smtc.c revision 8b5690f8847490c1e3ea47266819833a13621253
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version 2
5 * of the License, or (at your option) any later version.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10 * GNU General Public License for more details.
11 *
12 * You should have received a copy of the GNU General Public License
13 * along with this program; if not, write to the Free Software
14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
15 *
16 * Copyright (C) 2004 Mips Technologies, Inc
17 * Copyright (C) 2008 Kevin D. Kissell
18 */
19
20#include <linux/clockchips.h>
21#include <linux/kernel.h>
22#include <linux/sched.h>
23#include <linux/smp.h>
24#include <linux/cpumask.h>
25#include <linux/interrupt.h>
26#include <linux/kernel_stat.h>
27#include <linux/module.h>
28#include <linux/ftrace.h>
29#include <linux/slab.h>
30
31#include <asm/cpu.h>
32#include <asm/processor.h>
33#include <linux/atomic.h>
34#include <asm/system.h>
35#include <asm/hardirq.h>
36#include <asm/hazards.h>
37#include <asm/irq.h>
38#include <asm/mmu_context.h>
39#include <asm/mipsregs.h>
40#include <asm/cacheflush.h>
41#include <asm/time.h>
42#include <asm/addrspace.h>
43#include <asm/smtc.h>
44#include <asm/smtc_proc.h>
45
46/*
47 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
48 * in do_IRQ. These are passed in setup_irq_smtc() and stored
49 * in this table.
50 */
51unsigned long irq_hwmask[NR_IRQS];
52
53#define LOCK_MT_PRA() \
54	local_irq_save(flags); \
55	mtflags = dmt()
56
57#define UNLOCK_MT_PRA() \
58	emt(mtflags); \
59	local_irq_restore(flags)
60
61#define LOCK_CORE_PRA() \
62	local_irq_save(flags); \
63	mtflags = dvpe()
64
65#define UNLOCK_CORE_PRA() \
66	evpe(mtflags); \
67	local_irq_restore(flags)
68
69/*
70 * Data structures purely associated with SMTC parallelism
71 */
72
73
74/*
75 * Table for tracking ASIDs whose lifetime is prolonged.
76 */
77
78asiduse smtc_live_asid[MAX_SMTC_TLBS][MAX_SMTC_ASIDS];
79
80/*
81 * Number of InterProcessor Interrupt (IPI) message buffers to allocate
82 */
83
84#define IPIBUF_PER_CPU 4
85
86struct smtc_ipi_q IPIQ[NR_CPUS];
87static struct smtc_ipi_q freeIPIq;
88
89
90/* Forward declarations */
91
92void ipi_decode(struct smtc_ipi *);
93static void post_direct_ipi(int cpu, struct smtc_ipi *pipi);
94static void setup_cross_vpe_interrupts(unsigned int nvpe);
95void init_smtc_stats(void);
96
97/* Global SMTC Status */
98
99unsigned int smtc_status;
100
101/* Boot command line configuration overrides */
102
103static int vpe0limit;
104static int ipibuffers;
105static int nostlb;
106static int asidmask;
107unsigned long smtc_asid_mask = 0xff;
108
109static int __init vpe0tcs(char *str)
110{
111	get_option(&str, &vpe0limit);
112
113	return 1;
114}
115
116static int __init ipibufs(char *str)
117{
118	get_option(&str, &ipibuffers);
119	return 1;
120}
121
122static int __init stlb_disable(char *s)
123{
124	nostlb = 1;
125	return 1;
126}
127
128static int __init asidmask_set(char *str)
129{
130	get_option(&str, &asidmask);
131	switch (asidmask) {
132	case 0x1:
133	case 0x3:
134	case 0x7:
135	case 0xf:
136	case 0x1f:
137	case 0x3f:
138	case 0x7f:
139	case 0xff:
140		smtc_asid_mask = (unsigned long)asidmask;
141		break;
142	default:
143		printk("ILLEGAL ASID mask 0x%x from command line\n", asidmask);
144	}
145	return 1;
146}
147
148__setup("vpe0tcs=", vpe0tcs);
149__setup("ipibufs=", ipibufs);
150__setup("nostlb", stlb_disable);
151__setup("asidmask=", asidmask_set);
152
153#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
154
155static int hang_trig;
156
157static int __init hangtrig_enable(char *s)
158{
159	hang_trig = 1;
160	return 1;
161}
162
163
164__setup("hangtrig", hangtrig_enable);
165
166#define DEFAULT_BLOCKED_IPI_LIMIT 32
167
168static int timerq_limit = DEFAULT_BLOCKED_IPI_LIMIT;
169
170static int __init tintq(char *str)
171{
172	get_option(&str, &timerq_limit);
173	return 1;
174}
175
176__setup("tintq=", tintq);
177
178static int imstuckcount[2][8];
179/* vpemask represents IM/IE bits of per-VPE Status registers, low-to-high */
180static int vpemask[2][8] = {
181	{0, 0, 1, 0, 0, 0, 0, 1},
182	{0, 0, 0, 0, 0, 0, 0, 1}
183};
184int tcnoprog[NR_CPUS];
185static atomic_t idle_hook_initialized = ATOMIC_INIT(0);
186static int clock_hang_reported[NR_CPUS];
187
188#endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
189
190/*
191 * Configure shared TLB - VPC configuration bit must be set by caller
192 */
193
194static void smtc_configure_tlb(void)
195{
196	int i, tlbsiz, vpes;
197	unsigned long mvpconf0;
198	unsigned long config1val;
199
200	/* Set up ASID preservation table */
201	for (vpes=0; vpes<MAX_SMTC_TLBS; vpes++) {
202	    for(i = 0; i < MAX_SMTC_ASIDS; i++) {
203		smtc_live_asid[vpes][i] = 0;
204	    }
205	}
206	mvpconf0 = read_c0_mvpconf0();
207
208	if ((vpes = ((mvpconf0 & MVPCONF0_PVPE)
209			>> MVPCONF0_PVPE_SHIFT) + 1) > 1) {
210	    /* If we have multiple VPEs, try to share the TLB */
211	    if ((mvpconf0 & MVPCONF0_TLBS) && !nostlb) {
212		/*
213		 * If TLB sizing is programmable, shared TLB
214		 * size is the total available complement.
215		 * Otherwise, we have to take the sum of all
216		 * static VPE TLB entries.
217		 */
218		if ((tlbsiz = ((mvpconf0 & MVPCONF0_PTLBE)
219				>> MVPCONF0_PTLBE_SHIFT)) == 0) {
220		    /*
221		     * If there's more than one VPE, there had better
222		     * be more than one TC, because we need one to bind
223		     * to each VPE in turn to be able to read
224		     * its configuration state!
225		     */
226		    settc(1);
227		    /* Stop the TC from doing anything foolish */
228		    write_tc_c0_tchalt(TCHALT_H);
229		    mips_ihb();
230		    /* No need to un-Halt - that happens later anyway */
231		    for (i=0; i < vpes; i++) {
232		    	write_tc_c0_tcbind(i);
233			/*
234			 * To be 100% sure we're really getting the right
235			 * information, we exit the configuration state
236			 * and do an IHB after each rebinding.
237			 */
238			write_c0_mvpcontrol(
239				read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
240			mips_ihb();
241			/*
242			 * Only count if the MMU Type indicated is TLB
243			 */
244			if (((read_vpe_c0_config() & MIPS_CONF_MT) >> 7) == 1) {
245				config1val = read_vpe_c0_config1();
246				tlbsiz += ((config1val >> 25) & 0x3f) + 1;
247			}
248
249			/* Put core back in configuration state */
250			write_c0_mvpcontrol(
251				read_c0_mvpcontrol() | MVPCONTROL_VPC );
252			mips_ihb();
253		    }
254		}
255		write_c0_mvpcontrol(read_c0_mvpcontrol() | MVPCONTROL_STLB);
256		ehb();
257
258		/*
259		 * Setup kernel data structures to use software total,
260		 * rather than read the per-VPE Config1 value. The values
261		 * for "CPU 0" gets copied to all the other CPUs as part
262		 * of their initialization in smtc_cpu_setup().
263		 */
264
265		/* MIPS32 limits TLB indices to 64 */
266		if (tlbsiz > 64)
267			tlbsiz = 64;
268		cpu_data[0].tlbsize = current_cpu_data.tlbsize = tlbsiz;
269		smtc_status |= SMTC_TLB_SHARED;
270		local_flush_tlb_all();
271
272		printk("TLB of %d entry pairs shared by %d VPEs\n",
273			tlbsiz, vpes);
274	    } else {
275		printk("WARNING: TLB Not Sharable on SMTC Boot!\n");
276	    }
277	}
278}
279
280
281/*
282 * Incrementally build the CPU map out of constituent MIPS MT cores,
283 * using the specified available VPEs and TCs.  Plaform code needs
284 * to ensure that each MIPS MT core invokes this routine on reset,
285 * one at a time(!).
286 *
287 * This version of the build_cpu_map and prepare_cpus routines assumes
288 * that *all* TCs of a MIPS MT core will be used for Linux, and that
289 * they will be spread across *all* available VPEs (to minimise the
290 * loss of efficiency due to exception service serialization).
291 * An improved version would pick up configuration information and
292 * possibly leave some TCs/VPEs as "slave" processors.
293 *
294 * Use c0_MVPConf0 to find out how many TCs are available, setting up
295 * cpu_possible_map and the logical/physical mappings.
296 */
297
298int __init smtc_build_cpu_map(int start_cpu_slot)
299{
300	int i, ntcs;
301
302	/*
303	 * The CPU map isn't actually used for anything at this point,
304	 * so it's not clear what else we should do apart from set
305	 * everything up so that "logical" = "physical".
306	 */
307	ntcs = ((read_c0_mvpconf0() & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
308	for (i=start_cpu_slot; i<NR_CPUS && i<ntcs; i++) {
309		set_cpu_possible(i, true);
310		__cpu_number_map[i] = i;
311		__cpu_logical_map[i] = i;
312	}
313#ifdef CONFIG_MIPS_MT_FPAFF
314	/* Initialize map of CPUs with FPUs */
315	cpus_clear(mt_fpu_cpumask);
316#endif
317
318	/* One of those TC's is the one booting, and not a secondary... */
319	printk("%i available secondary CPU TC(s)\n", i - 1);
320
321	return i;
322}
323
324/*
325 * Common setup before any secondaries are started
326 * Make sure all CPU's are in a sensible state before we boot any of the
327 * secondaries.
328 *
329 * For MIPS MT "SMTC" operation, we set up all TCs, spread as evenly
330 * as possible across the available VPEs.
331 */
332
333static void smtc_tc_setup(int vpe, int tc, int cpu)
334{
335	settc(tc);
336	write_tc_c0_tchalt(TCHALT_H);
337	mips_ihb();
338	write_tc_c0_tcstatus((read_tc_c0_tcstatus()
339			& ~(TCSTATUS_TKSU | TCSTATUS_DA | TCSTATUS_IXMT))
340			| TCSTATUS_A);
341	/*
342	 * TCContext gets an offset from the base of the IPIQ array
343	 * to be used in low-level code to detect the presence of
344	 * an active IPI queue
345	 */
346	write_tc_c0_tccontext((sizeof(struct smtc_ipi_q) * cpu) << 16);
347	/* Bind tc to vpe */
348	write_tc_c0_tcbind(vpe);
349	/* In general, all TCs should have the same cpu_data indications */
350	memcpy(&cpu_data[cpu], &cpu_data[0], sizeof(struct cpuinfo_mips));
351	/* For 34Kf, start with TC/CPU 0 as sole owner of single FPU context */
352	if (cpu_data[0].cputype == CPU_34K ||
353	    cpu_data[0].cputype == CPU_1004K)
354		cpu_data[cpu].options &= ~MIPS_CPU_FPU;
355	cpu_data[cpu].vpe_id = vpe;
356	cpu_data[cpu].tc_id = tc;
357	/* Multi-core SMTC hasn't been tested, but be prepared */
358	cpu_data[cpu].core = (read_vpe_c0_ebase() >> 1) & 0xff;
359}
360
361/*
362 * Tweak to get Count registes in as close a sync as possible.
363 * Value seems good for 34K-class cores.
364 */
365
366#define CP0_SKEW 8
367
368void smtc_prepare_cpus(int cpus)
369{
370	int i, vpe, tc, ntc, nvpe, tcpervpe[NR_CPUS], slop, cpu;
371	unsigned long flags;
372	unsigned long val;
373	int nipi;
374	struct smtc_ipi *pipi;
375
376	/* disable interrupts so we can disable MT */
377	local_irq_save(flags);
378	/* disable MT so we can configure */
379	dvpe();
380	dmt();
381
382	spin_lock_init(&freeIPIq.lock);
383
384	/*
385	 * We probably don't have as many VPEs as we do SMP "CPUs",
386	 * but it's possible - and in any case we'll never use more!
387	 */
388	for (i=0; i<NR_CPUS; i++) {
389		IPIQ[i].head = IPIQ[i].tail = NULL;
390		spin_lock_init(&IPIQ[i].lock);
391		IPIQ[i].depth = 0;
392		IPIQ[i].resched_flag = 0; /* No reschedules queued initially */
393	}
394
395	/* cpu_data index starts at zero */
396	cpu = 0;
397	cpu_data[cpu].vpe_id = 0;
398	cpu_data[cpu].tc_id = 0;
399	cpu_data[cpu].core = (read_c0_ebase() >> 1) & 0xff;
400	cpu++;
401
402	/* Report on boot-time options */
403	mips_mt_set_cpuoptions();
404	if (vpelimit > 0)
405		printk("Limit of %d VPEs set\n", vpelimit);
406	if (tclimit > 0)
407		printk("Limit of %d TCs set\n", tclimit);
408	if (nostlb) {
409		printk("Shared TLB Use Inhibited - UNSAFE for Multi-VPE Operation\n");
410	}
411	if (asidmask)
412		printk("ASID mask value override to 0x%x\n", asidmask);
413
414	/* Temporary */
415#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
416	if (hang_trig)
417		printk("Logic Analyser Trigger on suspected TC hang\n");
418#endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
419
420	/* Put MVPE's into 'configuration state' */
421	write_c0_mvpcontrol( read_c0_mvpcontrol() | MVPCONTROL_VPC );
422
423	val = read_c0_mvpconf0();
424	nvpe = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
425	if (vpelimit > 0 && nvpe > vpelimit)
426		nvpe = vpelimit;
427	ntc = ((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
428	if (ntc > NR_CPUS)
429		ntc = NR_CPUS;
430	if (tclimit > 0 && ntc > tclimit)
431		ntc = tclimit;
432	slop = ntc % nvpe;
433	for (i = 0; i < nvpe; i++) {
434		tcpervpe[i] = ntc / nvpe;
435		if (slop) {
436			if((slop - i) > 0) tcpervpe[i]++;
437		}
438	}
439	/* Handle command line override for VPE0 */
440	if (vpe0limit > ntc) vpe0limit = ntc;
441	if (vpe0limit > 0) {
442		int slopslop;
443		if (vpe0limit < tcpervpe[0]) {
444		    /* Reducing TC count - distribute to others */
445		    slop = tcpervpe[0] - vpe0limit;
446		    slopslop = slop % (nvpe - 1);
447		    tcpervpe[0] = vpe0limit;
448		    for (i = 1; i < nvpe; i++) {
449			tcpervpe[i] += slop / (nvpe - 1);
450			if(slopslop && ((slopslop - (i - 1) > 0)))
451				tcpervpe[i]++;
452		    }
453		} else if (vpe0limit > tcpervpe[0]) {
454		    /* Increasing TC count - steal from others */
455		    slop = vpe0limit - tcpervpe[0];
456		    slopslop = slop % (nvpe - 1);
457		    tcpervpe[0] = vpe0limit;
458		    for (i = 1; i < nvpe; i++) {
459			tcpervpe[i] -= slop / (nvpe - 1);
460			if(slopslop && ((slopslop - (i - 1) > 0)))
461				tcpervpe[i]--;
462		    }
463		}
464	}
465
466	/* Set up shared TLB */
467	smtc_configure_tlb();
468
469	for (tc = 0, vpe = 0 ; (vpe < nvpe) && (tc < ntc) ; vpe++) {
470		if (tcpervpe[vpe] == 0)
471			continue;
472		if (vpe != 0)
473			printk(", ");
474		printk("VPE %d: TC", vpe);
475		for (i = 0; i < tcpervpe[vpe]; i++) {
476			/*
477			 * TC 0 is bound to VPE 0 at reset,
478			 * and is presumably executing this
479			 * code.  Leave it alone!
480			 */
481			if (tc != 0) {
482				smtc_tc_setup(vpe, tc, cpu);
483				cpu++;
484			}
485			printk(" %d", tc);
486			tc++;
487		}
488		if (vpe != 0) {
489			/*
490			 * Allow this VPE to control others.
491			 */
492			write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() |
493					      VPECONF0_MVP);
494
495			/*
496			 * Clear any stale software interrupts from VPE's Cause
497			 */
498			write_vpe_c0_cause(0);
499
500			/*
501			 * Clear ERL/EXL of VPEs other than 0
502			 * and set restricted interrupt enable/mask.
503			 */
504			write_vpe_c0_status((read_vpe_c0_status()
505				& ~(ST0_BEV | ST0_ERL | ST0_EXL | ST0_IM))
506				| (STATUSF_IP0 | STATUSF_IP1 | STATUSF_IP7
507				| ST0_IE));
508			/*
509			 * set config to be the same as vpe0,
510			 *  particularly kseg0 coherency alg
511			 */
512			write_vpe_c0_config(read_c0_config());
513			/* Clear any pending timer interrupt */
514			write_vpe_c0_compare(0);
515			/* Propagate Config7 */
516			write_vpe_c0_config7(read_c0_config7());
517			write_vpe_c0_count(read_c0_count() + CP0_SKEW);
518			ehb();
519		}
520		/* enable multi-threading within VPE */
521		write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() | VPECONTROL_TE);
522		/* enable the VPE */
523		write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
524	}
525
526	/*
527	 * Pull any physically present but unused TCs out of circulation.
528	 */
529	while (tc < (((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1)) {
530		set_cpu_possible(tc, false);
531		set_cpu_present(tc, false);
532		tc++;
533	}
534
535	/* release config state */
536	write_c0_mvpcontrol( read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
537
538	printk("\n");
539
540	/* Set up coprocessor affinity CPU mask(s) */
541
542#ifdef CONFIG_MIPS_MT_FPAFF
543	for (tc = 0; tc < ntc; tc++) {
544		if (cpu_data[tc].options & MIPS_CPU_FPU)
545			cpu_set(tc, mt_fpu_cpumask);
546	}
547#endif
548
549	/* set up ipi interrupts... */
550
551	/* If we have multiple VPEs running, set up the cross-VPE interrupt */
552
553	setup_cross_vpe_interrupts(nvpe);
554
555	/* Set up queue of free IPI "messages". */
556	nipi = NR_CPUS * IPIBUF_PER_CPU;
557	if (ipibuffers > 0)
558		nipi = ipibuffers;
559
560	pipi = kmalloc(nipi *sizeof(struct smtc_ipi), GFP_KERNEL);
561	if (pipi == NULL)
562		panic("kmalloc of IPI message buffers failed\n");
563	else
564		printk("IPI buffer pool of %d buffers\n", nipi);
565	for (i = 0; i < nipi; i++) {
566		smtc_ipi_nq(&freeIPIq, pipi);
567		pipi++;
568	}
569
570	/* Arm multithreading and enable other VPEs - but all TCs are Halted */
571	emt(EMT_ENABLE);
572	evpe(EVPE_ENABLE);
573	local_irq_restore(flags);
574	/* Initialize SMTC /proc statistics/diagnostics */
575	init_smtc_stats();
576}
577
578
579/*
580 * Setup the PC, SP, and GP of a secondary processor and start it
581 * running!
582 * smp_bootstrap is the place to resume from
583 * __KSTK_TOS(idle) is apparently the stack pointer
584 * (unsigned long)idle->thread_info the gp
585 *
586 */
587void __cpuinit smtc_boot_secondary(int cpu, struct task_struct *idle)
588{
589	extern u32 kernelsp[NR_CPUS];
590	unsigned long flags;
591	int mtflags;
592
593	LOCK_MT_PRA();
594	if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
595		dvpe();
596	}
597	settc(cpu_data[cpu].tc_id);
598
599	/* pc */
600	write_tc_c0_tcrestart((unsigned long)&smp_bootstrap);
601
602	/* stack pointer */
603	kernelsp[cpu] = __KSTK_TOS(idle);
604	write_tc_gpr_sp(__KSTK_TOS(idle));
605
606	/* global pointer */
607	write_tc_gpr_gp((unsigned long)task_thread_info(idle));
608
609	smtc_status |= SMTC_MTC_ACTIVE;
610	write_tc_c0_tchalt(0);
611	if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
612		evpe(EVPE_ENABLE);
613	}
614	UNLOCK_MT_PRA();
615}
616
617void smtc_init_secondary(void)
618{
619	local_irq_enable();
620}
621
622void smtc_smp_finish(void)
623{
624	int cpu = smp_processor_id();
625
626	/*
627	 * Lowest-numbered CPU per VPE starts a clock tick.
628	 * Like per_cpu_trap_init() hack, this assumes that
629	 * SMTC init code assigns TCs consdecutively and
630	 * in ascending order across available VPEs.
631	 */
632	if (cpu > 0 && (cpu_data[cpu].vpe_id != cpu_data[cpu - 1].vpe_id))
633		write_c0_compare(read_c0_count() + mips_hpt_frequency/HZ);
634
635	printk("TC %d going on-line as CPU %d\n",
636		cpu_data[smp_processor_id()].tc_id, smp_processor_id());
637}
638
639void smtc_cpus_done(void)
640{
641}
642
643/*
644 * Support for SMTC-optimized driver IRQ registration
645 */
646
647/*
648 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
649 * in do_IRQ. These are passed in setup_irq_smtc() and stored
650 * in this table.
651 */
652
653int setup_irq_smtc(unsigned int irq, struct irqaction * new,
654			unsigned long hwmask)
655{
656#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
657	unsigned int vpe = current_cpu_data.vpe_id;
658
659	vpemask[vpe][irq - MIPS_CPU_IRQ_BASE] = 1;
660#endif
661	irq_hwmask[irq] = hwmask;
662
663	return setup_irq(irq, new);
664}
665
666#ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
667/*
668 * Support for IRQ affinity to TCs
669 */
670
671void smtc_set_irq_affinity(unsigned int irq, cpumask_t affinity)
672{
673	/*
674	 * If a "fast path" cache of quickly decodable affinity state
675	 * is maintained, this is where it gets done, on a call up
676	 * from the platform affinity code.
677	 */
678}
679
680void smtc_forward_irq(struct irq_data *d)
681{
682	unsigned int irq = d->irq;
683	int target;
684
685	/*
686	 * OK wise guy, now figure out how to get the IRQ
687	 * to be serviced on an authorized "CPU".
688	 *
689	 * Ideally, to handle the situation where an IRQ has multiple
690	 * eligible CPUS, we would maintain state per IRQ that would
691	 * allow a fair distribution of service requests.  Since the
692	 * expected use model is any-or-only-one, for simplicity
693	 * and efficiency, we just pick the easiest one to find.
694	 */
695
696	target = cpumask_first(d->affinity);
697
698	/*
699	 * We depend on the platform code to have correctly processed
700	 * IRQ affinity change requests to ensure that the IRQ affinity
701	 * mask has been purged of bits corresponding to nonexistent and
702	 * offline "CPUs", and to TCs bound to VPEs other than the VPE
703	 * connected to the physical interrupt input for the interrupt
704	 * in question.  Otherwise we have a nasty problem with interrupt
705	 * mask management.  This is best handled in non-performance-critical
706	 * platform IRQ affinity setting code,  to minimize interrupt-time
707	 * checks.
708	 */
709
710	/* If no one is eligible, service locally */
711	if (target >= NR_CPUS)
712		do_IRQ_no_affinity(irq);
713	else
714		smtc_send_ipi(target, IRQ_AFFINITY_IPI, irq);
715}
716
717#endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
718
719/*
720 * IPI model for SMTC is tricky, because interrupts aren't TC-specific.
721 * Within a VPE one TC can interrupt another by different approaches.
722 * The easiest to get right would probably be to make all TCs except
723 * the target IXMT and set a software interrupt, but an IXMT-based
724 * scheme requires that a handler must run before a new IPI could
725 * be sent, which would break the "broadcast" loops in MIPS MT.
726 * A more gonzo approach within a VPE is to halt the TC, extract
727 * its Restart, Status, and a couple of GPRs, and program the Restart
728 * address to emulate an interrupt.
729 *
730 * Within a VPE, one can be confident that the target TC isn't in
731 * a critical EXL state when halted, since the write to the Halt
732 * register could not have issued on the writing thread if the
733 * halting thread had EXL set. So k0 and k1 of the target TC
734 * can be used by the injection code.  Across VPEs, one can't
735 * be certain that the target TC isn't in a critical exception
736 * state. So we try a two-step process of sending a software
737 * interrupt to the target VPE, which either handles the event
738 * itself (if it was the target) or injects the event within
739 * the VPE.
740 */
741
742static void smtc_ipi_qdump(void)
743{
744	int i;
745	struct smtc_ipi *temp;
746
747	for (i = 0; i < NR_CPUS ;i++) {
748		pr_info("IPIQ[%d]: head = 0x%x, tail = 0x%x, depth = %d\n",
749			i, (unsigned)IPIQ[i].head, (unsigned)IPIQ[i].tail,
750			IPIQ[i].depth);
751		temp = IPIQ[i].head;
752
753		while (temp != IPIQ[i].tail) {
754			pr_debug("%d %d %d: ", temp->type, temp->dest,
755			       (int)temp->arg);
756#ifdef	SMTC_IPI_DEBUG
757		    pr_debug("%u %lu\n", temp->sender, temp->stamp);
758#else
759		    pr_debug("\n");
760#endif
761		    temp = temp->flink;
762		}
763	}
764}
765
766/*
767 * The standard atomic.h primitives don't quite do what we want
768 * here: We need an atomic add-and-return-previous-value (which
769 * could be done with atomic_add_return and a decrement) and an
770 * atomic set/zero-and-return-previous-value (which can't really
771 * be done with the atomic.h primitives). And since this is
772 * MIPS MT, we can assume that we have LL/SC.
773 */
774static inline int atomic_postincrement(atomic_t *v)
775{
776	unsigned long result;
777
778	unsigned long temp;
779
780	__asm__ __volatile__(
781	"1:	ll	%0, %2					\n"
782	"	addu	%1, %0, 1				\n"
783	"	sc	%1, %2					\n"
784	"	beqz	%1, 1b					\n"
785	__WEAK_LLSC_MB
786	: "=&r" (result), "=&r" (temp), "=m" (v->counter)
787	: "m" (v->counter)
788	: "memory");
789
790	return result;
791}
792
793void smtc_send_ipi(int cpu, int type, unsigned int action)
794{
795	int tcstatus;
796	struct smtc_ipi *pipi;
797	unsigned long flags;
798	int mtflags;
799	unsigned long tcrestart;
800	extern void r4k_wait_irqoff(void), __pastwait(void);
801	int set_resched_flag = (type == LINUX_SMP_IPI &&
802				action == SMP_RESCHEDULE_YOURSELF);
803
804	if (cpu == smp_processor_id()) {
805		printk("Cannot Send IPI to self!\n");
806		return;
807	}
808	if (set_resched_flag && IPIQ[cpu].resched_flag != 0)
809		return; /* There is a reschedule queued already */
810
811	/* Set up a descriptor, to be delivered either promptly or queued */
812	pipi = smtc_ipi_dq(&freeIPIq);
813	if (pipi == NULL) {
814		bust_spinlocks(1);
815		mips_mt_regdump(dvpe());
816		panic("IPI Msg. Buffers Depleted\n");
817	}
818	pipi->type = type;
819	pipi->arg = (void *)action;
820	pipi->dest = cpu;
821	if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
822		/* If not on same VPE, enqueue and send cross-VPE interrupt */
823		IPIQ[cpu].resched_flag |= set_resched_flag;
824		smtc_ipi_nq(&IPIQ[cpu], pipi);
825		LOCK_CORE_PRA();
826		settc(cpu_data[cpu].tc_id);
827		write_vpe_c0_cause(read_vpe_c0_cause() | C_SW1);
828		UNLOCK_CORE_PRA();
829	} else {
830		/*
831		 * Not sufficient to do a LOCK_MT_PRA (dmt) here,
832		 * since ASID shootdown on the other VPE may
833		 * collide with this operation.
834		 */
835		LOCK_CORE_PRA();
836		settc(cpu_data[cpu].tc_id);
837		/* Halt the targeted TC */
838		write_tc_c0_tchalt(TCHALT_H);
839		mips_ihb();
840
841		/*
842	 	 * Inspect TCStatus - if IXMT is set, we have to queue
843		 * a message. Otherwise, we set up the "interrupt"
844		 * of the other TC
845	 	 */
846		tcstatus = read_tc_c0_tcstatus();
847
848		if ((tcstatus & TCSTATUS_IXMT) != 0) {
849			/*
850			 * If we're in the the irq-off version of the wait
851			 * loop, we need to force exit from the wait and
852			 * do a direct post of the IPI.
853			 */
854			if (cpu_wait == r4k_wait_irqoff) {
855				tcrestart = read_tc_c0_tcrestart();
856				if (tcrestart >= (unsigned long)r4k_wait_irqoff
857				    && tcrestart < (unsigned long)__pastwait) {
858					write_tc_c0_tcrestart(__pastwait);
859					tcstatus &= ~TCSTATUS_IXMT;
860					write_tc_c0_tcstatus(tcstatus);
861					goto postdirect;
862				}
863			}
864			/*
865			 * Otherwise we queue the message for the target TC
866			 * to pick up when he does a local_irq_restore()
867			 */
868			write_tc_c0_tchalt(0);
869			UNLOCK_CORE_PRA();
870			IPIQ[cpu].resched_flag |= set_resched_flag;
871			smtc_ipi_nq(&IPIQ[cpu], pipi);
872		} else {
873postdirect:
874			post_direct_ipi(cpu, pipi);
875			write_tc_c0_tchalt(0);
876			UNLOCK_CORE_PRA();
877		}
878	}
879}
880
881/*
882 * Send IPI message to Halted TC, TargTC/TargVPE already having been set
883 */
884static void post_direct_ipi(int cpu, struct smtc_ipi *pipi)
885{
886	struct pt_regs *kstack;
887	unsigned long tcstatus;
888	unsigned long tcrestart;
889	extern u32 kernelsp[NR_CPUS];
890	extern void __smtc_ipi_vector(void);
891//printk("%s: on %d for %d\n", __func__, smp_processor_id(), cpu);
892
893	/* Extract Status, EPC from halted TC */
894	tcstatus = read_tc_c0_tcstatus();
895	tcrestart = read_tc_c0_tcrestart();
896	/* If TCRestart indicates a WAIT instruction, advance the PC */
897	if ((tcrestart & 0x80000000)
898	    && ((*(unsigned int *)tcrestart & 0xfe00003f) == 0x42000020)) {
899		tcrestart += 4;
900	}
901	/*
902	 * Save on TC's future kernel stack
903	 *
904	 * CU bit of Status is indicator that TC was
905	 * already running on a kernel stack...
906	 */
907	if (tcstatus & ST0_CU0)  {
908		/* Note that this "- 1" is pointer arithmetic */
909		kstack = ((struct pt_regs *)read_tc_gpr_sp()) - 1;
910	} else {
911		kstack = ((struct pt_regs *)kernelsp[cpu]) - 1;
912	}
913
914	kstack->cp0_epc = (long)tcrestart;
915	/* Save TCStatus */
916	kstack->cp0_tcstatus = tcstatus;
917	/* Pass token of operation to be performed kernel stack pad area */
918	kstack->pad0[4] = (unsigned long)pipi;
919	/* Pass address of function to be called likewise */
920	kstack->pad0[5] = (unsigned long)&ipi_decode;
921	/* Set interrupt exempt and kernel mode */
922	tcstatus |= TCSTATUS_IXMT;
923	tcstatus &= ~TCSTATUS_TKSU;
924	write_tc_c0_tcstatus(tcstatus);
925	ehb();
926	/* Set TC Restart address to be SMTC IPI vector */
927	write_tc_c0_tcrestart(__smtc_ipi_vector);
928}
929
930static void ipi_resched_interrupt(void)
931{
932	scheduler_ipi();
933}
934
935static void ipi_call_interrupt(void)
936{
937	/* Invoke generic function invocation code in smp.c */
938	smp_call_function_interrupt();
939}
940
941DECLARE_PER_CPU(struct clock_event_device, mips_clockevent_device);
942
943static void __irq_entry smtc_clock_tick_interrupt(void)
944{
945	unsigned int cpu = smp_processor_id();
946	struct clock_event_device *cd;
947	int irq = MIPS_CPU_IRQ_BASE + 1;
948
949	irq_enter();
950	kstat_incr_irqs_this_cpu(irq, irq_to_desc(irq));
951	cd = &per_cpu(mips_clockevent_device, cpu);
952	cd->event_handler(cd);
953	irq_exit();
954}
955
956void ipi_decode(struct smtc_ipi *pipi)
957{
958	void *arg_copy = pipi->arg;
959	int type_copy = pipi->type;
960
961	smtc_ipi_nq(&freeIPIq, pipi);
962
963	switch (type_copy) {
964	case SMTC_CLOCK_TICK:
965		smtc_clock_tick_interrupt();
966		break;
967
968	case LINUX_SMP_IPI:
969		switch ((int)arg_copy) {
970		case SMP_RESCHEDULE_YOURSELF:
971			ipi_resched_interrupt();
972			break;
973		case SMP_CALL_FUNCTION:
974			ipi_call_interrupt();
975			break;
976		default:
977			printk("Impossible SMTC IPI Argument %p\n", arg_copy);
978			break;
979		}
980		break;
981#ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
982	case IRQ_AFFINITY_IPI:
983		/*
984		 * Accept a "forwarded" interrupt that was initially
985		 * taken by a TC who doesn't have affinity for the IRQ.
986		 */
987		do_IRQ_no_affinity((int)arg_copy);
988		break;
989#endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
990	default:
991		printk("Impossible SMTC IPI Type 0x%x\n", type_copy);
992		break;
993	}
994}
995
996/*
997 * Similar to smtc_ipi_replay(), but invoked from context restore,
998 * so it reuses the current exception frame rather than set up a
999 * new one with self_ipi.
1000 */
1001
1002void deferred_smtc_ipi(void)
1003{
1004	int cpu = smp_processor_id();
1005
1006	/*
1007	 * Test is not atomic, but much faster than a dequeue,
1008	 * and the vast majority of invocations will have a null queue.
1009	 * If irq_disabled when this was called, then any IPIs queued
1010	 * after we test last will be taken on the next irq_enable/restore.
1011	 * If interrupts were enabled, then any IPIs added after the
1012	 * last test will be taken directly.
1013	 */
1014
1015	while (IPIQ[cpu].head != NULL) {
1016		struct smtc_ipi_q *q = &IPIQ[cpu];
1017		struct smtc_ipi *pipi;
1018		unsigned long flags;
1019
1020		/*
1021		 * It may be possible we'll come in with interrupts
1022		 * already enabled.
1023		 */
1024		local_irq_save(flags);
1025		spin_lock(&q->lock);
1026		pipi = __smtc_ipi_dq(q);
1027		spin_unlock(&q->lock);
1028		if (pipi != NULL) {
1029			if (pipi->type == LINUX_SMP_IPI &&
1030			    (int)pipi->arg == SMP_RESCHEDULE_YOURSELF)
1031				IPIQ[cpu].resched_flag = 0;
1032			ipi_decode(pipi);
1033		}
1034		/*
1035		 * The use of the __raw_local restore isn't
1036		 * as obviously necessary here as in smtc_ipi_replay(),
1037		 * but it's more efficient, given that we're already
1038		 * running down the IPI queue.
1039		 */
1040		__arch_local_irq_restore(flags);
1041	}
1042}
1043
1044/*
1045 * Cross-VPE interrupts in the SMTC prototype use "software interrupts"
1046 * set via cross-VPE MTTR manipulation of the Cause register. It would be
1047 * in some regards preferable to have external logic for "doorbell" hardware
1048 * interrupts.
1049 */
1050
1051static int cpu_ipi_irq = MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_IRQ;
1052
1053static irqreturn_t ipi_interrupt(int irq, void *dev_idm)
1054{
1055	int my_vpe = cpu_data[smp_processor_id()].vpe_id;
1056	int my_tc = cpu_data[smp_processor_id()].tc_id;
1057	int cpu;
1058	struct smtc_ipi *pipi;
1059	unsigned long tcstatus;
1060	int sent;
1061	unsigned long flags;
1062	unsigned int mtflags;
1063	unsigned int vpflags;
1064
1065	/*
1066	 * So long as cross-VPE interrupts are done via
1067	 * MFTR/MTTR read-modify-writes of Cause, we need
1068	 * to stop other VPEs whenever the local VPE does
1069	 * anything similar.
1070	 */
1071	local_irq_save(flags);
1072	vpflags = dvpe();
1073	clear_c0_cause(0x100 << MIPS_CPU_IPI_IRQ);
1074	set_c0_status(0x100 << MIPS_CPU_IPI_IRQ);
1075	irq_enable_hazard();
1076	evpe(vpflags);
1077	local_irq_restore(flags);
1078
1079	/*
1080	 * Cross-VPE Interrupt handler: Try to directly deliver IPIs
1081	 * queued for TCs on this VPE other than the current one.
1082	 * Return-from-interrupt should cause us to drain the queue
1083	 * for the current TC, so we ought not to have to do it explicitly here.
1084	 */
1085
1086	for_each_online_cpu(cpu) {
1087		if (cpu_data[cpu].vpe_id != my_vpe)
1088			continue;
1089
1090		pipi = smtc_ipi_dq(&IPIQ[cpu]);
1091		if (pipi != NULL) {
1092			if (cpu_data[cpu].tc_id != my_tc) {
1093				sent = 0;
1094				LOCK_MT_PRA();
1095				settc(cpu_data[cpu].tc_id);
1096				write_tc_c0_tchalt(TCHALT_H);
1097				mips_ihb();
1098				tcstatus = read_tc_c0_tcstatus();
1099				if ((tcstatus & TCSTATUS_IXMT) == 0) {
1100					post_direct_ipi(cpu, pipi);
1101					sent = 1;
1102				}
1103				write_tc_c0_tchalt(0);
1104				UNLOCK_MT_PRA();
1105				if (!sent) {
1106					smtc_ipi_req(&IPIQ[cpu], pipi);
1107				}
1108			} else {
1109				/*
1110				 * ipi_decode() should be called
1111				 * with interrupts off
1112				 */
1113				local_irq_save(flags);
1114				if (pipi->type == LINUX_SMP_IPI &&
1115				    (int)pipi->arg == SMP_RESCHEDULE_YOURSELF)
1116					IPIQ[cpu].resched_flag = 0;
1117				ipi_decode(pipi);
1118				local_irq_restore(flags);
1119			}
1120		}
1121	}
1122
1123	return IRQ_HANDLED;
1124}
1125
1126static void ipi_irq_dispatch(void)
1127{
1128	do_IRQ(cpu_ipi_irq);
1129}
1130
1131static struct irqaction irq_ipi = {
1132	.handler	= ipi_interrupt,
1133	.flags		= IRQF_PERCPU,
1134	.name		= "SMTC_IPI"
1135};
1136
1137static void setup_cross_vpe_interrupts(unsigned int nvpe)
1138{
1139	if (nvpe < 1)
1140		return;
1141
1142	if (!cpu_has_vint)
1143		panic("SMTC Kernel requires Vectored Interrupt support");
1144
1145	set_vi_handler(MIPS_CPU_IPI_IRQ, ipi_irq_dispatch);
1146
1147	setup_irq_smtc(cpu_ipi_irq, &irq_ipi, (0x100 << MIPS_CPU_IPI_IRQ));
1148
1149	irq_set_handler(cpu_ipi_irq, handle_percpu_irq);
1150}
1151
1152/*
1153 * SMTC-specific hacks invoked from elsewhere in the kernel.
1154 */
1155
1156 /*
1157  * smtc_ipi_replay is called from raw_local_irq_restore
1158  */
1159
1160void smtc_ipi_replay(void)
1161{
1162	unsigned int cpu = smp_processor_id();
1163
1164	/*
1165	 * To the extent that we've ever turned interrupts off,
1166	 * we may have accumulated deferred IPIs.  This is subtle.
1167	 * we should be OK:  If we pick up something and dispatch
1168	 * it here, that's great. If we see nothing, but concurrent
1169	 * with this operation, another TC sends us an IPI, IXMT
1170	 * is clear, and we'll handle it as a real pseudo-interrupt
1171	 * and not a pseudo-pseudo interrupt.  The important thing
1172	 * is to do the last check for queued message *after* the
1173	 * re-enabling of interrupts.
1174	 */
1175	while (IPIQ[cpu].head != NULL) {
1176		struct smtc_ipi_q *q = &IPIQ[cpu];
1177		struct smtc_ipi *pipi;
1178		unsigned long flags;
1179
1180		/*
1181		 * It's just possible we'll come in with interrupts
1182		 * already enabled.
1183		 */
1184		local_irq_save(flags);
1185
1186		spin_lock(&q->lock);
1187		pipi = __smtc_ipi_dq(q);
1188		spin_unlock(&q->lock);
1189		/*
1190		 ** But use a raw restore here to avoid recursion.
1191		 */
1192		__arch_local_irq_restore(flags);
1193
1194		if (pipi) {
1195			self_ipi(pipi);
1196			smtc_cpu_stats[cpu].selfipis++;
1197		}
1198	}
1199}
1200
1201EXPORT_SYMBOL(smtc_ipi_replay);
1202
1203void smtc_idle_loop_hook(void)
1204{
1205#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
1206	int im;
1207	int flags;
1208	int mtflags;
1209	int bit;
1210	int vpe;
1211	int tc;
1212	int hook_ntcs;
1213	/*
1214	 * printk within DMT-protected regions can deadlock,
1215	 * so buffer diagnostic messages for later output.
1216	 */
1217	char *pdb_msg;
1218	char id_ho_db_msg[768]; /* worst-case use should be less than 700 */
1219
1220	if (atomic_read(&idle_hook_initialized) == 0) { /* fast test */
1221		if (atomic_add_return(1, &idle_hook_initialized) == 1) {
1222			int mvpconf0;
1223			/* Tedious stuff to just do once */
1224			mvpconf0 = read_c0_mvpconf0();
1225			hook_ntcs = ((mvpconf0 & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
1226			if (hook_ntcs > NR_CPUS)
1227				hook_ntcs = NR_CPUS;
1228			for (tc = 0; tc < hook_ntcs; tc++) {
1229				tcnoprog[tc] = 0;
1230				clock_hang_reported[tc] = 0;
1231	    		}
1232			for (vpe = 0; vpe < 2; vpe++)
1233				for (im = 0; im < 8; im++)
1234					imstuckcount[vpe][im] = 0;
1235			printk("Idle loop test hook initialized for %d TCs\n", hook_ntcs);
1236			atomic_set(&idle_hook_initialized, 1000);
1237		} else {
1238			/* Someone else is initializing in parallel - let 'em finish */
1239			while (atomic_read(&idle_hook_initialized) < 1000)
1240				;
1241		}
1242	}
1243
1244	/* Have we stupidly left IXMT set somewhere? */
1245	if (read_c0_tcstatus() & 0x400) {
1246		write_c0_tcstatus(read_c0_tcstatus() & ~0x400);
1247		ehb();
1248		printk("Dangling IXMT in cpu_idle()\n");
1249	}
1250
1251	/* Have we stupidly left an IM bit turned off? */
1252#define IM_LIMIT 2000
1253	local_irq_save(flags);
1254	mtflags = dmt();
1255	pdb_msg = &id_ho_db_msg[0];
1256	im = read_c0_status();
1257	vpe = current_cpu_data.vpe_id;
1258	for (bit = 0; bit < 8; bit++) {
1259		/*
1260		 * In current prototype, I/O interrupts
1261		 * are masked for VPE > 0
1262		 */
1263		if (vpemask[vpe][bit]) {
1264			if (!(im & (0x100 << bit)))
1265				imstuckcount[vpe][bit]++;
1266			else
1267				imstuckcount[vpe][bit] = 0;
1268			if (imstuckcount[vpe][bit] > IM_LIMIT) {
1269				set_c0_status(0x100 << bit);
1270				ehb();
1271				imstuckcount[vpe][bit] = 0;
1272				pdb_msg += sprintf(pdb_msg,
1273					"Dangling IM %d fixed for VPE %d\n", bit,
1274					vpe);
1275			}
1276		}
1277	}
1278
1279	emt(mtflags);
1280	local_irq_restore(flags);
1281	if (pdb_msg != &id_ho_db_msg[0])
1282		printk("CPU%d: %s", smp_processor_id(), id_ho_db_msg);
1283#endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
1284
1285	smtc_ipi_replay();
1286}
1287
1288void smtc_soft_dump(void)
1289{
1290	int i;
1291
1292	printk("Counter Interrupts taken per CPU (TC)\n");
1293	for (i=0; i < NR_CPUS; i++) {
1294		printk("%d: %ld\n", i, smtc_cpu_stats[i].timerints);
1295	}
1296	printk("Self-IPI invocations:\n");
1297	for (i=0; i < NR_CPUS; i++) {
1298		printk("%d: %ld\n", i, smtc_cpu_stats[i].selfipis);
1299	}
1300	smtc_ipi_qdump();
1301	printk("%d Recoveries of \"stolen\" FPU\n",
1302	       atomic_read(&smtc_fpu_recoveries));
1303}
1304
1305
1306/*
1307 * TLB management routines special to SMTC
1308 */
1309
1310void smtc_get_new_mmu_context(struct mm_struct *mm, unsigned long cpu)
1311{
1312	unsigned long flags, mtflags, tcstat, prevhalt, asid;
1313	int tlb, i;
1314
1315	/*
1316	 * It would be nice to be able to use a spinlock here,
1317	 * but this is invoked from within TLB flush routines
1318	 * that protect themselves with DVPE, so if a lock is
1319	 * held by another TC, it'll never be freed.
1320	 *
1321	 * DVPE/DMT must not be done with interrupts enabled,
1322	 * so even so most callers will already have disabled
1323	 * them, let's be really careful...
1324	 */
1325
1326	local_irq_save(flags);
1327	if (smtc_status & SMTC_TLB_SHARED) {
1328		mtflags = dvpe();
1329		tlb = 0;
1330	} else {
1331		mtflags = dmt();
1332		tlb = cpu_data[cpu].vpe_id;
1333	}
1334	asid = asid_cache(cpu);
1335
1336	do {
1337		if (!((asid += ASID_INC) & ASID_MASK) ) {
1338			if (cpu_has_vtag_icache)
1339				flush_icache_all();
1340			/* Traverse all online CPUs (hack requires contiguous range) */
1341			for_each_online_cpu(i) {
1342				/*
1343				 * We don't need to worry about our own CPU, nor those of
1344				 * CPUs who don't share our TLB.
1345				 */
1346				if ((i != smp_processor_id()) &&
1347				    ((smtc_status & SMTC_TLB_SHARED) ||
1348				     (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))) {
1349					settc(cpu_data[i].tc_id);
1350					prevhalt = read_tc_c0_tchalt() & TCHALT_H;
1351					if (!prevhalt) {
1352						write_tc_c0_tchalt(TCHALT_H);
1353						mips_ihb();
1354					}
1355					tcstat = read_tc_c0_tcstatus();
1356					smtc_live_asid[tlb][(tcstat & ASID_MASK)] |= (asiduse)(0x1 << i);
1357					if (!prevhalt)
1358						write_tc_c0_tchalt(0);
1359				}
1360			}
1361			if (!asid)		/* fix version if needed */
1362				asid = ASID_FIRST_VERSION;
1363			local_flush_tlb_all();	/* start new asid cycle */
1364		}
1365	} while (smtc_live_asid[tlb][(asid & ASID_MASK)]);
1366
1367	/*
1368	 * SMTC shares the TLB within VPEs and possibly across all VPEs.
1369	 */
1370	for_each_online_cpu(i) {
1371		if ((smtc_status & SMTC_TLB_SHARED) ||
1372		    (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))
1373			cpu_context(i, mm) = asid_cache(i) = asid;
1374	}
1375
1376	if (smtc_status & SMTC_TLB_SHARED)
1377		evpe(mtflags);
1378	else
1379		emt(mtflags);
1380	local_irq_restore(flags);
1381}
1382
1383/*
1384 * Invoked from macros defined in mmu_context.h
1385 * which must already have disabled interrupts
1386 * and done a DVPE or DMT as appropriate.
1387 */
1388
1389void smtc_flush_tlb_asid(unsigned long asid)
1390{
1391	int entry;
1392	unsigned long ehi;
1393
1394	entry = read_c0_wired();
1395
1396	/* Traverse all non-wired entries */
1397	while (entry < current_cpu_data.tlbsize) {
1398		write_c0_index(entry);
1399		ehb();
1400		tlb_read();
1401		ehb();
1402		ehi = read_c0_entryhi();
1403		if ((ehi & ASID_MASK) == asid) {
1404		    /*
1405		     * Invalidate only entries with specified ASID,
1406		     * makiing sure all entries differ.
1407		     */
1408		    write_c0_entryhi(CKSEG0 + (entry << (PAGE_SHIFT + 1)));
1409		    write_c0_entrylo0(0);
1410		    write_c0_entrylo1(0);
1411		    mtc0_tlbw_hazard();
1412		    tlb_write_indexed();
1413		}
1414		entry++;
1415	}
1416	write_c0_index(PARKED_INDEX);
1417	tlbw_use_hazard();
1418}
1419
1420/*
1421 * Support for single-threading cache flush operations.
1422 */
1423
1424static int halt_state_save[NR_CPUS];
1425
1426/*
1427 * To really, really be sure that nothing is being done
1428 * by other TCs, halt them all.  This code assumes that
1429 * a DVPE has already been done, so while their Halted
1430 * state is theoretically architecturally unstable, in
1431 * practice, it's not going to change while we're looking
1432 * at it.
1433 */
1434
1435void smtc_cflush_lockdown(void)
1436{
1437	int cpu;
1438
1439	for_each_online_cpu(cpu) {
1440		if (cpu != smp_processor_id()) {
1441			settc(cpu_data[cpu].tc_id);
1442			halt_state_save[cpu] = read_tc_c0_tchalt();
1443			write_tc_c0_tchalt(TCHALT_H);
1444		}
1445	}
1446	mips_ihb();
1447}
1448
1449/* It would be cheating to change the cpu_online states during a flush! */
1450
1451void smtc_cflush_release(void)
1452{
1453	int cpu;
1454
1455	/*
1456	 * Start with a hazard barrier to ensure
1457	 * that all CACHE ops have played through.
1458	 */
1459	mips_ihb();
1460
1461	for_each_online_cpu(cpu) {
1462		if (cpu != smp_processor_id()) {
1463			settc(cpu_data[cpu].tc_id);
1464			write_tc_c0_tchalt(halt_state_save[cpu]);
1465		}
1466	}
1467	mips_ihb();
1468}
1469