional register definitions of the
374   ETRAX 100LX in cris-opc.h.
375   There are 16 general 32-bit registers, R0-R15, where R14 is the stack
376   pointer, SP, and R15 is the program counter, PC.
377   There are 16 special registers, P0-P15, where three of the unimplemented
378   registers, P0, P4 and P8, are reserved as zero-registers. A read from
379   any of these registers returns zero and a write has no effect. */
380enum register_name
381{
382	R0,  R1,   R2,  R3,
383	R4,  R5,   R6,  R7,
384	R8,  R9,   R10, R11,
385	R12, R13,  SP,  PC,
386	P0,  VR,   P2,  P3,
387	P4,  CCR,  P6,  MOF,
388	P8,  IBR,  IRP, SRP,
389	BAR, DCCR, BRP, USP
390};
391
392/* The register sizes of the registers in register_name. An unimplemented register
393   is designated by size 0 in this array. */
394static int register_size[] =
395{
396	4, 4, 4, 4,
397	4, 4, 4, 4,
398	4, 4, 4, 4,
399	4, 4, 4, 4,
400	1, 1, 0, 0,
401	2, 2, 0, 4,
402	4, 4, 4, 4,
403	4, 4, 4, 4
404};
405
406/* Contains the register image of the executing thread in the assembler
407   part of the code in order to avoid horrible addressing modes. */
408static registers reg;
409
410/* FIXME: Should this be used? Delete otherwise. */
411/* Contains the assumed consistency state of the register image. Uses the
412   enum error_type for state information. */
413static int consistency_status = SUCCESS;
414
415/********************************** Handle exceptions ************************/
416/* The variable reg contains the register image associated with the
417   current_thread_c variable. It is a complete register image created at
418   entry. The reg_g contains a register image of a task where the general
419   registers are taken from the stack and all special registers are taken
420   from the executing task. It is associated with current_thread_g and used
421   in order to provide access mainly for 'g', 'G' and 'P'.
422*/
423
424/* Need two task id pointers in order to handle Hct and Hgt commands. */
425static int current_thread_c = 0;
426static int current_thread_g = 0;
427
428/* Need two register images in order to handle Hct and Hgt commands. The
429   variable reg_g is in addition to reg above. */
430static registers reg_g;
431
432/********************************** Breakpoint *******************************/
433/* Use an internal stack in the breakpoint and interrupt response routines */
434#define INTERNAL_STACK_SIZE 1024
435static char internal_stack[INTERNAL_STACK_SIZE];
436
437/* Due to the breakpoint return pointer, a state variable is needed to keep
438   track of whether it is a static (compiled) or dynamic (gdb-invoked)
439   breakpoint to be handled. A static breakpoint uses the content of register
440   BRP as it is whereas a dynamic breakpoint requires subtraction with 2
441   in order to execute the instruction. The first breakpoint is static. */
442static unsigned char is_dyn_brkp = 0;
443
444/********************************* String library ****************************/
445/* Single-step over library functions creates trap loops. */
446
447/* Copy char s2[] to s1[]. */
448static char*
449gdb_cris_strcpy (char *s1, const char *s2)
450{
451	char *s = s1;
452
453	for (s = s1; (*s++ = *s2++) != '\0'; )
454		;
455	return (s1);
456}
457
458/* Find length of s[]. */
459static int
460gdb_cris_strlen (const char *s)
461{
462	const char *sc;
463
464	for (sc = s; *sc != '\0'; sc++)
465		;
466	return (sc - s);
467}
468
469/* Find first occurrence of c in s[n]. */
470static void*
471gdb_cris_memchr (const void *s, int c, int n)
472{
473	const unsigned char uc = c;
474	const unsigned char *su;
475
476	for (su = s; 0 < n; ++su, --n)
477		if (*su == uc)
478			return ((void *)su);
479	return (NULL);
480}
481/******************************* Standard library ****************************/
482/* Single-step over library functions creates trap loops. */
483/* Convert string to long. */
484static int
485gdb_cris_strtol (const char *s, char **endptr, int base)
486{
487	char *s1;
488	char *sd;
489	int x = 0;
490
491	for (s1 = (char*)s; (sd = gdb_cris_memchr(hex_asc, *s1, base)) != NULL; ++s1)
492		x = x * base + (sd - hex_asc);
493
494        if (endptr)
495        {
496                /* Unconverted suffix is stored in endptr unless endptr is NULL. */
497                *endptr = s1;
498        }
499
500	return x;
501}
502
503/********************************* Register image ****************************/
504/* Copy the content of a register image into another. The size n is
505   the size of the register image. Due to struct assignment generation of
506   memcpy in libc. */
507static void
508copy_registers (registers *dptr, registers *sptr, int n)
509{
510	unsigned char *dreg;
511	unsigned char *sreg;
512
513	for (dreg = (unsigned char*)dptr, sreg = (unsigned char*)sptr; n > 0; n--)
514		*dreg++ = *sreg++;
515}
516
517#ifdef PROCESS_SUPPORT
518/* Copy the stored registers from the stack. Put the register contents
519   of thread thread_id in the struct reg. */
520static void
521copy_registers_from_stack (int thread_id, registers *regptr)
522{
523	int j;
524	stack_registers *s = (stack_registers *)stack_list[thread_id];
525	unsigned int *d = (unsigned int *)regptr;
526
527	for (j = 13; j >= 0; j--)
528		*d++ = s->r[j];
529	regptr->sp = (unsigned int)stack_list[thread_id];
530	regptr->pc = s->pc;
531	regptr->dccr = s->dccr;
532	regptr->srp = s->srp;
533}
534
535/* Copy the registers to the stack. Put the register contents of thread
536   thread_id from struct reg to the stack. */
537static void
538copy_registers_to_stack (int thread_id, registers *regptr)
539{
540	int i;
541	stack_registers *d = (stack_registers *)stack_list[thread_id];
542	unsigned int *s = (unsigned int *)regptr;
543
544	for (i = 0; i < 14; i++) {
545		d->r[i] = *s++;
546	}
547	d->pc = regptr->pc;
548	d->dccr = regptr->dccr;
549	d->srp = regptr->srp;
550}
551#endif
552
553/* Write a value to a specified register in the register image of the current
554   thread. Returns status code SUCCESS, E02 or E05. */
555static int
556write_register (int regno, char *val)
557{
558	int status = SUCCESS;
559	registers *current_reg = &reg;
560
561        if (regno >= R0 && regno <= PC) {
562		/* 32-bit register with simple offset. */
563		hex2mem ((unsigned char *)current_reg + regno * sizeof(unsigned int),
564			 val, sizeof(unsigned int));
565	}
566        else if (regno == P0 || regno == VR || regno == P4 || regno == P8) {
567		/* Do not support read-only registers. */
568		status = E02;
569	}
570        else if (regno == CCR) {
571		/* 16 bit register with complex offset. (P4 is read-only, P6 is not implemented,
572                   and P7 (MOF) is 32 bits in ETRAX 100LX. */
573		hex2mem ((unsigned char *)&(current_reg->ccr) + (regno-CCR) * sizeof(unsigned short),
574			 val, sizeof(unsigned short));
575	}
576	else if (regno >= MOF && regno <= USP) {
577		/* 32 bit register with complex offset.  (P8 has been taken care of.) */
578		hex2mem ((unsigned char *)&(current_reg->ibr) + (regno-IBR) * sizeof(unsigned int),
579			 val, sizeof(unsigned int));
580	}
581        else {
582		/* Do not support nonexisting or unimplemented registers (P2, P3, and P6). */
583		status = E05;
584	}
585	return status;
586}
587
588#ifdef PROCESS_SUPPORT
589/* Write a value to a specified register in the stack of a thread other
590   than the current thread. Returns status code SUCCESS or E07. */
591static int
592write_stack_register (int thread_id, int regno, char *valptr)
593{
594	int status = SUCCESS;
595	stack_registers *d = (stack_registers *)stack_list[thread_id];
596	unsigned int val;
597
598	hex2mem ((unsigned char *)&val, valptr, sizeof(unsigned int));
599	if (regno >= R0 && regno < SP) {
600		d->r[regno] = val;
601	}
602	else if (regno == SP) {
603		stack_list[thread_id] = val;
604	}
605	else if (regno == PC) {
606		d->pc = val;
607	}
608	else if (regno == SRP) {
609		d->srp = val;
610	}
611	else if (regno == DCCR) {
612		d->dccr = val;
613	}
614	else {
615		/* Do not support registers in the current thread. */
616		status = E07;
617	}
618	return status;
619}
620#endif
621
622/* Read a value from a specified register in the register image. Returns the
623   value in the register or -1 for non-implemented registers.
624   Should check consistency_status after a call which may be E05 after changes
625   in the implementation. */
626static int
627read_register (char regno, unsigned int *valptr)
628{
629	registers *current_reg = &reg;
630
631	if (regno >= R0 && regno <= PC) {
632		/* 32-bit register with simple offset. */
633		*valptr = *(unsigned int *)((char *)current_reg + regno * sizeof(unsigned int));
634                return SUCCESS;
635	}
636	else if (regno == P0 || regno == VR) {
637		/* 8 bit register with complex offset. */
638		*valptr = (unsigned int)(*(unsigned char *)
639                                         ((char *)&(current_reg->p0) + (regno-P0) * sizeof(char)));
640                return SUCCESS;
641	}
642	else if (regno == P4 || regno == CCR) {
643		/* 16 bit register with complex offset. */
644		*valptr = (unsigned int)(*(unsigned short *)
645                                         ((char *)&(current_reg->p4) + (regno-P4) * sizeof(unsigned short)));
646                return SUCCESS;
647	}
648	else if (regno >= MOF && regno <= USP) {
649		/* 32 bit register with complex offset. */
650		*valptr = *(unsigned int *)((char *)&(current_reg->p8)
651                                            + (regno-P8) * sizeof(unsigned int));
652                return SUCCESS;
653	}
654	else {
655		/* Do not support nonexisting or unimplemented registers (P2, P3, and P6). */
656		consistency_status = E05;
657		return E05;
658	}
659}
660
661/********************************** Packet I/O ******************************/
662/* Returns the integer equivalent of a hexadecimal character. */
663static int
664hex (char ch)
665{
666	if ((ch >= 'a') && (ch <= 'f'))
667		return (ch - 'a' + 10);
668	if ((ch >= '0') && (ch <= '9'))
669		return (ch - '0');
670	if ((ch >= 'A') && (ch <= 'F'))
671		return (ch - 'A' + 10);
672	return (-1);
673}
674
675/* Convert the memory, pointed to by mem into hexadecimal representation.
676   Put the result in buf, and return a pointer to the last character
677   in buf (null). */
678
679static int do_printk = 0;
680
681static char *
682mem2hex(char *buf, unsigned char *mem, int count)
683{
684	int i;
685	int ch;
686
687        if (mem == NULL) {
688                /* Bogus read from m0. FIXME: What constitutes a valid address? */
689                for (i = 0; i < count; i++) {
690                        *buf++ = '0';
691                        *buf++ = '0';
692                }
693        } else {
694                /* Valid mem address. */
695                for (i = 0; i < count; i++) {
696                        ch = *mem++;
697			buf = hex_byte_pack(buf, ch);
698                }
699        }
700
701        /* Terminate properly. */
702	*buf = '\0';
703	return (buf);
704}
705
706/* Convert the array, in hexadecimal representation, pointed to by buf into
707   binary representation. Put the result in mem, and return a pointer to
708   the character after the last byte written. */
709static unsigned char*
710hex2mem (unsigned char *mem, char *buf, int count)
711{
712	int i;
713	unsigned char ch;
714	for (i = 0; i < count; i++) {
715		ch = hex (*buf++) << 4;
716		ch = ch + hex (*buf++);
717		*mem++ = ch;
718	}
719	return (mem);
720}
721
722/* Put the content of the array, in binary representation, pointed to by buf
723   into memory pointed to by mem, and return a pointer to the character after
724   the last byte written.
725   Gdb will escape $, #, and the escape char (0x7d). */
726static unsigned char*
727bin2mem (unsigned char *mem, unsigned char *buf, int count)
728{
729	int i;
730	unsigned char *next;
731	for (i = 0; i < count; i++) {
732		/* Check for any escaped characters. Be paranoid and
733		   only unescape chars that should be escaped. */
734		if (*buf == 0x7d) {
735			next = buf + 1;
736			if (*next == 0x3 || *next == 0x4 || *next == 0x5D) /* #, $, ESC */
737				{
738					buf++;
739					*buf += 0x20;
740				}
741		}
742		*mem++ = *buf++;
743	}
744	return (mem);
745}
746
747/* Await the sequence $<data>#<checksum> and store <data> in the array buffer
748   returned. */
749static void
750getpacket (char *buffer)
751{
752	unsigned char checksum;
753	unsigned char xmitcsum;
754	int i;
755	int count;
756	char ch;
757	do {
758		while ((ch = getDebugChar ()) != '$')
759			/* Wait for the start character $ and ignore all other characters */;
760		checksum = 0;
761		xmitcsum = -1;
762		count = 0;
763		/* Read until a # or the end of the buffer is reached */
764		while (count < BUFMAX) {
765			ch = getDebugChar ();
766			if (ch == '#')
767				break;
768			checksum = checksum + ch;
769			buffer[count] = ch;
770			count = count + 1;
771		}
772		buffer[count] = '\0';
773
774		if (ch == '#') {
775			xmitcsum = hex (getDebugChar ()) << 4;
776			xmitcsum += hex (getDebugChar ());
777			if (checksum != xmitcsum) {
778				/* Wrong checksum */
779				putDebugChar ('-');
780			}
781			else {
782				/* Correct checksum */
783				putDebugChar ('+');
784				/* If sequence characters are received, reply with them */
785				if (buffer[2] == ':') {
786					putDebugChar (buffer[0]);
787					putDebugChar (buffer[1]);
788					/* Remove the sequence characters from the buffer */
789					count = gdb_cris_strlen (buffer);
790					for (i = 3; i <= count; i++)
791						buffer[i - 3] = buffer[i];
792				}
793			}
794		}
795	} while (checksum != xmitcsum);
796}
797
798/* Send $<data>#<checksum> from the <data> in the array buffer. */
799
800static void
801putpacket(char *buffer)
802{
803	int checksum;
804	int runlen;
805	int encode;
806
807	do {
808		char *src = buffer;
809		putDebugChar ('$');
810		checksum = 0;
811		while (*src) {
812			/* Do run length encoding */
813			putDebugChar (*src);
814			checksum += *src;
815			runlen = 0;
816			while (runlen < RUNLENMAX && *src == src[runlen]) {
817				runlen++;
818			}
819			if (runlen > 3) {
820				/* Got a useful amount */
821				putDebugChar ('*');
822				checksum += '*';
823				encode = runlen + ' ' - 4;
824				putDebugChar (encode);
825				checksum += encode;
826				src += runlen;
827			}
828			else {
829				src++;
830			}
831		}
832		putDebugChar('#');
833		putDebugChar(hex_asc_hi(checksum));
834		putDebugChar(hex_asc_lo(checksum));
835	} while(kgdb_started && (getDebugChar() != '+'));
836}
837
838/* The string str is prepended with the GDB printout token and sent. Required
839   in traditional implementations. */
840void
841putDebugString (const unsigned char *str, int length)
842{
843        remcomOutBuffer[0] = 'O';
844        mem2hex(&remcomOutBuffer[1], (unsigned char *)str, length);
845        putpacket(remcomOutBuffer);
846}
847
848/********************************** Handle exceptions ************************/
849/* Build and send a response packet in order to inform the host the
850   stub is stopped. TAAn...:r...;n...:r...;n...:r...;
851                    AA = signal number
852                    n... = register number (hex)
853                    r... = register contents
854                    n... = `thread'
855                    r... = thread process ID.  This is a hex integer.
856                    n... = other string not starting with valid hex digit.
857                    gdb should ignore this n,r pair and go on to the next.
858                    This way we can extend the protocol. */
859static void
860stub_is_stopped(int sigval)
861{
862	char *ptr = remcomOutBuffer;
863	int regno;
864
865	unsigned int reg_cont;
866	int status;
867
868	/* Send trap type (converted to signal) */
869
870	*ptr++ = 'T';
871	ptr = hex_byte_pack(ptr, sigval);
872
873	/* Send register contents. We probably only need to send the
874	 * PC, frame pointer and stack pointer here. Other registers will be
875	 * explicitly asked for. But for now, send all.
876	 */
877
878	for (regno = R0; regno <= USP; regno++) {
879		/* Store n...:r...; for the registers in the buffer. */
880
881                status = read_register (regno, &reg_cont);
882
883		if (status == SUCCESS) {
884			ptr = hex_byte_pack(ptr, regno);
885                        *ptr++ = ':';
886
887                        ptr = mem2hex(ptr, (unsigned char *)&reg_cont,
888                                      register_size[regno]);
889                        *ptr++ = ';';
890                }
891
892	}
893
894#ifdef PROCESS_SUPPORT
895	/* Store the registers of the executing thread. Assume that both step,
896	   continue, and register content requests are with respect to this
897	   thread. The executing task is from the operating system scheduler. */
898
899	current_thread_c = executing_task;
900	current_thread_g = executing_task;
901
902	/* A struct assignment translates into a libc memcpy call. Avoid
903	   all libc functions in order to prevent recursive break points. */
904	copy_registers (&reg_g, &reg, sizeof(registers));
905
906	/* Store thread:r...; with the executing task TID. */
907	gdb_cris_strcpy (&remcomOutBuffer[pos], "thread:");
908	pos += gdb_cris_strlen ("thread:");
909	remcomOutBuffer[pos++] = hex_asc_hi(executing_task);
910	remcomOutBuffer[pos++] = hex_asc_lo(executing_task);
911	gdb_cris_strcpy (&remcomOutBuffer[pos], ";");
912#endif
913
914	/* null-terminate and send it off */
915
916	*ptr = 0;
917
918	putpacket (remcomOutBuffer);
919}
920
921/* All expected commands are sent from remote.c. Send a response according
922   to the description in remote.c. */
923static void
924handle_exception (int sigval)
925{
926	/* Avoid warning of not used. */
927
928	USEDFUN(handle_exception);
929	USEDVAR(internal_stack[0]);
930
931	/* Send response. */
932
933	stub_is_stopped (sigval);
934
935	for (;;) {
936		remcomOutBuffer[0] = '\0';
937		getpacket (remcomInBuffer);
938		switch (remcomInBuffer[0]) {
939			case 'g':
940				/* Read registers: g
941				   Success: Each byte of register data is described by two hex digits.
942				   Registers are in the internal order for GDB, and the bytes
943				   in a register  are in the same order the machine uses.
944				   Failure: void. */
945
946				{
947#ifdef PROCESS_SUPPORT
948					/* Use the special register content in the executing thread. */
949					copy_registers (&reg_g, &reg, sizeof(registers));
950					/* Replace the content available on the stack. */
951					if (current_thread_g != executing_task) {
952						copy_registers_from_stack (current_thread_g, &reg_g);
953					}
954					mem2hex ((unsigned char *)remcomOutBuffer, (unsigned char *)&reg_g, sizeof(registers));
955#else
956					mem2hex(remcomOutBuffer, (char *)&reg, sizeof(registers));
957#endif
958				}
959				break;
960
961			case 'G':
962				/* Write registers. GXX..XX
963				   Each byte of register data  is described by two hex digits.
964				   Success: OK
965				   Failure: void. */
966#ifdef PROCESS_SUPPORT
967				hex2mem ((unsigned char *)&reg_g, &remcomInBuffer[1], sizeof(registers));
968				if (current_thread_g == executing_task) {
969					copy_registers (&reg, &reg_g, sizeof(registers));
970				}
971				else {
972					copy_registers_to_stack(current_thread_g, &reg_g);
973				}
974#else
975				hex2mem((char *)&reg, &remcomInBuffer[1], sizeof(registers));
976#endif
977				gdb_cris_strcpy (remcomOutBuffer, "OK");
978				break;
979
980			case 'P':
981				/* Write register. Pn...=r...
982				   Write register n..., hex value without 0x, with value r...,
983				   which contains a hex value without 0x and two hex digits
984				   for each byte in the register (target byte order). P1f=11223344 means
985				   set register 31 to 44332211.
986				   Success: OK
987				   Failure: E02, E05 */
988				{
989					char *suffix;
990					int regno = gdb_cris_strtol (&remcomInBuffer[1], &suffix, 16);
991					int status;
992#ifdef PROCESS_SUPPORT
993					if (current_thread_g != executing_task)
994						status = write_stack_register (current_thread_g, regno, suffix+1);
995					else
996#endif
997						status = write_register (regno, suffix+1);
998
999					switch (status) {
1000						case E02:
1001							/* Do not support read-only registers. */
1002							gdb_cris_strcpy (remcomOutBuffer, error_message[E02]);
1003							break;
1004						case E05:
1005							/* Do not support non-existing registers. */
1006							gdb_cris_strcpy (remcomOutBuffer, error_message[E05]);
1007							break;
1008						case E07:
1009							/* Do not support non-existing registers on the stack. */
1010							gdb_cris_strcpy (remcomOutBuffer, error_message[E07]);
1011							break;
1012						default:
1013							/* Valid register number. */
1014							gdb_cris_strcpy (remcomOutBuffer, "OK");
1015							break;
1016					}
1017				}
1018				break;
1019
1020			case 'm':
1021				/* Read from memory. mAA..AA,LLLL
1022				   AA..AA is the address and LLLL is the length.
1023				   Success: XX..XX is the memory content.  Can be fewer bytes than
1024				   requested if only part of the data may be read. m6000120a,6c means
1025				   retrieve 108 byte from base address 6000120a.
1026				   Failure: void. */
1027				{
1028                                        char *suffix;
1029					unsigned char *addr = (unsigned char *)gdb_cris_strtol(&remcomInBuffer[1],
1030                                                                                               &suffix, 16);                                        int length = gdb_cris_strtol(suffix+1, 0, 16);
1031
1032                                        mem2hex(remcomOutBuffer, addr, length);
1033                                }
1034				break;
1035
1036			case 'X':
1037				/* Write to memory. XAA..AA,LLLL:XX..XX
1038				   AA..AA is the start address,  LLLL is the number of bytes, and
1039				   XX..XX is the binary data.
1040				   Success: OK
1041				   Failure: void. */
1042			case 'M':
1043				/* Write to memory. MAA..AA,LLLL:XX..XX
1044				   AA..AA is the start address,  LLLL is the number of bytes, and
1045				   XX..XX is the hexadecimal data.
1046				   Success: OK
1047				   Failure: void. */
1048				{
1049					char *lenptr;
1050					char *dataptr;
1051					unsigned char *addr = (unsigned char *)gdb_cris_strtol(&remcomInBuffer[1],
1052										      &lenptr, 16);
1053					int length = gdb_cris_strtol(lenptr+1, &dataptr, 16);
1054					if (*lenptr == ',' && *dataptr == ':') {
1055						if (remcomInBuffer[0] == 'M') {
1056							hex2mem(addr, dataptr + 1, length);
1057						}
1058						else /* X */ {
1059							bin2mem(addr, dataptr + 1, length);
1060						}
1061						gdb_cris_strcpy (remcomOutBuffer, "OK");
1062					}
1063					else {
1064						gdb_cris_strcpy (remcomOutBuffer, error_message[E06]);
1065					}
1066				}
1067				break;
1068
1069			case 'c':
1070				/* Continue execution. cAA..AA
1071				   AA..AA is the address where execution is resumed. If AA..AA is
1072				   omitted, resume at the present address.
1073				   Success: return to the executing thread.
1074				   Failure: will never know. */
1075				if (remcomInBuffer[1] != '\0') {
1076					reg.pc = gdb_cris_strtol (&remcomInBuffer[1], 0, 16);
1077				}
1078				enableDebugIRQ();
1079				return;
1080
1081			case 's':
1082				/* Step. sAA..AA
1083				   AA..AA is the address where execution is resumed. If AA..AA is
1084				   omitted, resume at the present address. Success: return to the
1085				   executing thread. Failure: will never know.
1086
1087				   Should never be invoked. The single-step is implemented on
1088				   the host side. If ever invoked, it is an internal error E04. */
1089				gdb_cris_strcpy (remcomOutBuffer, error_message[E04]);
1090				putpacket (remcomOutBuffer);
1091				return;
1092
1093			case '?':
1094				/* The last signal which caused a stop. ?
1095				   Success: SAA, where AA is the signal number.
1096				   Failure: void. */
1097				remcomOutBuffer[0] = 'S';
1098				remcomOutBuffer[1] = hex_asc_hi(sigval);
1099				remcomOutBuffer[2] = hex_asc_lo(sigval);
1100				remcomOutBuffer[3] = 0;
1101				break;
1102
1103			case 'D':
1104				/* Detach from host. D
1105				   Success: OK, and return to the executing thread.
1106				   Failure: will never know */
1107				putpacket ("OK");
1108				return;
1109
1110			case 'k':
1111			case 'r':
1112				/* kill request or reset request.
1113				   Success: restart of target.
1114				   Failure: will never know. */
1115				kill_restart ();
1116				break;
1117
1118			case 'C':
1119			case 'S':
1120			case '!':
1121			case 'R':
1122			case 'd':
1123				/* Continue with signal sig. Csig;AA..AA
1124				   Step with signal sig. Ssig;AA..AA
1125				   Use the extended remote protocol. !
1126				   Restart the target system. R0
1127				   Toggle debug flag. d
1128				   Search backwards. tAA:PP,MM
1129				   Not supported: E04 */
1130				gdb_cris_strcpy (remcomOutBuffer, error_message[E04]);
1131				break;
1132#ifdef PROCESS_SUPPORT
1133
1134			case 'T':
1135				/* Thread alive. TXX
1136				   Is thread XX alive?
1137				   Success: OK, thread XX is alive.
1138				   Failure: E03, thread XX is dead. */
1139				{
1140					int thread_id = (int)gdb_cris_strtol (&remcomInBuffer[1], 0, 16);
1141					/* Cannot tell whether it is alive or not. */
1142					if (thread_id >= 0 && thread_id < number_of_tasks)
1143						gdb_cris_strcpy (remcomOutBuffer, "OK");
1144				}
1145				break;
1146
1147			case 'H':
1148				/* Set thread for subsequent operations: Hct
1149				   c = 'c' for thread used in step and continue;
1150				   t can be -1 for all threads.
1151				   c = 'g' for thread used in other  operations.
1152				   t = 0 means pick any thread.
1153				   Success: OK
1154				   Failure: E01 */
1155				{
1156					int thread_id = gdb_cris_strtol (&remcomInBuffer[2], 0, 16);
1157					if (remcomInBuffer[1] == 'c') {
1158						/* c = 'c' for thread used in step and continue */
1159						/* Do not change current_thread_c here. It would create a mess in
1160						   the scheduler. */
1161						gdb_cris_strcpy (remcomOutBuffer, "OK");
1162					}
1163					else if (remcomInBuffer[1] == 'g') {
1164						/* c = 'g' for thread used in other  operations.
1165						   t = 0 means pick any thread. Impossible since the scheduler does
1166						   not allow that. */
1167						if (thread_id >= 0 && thread_id < number_of_tasks) {
1168							current_thread_g = thread_id;
1169							gdb_cris_strcpy (remcomOutBuffer, "OK");
1170						}
1171						else {
1172							/* Not expected - send an error message. */
1173							gdb_cris_strcpy (remcomOutBuffer, error_message[E01]);
1174						}
1175					}
1176					else {
1177						/* Not expected - send an error message. */
1178						gdb_cris_strcpy (remcomOutBuffer, error_message[E01]);
1179					}
1180				}
1181				break;
1182
1183			case 'q':
1184			case 'Q':
1185				/* Query of general interest. qXXXX
1186				   Set general value XXXX. QXXXX=yyyy */
1187				{
1188					int pos;
1189					int nextpos;
1190					int thread_id;
1191
1192					switch (remcomInBuffer[1]) {
1193						case 'C':
1194							/* Identify the remote current thread. */
1195							gdb_cris_strcpy (&remcomOutBuffer[0], "QC");
1196							remcomOutBuffer[2] = hex_asc_hi(current_thread_c);
1197							remcomOutBuffer[3] = hex_asc_lo(current_thread_c);
1198							remcomOutBuffer[4] = '\0';
1199							break;
1200						case 'L':
1201							gdb_cris_strcpy (&remcomOutBuffer[0], "QM");
1202							/* Reply with number of threads. */
1203							if (os_is_started()) {
1204								remcomOutBuffer[2] = hex_asc_hi(number_of_tasks);
1205								remcomOutBuffer[3] = hex_asc_lo(number_of_tasks);
1206							}
1207							else {
1208								remcomOutBuffer[2] = hex_asc_hi(0);
1209								remcomOutBuffer[3] = hex_asc_lo(1);
1210							}
1211							/* Done with the reply. */
1212							remcomOutBuffer[4] = hex_asc_lo(1);
1213							pos = 5;
1214							/* Expects the argument thread id. */
1215							for (; pos < (5 + HEXCHARS_IN_THREAD_ID); pos++)
1216								remcomOutBuffer[pos] = remcomInBuffer[pos];
1217							/* Reply with the thread identifiers. */
1218							if (os_is_started()) {
1219								/* Store the thread identifiers of all tasks. */
1220								for (thread_id = 0; thread_id < number_of_tasks; thread_id++) {
1221									nextpos = pos + HEXCHARS_IN_THREAD_ID - 1;
1222									for (; pos < nextpos; pos ++)
1223										remcomOutBuffer[pos] = hex_asc_lo(0);
1224									remcomOutBuffer[pos++] = hex_asc_lo(thread_id);
1225								}
1226							}
1227							else {
1228								/* Store the thread identifier of the boot task. */
1229								nextpos = pos + HEXCHARS_IN_THREAD_ID - 1;
1230								for (; pos < nextpos; pos ++)
1231									remcomOutBuffer[pos] = hex_asc_lo(0);
1232								remcomOutBuffer[pos++] = hex_asc_lo(current_thread_c);
1233							}
1234							remcomOutBuffer[pos] = '\0';
1235							break;
1236						default:
1237							/* Not supported: "" */
1238							/* Request information about section offsets: qOffsets. */
1239							remcomOutBuffer[0] = 0;
1240							break;
1241					}
1242				}
1243				break;
1244#endif /* PROCESS_SUPPORT */
1245
1246			default:
1247				/* The stub should ignore other request and send an empty
1248				   response ($#<checksum>). This way we can extend the protocol and GDB
1249				   can tell whether the stub it is talking to uses the old or the new. */
1250				remcomOutBuffer[0] = 0;
1251				break;
1252		}
1253		putpacket(remcomOutBuffer);
1254	}
1255}
1256
1257/* Performs a complete re-start from scratch. */
1258static void
1259kill_restart ()
1260{
1261	machine_restart("");
1262}
1263
1264/********************************** Breakpoint *******************************/
1265/* The hook for both a static (compiled) and a dynamic breakpoint set by GDB.
1266   An internal stack is used by the stub. The register image of the caller is
1267   stored in the structure register_image.
1268   Interactive communication with the host is handled by handle_exception and
1269   finally the register image is restored. */
1270
1271void kgdb_handle_breakpoint(void);
1272
1273asm ("
1274  .global kgdb_handle_breakpoint
1275kgdb_handle_breakpoint:
1276;;
1277;; Response to the break-instruction
1278;;
1279;; Create a register image of the caller
1280;;
1281  move     $dccr,[reg+0x5E] ; Save the flags in DCCR before disable interrupts
1282  di                        ; Disable interrupts
1283  move.d   $r0,[reg]        ; Save R0
1284  move.d   $r1,[reg+0x04]   ; Save R1
1285  move.d   $r2,[reg+0x08]   ; Save R2
1286  move.d   $r3,[reg+0x0C]   ; Save R3
1287  move.d   $r4,[reg+0x10]   ; Save R4
1288  move.d   $r5,[reg+0x14]   ; Save R5
1289  move.d   $r6,[reg+0x18]   ; Save R6
1290  move.d   $r7,[reg+0x1C]   ; Save R7
1291  move.d   $r8,[reg+0x20]   ; Save R8
1292  move.d   $r9,[reg+0x24]   ; Save R9
1293  move.d   $r10,[reg+0x28]  ; Save R10
1294  move.d   $r11,[reg+0x2C]  ; Save R11
1295  move.d   $r12,[reg+0x30]  ; Save R12
1296  move.d   $r13,[reg+0x34]  ; Save R13
1297  move.d   $sp,[reg+0x38]   ; Save SP (R14)
1298;; Due to the old assembler-versions BRP might not be recognized
1299  .word 0xE670              ; move brp,$r0
1300  subq     2,$r0             ; Set to address of previous instruction.
1301  move.d   $r0,[reg+0x3c]   ; Save the address in PC (R15)
1302  clear.b  [reg+0x40]      ; Clear P0
1303  move     $vr,[reg+0x41]   ; Save special register P1
1304  clear.w  [reg+0x42]      ; Clear P4
1305  move     $ccr,[reg+0x44]  ; Save special register CCR
1306  move     $mof,[reg+0x46]  ; P7
1307  clear.d  [reg+0x4A]      ; Clear P8
1308  move     $ibr,[reg+0x4E]  ; P9,
1309  move     $irp,[reg+0x52]  ; P10,
1310  move     $srp,[reg+0x56]  ; P11,
1311  move     $dtp0,[reg+0x5A] ; P12, register BAR, assembler might not know BAR
1312                            ; P13, register DCCR already saved
1313;; Due to the old assembler-versions BRP might not be recognized
1314  .word 0xE670              ; move brp,r0
1315;; Static (compiled) breakpoints must return to the next instruction in order
1316;; to avoid infinite loops. Dynamic (gdb-invoked) must restore the instruction
1317;; in order to execute it when execution is continued.
1318  test.b   [is_dyn_brkp]    ; Is this a dynamic breakpoint?
1319  beq      is_static         ; No, a static breakpoint
1320  nop
1321  subq     2,$r0              ; rerun the instruction the break replaced
1322is_static:
1323  moveq    1,$r1
1324  move.b   $r1,[is_dyn_brkp] ; Set the state variable to dynamic breakpoint
1325  move.d   $r0,[reg+0x62]    ; Save the return address in BRP
1326  move     $usp,[reg+0x66]   ; USP
1327;;
1328;; Handle the communication
1329;;
1330  move.d   internal_stack+1020,$sp ; Use the internal stack which grows upward
1331  moveq    5,$r10                   ; SIGTRAP
1332  jsr      handle_exception       ; Interactive routine
1333;;
1334;; Return to the caller
1335;;
1336   move.d  [reg],$r0         ; Restore R0
1337   move.d  [reg+0x04],$r1    ; Restore R1
1338   move.d  [reg+0x08],$r2    ; Restore R2
1339   move.d  [reg+0x0C],$r3    ; Restore R3
1340   move.d  [reg+0x10],$r4    ; Restore R4
1341   move.d  [reg+0x14],$r5    ; Restore R5
1342   move.d  [reg+0x18],$r6    ; Restore R6
1343   move.d  [reg+0x1C],$r7    ; Restore R7
1344   move.d  [reg+0x20],$r8    ; Restore R8
1345   move.d  [reg+0x24],$r9    ; Restore R9
1346   move.d  [reg+0x28],$r10   ; Restore R10
1347   move.d  [reg+0x2C],$r11   ; Restore R11
1348   move.d  [reg+0x30],$r12   ; Restore R12
1349   move.d  [reg+0x34],$r13   ; Restore R13
1350;;
1351;; FIXME: Which registers should be restored?
1352;;
1353   move.d  [reg+0x38],$sp    ; Restore SP (R14)
1354   move    [reg+0x56],$srp   ; Restore the subroutine return pointer.
1355   move    [reg+0x5E],$dccr  ; Restore DCCR
1356   move    [reg+0x66],$usp   ; Restore USP
1357   jump    [reg+0x62]       ; A jump to the content in register BRP works.
1358   nop                       ;
1359");
1360
1361/* The hook for an interrupt generated by GDB. An internal stack is used
1362   by the stub. The register image of the caller is stored in the structure
1363   register_image. Interactive communication with the host is handled by
1364   handle_exception and finally the register image is restored. Due to the
1365   old assembler which does not recognise the break instruction and the
1366   breakpoint return pointer hex-code is used. */
1367
1368void kgdb_handle_serial(void);
1369
1370asm ("
1371  .global kgdb_handle_serial
1372kgdb_handle_serial:
1373;;
1374;; Response to a serial interrupt
1375;;
1376
1377  move     $dccr,[reg+0x5E] ; Save the flags in DCCR
1378  di                        ; Disable interrupts
1379  move.d   $r0,[reg]        ; Save R0
1380  move.d   $r1,[reg+0x04]   ; Save R1
1381  move.d   $r2,[reg+0x08]   ; Save R2
1382  move.d   $r3,[reg+0x0C]   ; Save R3
1383  move.d   $r4,[reg+0x10]   ; Save R4
1384  move.d   $r5,[reg+0x14]   ; Save R5
1385  move.d   $r6,[reg+0x18]   ; Save R6
1386  move.d   $r7,[reg+0x1C]   ; Save R7
1387  move.d   $r8,[reg+0x20]   ; Save R8
1388  move.d   $r9,[reg+0x24]   ; Save R9
1389  move.d   $r10,[reg+0x28]  ; Save R10
1390  move.d   $r11,[reg+0x2C]  ; Save R11
1391  move.d   $r12,[reg+0x30]  ; Save R12
1392  move.d   $r13,[reg+0x34]  ; Save R13
1393  move.d   $sp,[reg+0x38]   ; Save SP (R14)
1394  move     $irp,[reg+0x3c]  ; Save the address in PC (R15)
1395  clear.b  [reg+0x40]      ; Clear P0
1396  move     $vr,[reg+0x41]   ; Save special register P1,
1397  clear.w  [reg+0x42]      ; Clear P4
1398  move     $ccr,[reg+0x44]  ; Save special register CCR
1399  move     $mof,[reg+0x46]  ; P7
1400  clear.d  [reg+0x4A]      ; Clear P8
1401  move     $ibr,[reg+0x4E]  ; P9,
1402  move     $irp,[reg+0x52]  ; P10,
1403  move     $srp,[reg+0x56]  ; P11,
1404  move     $dtp0,[reg+0x5A] ; P12, register BAR, assembler might not know BAR
1405                            ; P13, register DCCR already saved
1406;; Due to the old assembler-versions BRP might not be recognized
1407  .word 0xE670              ; move brp,r0
1408  move.d   $r0,[reg+0x62]   ; Save the return address in BRP
1409  move     $usp,[reg+0x66]  ; USP
1410
1411;; get the serial character (from debugport.c) and check if it is a ctrl-c
1412
1413  jsr getDebugChar
1414  cmp.b 3, $r10
1415  bne goback
1416  nop
1417
1418  move.d  [reg+0x5E], $r10		; Get DCCR
1419  btstq	   8, $r10			; Test the U-flag.
1420  bmi	   goback
1421  nop
1422
1423;;
1424;; Handle the communication
1425;;
1426  move.d   internal_stack+1020,$sp ; Use the internal stack
1427  moveq    2,$r10                   ; SIGINT
1428  jsr      handle_exception       ; Interactive routine
1429
1430goback:
1431;;
1432;; Return to the caller
1433;;
1434   move.d  [reg],$r0         ; Restore R0
1435   move.d  [reg+0x04],$r1    ; Restore R1
1436   move.d  [reg+0x08],$r2    ; Restore R2
1437   move.d  [reg+0x0C],$r3    ; Restore R3
1438   move.d  [reg+0x10],$r4    ; Restore R4
1439   move.d  [reg+0x14],$r5    ; Restore R5
1440   move.d  [reg+0x18],$r6    ; Restore R6
1441   move.d  [reg+0x1C],$r7    ; Restore R7
1442   move.d  [reg+0x20],$r8    ; Restore R8
1443   move.d  [reg+0x24],$r9    ; Restore R9
1444   move.d  [reg+0x28],$r10   ; Restore R10
1445   move.d  [reg+0x2C],$r11   ; Restore R11
1446   move.d  [reg+0x30],$r12   ; Restore R12
1447   move.d  [reg+0x34],$r13   ; Restore R13
1448;;
1449;; FIXME: Which registers should be restored?
1450;;
1451   move.d  [reg+0x38],$sp    ; Restore SP (R14)
1452   move    [reg+0x56],$srp   ; Restore the subroutine return pointer.
1453   move    [reg+0x5E],$dccr  ; Restore DCCR
1454   move    [reg+0x66],$usp   ; Restore USP
1455   reti                      ; Return from the interrupt routine
1456   nop
1457");
1458
1459/* Use this static breakpoint in the start-up only. */
1460
1461void
1462breakpoint(void)
1463{
1464	kgdb_started = 1;
1465	is_dyn_brkp = 0;     /* This is a static, not a dynamic breakpoint. */
1466	__asm__ volatile ("break 8"); /* Jump to handle_breakpoint. */
1467}
1468
1469/* initialize kgdb. doesn't break into the debugger, but sets up irq and ports */
1470
1471void
1472kgdb_init(void)
1473{
1474	/* could initialize debug port as well but it's done in head.S already... */
1475
1476        /* breakpoint handler is now set in irq.c */
1477	set_int_vector(8, kgdb_handle_serial);
1478
1479	enableDebugIRQ();
1480}
1481
1482/****************************** End of file **********************************/
1483