smtc.c revision 4bf42d4272d83b42e1492215a34d42dae8e6fccc
1/* Copyright (C) 2004 Mips Technologies, Inc */
2
3#include <linux/kernel.h>
4#include <linux/sched.h>
5#include <linux/cpumask.h>
6#include <linux/interrupt.h>
7
8#include <asm/cpu.h>
9#include <asm/processor.h>
10#include <asm/atomic.h>
11#include <asm/system.h>
12#include <asm/hardirq.h>
13#include <asm/hazards.h>
14#include <asm/mmu_context.h>
15#include <asm/smp.h>
16#include <asm/mipsregs.h>
17#include <asm/cacheflush.h>
18#include <asm/time.h>
19#include <asm/addrspace.h>
20#include <asm/smtc.h>
21#include <asm/smtc_ipi.h>
22#include <asm/smtc_proc.h>
23
24/*
25 * This file should be built into the kernel only if CONFIG_MIPS_MT_SMTC is set.
26 */
27
28/*
29 * MIPSCPU_INT_BASE is identically defined in both
30 * asm-mips/mips-boards/maltaint.h and asm-mips/mips-boards/simint.h,
31 * but as yet there's no properly organized include structure that
32 * will ensure that the right *int.h file will be included for a
33 * given platform build.
34 */
35
36#define MIPSCPU_INT_BASE	16
37
38#define MIPS_CPU_IPI_IRQ	1
39
40#define LOCK_MT_PRA() \
41	local_irq_save(flags); \
42	mtflags = dmt()
43
44#define UNLOCK_MT_PRA() \
45	emt(mtflags); \
46	local_irq_restore(flags)
47
48#define LOCK_CORE_PRA() \
49	local_irq_save(flags); \
50	mtflags = dvpe()
51
52#define UNLOCK_CORE_PRA() \
53	evpe(mtflags); \
54	local_irq_restore(flags)
55
56/*
57 * Data structures purely associated with SMTC parallelism
58 */
59
60
61/*
62 * Table for tracking ASIDs whose lifetime is prolonged.
63 */
64
65asiduse smtc_live_asid[MAX_SMTC_TLBS][MAX_SMTC_ASIDS];
66
67/*
68 * Clock interrupt "latch" buffers, per "CPU"
69 */
70
71unsigned int ipi_timer_latch[NR_CPUS];
72
73/*
74 * Number of InterProcessor Interupt (IPI) message buffers to allocate
75 */
76
77#define IPIBUF_PER_CPU 4
78
79struct smtc_ipi_q IPIQ[NR_CPUS];
80struct smtc_ipi_q freeIPIq;
81
82
83/* Forward declarations */
84
85void ipi_decode(struct pt_regs *, struct smtc_ipi *);
86void post_direct_ipi(int cpu, struct smtc_ipi *pipi);
87void setup_cross_vpe_interrupts(void);
88void init_smtc_stats(void);
89
90/* Global SMTC Status */
91
92unsigned int smtc_status = 0;
93
94/* Boot command line configuration overrides */
95
96static int vpelimit = 0;
97static int tclimit = 0;
98static int ipibuffers = 0;
99static int nostlb = 0;
100static int asidmask = 0;
101unsigned long smtc_asid_mask = 0xff;
102
103static int __init maxvpes(char *str)
104{
105	get_option(&str, &vpelimit);
106	return 1;
107}
108
109static int __init maxtcs(char *str)
110{
111	get_option(&str, &tclimit);
112	return 1;
113}
114
115static int __init ipibufs(char *str)
116{
117	get_option(&str, &ipibuffers);
118	return 1;
119}
120
121static int __init stlb_disable(char *s)
122{
123	nostlb = 1;
124	return 1;
125}
126
127static int __init asidmask_set(char *str)
128{
129	get_option(&str, &asidmask);
130	switch (asidmask) {
131	case 0x1:
132	case 0x3:
133	case 0x7:
134	case 0xf:
135	case 0x1f:
136	case 0x3f:
137	case 0x7f:
138	case 0xff:
139		smtc_asid_mask = (unsigned long)asidmask;
140		break;
141	default:
142		printk("ILLEGAL ASID mask 0x%x from command line\n", asidmask);
143	}
144	return 1;
145}
146
147__setup("maxvpes=", maxvpes);
148__setup("maxtcs=", maxtcs);
149__setup("ipibufs=", ipibufs);
150__setup("nostlb", stlb_disable);
151__setup("asidmask=", asidmask_set);
152
153/* Enable additional debug checks before going into CPU idle loop */
154#define SMTC_IDLE_HOOK_DEBUG
155
156#ifdef SMTC_IDLE_HOOK_DEBUG
157
158static int hang_trig = 0;
159
160static int __init hangtrig_enable(char *s)
161{
162	hang_trig = 1;
163	return 1;
164}
165
166
167__setup("hangtrig", hangtrig_enable);
168
169#define DEFAULT_BLOCKED_IPI_LIMIT 32
170
171static int timerq_limit = DEFAULT_BLOCKED_IPI_LIMIT;
172
173static int __init tintq(char *str)
174{
175	get_option(&str, &timerq_limit);
176	return 1;
177}
178
179__setup("tintq=", tintq);
180
181int imstuckcount[2][8];
182/* vpemask represents IM/IE bits of per-VPE Status registers, low-to-high */
183int vpemask[2][8] = {{0,1,1,0,0,0,0,1},{0,1,0,0,0,0,0,1}};
184int tcnoprog[NR_CPUS];
185static atomic_t idle_hook_initialized = {0};
186static int clock_hang_reported[NR_CPUS];
187
188#endif /* SMTC_IDLE_HOOK_DEBUG */
189
190/* Initialize shared TLB - the should probably migrate to smtc_setup_cpus() */
191
192void __init sanitize_tlb_entries(void)
193{
194	printk("Deprecated sanitize_tlb_entries() invoked\n");
195}
196
197
198/*
199 * Configure shared TLB - VPC configuration bit must be set by caller
200 */
201
202void smtc_configure_tlb(void)
203{
204	int i,tlbsiz,vpes;
205	unsigned long mvpconf0;
206	unsigned long config1val;
207
208	/* Set up ASID preservation table */
209	for (vpes=0; vpes<MAX_SMTC_TLBS; vpes++) {
210	    for(i = 0; i < MAX_SMTC_ASIDS; i++) {
211		smtc_live_asid[vpes][i] = 0;
212	    }
213	}
214	mvpconf0 = read_c0_mvpconf0();
215
216	if ((vpes = ((mvpconf0 & MVPCONF0_PVPE)
217			>> MVPCONF0_PVPE_SHIFT) + 1) > 1) {
218	    /* If we have multiple VPEs, try to share the TLB */
219	    if ((mvpconf0 & MVPCONF0_TLBS) && !nostlb) {
220		/*
221		 * If TLB sizing is programmable, shared TLB
222		 * size is the total available complement.
223		 * Otherwise, we have to take the sum of all
224		 * static VPE TLB entries.
225		 */
226		if ((tlbsiz = ((mvpconf0 & MVPCONF0_PTLBE)
227				>> MVPCONF0_PTLBE_SHIFT)) == 0) {
228		    /*
229		     * If there's more than one VPE, there had better
230		     * be more than one TC, because we need one to bind
231		     * to each VPE in turn to be able to read
232		     * its configuration state!
233		     */
234		    settc(1);
235		    /* Stop the TC from doing anything foolish */
236		    write_tc_c0_tchalt(TCHALT_H);
237		    mips_ihb();
238		    /* No need to un-Halt - that happens later anyway */
239		    for (i=0; i < vpes; i++) {
240		    	write_tc_c0_tcbind(i);
241			/*
242			 * To be 100% sure we're really getting the right
243			 * information, we exit the configuration state
244			 * and do an IHB after each rebinding.
245			 */
246			write_c0_mvpcontrol(
247				read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
248			mips_ihb();
249			/*
250			 * Only count if the MMU Type indicated is TLB
251			 */
252			if (((read_vpe_c0_config() & MIPS_CONF_MT) >> 7) == 1) {
253				config1val = read_vpe_c0_config1();
254				tlbsiz += ((config1val >> 25) & 0x3f) + 1;
255			}
256
257			/* Put core back in configuration state */
258			write_c0_mvpcontrol(
259				read_c0_mvpcontrol() | MVPCONTROL_VPC );
260			mips_ihb();
261		    }
262		}
263		write_c0_mvpcontrol(read_c0_mvpcontrol() | MVPCONTROL_STLB);
264
265		/*
266		 * Setup kernel data structures to use software total,
267		 * rather than read the per-VPE Config1 value. The values
268		 * for "CPU 0" gets copied to all the other CPUs as part
269		 * of their initialization in smtc_cpu_setup().
270		 */
271
272		tlbsiz = tlbsiz & 0x3f;	/* MIPS32 limits TLB indices to 64 */
273		cpu_data[0].tlbsize = tlbsiz;
274		smtc_status |= SMTC_TLB_SHARED;
275
276		printk("TLB of %d entry pairs shared by %d VPEs\n",
277			tlbsiz, vpes);
278	    } else {
279		printk("WARNING: TLB Not Sharable on SMTC Boot!\n");
280	    }
281	}
282}
283
284
285/*
286 * Incrementally build the CPU map out of constituent MIPS MT cores,
287 * using the specified available VPEs and TCs.  Plaform code needs
288 * to ensure that each MIPS MT core invokes this routine on reset,
289 * one at a time(!).
290 *
291 * This version of the build_cpu_map and prepare_cpus routines assumes
292 * that *all* TCs of a MIPS MT core will be used for Linux, and that
293 * they will be spread across *all* available VPEs (to minimise the
294 * loss of efficiency due to exception service serialization).
295 * An improved version would pick up configuration information and
296 * possibly leave some TCs/VPEs as "slave" processors.
297 *
298 * Use c0_MVPConf0 to find out how many TCs are available, setting up
299 * phys_cpu_present_map and the logical/physical mappings.
300 */
301
302int __init mipsmt_build_cpu_map(int start_cpu_slot)
303{
304	int i, ntcs;
305
306	/*
307	 * The CPU map isn't actually used for anything at this point,
308	 * so it's not clear what else we should do apart from set
309	 * everything up so that "logical" = "physical".
310	 */
311	ntcs = ((read_c0_mvpconf0() & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
312	for (i=start_cpu_slot; i<NR_CPUS && i<ntcs; i++) {
313		cpu_set(i, phys_cpu_present_map);
314		__cpu_number_map[i] = i;
315		__cpu_logical_map[i] = i;
316	}
317	/* Initialize map of CPUs with FPUs */
318	cpus_clear(mt_fpu_cpumask);
319
320	/* One of those TC's is the one booting, and not a secondary... */
321	printk("%i available secondary CPU TC(s)\n", i - 1);
322
323	return i;
324}
325
326/*
327 * Common setup before any secondaries are started
328 * Make sure all CPU's are in a sensible state before we boot any of the
329 * secondaries.
330 *
331 * For MIPS MT "SMTC" operation, we set up all TCs, spread as evenly
332 * as possible across the available VPEs.
333 */
334
335static void smtc_tc_setup(int vpe, int tc, int cpu)
336{
337	settc(tc);
338	write_tc_c0_tchalt(TCHALT_H);
339	mips_ihb();
340	write_tc_c0_tcstatus((read_tc_c0_tcstatus()
341			& ~(TCSTATUS_TKSU | TCSTATUS_DA | TCSTATUS_IXMT))
342			| TCSTATUS_A);
343	write_tc_c0_tccontext(0);
344	/* Bind tc to vpe */
345	write_tc_c0_tcbind(vpe);
346	/* In general, all TCs should have the same cpu_data indications */
347	memcpy(&cpu_data[cpu], &cpu_data[0], sizeof(struct cpuinfo_mips));
348	/* For 34Kf, start with TC/CPU 0 as sole owner of single FPU context */
349	if (cpu_data[0].cputype == CPU_34K)
350		cpu_data[cpu].options &= ~MIPS_CPU_FPU;
351	cpu_data[cpu].vpe_id = vpe;
352	cpu_data[cpu].tc_id = tc;
353}
354
355
356void mipsmt_prepare_cpus(void)
357{
358	int i, vpe, tc, ntc, nvpe, tcpervpe, slop, cpu;
359	unsigned long flags;
360	unsigned long val;
361	int nipi;
362	struct smtc_ipi *pipi;
363
364	/* disable interrupts so we can disable MT */
365	local_irq_save(flags);
366	/* disable MT so we can configure */
367	dvpe();
368	dmt();
369
370	spin_lock_init(&freeIPIq.lock);
371
372	/*
373	 * We probably don't have as many VPEs as we do SMP "CPUs",
374	 * but it's possible - and in any case we'll never use more!
375	 */
376	for (i=0; i<NR_CPUS; i++) {
377		IPIQ[i].head = IPIQ[i].tail = NULL;
378		spin_lock_init(&IPIQ[i].lock);
379		IPIQ[i].depth = 0;
380		ipi_timer_latch[i] = 0;
381	}
382
383	/* cpu_data index starts at zero */
384	cpu = 0;
385	cpu_data[cpu].vpe_id = 0;
386	cpu_data[cpu].tc_id = 0;
387	cpu++;
388
389	/* Report on boot-time options */
390	mips_mt_set_cpuoptions ();
391	if (vpelimit > 0)
392		printk("Limit of %d VPEs set\n", vpelimit);
393	if (tclimit > 0)
394		printk("Limit of %d TCs set\n", tclimit);
395	if (nostlb) {
396		printk("Shared TLB Use Inhibited - UNSAFE for Multi-VPE Operation\n");
397	}
398	if (asidmask)
399		printk("ASID mask value override to 0x%x\n", asidmask);
400
401	/* Temporary */
402#ifdef SMTC_IDLE_HOOK_DEBUG
403	if (hang_trig)
404		printk("Logic Analyser Trigger on suspected TC hang\n");
405#endif /* SMTC_IDLE_HOOK_DEBUG */
406
407	/* Put MVPE's into 'configuration state' */
408	write_c0_mvpcontrol( read_c0_mvpcontrol() | MVPCONTROL_VPC );
409
410	val = read_c0_mvpconf0();
411	nvpe = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
412	if (vpelimit > 0 && nvpe > vpelimit)
413		nvpe = vpelimit;
414	ntc = ((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
415	if (ntc > NR_CPUS)
416		ntc = NR_CPUS;
417	if (tclimit > 0 && ntc > tclimit)
418		ntc = tclimit;
419	tcpervpe = ntc / nvpe;
420	slop = ntc % nvpe;	/* Residual TCs, < NVPE */
421
422	/* Set up shared TLB */
423	smtc_configure_tlb();
424
425	for (tc = 0, vpe = 0 ; (vpe < nvpe) && (tc < ntc) ; vpe++) {
426		/*
427		 * Set the MVP bits.
428		 */
429		settc(tc);
430		write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_MVP);
431		if (vpe != 0)
432			printk(", ");
433		printk("VPE %d: TC", vpe);
434		for (i = 0; i < tcpervpe; i++) {
435			/*
436			 * TC 0 is bound to VPE 0 at reset,
437			 * and is presumably executing this
438			 * code.  Leave it alone!
439			 */
440			if (tc != 0) {
441				smtc_tc_setup(vpe,tc, cpu);
442				cpu++;
443			}
444			printk(" %d", tc);
445			tc++;
446		}
447		if (slop) {
448			if (tc != 0) {
449				smtc_tc_setup(vpe,tc, cpu);
450				cpu++;
451			}
452			printk(" %d", tc);
453			tc++;
454			slop--;
455		}
456		if (vpe != 0) {
457			/*
458			 * Clear any stale software interrupts from VPE's Cause
459			 */
460			write_vpe_c0_cause(0);
461
462			/*
463			 * Clear ERL/EXL of VPEs other than 0
464			 * and set restricted interrupt enable/mask.
465			 */
466			write_vpe_c0_status((read_vpe_c0_status()
467				& ~(ST0_BEV | ST0_ERL | ST0_EXL | ST0_IM))
468				| (STATUSF_IP0 | STATUSF_IP1 | STATUSF_IP7
469				| ST0_IE));
470			/*
471			 * set config to be the same as vpe0,
472			 *  particularly kseg0 coherency alg
473			 */
474			write_vpe_c0_config(read_c0_config());
475			/* Clear any pending timer interrupt */
476			write_vpe_c0_compare(0);
477			/* Propagate Config7 */
478			write_vpe_c0_config7(read_c0_config7());
479		}
480		/* enable multi-threading within VPE */
481		write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() | VPECONTROL_TE);
482		/* enable the VPE */
483		write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
484	}
485
486	/*
487	 * Pull any physically present but unused TCs out of circulation.
488	 */
489	while (tc < (((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1)) {
490		cpu_clear(tc, phys_cpu_present_map);
491		cpu_clear(tc, cpu_present_map);
492		tc++;
493	}
494
495	/* release config state */
496	write_c0_mvpcontrol( read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
497
498	printk("\n");
499
500	/* Set up coprocessor affinity CPU mask(s) */
501
502	for (tc = 0; tc < ntc; tc++) {
503		if (cpu_data[tc].options & MIPS_CPU_FPU)
504			cpu_set(tc, mt_fpu_cpumask);
505	}
506
507	/* set up ipi interrupts... */
508
509	/* If we have multiple VPEs running, set up the cross-VPE interrupt */
510
511	if (nvpe > 1)
512		setup_cross_vpe_interrupts();
513
514	/* Set up queue of free IPI "messages". */
515	nipi = NR_CPUS * IPIBUF_PER_CPU;
516	if (ipibuffers > 0)
517		nipi = ipibuffers;
518
519	pipi = kmalloc(nipi *sizeof(struct smtc_ipi), GFP_KERNEL);
520	if (pipi == NULL)
521		panic("kmalloc of IPI message buffers failed\n");
522	else
523		printk("IPI buffer pool of %d buffers\n", nipi);
524	for (i = 0; i < nipi; i++) {
525		smtc_ipi_nq(&freeIPIq, pipi);
526		pipi++;
527	}
528
529	/* Arm multithreading and enable other VPEs - but all TCs are Halted */
530	emt(EMT_ENABLE);
531	evpe(EVPE_ENABLE);
532	local_irq_restore(flags);
533	/* Initialize SMTC /proc statistics/diagnostics */
534	init_smtc_stats();
535}
536
537
538/*
539 * Setup the PC, SP, and GP of a secondary processor and start it
540 * running!
541 * smp_bootstrap is the place to resume from
542 * __KSTK_TOS(idle) is apparently the stack pointer
543 * (unsigned long)idle->thread_info the gp
544 *
545 */
546void smtc_boot_secondary(int cpu, struct task_struct *idle)
547{
548	extern u32 kernelsp[NR_CPUS];
549	long flags;
550	int mtflags;
551
552	LOCK_MT_PRA();
553	if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
554		dvpe();
555	}
556	settc(cpu_data[cpu].tc_id);
557
558	/* pc */
559	write_tc_c0_tcrestart((unsigned long)&smp_bootstrap);
560
561	/* stack pointer */
562	kernelsp[cpu] = __KSTK_TOS(idle);
563	write_tc_gpr_sp(__KSTK_TOS(idle));
564
565	/* global pointer */
566	write_tc_gpr_gp((unsigned long)idle->thread_info);
567
568	smtc_status |= SMTC_MTC_ACTIVE;
569	write_tc_c0_tchalt(0);
570	if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
571		evpe(EVPE_ENABLE);
572	}
573	UNLOCK_MT_PRA();
574}
575
576void smtc_init_secondary(void)
577{
578	/*
579	 * Start timer on secondary VPEs if necessary.
580	 * mips_timer_setup should already have been invoked by init/main
581	 * on "boot" TC.  Like per_cpu_trap_init() hack, this assumes that
582	 * SMTC init code assigns TCs consdecutively and in ascending order
583	 * to across available VPEs.
584	 */
585	if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
586	    ((read_c0_tcbind() & TCBIND_CURVPE)
587	    != cpu_data[smp_processor_id() - 1].vpe_id)){
588		write_c0_compare (read_c0_count() + mips_hpt_frequency/HZ);
589	}
590
591	local_irq_enable();
592}
593
594void smtc_smp_finish(void)
595{
596	printk("TC %d going on-line as CPU %d\n",
597		cpu_data[smp_processor_id()].tc_id, smp_processor_id());
598}
599
600void smtc_cpus_done(void)
601{
602}
603
604/*
605 * Support for SMTC-optimized driver IRQ registration
606 */
607
608/*
609 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
610 * in do_IRQ. These are passed in setup_irq_smtc() and stored
611 * in this table.
612 */
613
614int setup_irq_smtc(unsigned int irq, struct irqaction * new,
615			unsigned long hwmask)
616{
617	irq_hwmask[irq] = hwmask;
618
619	return setup_irq(irq, new);
620}
621
622/*
623 * IPI model for SMTC is tricky, because interrupts aren't TC-specific.
624 * Within a VPE one TC can interrupt another by different approaches.
625 * The easiest to get right would probably be to make all TCs except
626 * the target IXMT and set a software interrupt, but an IXMT-based
627 * scheme requires that a handler must run before a new IPI could
628 * be sent, which would break the "broadcast" loops in MIPS MT.
629 * A more gonzo approach within a VPE is to halt the TC, extract
630 * its Restart, Status, and a couple of GPRs, and program the Restart
631 * address to emulate an interrupt.
632 *
633 * Within a VPE, one can be confident that the target TC isn't in
634 * a critical EXL state when halted, since the write to the Halt
635 * register could not have issued on the writing thread if the
636 * halting thread had EXL set. So k0 and k1 of the target TC
637 * can be used by the injection code.  Across VPEs, one can't
638 * be certain that the target TC isn't in a critical exception
639 * state. So we try a two-step process of sending a software
640 * interrupt to the target VPE, which either handles the event
641 * itself (if it was the target) or injects the event within
642 * the VPE.
643 */
644
645void smtc_ipi_qdump(void)
646{
647	int i;
648
649	for (i = 0; i < NR_CPUS ;i++) {
650		printk("IPIQ[%d]: head = 0x%x, tail = 0x%x, depth = %d\n",
651			i, (unsigned)IPIQ[i].head, (unsigned)IPIQ[i].tail,
652			IPIQ[i].depth);
653	}
654}
655
656/*
657 * The standard atomic.h primitives don't quite do what we want
658 * here: We need an atomic add-and-return-previous-value (which
659 * could be done with atomic_add_return and a decrement) and an
660 * atomic set/zero-and-return-previous-value (which can't really
661 * be done with the atomic.h primitives). And since this is
662 * MIPS MT, we can assume that we have LL/SC.
663 */
664static __inline__ int atomic_postincrement(unsigned int *pv)
665{
666	unsigned long result;
667
668	unsigned long temp;
669
670	__asm__ __volatile__(
671	"1:	ll	%0, %2					\n"
672	"	addu	%1, %0, 1				\n"
673	"	sc	%1, %2					\n"
674	"	beqz	%1, 1b					\n"
675	"	sync						\n"
676	: "=&r" (result), "=&r" (temp), "=m" (*pv)
677	: "m" (*pv)
678	: "memory");
679
680	return result;
681}
682
683/* No longer used in IPI dispatch, but retained for future recycling */
684
685static __inline__ int atomic_postclear(unsigned int *pv)
686{
687	unsigned long result;
688
689	unsigned long temp;
690
691	__asm__ __volatile__(
692	"1:	ll	%0, %2					\n"
693	"	or	%1, $0, $0				\n"
694	"	sc	%1, %2					\n"
695	"	beqz	%1, 1b					\n"
696	"	sync						\n"
697	: "=&r" (result), "=&r" (temp), "=m" (*pv)
698	: "m" (*pv)
699	: "memory");
700
701	return result;
702}
703
704
705void smtc_send_ipi(int cpu, int type, unsigned int action)
706{
707	int tcstatus;
708	struct smtc_ipi *pipi;
709	long flags;
710	int mtflags;
711
712	if (cpu == smp_processor_id()) {
713		printk("Cannot Send IPI to self!\n");
714		return;
715	}
716	/* Set up a descriptor, to be delivered either promptly or queued */
717	pipi = smtc_ipi_dq(&freeIPIq);
718	if (pipi == NULL) {
719		bust_spinlocks(1);
720		mips_mt_regdump(dvpe());
721		panic("IPI Msg. Buffers Depleted\n");
722	}
723	pipi->type = type;
724	pipi->arg = (void *)action;
725	pipi->dest = cpu;
726	if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
727		/* If not on same VPE, enqueue and send cross-VPE interupt */
728		smtc_ipi_nq(&IPIQ[cpu], pipi);
729		LOCK_CORE_PRA();
730		settc(cpu_data[cpu].tc_id);
731		write_vpe_c0_cause(read_vpe_c0_cause() | C_SW1);
732		UNLOCK_CORE_PRA();
733	} else {
734		/*
735		 * Not sufficient to do a LOCK_MT_PRA (dmt) here,
736		 * since ASID shootdown on the other VPE may
737		 * collide with this operation.
738		 */
739		LOCK_CORE_PRA();
740		settc(cpu_data[cpu].tc_id);
741		/* Halt the targeted TC */
742		write_tc_c0_tchalt(TCHALT_H);
743		mips_ihb();
744
745		/*
746	 	 * Inspect TCStatus - if IXMT is set, we have to queue
747		 * a message. Otherwise, we set up the "interrupt"
748		 * of the other TC
749	 	 */
750		tcstatus = read_tc_c0_tcstatus();
751
752		if ((tcstatus & TCSTATUS_IXMT) != 0) {
753			/*
754			 * Spin-waiting here can deadlock,
755			 * so we queue the message for the target TC.
756			 */
757			write_tc_c0_tchalt(0);
758			UNLOCK_CORE_PRA();
759			/* Try to reduce redundant timer interrupt messages */
760			if (type == SMTC_CLOCK_TICK) {
761			    if (atomic_postincrement(&ipi_timer_latch[cpu])!=0){
762				smtc_ipi_nq(&freeIPIq, pipi);
763				return;
764			    }
765			}
766			smtc_ipi_nq(&IPIQ[cpu], pipi);
767		} else {
768			post_direct_ipi(cpu, pipi);
769			write_tc_c0_tchalt(0);
770			UNLOCK_CORE_PRA();
771		}
772	}
773}
774
775/*
776 * Send IPI message to Halted TC, TargTC/TargVPE already having been set
777 */
778void post_direct_ipi(int cpu, struct smtc_ipi *pipi)
779{
780	struct pt_regs *kstack;
781	unsigned long tcstatus;
782	unsigned long tcrestart;
783	extern u32 kernelsp[NR_CPUS];
784	extern void __smtc_ipi_vector(void);
785
786	/* Extract Status, EPC from halted TC */
787	tcstatus = read_tc_c0_tcstatus();
788	tcrestart = read_tc_c0_tcrestart();
789	/* If TCRestart indicates a WAIT instruction, advance the PC */
790	if ((tcrestart & 0x80000000)
791	    && ((*(unsigned int *)tcrestart & 0xfe00003f) == 0x42000020)) {
792		tcrestart += 4;
793	}
794	/*
795	 * Save on TC's future kernel stack
796	 *
797	 * CU bit of Status is indicator that TC was
798	 * already running on a kernel stack...
799	 */
800	if (tcstatus & ST0_CU0)  {
801		/* Note that this "- 1" is pointer arithmetic */
802		kstack = ((struct pt_regs *)read_tc_gpr_sp()) - 1;
803	} else {
804		kstack = ((struct pt_regs *)kernelsp[cpu]) - 1;
805	}
806
807	kstack->cp0_epc = (long)tcrestart;
808	/* Save TCStatus */
809	kstack->cp0_tcstatus = tcstatus;
810	/* Pass token of operation to be performed kernel stack pad area */
811	kstack->pad0[4] = (unsigned long)pipi;
812	/* Pass address of function to be called likewise */
813	kstack->pad0[5] = (unsigned long)&ipi_decode;
814	/* Set interrupt exempt and kernel mode */
815	tcstatus |= TCSTATUS_IXMT;
816	tcstatus &= ~TCSTATUS_TKSU;
817	write_tc_c0_tcstatus(tcstatus);
818	ehb();
819	/* Set TC Restart address to be SMTC IPI vector */
820	write_tc_c0_tcrestart(__smtc_ipi_vector);
821}
822
823void ipi_resched_interrupt(struct pt_regs *regs)
824{
825	/* Return from interrupt should be enough to cause scheduler check */
826}
827
828
829void ipi_call_interrupt(struct pt_regs *regs)
830{
831	/* Invoke generic function invocation code in smp.c */
832	smp_call_function_interrupt();
833}
834
835void ipi_decode(struct pt_regs *regs, struct smtc_ipi *pipi)
836{
837	void *arg_copy = pipi->arg;
838	int type_copy = pipi->type;
839	int dest_copy = pipi->dest;
840
841	smtc_ipi_nq(&freeIPIq, pipi);
842	switch (type_copy) {
843	case SMTC_CLOCK_TICK:
844		/* Invoke Clock "Interrupt" */
845		ipi_timer_latch[dest_copy] = 0;
846#ifdef SMTC_IDLE_HOOK_DEBUG
847		clock_hang_reported[dest_copy] = 0;
848#endif /* SMTC_IDLE_HOOK_DEBUG */
849		local_timer_interrupt(0, NULL, regs);
850		break;
851	case LINUX_SMP_IPI:
852		switch ((int)arg_copy) {
853		case SMP_RESCHEDULE_YOURSELF:
854			ipi_resched_interrupt(regs);
855			break;
856		case SMP_CALL_FUNCTION:
857			ipi_call_interrupt(regs);
858			break;
859		default:
860			printk("Impossible SMTC IPI Argument 0x%x\n",
861				(int)arg_copy);
862			break;
863		}
864		break;
865	default:
866		printk("Impossible SMTC IPI Type 0x%x\n", type_copy);
867		break;
868	}
869}
870
871void deferred_smtc_ipi(struct pt_regs *regs)
872{
873	struct smtc_ipi *pipi;
874	unsigned long flags;
875/* DEBUG */
876	int q = smp_processor_id();
877
878	/*
879	 * Test is not atomic, but much faster than a dequeue,
880	 * and the vast majority of invocations will have a null queue.
881	 */
882	if (IPIQ[q].head != NULL) {
883		while((pipi = smtc_ipi_dq(&IPIQ[q])) != NULL) {
884			/* ipi_decode() should be called with interrupts off */
885			local_irq_save(flags);
886			ipi_decode(regs, pipi);
887			local_irq_restore(flags);
888		}
889	}
890}
891
892/*
893 * Send clock tick to all TCs except the one executing the funtion
894 */
895
896void smtc_timer_broadcast(int vpe)
897{
898	int cpu;
899	int myTC = cpu_data[smp_processor_id()].tc_id;
900	int myVPE = cpu_data[smp_processor_id()].vpe_id;
901
902	smtc_cpu_stats[smp_processor_id()].timerints++;
903
904	for_each_online_cpu(cpu) {
905		if (cpu_data[cpu].vpe_id == myVPE &&
906		    cpu_data[cpu].tc_id != myTC)
907			smtc_send_ipi(cpu, SMTC_CLOCK_TICK, 0);
908	}
909}
910
911/*
912 * Cross-VPE interrupts in the SMTC prototype use "software interrupts"
913 * set via cross-VPE MTTR manipulation of the Cause register. It would be
914 * in some regards preferable to have external logic for "doorbell" hardware
915 * interrupts.
916 */
917
918static int cpu_ipi_irq = MIPSCPU_INT_BASE + MIPS_CPU_IPI_IRQ;
919
920static irqreturn_t ipi_interrupt(int irq, void *dev_idm, struct pt_regs *regs)
921{
922	int my_vpe = cpu_data[smp_processor_id()].vpe_id;
923	int my_tc = cpu_data[smp_processor_id()].tc_id;
924	int cpu;
925	struct smtc_ipi *pipi;
926	unsigned long tcstatus;
927	int sent;
928	long flags;
929	unsigned int mtflags;
930	unsigned int vpflags;
931
932	/*
933	 * So long as cross-VPE interrupts are done via
934	 * MFTR/MTTR read-modify-writes of Cause, we need
935	 * to stop other VPEs whenever the local VPE does
936	 * anything similar.
937	 */
938	local_irq_save(flags);
939	vpflags = dvpe();
940	clear_c0_cause(0x100 << MIPS_CPU_IPI_IRQ);
941	set_c0_status(0x100 << MIPS_CPU_IPI_IRQ);
942	irq_enable_hazard();
943	evpe(vpflags);
944	local_irq_restore(flags);
945
946	/*
947	 * Cross-VPE Interrupt handler: Try to directly deliver IPIs
948	 * queued for TCs on this VPE other than the current one.
949	 * Return-from-interrupt should cause us to drain the queue
950	 * for the current TC, so we ought not to have to do it explicitly here.
951	 */
952
953	for_each_online_cpu(cpu) {
954		if (cpu_data[cpu].vpe_id != my_vpe)
955			continue;
956
957		pipi = smtc_ipi_dq(&IPIQ[cpu]);
958		if (pipi != NULL) {
959			if (cpu_data[cpu].tc_id != my_tc) {
960				sent = 0;
961				LOCK_MT_PRA();
962				settc(cpu_data[cpu].tc_id);
963				write_tc_c0_tchalt(TCHALT_H);
964				mips_ihb();
965				tcstatus = read_tc_c0_tcstatus();
966				if ((tcstatus & TCSTATUS_IXMT) == 0) {
967					post_direct_ipi(cpu, pipi);
968					sent = 1;
969				}
970				write_tc_c0_tchalt(0);
971				UNLOCK_MT_PRA();
972				if (!sent) {
973					smtc_ipi_req(&IPIQ[cpu], pipi);
974				}
975			} else {
976				/*
977				 * ipi_decode() should be called
978				 * with interrupts off
979				 */
980				local_irq_save(flags);
981				ipi_decode(regs, pipi);
982				local_irq_restore(flags);
983			}
984		}
985	}
986
987	return IRQ_HANDLED;
988}
989
990static void ipi_irq_dispatch(struct pt_regs *regs)
991{
992	do_IRQ(cpu_ipi_irq, regs);
993}
994
995static struct irqaction irq_ipi;
996
997void setup_cross_vpe_interrupts(void)
998{
999	if (!cpu_has_vint)
1000		panic("SMTC Kernel requires Vectored Interupt support");
1001
1002	set_vi_handler(MIPS_CPU_IPI_IRQ, ipi_irq_dispatch);
1003
1004	irq_ipi.handler = ipi_interrupt;
1005	irq_ipi.flags = IRQF_DISABLED;
1006	irq_ipi.name = "SMTC_IPI";
1007
1008	setup_irq_smtc(cpu_ipi_irq, &irq_ipi, (0x100 << MIPS_CPU_IPI_IRQ));
1009
1010	irq_desc[cpu_ipi_irq].status |= IRQ_PER_CPU;
1011}
1012
1013/*
1014 * SMTC-specific hacks invoked from elsewhere in the kernel.
1015 */
1016
1017void smtc_idle_loop_hook(void)
1018{
1019#ifdef SMTC_IDLE_HOOK_DEBUG
1020	int im;
1021	int flags;
1022	int mtflags;
1023	int bit;
1024	int vpe;
1025	int tc;
1026	int hook_ntcs;
1027	/*
1028	 * printk within DMT-protected regions can deadlock,
1029	 * so buffer diagnostic messages for later output.
1030	 */
1031	char *pdb_msg;
1032	char id_ho_db_msg[768]; /* worst-case use should be less than 700 */
1033
1034	if (atomic_read(&idle_hook_initialized) == 0) { /* fast test */
1035		if (atomic_add_return(1, &idle_hook_initialized) == 1) {
1036			int mvpconf0;
1037			/* Tedious stuff to just do once */
1038			mvpconf0 = read_c0_mvpconf0();
1039			hook_ntcs = ((mvpconf0 & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
1040			if (hook_ntcs > NR_CPUS)
1041				hook_ntcs = NR_CPUS;
1042			for (tc = 0; tc < hook_ntcs; tc++) {
1043				tcnoprog[tc] = 0;
1044				clock_hang_reported[tc] = 0;
1045	    		}
1046			for (vpe = 0; vpe < 2; vpe++)
1047				for (im = 0; im < 8; im++)
1048					imstuckcount[vpe][im] = 0;
1049			printk("Idle loop test hook initialized for %d TCs\n", hook_ntcs);
1050			atomic_set(&idle_hook_initialized, 1000);
1051		} else {
1052			/* Someone else is initializing in parallel - let 'em finish */
1053			while (atomic_read(&idle_hook_initialized) < 1000)
1054				;
1055		}
1056	}
1057
1058	/* Have we stupidly left IXMT set somewhere? */
1059	if (read_c0_tcstatus() & 0x400) {
1060		write_c0_tcstatus(read_c0_tcstatus() & ~0x400);
1061		ehb();
1062		printk("Dangling IXMT in cpu_idle()\n");
1063	}
1064
1065	/* Have we stupidly left an IM bit turned off? */
1066#define IM_LIMIT 2000
1067	local_irq_save(flags);
1068	mtflags = dmt();
1069	pdb_msg = &id_ho_db_msg[0];
1070	im = read_c0_status();
1071	vpe = cpu_data[smp_processor_id()].vpe_id;
1072	for (bit = 0; bit < 8; bit++) {
1073		/*
1074		 * In current prototype, I/O interrupts
1075		 * are masked for VPE > 0
1076		 */
1077		if (vpemask[vpe][bit]) {
1078			if (!(im & (0x100 << bit)))
1079				imstuckcount[vpe][bit]++;
1080			else
1081				imstuckcount[vpe][bit] = 0;
1082			if (imstuckcount[vpe][bit] > IM_LIMIT) {
1083				set_c0_status(0x100 << bit);
1084				ehb();
1085				imstuckcount[vpe][bit] = 0;
1086				pdb_msg += sprintf(pdb_msg,
1087					"Dangling IM %d fixed for VPE %d\n", bit,
1088					vpe);
1089			}
1090		}
1091	}
1092
1093	/*
1094	 * Now that we limit outstanding timer IPIs, check for hung TC
1095	 */
1096	for (tc = 0; tc < NR_CPUS; tc++) {
1097		/* Don't check ourself - we'll dequeue IPIs just below */
1098		if ((tc != smp_processor_id()) &&
1099		    ipi_timer_latch[tc] > timerq_limit) {
1100		    if (clock_hang_reported[tc] == 0) {
1101			pdb_msg += sprintf(pdb_msg,
1102				"TC %d looks hung with timer latch at %d\n",
1103				tc, ipi_timer_latch[tc]);
1104			clock_hang_reported[tc]++;
1105			}
1106		}
1107	}
1108	emt(mtflags);
1109	local_irq_restore(flags);
1110	if (pdb_msg != &id_ho_db_msg[0])
1111		printk("CPU%d: %s", smp_processor_id(), id_ho_db_msg);
1112#endif /* SMTC_IDLE_HOOK_DEBUG */
1113	/*
1114	 * To the extent that we've ever turned interrupts off,
1115	 * we may have accumulated deferred IPIs.  This is subtle.
1116	 * If we use the smtc_ipi_qdepth() macro, we'll get an
1117	 * exact number - but we'll also disable interrupts
1118	 * and create a window of failure where a new IPI gets
1119	 * queued after we test the depth but before we re-enable
1120	 * interrupts. So long as IXMT never gets set, however,
1121	 * we should be OK:  If we pick up something and dispatch
1122	 * it here, that's great. If we see nothing, but concurrent
1123	 * with this operation, another TC sends us an IPI, IXMT
1124	 * is clear, and we'll handle it as a real pseudo-interrupt
1125	 * and not a pseudo-pseudo interrupt.
1126	 */
1127	if (IPIQ[smp_processor_id()].depth > 0) {
1128		struct smtc_ipi *pipi;
1129		extern void self_ipi(struct smtc_ipi *);
1130
1131		if ((pipi = smtc_ipi_dq(&IPIQ[smp_processor_id()])) != NULL) {
1132			self_ipi(pipi);
1133			smtc_cpu_stats[smp_processor_id()].selfipis++;
1134		}
1135	}
1136}
1137
1138void smtc_soft_dump(void)
1139{
1140	int i;
1141
1142	printk("Counter Interrupts taken per CPU (TC)\n");
1143	for (i=0; i < NR_CPUS; i++) {
1144		printk("%d: %ld\n", i, smtc_cpu_stats[i].timerints);
1145	}
1146	printk("Self-IPI invocations:\n");
1147	for (i=0; i < NR_CPUS; i++) {
1148		printk("%d: %ld\n", i, smtc_cpu_stats[i].selfipis);
1149	}
1150	smtc_ipi_qdump();
1151	printk("Timer IPI Backlogs:\n");
1152	for (i=0; i < NR_CPUS; i++) {
1153		printk("%d: %d\n", i, ipi_timer_latch[i]);
1154	}
1155	printk("%d Recoveries of \"stolen\" FPU\n",
1156	       atomic_read(&smtc_fpu_recoveries));
1157}
1158
1159
1160/*
1161 * TLB management routines special to SMTC
1162 */
1163
1164void smtc_get_new_mmu_context(struct mm_struct *mm, unsigned long cpu)
1165{
1166	unsigned long flags, mtflags, tcstat, prevhalt, asid;
1167	int tlb, i;
1168
1169	/*
1170	 * It would be nice to be able to use a spinlock here,
1171	 * but this is invoked from within TLB flush routines
1172	 * that protect themselves with DVPE, so if a lock is
1173         * held by another TC, it'll never be freed.
1174	 *
1175	 * DVPE/DMT must not be done with interrupts enabled,
1176	 * so even so most callers will already have disabled
1177	 * them, let's be really careful...
1178	 */
1179
1180	local_irq_save(flags);
1181	if (smtc_status & SMTC_TLB_SHARED) {
1182		mtflags = dvpe();
1183		tlb = 0;
1184	} else {
1185		mtflags = dmt();
1186		tlb = cpu_data[cpu].vpe_id;
1187	}
1188	asid = asid_cache(cpu);
1189
1190	do {
1191		if (!((asid += ASID_INC) & ASID_MASK) ) {
1192			if (cpu_has_vtag_icache)
1193				flush_icache_all();
1194			/* Traverse all online CPUs (hack requires contigous range) */
1195			for (i = 0; i < num_online_cpus(); i++) {
1196				/*
1197				 * We don't need to worry about our own CPU, nor those of
1198				 * CPUs who don't share our TLB.
1199				 */
1200				if ((i != smp_processor_id()) &&
1201				    ((smtc_status & SMTC_TLB_SHARED) ||
1202				     (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))) {
1203					settc(cpu_data[i].tc_id);
1204					prevhalt = read_tc_c0_tchalt() & TCHALT_H;
1205					if (!prevhalt) {
1206						write_tc_c0_tchalt(TCHALT_H);
1207						mips_ihb();
1208					}
1209					tcstat = read_tc_c0_tcstatus();
1210					smtc_live_asid[tlb][(tcstat & ASID_MASK)] |= (asiduse)(0x1 << i);
1211					if (!prevhalt)
1212						write_tc_c0_tchalt(0);
1213				}
1214			}
1215			if (!asid)		/* fix version if needed */
1216				asid = ASID_FIRST_VERSION;
1217			local_flush_tlb_all();	/* start new asid cycle */
1218		}
1219	} while (smtc_live_asid[tlb][(asid & ASID_MASK)]);
1220
1221	/*
1222	 * SMTC shares the TLB within VPEs and possibly across all VPEs.
1223	 */
1224	for (i = 0; i < num_online_cpus(); i++) {
1225		if ((smtc_status & SMTC_TLB_SHARED) ||
1226		    (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))
1227			cpu_context(i, mm) = asid_cache(i) = asid;
1228	}
1229
1230	if (smtc_status & SMTC_TLB_SHARED)
1231		evpe(mtflags);
1232	else
1233		emt(mtflags);
1234	local_irq_restore(flags);
1235}
1236
1237/*
1238 * Invoked from macros defined in mmu_context.h
1239 * which must already have disabled interrupts
1240 * and done a DVPE or DMT as appropriate.
1241 */
1242
1243void smtc_flush_tlb_asid(unsigned long asid)
1244{
1245	int entry;
1246	unsigned long ehi;
1247
1248	entry = read_c0_wired();
1249
1250	/* Traverse all non-wired entries */
1251	while (entry < current_cpu_data.tlbsize) {
1252		write_c0_index(entry);
1253		ehb();
1254		tlb_read();
1255		ehb();
1256		ehi = read_c0_entryhi();
1257		if ((ehi & ASID_MASK) == asid) {
1258		    /*
1259		     * Invalidate only entries with specified ASID,
1260		     * makiing sure all entries differ.
1261		     */
1262		    write_c0_entryhi(CKSEG0 + (entry << (PAGE_SHIFT + 1)));
1263		    write_c0_entrylo0(0);
1264		    write_c0_entrylo1(0);
1265		    mtc0_tlbw_hazard();
1266		    tlb_write_indexed();
1267		}
1268		entry++;
1269	}
1270	write_c0_index(PARKED_INDEX);
1271	tlbw_use_hazard();
1272}
1273
1274/*
1275 * Support for single-threading cache flush operations.
1276 */
1277
1278int halt_state_save[NR_CPUS];
1279
1280/*
1281 * To really, really be sure that nothing is being done
1282 * by other TCs, halt them all.  This code assumes that
1283 * a DVPE has already been done, so while their Halted
1284 * state is theoretically architecturally unstable, in
1285 * practice, it's not going to change while we're looking
1286 * at it.
1287 */
1288
1289void smtc_cflush_lockdown(void)
1290{
1291	int cpu;
1292
1293	for_each_online_cpu(cpu) {
1294		if (cpu != smp_processor_id()) {
1295			settc(cpu_data[cpu].tc_id);
1296			halt_state_save[cpu] = read_tc_c0_tchalt();
1297			write_tc_c0_tchalt(TCHALT_H);
1298		}
1299	}
1300	mips_ihb();
1301}
1302
1303/* It would be cheating to change the cpu_online states during a flush! */
1304
1305void smtc_cflush_release(void)
1306{
1307	int cpu;
1308
1309	/*
1310	 * Start with a hazard barrier to ensure
1311	 * that all CACHE ops have played through.
1312	 */
1313	mips_ihb();
1314
1315	for_each_online_cpu(cpu) {
1316		if (cpu != smp_processor_id()) {
1317			settc(cpu_data[cpu].tc_id);
1318			write_tc_c0_tchalt(halt_state_save[cpu]);
1319		}
1320	}
1321	mips_ihb();
1322}
1323