1/*
2 *	This program is free software; you can redistribute it and/or
3 *	modify it under the terms of the GNU General Public License
4 *	as published by the Free Software Foundation; either version
5 *	2 of the License, or (at your option) any later version.
6 *
7 * Portions Copyright (C)  Cisco Systems, Inc.
8 */
9#ifndef __ASM_MACH_POWERTV_IOREMAP_H
10#define __ASM_MACH_POWERTV_IOREMAP_H
11
12#include <linux/types.h>
13#include <linux/log2.h>
14#include <linux/compiler.h>
15
16#include <asm/pgtable-bits.h>
17#include <asm/addrspace.h>
18
19/* We're going to mess with bits, so get sizes */
20#define IOR_BPC			8			/* Bits per char */
21#define IOR_PHYS_BITS		(IOR_BPC * sizeof(phys_addr_t))
22#define IOR_DMA_BITS		(IOR_BPC * sizeof(dma_addr_t))
23
24/*
25 * Define the granularity of physical/DMA mapping in terms of the number
26 * of bits that defines the offset within a grain. These will be the
27 * least significant bits of the address. The rest of a physical or DMA
28 * address will be used to index into an appropriate table to find the
29 * offset to add to the address to yield the corresponding DMA or physical
30 * address, respectively.
31 */
32#define IOR_LSBITS		22			/* Bits in a grain */
33
34/*
35 * Compute the number of most significant address bits after removing those
36 * used for the offset within a grain and then compute the number of table
37 * entries for the conversion.
38 */
39#define IOR_PHYS_MSBITS		(IOR_PHYS_BITS - IOR_LSBITS)
40#define IOR_NUM_PHYS_TO_DMA	((phys_addr_t) 1 << IOR_PHYS_MSBITS)
41
42#define IOR_DMA_MSBITS		(IOR_DMA_BITS - IOR_LSBITS)
43#define IOR_NUM_DMA_TO_PHYS	((dma_addr_t) 1 << IOR_DMA_MSBITS)
44
45/*
46 * Define data structures used as elements in the arrays for the conversion
47 * between physical and DMA addresses. We do some slightly fancy math to
48 * compute the width of the offset element of the conversion tables so
49 * that we can have the smallest conversion tables. Next, round up the
50 * sizes to the next higher power of two, i.e. the offset element will have
51 * 8, 16, 32, 64, etc. bits. This eliminates the need to mask off any
52 * bits.  Finally, we compute a shift value that puts the most significant
53 * bits of the offset into the most significant bits of the offset element.
54 * This makes it more efficient on processors without barrel shifters and
55 * easier to see the values if the conversion table is dumped in binary.
56 */
57#define _IOR_OFFSET_WIDTH(n)	(1 << order_base_2(n))
58#define IOR_OFFSET_WIDTH(n) \
59	(_IOR_OFFSET_WIDTH(n) < 8 ? 8 : _IOR_OFFSET_WIDTH(n))
60
61#define IOR_PHYS_OFFSET_BITS	IOR_OFFSET_WIDTH(IOR_PHYS_MSBITS)
62#define IOR_PHYS_SHIFT		(IOR_PHYS_BITS - IOR_PHYS_OFFSET_BITS)
63
64#define IOR_DMA_OFFSET_BITS	IOR_OFFSET_WIDTH(IOR_DMA_MSBITS)
65#define IOR_DMA_SHIFT		(IOR_DMA_BITS - IOR_DMA_OFFSET_BITS)
66
67struct ior_phys_to_dma {
68	dma_addr_t offset:IOR_DMA_OFFSET_BITS __packed
69		__aligned((IOR_DMA_OFFSET_BITS / IOR_BPC));
70};
71
72struct ior_dma_to_phys {
73	dma_addr_t offset:IOR_PHYS_OFFSET_BITS __packed
74		__aligned((IOR_PHYS_OFFSET_BITS / IOR_BPC));
75};
76
77extern struct ior_phys_to_dma _ior_phys_to_dma[IOR_NUM_PHYS_TO_DMA];
78extern struct ior_dma_to_phys _ior_dma_to_phys[IOR_NUM_DMA_TO_PHYS];
79
80static inline dma_addr_t _phys_to_dma_offset_raw(phys_addr_t phys)
81{
82	return (dma_addr_t)_ior_phys_to_dma[phys >> IOR_LSBITS].offset;
83}
84
85static inline dma_addr_t _dma_to_phys_offset_raw(dma_addr_t dma)
86{
87	return (dma_addr_t)_ior_dma_to_phys[dma >> IOR_LSBITS].offset;
88}
89
90/* These are not portable and should not be used in drivers. Drivers should
91 * be using ioremap() and friends to map physical addresses to virtual
92 * addresses and dma_map*() and friends to map virtual addresses into DMA
93 * addresses and back.
94 */
95static inline dma_addr_t phys_to_dma(phys_addr_t phys)
96{
97	return phys + (_phys_to_dma_offset_raw(phys) << IOR_PHYS_SHIFT);
98}
99
100static inline phys_addr_t dma_to_phys(dma_addr_t dma)
101{
102	return dma + (_dma_to_phys_offset_raw(dma) << IOR_DMA_SHIFT);
103}
104
105extern void ioremap_add_map(dma_addr_t phys, phys_addr_t alias,
106	dma_addr_t size);
107
108/*
109 * Allow physical addresses to be fixed up to help peripherals located
110 * outside the low 32-bit range -- generic pass-through version.
111 */
112static inline phys_t fixup_bigphys_addr(phys_t phys_addr, phys_t size)
113{
114	return phys_addr;
115}
116
117/*
118 * Handle the special case of addresses the area aliased into the first
119 * 512 MiB of the processor's physical address space. These turn into either
120 * kseg0 or kseg1 addresses, depending on flags.
121 */
122static inline void __iomem *plat_ioremap(phys_t start, unsigned long size,
123	unsigned long flags)
124{
125	phys_addr_t start_offset;
126	void __iomem *result = NULL;
127
128	/* Start by checking to see whether this is an aliased address */
129	start_offset = _dma_to_phys_offset_raw(start);
130
131	/*
132	 * If:
133	 * o	the memory is aliased into the first 512 MiB, and
134	 * o	the start and end are in the same RAM bank, and
135	 * o	we don't have a zero size or wrap around, and
136	 * o	we are supposed to create an uncached mapping,
137	 *	handle this is a kseg0 or kseg1 address
138	 */
139	if (start_offset != 0) {
140		phys_addr_t last;
141		dma_addr_t dma_to_phys_offset;
142
143		last = start + size - 1;
144		dma_to_phys_offset =
145			_dma_to_phys_offset_raw(last) << IOR_DMA_SHIFT;
146
147		if (dma_to_phys_offset == start_offset &&
148			size != 0 && start <= last) {
149			phys_t adjusted_start;
150			adjusted_start = start + start_offset;
151			if (flags == _CACHE_UNCACHED)
152				result = (void __iomem *) (unsigned long)
153					CKSEG1ADDR(adjusted_start);
154			else
155				result = (void __iomem *) (unsigned long)
156					CKSEG0ADDR(adjusted_start);
157		}
158	}
159
160	return result;
161}
162
163static inline int plat_iounmap(const volatile void __iomem *addr)
164{
165	return 0;
166}
167#endif /* __ASM_MACH_POWERTV_IOREMAP_H */
168