1/* 2 * Copyright (C) 2003, Axis Communications AB. 3 */ 4 5#include <asm/irq.h> 6#include <linux/irq.h> 7#include <linux/interrupt.h> 8#include <linux/smp.h> 9#include <linux/kernel.h> 10#include <linux/errno.h> 11#include <linux/init.h> 12#include <linux/profile.h> 13#include <linux/proc_fs.h> 14#include <linux/seq_file.h> 15#include <linux/threads.h> 16#include <linux/spinlock.h> 17#include <linux/kernel_stat.h> 18#include <hwregs/reg_map.h> 19#include <hwregs/reg_rdwr.h> 20#include <hwregs/intr_vect.h> 21#include <hwregs/intr_vect_defs.h> 22 23#define CPU_FIXED -1 24 25/* IRQ masks (refer to comment for crisv32_do_multiple) */ 26#if TIMER0_INTR_VECT - FIRST_IRQ < 32 27#define TIMER_MASK (1 << (TIMER0_INTR_VECT - FIRST_IRQ)) 28#undef TIMER_VECT1 29#else 30#define TIMER_MASK (1 << (TIMER0_INTR_VECT - FIRST_IRQ - 32)) 31#define TIMER_VECT1 32#endif 33#ifdef CONFIG_ETRAX_KGDB 34#if defined(CONFIG_ETRAX_KGDB_PORT0) 35#define IGNOREMASK (1 << (SER0_INTR_VECT - FIRST_IRQ)) 36#elif defined(CONFIG_ETRAX_KGDB_PORT1) 37#define IGNOREMASK (1 << (SER1_INTR_VECT - FIRST_IRQ)) 38#elif defined(CONFIG_ETRAX_KGB_PORT2) 39#define IGNOREMASK (1 << (SER2_INTR_VECT - FIRST_IRQ)) 40#elif defined(CONFIG_ETRAX_KGDB_PORT3) 41#define IGNOREMASK (1 << (SER3_INTR_VECT - FIRST_IRQ)) 42#endif 43#endif 44 45DEFINE_SPINLOCK(irq_lock); 46 47struct cris_irq_allocation 48{ 49 int cpu; /* The CPU to which the IRQ is currently allocated. */ 50 cpumask_t mask; /* The CPUs to which the IRQ may be allocated. */ 51}; 52 53struct cris_irq_allocation irq_allocations[NR_REAL_IRQS] = 54 { [0 ... NR_REAL_IRQS - 1] = {0, CPU_MASK_ALL} }; 55 56static unsigned long irq_regs[NR_CPUS] = 57{ 58 regi_irq, 59#ifdef CONFIG_SMP 60 regi_irq2, 61#endif 62}; 63 64#if NR_REAL_IRQS > 32 65#define NBR_REGS 2 66#else 67#define NBR_REGS 1 68#endif 69 70unsigned long cpu_irq_counters[NR_CPUS]; 71unsigned long irq_counters[NR_REAL_IRQS]; 72 73/* From irq.c. */ 74extern void weird_irq(void); 75 76/* From entry.S. */ 77extern void system_call(void); 78extern void nmi_interrupt(void); 79extern void multiple_interrupt(void); 80extern void gdb_handle_exception(void); 81extern void i_mmu_refill(void); 82extern void i_mmu_invalid(void); 83extern void i_mmu_access(void); 84extern void i_mmu_execute(void); 85extern void d_mmu_refill(void); 86extern void d_mmu_invalid(void); 87extern void d_mmu_access(void); 88extern void d_mmu_write(void); 89 90/* From kgdb.c. */ 91extern void kgdb_init(void); 92extern void breakpoint(void); 93 94/* From traps.c. */ 95extern void breakh_BUG(void); 96 97/* 98 * Build the IRQ handler stubs using macros from irq.h. 99 */ 100#ifdef CONFIG_CRIS_MACH_ARTPEC3 101BUILD_TIMER_IRQ(0x31, 0) 102#else 103BUILD_IRQ(0x31) 104#endif 105BUILD_IRQ(0x32) 106BUILD_IRQ(0x33) 107BUILD_IRQ(0x34) 108BUILD_IRQ(0x35) 109BUILD_IRQ(0x36) 110BUILD_IRQ(0x37) 111BUILD_IRQ(0x38) 112BUILD_IRQ(0x39) 113BUILD_IRQ(0x3a) 114BUILD_IRQ(0x3b) 115BUILD_IRQ(0x3c) 116BUILD_IRQ(0x3d) 117BUILD_IRQ(0x3e) 118BUILD_IRQ(0x3f) 119BUILD_IRQ(0x40) 120BUILD_IRQ(0x41) 121BUILD_IRQ(0x42) 122BUILD_IRQ(0x43) 123BUILD_IRQ(0x44) 124BUILD_IRQ(0x45) 125BUILD_IRQ(0x46) 126BUILD_IRQ(0x47) 127BUILD_IRQ(0x48) 128BUILD_IRQ(0x49) 129BUILD_IRQ(0x4a) 130#ifdef CONFIG_ETRAXFS 131BUILD_TIMER_IRQ(0x4b, 0) 132#else 133BUILD_IRQ(0x4b) 134#endif 135BUILD_IRQ(0x4c) 136BUILD_IRQ(0x4d) 137BUILD_IRQ(0x4e) 138BUILD_IRQ(0x4f) 139BUILD_IRQ(0x50) 140#if MACH_IRQS > 32 141BUILD_IRQ(0x51) 142BUILD_IRQ(0x52) 143BUILD_IRQ(0x53) 144BUILD_IRQ(0x54) 145BUILD_IRQ(0x55) 146BUILD_IRQ(0x56) 147BUILD_IRQ(0x57) 148BUILD_IRQ(0x58) 149BUILD_IRQ(0x59) 150BUILD_IRQ(0x5a) 151BUILD_IRQ(0x5b) 152BUILD_IRQ(0x5c) 153BUILD_IRQ(0x5d) 154BUILD_IRQ(0x5e) 155BUILD_IRQ(0x5f) 156BUILD_IRQ(0x60) 157BUILD_IRQ(0x61) 158BUILD_IRQ(0x62) 159BUILD_IRQ(0x63) 160BUILD_IRQ(0x64) 161BUILD_IRQ(0x65) 162BUILD_IRQ(0x66) 163BUILD_IRQ(0x67) 164BUILD_IRQ(0x68) 165BUILD_IRQ(0x69) 166BUILD_IRQ(0x6a) 167BUILD_IRQ(0x6b) 168BUILD_IRQ(0x6c) 169BUILD_IRQ(0x6d) 170BUILD_IRQ(0x6e) 171BUILD_IRQ(0x6f) 172BUILD_IRQ(0x70) 173#endif 174 175/* Pointers to the low-level handlers. */ 176static void (*interrupt[MACH_IRQS])(void) = { 177 IRQ0x31_interrupt, IRQ0x32_interrupt, IRQ0x33_interrupt, 178 IRQ0x34_interrupt, IRQ0x35_interrupt, IRQ0x36_interrupt, 179 IRQ0x37_interrupt, IRQ0x38_interrupt, IRQ0x39_interrupt, 180 IRQ0x3a_interrupt, IRQ0x3b_interrupt, IRQ0x3c_interrupt, 181 IRQ0x3d_interrupt, IRQ0x3e_interrupt, IRQ0x3f_interrupt, 182 IRQ0x40_interrupt, IRQ0x41_interrupt, IRQ0x42_interrupt, 183 IRQ0x43_interrupt, IRQ0x44_interrupt, IRQ0x45_interrupt, 184 IRQ0x46_interrupt, IRQ0x47_interrupt, IRQ0x48_interrupt, 185 IRQ0x49_interrupt, IRQ0x4a_interrupt, IRQ0x4b_interrupt, 186 IRQ0x4c_interrupt, IRQ0x4d_interrupt, IRQ0x4e_interrupt, 187 IRQ0x4f_interrupt, IRQ0x50_interrupt, 188#if MACH_IRQS > 32 189 IRQ0x51_interrupt, IRQ0x52_interrupt, IRQ0x53_interrupt, 190 IRQ0x54_interrupt, IRQ0x55_interrupt, IRQ0x56_interrupt, 191 IRQ0x57_interrupt, IRQ0x58_interrupt, IRQ0x59_interrupt, 192 IRQ0x5a_interrupt, IRQ0x5b_interrupt, IRQ0x5c_interrupt, 193 IRQ0x5d_interrupt, IRQ0x5e_interrupt, IRQ0x5f_interrupt, 194 IRQ0x60_interrupt, IRQ0x61_interrupt, IRQ0x62_interrupt, 195 IRQ0x63_interrupt, IRQ0x64_interrupt, IRQ0x65_interrupt, 196 IRQ0x66_interrupt, IRQ0x67_interrupt, IRQ0x68_interrupt, 197 IRQ0x69_interrupt, IRQ0x6a_interrupt, IRQ0x6b_interrupt, 198 IRQ0x6c_interrupt, IRQ0x6d_interrupt, IRQ0x6e_interrupt, 199 IRQ0x6f_interrupt, IRQ0x70_interrupt, 200#endif 201}; 202 203void 204block_irq(int irq, int cpu) 205{ 206 int intr_mask; 207 unsigned long flags; 208 209 spin_lock_irqsave(&irq_lock, flags); 210 /* Remember, 1 let thru, 0 block. */ 211 if (irq - FIRST_IRQ < 32) { 212 intr_mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu], 213 rw_mask, 0); 214 intr_mask &= ~(1 << (irq - FIRST_IRQ)); 215 REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, 216 0, intr_mask); 217 } else { 218 intr_mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu], 219 rw_mask, 1); 220 intr_mask &= ~(1 << (irq - FIRST_IRQ - 32)); 221 REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, 222 1, intr_mask); 223 } 224 spin_unlock_irqrestore(&irq_lock, flags); 225} 226 227void 228unblock_irq(int irq, int cpu) 229{ 230 int intr_mask; 231 unsigned long flags; 232 233 spin_lock_irqsave(&irq_lock, flags); 234 /* Remember, 1 let thru, 0 block. */ 235 if (irq - FIRST_IRQ < 32) { 236 intr_mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu], 237 rw_mask, 0); 238 intr_mask |= (1 << (irq - FIRST_IRQ)); 239 REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, 240 0, intr_mask); 241 } else { 242 intr_mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu], 243 rw_mask, 1); 244 intr_mask |= (1 << (irq - FIRST_IRQ - 32)); 245 REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, 246 1, intr_mask); 247 } 248 spin_unlock_irqrestore(&irq_lock, flags); 249} 250 251/* Find out which CPU the irq should be allocated to. */ 252static int irq_cpu(int irq) 253{ 254 int cpu; 255 unsigned long flags; 256 257 spin_lock_irqsave(&irq_lock, flags); 258 cpu = irq_allocations[irq - FIRST_IRQ].cpu; 259 260 /* Fixed interrupts stay on the local CPU. */ 261 if (cpu == CPU_FIXED) 262 { 263 spin_unlock_irqrestore(&irq_lock, flags); 264 return smp_processor_id(); 265 } 266 267 268 /* Let the interrupt stay if possible */ 269 if (cpumask_test_cpu(cpu, &irq_allocations[irq - FIRST_IRQ].mask)) 270 goto out; 271 272 /* IRQ must be moved to another CPU. */ 273 cpu = cpumask_first(&irq_allocations[irq - FIRST_IRQ].mask); 274 irq_allocations[irq - FIRST_IRQ].cpu = cpu; 275out: 276 spin_unlock_irqrestore(&irq_lock, flags); 277 return cpu; 278} 279 280void crisv32_mask_irq(int irq) 281{ 282 int cpu; 283 284 for (cpu = 0; cpu < NR_CPUS; cpu++) 285 block_irq(irq, cpu); 286} 287 288void crisv32_unmask_irq(int irq) 289{ 290 unblock_irq(irq, irq_cpu(irq)); 291} 292 293 294static void enable_crisv32_irq(struct irq_data *data) 295{ 296 crisv32_unmask_irq(data->irq); 297} 298 299static void disable_crisv32_irq(struct irq_data *data) 300{ 301 crisv32_mask_irq(data->irq); 302} 303 304static int set_affinity_crisv32_irq(struct irq_data *data, 305 const struct cpumask *dest, bool force) 306{ 307 unsigned long flags; 308 309 spin_lock_irqsave(&irq_lock, flags); 310 irq_allocations[data->irq - FIRST_IRQ].mask = *dest; 311 spin_unlock_irqrestore(&irq_lock, flags); 312 return 0; 313} 314 315static struct irq_chip crisv32_irq_type = { 316 .name = "CRISv32", 317 .irq_shutdown = disable_crisv32_irq, 318 .irq_enable = enable_crisv32_irq, 319 .irq_disable = disable_crisv32_irq, 320 .irq_set_affinity = set_affinity_crisv32_irq, 321}; 322 323void 324set_exception_vector(int n, irqvectptr addr) 325{ 326 etrax_irv->v[n] = (irqvectptr) addr; 327} 328 329extern void do_IRQ(int irq, struct pt_regs * regs); 330 331void 332crisv32_do_IRQ(int irq, int block, struct pt_regs* regs) 333{ 334 /* Interrupts that may not be moved to another CPU and 335 * are IRQF_DISABLED may skip blocking. This is currently 336 * only valid for the timer IRQ and the IPI and is used 337 * for the timer interrupt to avoid watchdog starvation. 338 */ 339 if (!block) { 340 do_IRQ(irq, regs); 341 return; 342 } 343 344 block_irq(irq, smp_processor_id()); 345 do_IRQ(irq, regs); 346 347 unblock_irq(irq, irq_cpu(irq)); 348} 349 350/* If multiple interrupts occur simultaneously we get a multiple 351 * interrupt from the CPU and software has to sort out which 352 * interrupts that happened. There are two special cases here: 353 * 354 * 1. Timer interrupts may never be blocked because of the 355 * watchdog (refer to comment in include/asr/arch/irq.h) 356 * 2. GDB serial port IRQs are unhandled here and will be handled 357 * as a single IRQ when it strikes again because the GDB 358 * stubb wants to save the registers in its own fashion. 359 */ 360void 361crisv32_do_multiple(struct pt_regs* regs) 362{ 363 int cpu; 364 int mask; 365 int masked[NBR_REGS]; 366 int bit; 367 int i; 368 369 cpu = smp_processor_id(); 370 371 /* An extra irq_enter here to prevent softIRQs to run after 372 * each do_IRQ. This will decrease the interrupt latency. 373 */ 374 irq_enter(); 375 376 for (i = 0; i < NBR_REGS; i++) { 377 /* Get which IRQs that happened. */ 378 masked[i] = REG_RD_INT_VECT(intr_vect, irq_regs[cpu], 379 r_masked_vect, i); 380 381 /* Calculate new IRQ mask with these IRQs disabled. */ 382 mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, i); 383 mask &= ~masked[i]; 384 385 /* Timer IRQ is never masked */ 386#ifdef TIMER_VECT1 387 if ((i == 1) && (masked[0] & TIMER_MASK)) 388 mask |= TIMER_MASK; 389#else 390 if ((i == 0) && (masked[0] & TIMER_MASK)) 391 mask |= TIMER_MASK; 392#endif 393 /* Block all the IRQs */ 394 REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, i, mask); 395 396 /* Check for timer IRQ and handle it special. */ 397#ifdef TIMER_VECT1 398 if ((i == 1) && (masked[i] & TIMER_MASK)) { 399 masked[i] &= ~TIMER_MASK; 400 do_IRQ(TIMER0_INTR_VECT, regs); 401 } 402#else 403 if ((i == 0) && (masked[i] & TIMER_MASK)) { 404 masked[i] &= ~TIMER_MASK; 405 do_IRQ(TIMER0_INTR_VECT, regs); 406 } 407#endif 408 } 409 410#ifdef IGNORE_MASK 411 /* Remove IRQs that can't be handled as multiple. */ 412 masked[0] &= ~IGNORE_MASK; 413#endif 414 415 /* Handle the rest of the IRQs. */ 416 for (i = 0; i < NBR_REGS; i++) { 417 for (bit = 0; bit < 32; bit++) { 418 if (masked[i] & (1 << bit)) 419 do_IRQ(bit + FIRST_IRQ + i*32, regs); 420 } 421 } 422 423 /* Unblock all the IRQs. */ 424 for (i = 0; i < NBR_REGS; i++) { 425 mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, i); 426 mask |= masked[i]; 427 REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, i, mask); 428 } 429 430 /* This irq_exit() will trigger the soft IRQs. */ 431 irq_exit(); 432} 433 434/* 435 * This is called by start_kernel. It fixes the IRQ masks and setup the 436 * interrupt vector table to point to bad_interrupt pointers. 437 */ 438void __init 439init_IRQ(void) 440{ 441 int i; 442 int j; 443 reg_intr_vect_rw_mask vect_mask = {0}; 444 445 /* Clear all interrupts masks. */ 446 for (i = 0; i < NBR_REGS; i++) 447 REG_WR_VECT(intr_vect, regi_irq, rw_mask, i, vect_mask); 448 449 for (i = 0; i < 256; i++) 450 etrax_irv->v[i] = weird_irq; 451 452 /* Point all IRQ's to bad handlers. */ 453 for (i = FIRST_IRQ, j = 0; j < NR_IRQS; i++, j++) { 454 irq_set_chip_and_handler(j, &crisv32_irq_type, 455 handle_simple_irq); 456 set_exception_vector(i, interrupt[j]); 457 } 458 459 /* Mark Timer and IPI IRQs as CPU local */ 460 irq_allocations[TIMER0_INTR_VECT - FIRST_IRQ].cpu = CPU_FIXED; 461 irq_set_status_flags(TIMER0_INTR_VECT, IRQ_PER_CPU); 462 irq_allocations[IPI_INTR_VECT - FIRST_IRQ].cpu = CPU_FIXED; 463 irq_set_status_flags(IPI_INTR_VECT, IRQ_PER_CPU); 464 465 set_exception_vector(0x00, nmi_interrupt); 466 set_exception_vector(0x30, multiple_interrupt); 467 468 /* Set up handler for various MMU bus faults. */ 469 set_exception_vector(0x04, i_mmu_refill); 470 set_exception_vector(0x05, i_mmu_invalid); 471 set_exception_vector(0x06, i_mmu_access); 472 set_exception_vector(0x07, i_mmu_execute); 473 set_exception_vector(0x08, d_mmu_refill); 474 set_exception_vector(0x09, d_mmu_invalid); 475 set_exception_vector(0x0a, d_mmu_access); 476 set_exception_vector(0x0b, d_mmu_write); 477 478#ifdef CONFIG_BUG 479 /* Break 14 handler, used to implement cheap BUG(). */ 480 set_exception_vector(0x1e, breakh_BUG); 481#endif 482 483 /* The system-call trap is reached by "break 13". */ 484 set_exception_vector(0x1d, system_call); 485 486 /* Exception handlers for debugging, both user-mode and kernel-mode. */ 487 488 /* Break 8. */ 489 set_exception_vector(0x18, gdb_handle_exception); 490 /* Hardware single step. */ 491 set_exception_vector(0x3, gdb_handle_exception); 492 /* Hardware breakpoint. */ 493 set_exception_vector(0xc, gdb_handle_exception); 494 495#ifdef CONFIG_ETRAX_KGDB 496 kgdb_init(); 497 /* Everything is set up; now trap the kernel. */ 498 breakpoint(); 499#endif 500} 501 502