1/* 2 * linux/arch/cris/arch-v32/kernel/time.c 3 * 4 * Copyright (C) 2003-2010 Axis Communications AB 5 * 6 */ 7 8#include <linux/timex.h> 9#include <linux/time.h> 10#include <linux/clocksource.h> 11#include <linux/interrupt.h> 12#include <linux/swap.h> 13#include <linux/sched.h> 14#include <linux/init.h> 15#include <linux/threads.h> 16#include <linux/cpufreq.h> 17#include <asm/types.h> 18#include <asm/signal.h> 19#include <asm/io.h> 20#include <asm/delay.h> 21#include <asm/rtc.h> 22#include <asm/irq.h> 23#include <asm/irq_regs.h> 24 25#include <hwregs/reg_map.h> 26#include <hwregs/reg_rdwr.h> 27#include <hwregs/timer_defs.h> 28#include <hwregs/intr_vect_defs.h> 29#ifdef CONFIG_CRIS_MACH_ARTPEC3 30#include <hwregs/clkgen_defs.h> 31#endif 32 33/* Watchdog defines */ 34#define ETRAX_WD_KEY_MASK 0x7F /* key is 7 bit */ 35#define ETRAX_WD_HZ 763 /* watchdog counts at 763 Hz */ 36/* Number of 763 counts before watchdog bites */ 37#define ETRAX_WD_CNT ((2*ETRAX_WD_HZ)/HZ + 1) 38 39/* Register the continuos readonly timer available in FS and ARTPEC-3. */ 40static cycle_t read_cont_rotime(struct clocksource *cs) 41{ 42 return (u32)REG_RD(timer, regi_timer0, r_time); 43} 44 45static struct clocksource cont_rotime = { 46 .name = "crisv32_rotime", 47 .rating = 300, 48 .read = read_cont_rotime, 49 .mask = CLOCKSOURCE_MASK(32), 50 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 51}; 52 53static int __init etrax_init_cont_rotime(void) 54{ 55 clocksource_register_khz(&cont_rotime, 100000); 56 return 0; 57} 58arch_initcall(etrax_init_cont_rotime); 59 60 61unsigned long timer_regs[NR_CPUS] = 62{ 63 regi_timer0, 64#ifdef CONFIG_SMP 65 regi_timer2 66#endif 67}; 68 69extern int set_rtc_mmss(unsigned long nowtime); 70extern int have_rtc; 71 72#ifdef CONFIG_CPU_FREQ 73static int 74cris_time_freq_notifier(struct notifier_block *nb, unsigned long val, 75 void *data); 76 77static struct notifier_block cris_time_freq_notifier_block = { 78 .notifier_call = cris_time_freq_notifier, 79}; 80#endif 81 82unsigned long get_ns_in_jiffie(void) 83{ 84 reg_timer_r_tmr0_data data; 85 unsigned long ns; 86 87 data = REG_RD(timer, regi_timer0, r_tmr0_data); 88 ns = (TIMER0_DIV - data) * 10; 89 return ns; 90} 91 92 93/* From timer MDS describing the hardware watchdog: 94 * 4.3.1 Watchdog Operation 95 * The watchdog timer is an 8-bit timer with a configurable start value. 96 * Once started the watchdog counts downwards with a frequency of 763 Hz 97 * (100/131072 MHz). When the watchdog counts down to 1, it generates an 98 * NMI (Non Maskable Interrupt), and when it counts down to 0, it resets the 99 * chip. 100 */ 101/* This gives us 1.3 ms to do something useful when the NMI comes */ 102 103/* Right now, starting the watchdog is the same as resetting it */ 104#define start_watchdog reset_watchdog 105 106#if defined(CONFIG_ETRAX_WATCHDOG) 107static short int watchdog_key = 42; /* arbitrary 7 bit number */ 108#endif 109 110/* Number of pages to consider "out of memory". It is normal that the memory 111 * is used though, so set this really low. */ 112#define WATCHDOG_MIN_FREE_PAGES 8 113 114void reset_watchdog(void) 115{ 116#if defined(CONFIG_ETRAX_WATCHDOG) 117 reg_timer_rw_wd_ctrl wd_ctrl = { 0 }; 118 119 /* Only keep watchdog happy as long as we have memory left! */ 120 if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) { 121 /* Reset the watchdog with the inverse of the old key */ 122 /* Invert key, which is 7 bits */ 123 watchdog_key ^= ETRAX_WD_KEY_MASK; 124 wd_ctrl.cnt = ETRAX_WD_CNT; 125 wd_ctrl.cmd = regk_timer_start; 126 wd_ctrl.key = watchdog_key; 127 REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl); 128 } 129#endif 130} 131 132/* stop the watchdog - we still need the correct key */ 133 134void stop_watchdog(void) 135{ 136#if defined(CONFIG_ETRAX_WATCHDOG) 137 reg_timer_rw_wd_ctrl wd_ctrl = { 0 }; 138 watchdog_key ^= ETRAX_WD_KEY_MASK; /* invert key, which is 7 bits */ 139 wd_ctrl.cnt = ETRAX_WD_CNT; 140 wd_ctrl.cmd = regk_timer_stop; 141 wd_ctrl.key = watchdog_key; 142 REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl); 143#endif 144} 145 146extern void show_registers(struct pt_regs *regs); 147 148void handle_watchdog_bite(struct pt_regs *regs) 149{ 150#if defined(CONFIG_ETRAX_WATCHDOG) 151 extern int cause_of_death; 152 153 oops_in_progress = 1; 154 printk(KERN_WARNING "Watchdog bite\n"); 155 156 /* Check if forced restart or unexpected watchdog */ 157 if (cause_of_death == 0xbedead) { 158#ifdef CONFIG_CRIS_MACH_ARTPEC3 159 /* There is a bug in Artpec-3 (voodoo TR 78) that requires 160 * us to go to lower frequency for the reset to be reliable 161 */ 162 reg_clkgen_rw_clk_ctrl ctrl = 163 REG_RD(clkgen, regi_clkgen, rw_clk_ctrl); 164 ctrl.pll = 0; 165 REG_WR(clkgen, regi_clkgen, rw_clk_ctrl, ctrl); 166#endif 167 while(1); 168 } 169 170 /* Unexpected watchdog, stop the watchdog and dump registers. */ 171 stop_watchdog(); 172 printk(KERN_WARNING "Oops: bitten by watchdog\n"); 173 show_registers(regs); 174 oops_in_progress = 0; 175#ifndef CONFIG_ETRAX_WATCHDOG_NICE_DOGGY 176 reset_watchdog(); 177#endif 178 while(1) /* nothing */; 179#endif 180} 181 182/* 183 * timer_interrupt() needs to keep up the real-time clock, 184 * as well as call the "xtime_update()" routine every clocktick. 185 */ 186extern void cris_do_profile(struct pt_regs *regs); 187 188static inline irqreturn_t timer_interrupt(int irq, void *dev_id) 189{ 190 struct pt_regs *regs = get_irq_regs(); 191 int cpu = smp_processor_id(); 192 reg_timer_r_masked_intr masked_intr; 193 reg_timer_rw_ack_intr ack_intr = { 0 }; 194 195 /* Check if the timer interrupt is for us (a tmr0 int) */ 196 masked_intr = REG_RD(timer, timer_regs[cpu], r_masked_intr); 197 if (!masked_intr.tmr0) 198 return IRQ_NONE; 199 200 /* Acknowledge the timer irq. */ 201 ack_intr.tmr0 = 1; 202 REG_WR(timer, timer_regs[cpu], rw_ack_intr, ack_intr); 203 204 /* Reset watchdog otherwise it resets us! */ 205 reset_watchdog(); 206 207 /* Update statistics. */ 208 update_process_times(user_mode(regs)); 209 210 cris_do_profile(regs); /* Save profiling information */ 211 212 /* The master CPU is responsible for the time keeping. */ 213 if (cpu != 0) 214 return IRQ_HANDLED; 215 216 /* Call the real timer interrupt handler */ 217 xtime_update(1); 218 return IRQ_HANDLED; 219} 220 221/* Timer is IRQF_SHARED so drivers can add stuff to the timer irq chain. 222 * It needs to be IRQF_DISABLED to make the jiffies update work properly. 223 */ 224static struct irqaction irq_timer = { 225 .handler = timer_interrupt, 226 .flags = IRQF_SHARED | IRQF_DISABLED, 227 .name = "timer" 228}; 229 230void __init cris_timer_init(void) 231{ 232 int cpu = smp_processor_id(); 233 reg_timer_rw_tmr0_ctrl tmr0_ctrl = { 0 }; 234 reg_timer_rw_tmr0_div tmr0_div = TIMER0_DIV; 235 reg_timer_rw_intr_mask timer_intr_mask; 236 237 /* Setup the etrax timers. 238 * Base frequency is 100MHz, divider 1000000 -> 100 HZ 239 * We use timer0, so timer1 is free. 240 * The trig timer is used by the fasttimer API if enabled. 241 */ 242 243 tmr0_ctrl.op = regk_timer_ld; 244 tmr0_ctrl.freq = regk_timer_f100; 245 REG_WR(timer, timer_regs[cpu], rw_tmr0_div, tmr0_div); 246 REG_WR(timer, timer_regs[cpu], rw_tmr0_ctrl, tmr0_ctrl); /* Load */ 247 tmr0_ctrl.op = regk_timer_run; 248 REG_WR(timer, timer_regs[cpu], rw_tmr0_ctrl, tmr0_ctrl); /* Start */ 249 250 /* Enable the timer irq. */ 251 timer_intr_mask = REG_RD(timer, timer_regs[cpu], rw_intr_mask); 252 timer_intr_mask.tmr0 = 1; 253 REG_WR(timer, timer_regs[cpu], rw_intr_mask, timer_intr_mask); 254} 255 256void __init time_init(void) 257{ 258 reg_intr_vect_rw_mask intr_mask; 259 260 /* Probe for the RTC and read it if it exists. 261 * Before the RTC can be probed the loops_per_usec variable needs 262 * to be initialized to make usleep work. A better value for 263 * loops_per_usec is calculated by the kernel later once the 264 * clock has started. 265 */ 266 loops_per_usec = 50; 267 268 if(RTC_INIT() < 0) 269 have_rtc = 0; 270 else 271 have_rtc = 1; 272 273 /* Start CPU local timer. */ 274 cris_timer_init(); 275 276 /* Enable the timer irq in global config. */ 277 intr_mask = REG_RD_VECT(intr_vect, regi_irq, rw_mask, 1); 278 intr_mask.timer0 = 1; 279 REG_WR_VECT(intr_vect, regi_irq, rw_mask, 1, intr_mask); 280 281 /* Now actually register the timer irq handler that calls 282 * timer_interrupt(). */ 283 setup_irq(TIMER0_INTR_VECT, &irq_timer); 284 285 /* Enable watchdog if we should use one. */ 286 287#if defined(CONFIG_ETRAX_WATCHDOG) 288 printk(KERN_INFO "Enabling watchdog...\n"); 289 start_watchdog(); 290 291 /* If we use the hardware watchdog, we want to trap it as an NMI 292 * and dump registers before it resets us. For this to happen, we 293 * must set the "m" NMI enable flag (which once set, is unset only 294 * when an NMI is taken). */ 295 { 296 unsigned long flags; 297 local_save_flags(flags); 298 flags |= (1<<30); /* NMI M flag is at bit 30 */ 299 local_irq_restore(flags); 300 } 301#endif 302 303#ifdef CONFIG_CPU_FREQ 304 cpufreq_register_notifier(&cris_time_freq_notifier_block, 305 CPUFREQ_TRANSITION_NOTIFIER); 306#endif 307} 308 309#ifdef CONFIG_CPU_FREQ 310static int 311cris_time_freq_notifier(struct notifier_block *nb, unsigned long val, 312 void *data) 313{ 314 struct cpufreq_freqs *freqs = data; 315 if (val == CPUFREQ_POSTCHANGE) { 316 reg_timer_r_tmr0_data data; 317 reg_timer_rw_tmr0_div div = (freqs->new * 500) / HZ; 318 do { 319 data = REG_RD(timer, timer_regs[freqs->cpu], 320 r_tmr0_data); 321 } while (data > 20); 322 REG_WR(timer, timer_regs[freqs->cpu], rw_tmr0_div, div); 323 } 324 return 0; 325} 326#endif 327