smtc.c revision 8f99a162653531ef25a3dd0f92bfb6332cd2b295
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version 2
5 * of the License, or (at your option) any later version.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10 * GNU General Public License for more details.
11 *
12 * You should have received a copy of the GNU General Public License
13 * along with this program; if not, write to the Free Software
14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
15 *
16 * Copyright (C) 2004 Mips Technologies, Inc
17 * Copyright (C) 2008 Kevin D. Kissell
18 */
19
20#include <linux/clockchips.h>
21#include <linux/kernel.h>
22#include <linux/sched.h>
23#include <linux/smp.h>
24#include <linux/cpumask.h>
25#include <linux/interrupt.h>
26#include <linux/kernel_stat.h>
27#include <linux/module.h>
28#include <linux/ftrace.h>
29
30#include <asm/cpu.h>
31#include <asm/processor.h>
32#include <asm/atomic.h>
33#include <asm/system.h>
34#include <asm/hardirq.h>
35#include <asm/hazards.h>
36#include <asm/irq.h>
37#include <asm/mmu_context.h>
38#include <asm/mipsregs.h>
39#include <asm/cacheflush.h>
40#include <asm/time.h>
41#include <asm/addrspace.h>
42#include <asm/smtc.h>
43#include <asm/smtc_proc.h>
44
45/*
46 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
47 * in do_IRQ. These are passed in setup_irq_smtc() and stored
48 * in this table.
49 */
50unsigned long irq_hwmask[NR_IRQS];
51
52#define LOCK_MT_PRA() \
53	local_irq_save(flags); \
54	mtflags = dmt()
55
56#define UNLOCK_MT_PRA() \
57	emt(mtflags); \
58	local_irq_restore(flags)
59
60#define LOCK_CORE_PRA() \
61	local_irq_save(flags); \
62	mtflags = dvpe()
63
64#define UNLOCK_CORE_PRA() \
65	evpe(mtflags); \
66	local_irq_restore(flags)
67
68/*
69 * Data structures purely associated with SMTC parallelism
70 */
71
72
73/*
74 * Table for tracking ASIDs whose lifetime is prolonged.
75 */
76
77asiduse smtc_live_asid[MAX_SMTC_TLBS][MAX_SMTC_ASIDS];
78
79/*
80 * Number of InterProcessor Interrupt (IPI) message buffers to allocate
81 */
82
83#define IPIBUF_PER_CPU 4
84
85struct smtc_ipi_q IPIQ[NR_CPUS];
86static struct smtc_ipi_q freeIPIq;
87
88
89/* Forward declarations */
90
91void ipi_decode(struct smtc_ipi *);
92static void post_direct_ipi(int cpu, struct smtc_ipi *pipi);
93static void setup_cross_vpe_interrupts(unsigned int nvpe);
94void init_smtc_stats(void);
95
96/* Global SMTC Status */
97
98unsigned int smtc_status;
99
100/* Boot command line configuration overrides */
101
102static int vpe0limit;
103static int ipibuffers;
104static int nostlb;
105static int asidmask;
106unsigned long smtc_asid_mask = 0xff;
107
108static int __init vpe0tcs(char *str)
109{
110	get_option(&str, &vpe0limit);
111
112	return 1;
113}
114
115static int __init ipibufs(char *str)
116{
117	get_option(&str, &ipibuffers);
118	return 1;
119}
120
121static int __init stlb_disable(char *s)
122{
123	nostlb = 1;
124	return 1;
125}
126
127static int __init asidmask_set(char *str)
128{
129	get_option(&str, &asidmask);
130	switch (asidmask) {
131	case 0x1:
132	case 0x3:
133	case 0x7:
134	case 0xf:
135	case 0x1f:
136	case 0x3f:
137	case 0x7f:
138	case 0xff:
139		smtc_asid_mask = (unsigned long)asidmask;
140		break;
141	default:
142		printk("ILLEGAL ASID mask 0x%x from command line\n", asidmask);
143	}
144	return 1;
145}
146
147__setup("vpe0tcs=", vpe0tcs);
148__setup("ipibufs=", ipibufs);
149__setup("nostlb", stlb_disable);
150__setup("asidmask=", asidmask_set);
151
152#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
153
154static int hang_trig;
155
156static int __init hangtrig_enable(char *s)
157{
158	hang_trig = 1;
159	return 1;
160}
161
162
163__setup("hangtrig", hangtrig_enable);
164
165#define DEFAULT_BLOCKED_IPI_LIMIT 32
166
167static int timerq_limit = DEFAULT_BLOCKED_IPI_LIMIT;
168
169static int __init tintq(char *str)
170{
171	get_option(&str, &timerq_limit);
172	return 1;
173}
174
175__setup("tintq=", tintq);
176
177static int imstuckcount[2][8];
178/* vpemask represents IM/IE bits of per-VPE Status registers, low-to-high */
179static int vpemask[2][8] = {
180	{0, 0, 1, 0, 0, 0, 0, 1},
181	{0, 0, 0, 0, 0, 0, 0, 1}
182};
183int tcnoprog[NR_CPUS];
184static atomic_t idle_hook_initialized = {0};
185static int clock_hang_reported[NR_CPUS];
186
187#endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
188
189/*
190 * Configure shared TLB - VPC configuration bit must be set by caller
191 */
192
193static void smtc_configure_tlb(void)
194{
195	int i, tlbsiz, vpes;
196	unsigned long mvpconf0;
197	unsigned long config1val;
198
199	/* Set up ASID preservation table */
200	for (vpes=0; vpes<MAX_SMTC_TLBS; vpes++) {
201	    for(i = 0; i < MAX_SMTC_ASIDS; i++) {
202		smtc_live_asid[vpes][i] = 0;
203	    }
204	}
205	mvpconf0 = read_c0_mvpconf0();
206
207	if ((vpes = ((mvpconf0 & MVPCONF0_PVPE)
208			>> MVPCONF0_PVPE_SHIFT) + 1) > 1) {
209	    /* If we have multiple VPEs, try to share the TLB */
210	    if ((mvpconf0 & MVPCONF0_TLBS) && !nostlb) {
211		/*
212		 * If TLB sizing is programmable, shared TLB
213		 * size is the total available complement.
214		 * Otherwise, we have to take the sum of all
215		 * static VPE TLB entries.
216		 */
217		if ((tlbsiz = ((mvpconf0 & MVPCONF0_PTLBE)
218				>> MVPCONF0_PTLBE_SHIFT)) == 0) {
219		    /*
220		     * If there's more than one VPE, there had better
221		     * be more than one TC, because we need one to bind
222		     * to each VPE in turn to be able to read
223		     * its configuration state!
224		     */
225		    settc(1);
226		    /* Stop the TC from doing anything foolish */
227		    write_tc_c0_tchalt(TCHALT_H);
228		    mips_ihb();
229		    /* No need to un-Halt - that happens later anyway */
230		    for (i=0; i < vpes; i++) {
231		    	write_tc_c0_tcbind(i);
232			/*
233			 * To be 100% sure we're really getting the right
234			 * information, we exit the configuration state
235			 * and do an IHB after each rebinding.
236			 */
237			write_c0_mvpcontrol(
238				read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
239			mips_ihb();
240			/*
241			 * Only count if the MMU Type indicated is TLB
242			 */
243			if (((read_vpe_c0_config() & MIPS_CONF_MT) >> 7) == 1) {
244				config1val = read_vpe_c0_config1();
245				tlbsiz += ((config1val >> 25) & 0x3f) + 1;
246			}
247
248			/* Put core back in configuration state */
249			write_c0_mvpcontrol(
250				read_c0_mvpcontrol() | MVPCONTROL_VPC );
251			mips_ihb();
252		    }
253		}
254		write_c0_mvpcontrol(read_c0_mvpcontrol() | MVPCONTROL_STLB);
255		ehb();
256
257		/*
258		 * Setup kernel data structures to use software total,
259		 * rather than read the per-VPE Config1 value. The values
260		 * for "CPU 0" gets copied to all the other CPUs as part
261		 * of their initialization in smtc_cpu_setup().
262		 */
263
264		/* MIPS32 limits TLB indices to 64 */
265		if (tlbsiz > 64)
266			tlbsiz = 64;
267		cpu_data[0].tlbsize = current_cpu_data.tlbsize = tlbsiz;
268		smtc_status |= SMTC_TLB_SHARED;
269		local_flush_tlb_all();
270
271		printk("TLB of %d entry pairs shared by %d VPEs\n",
272			tlbsiz, vpes);
273	    } else {
274		printk("WARNING: TLB Not Sharable on SMTC Boot!\n");
275	    }
276	}
277}
278
279
280/*
281 * Incrementally build the CPU map out of constituent MIPS MT cores,
282 * using the specified available VPEs and TCs.  Plaform code needs
283 * to ensure that each MIPS MT core invokes this routine on reset,
284 * one at a time(!).
285 *
286 * This version of the build_cpu_map and prepare_cpus routines assumes
287 * that *all* TCs of a MIPS MT core will be used for Linux, and that
288 * they will be spread across *all* available VPEs (to minimise the
289 * loss of efficiency due to exception service serialization).
290 * An improved version would pick up configuration information and
291 * possibly leave some TCs/VPEs as "slave" processors.
292 *
293 * Use c0_MVPConf0 to find out how many TCs are available, setting up
294 * cpu_possible_map and the logical/physical mappings.
295 */
296
297int __init smtc_build_cpu_map(int start_cpu_slot)
298{
299	int i, ntcs;
300
301	/*
302	 * The CPU map isn't actually used for anything at this point,
303	 * so it's not clear what else we should do apart from set
304	 * everything up so that "logical" = "physical".
305	 */
306	ntcs = ((read_c0_mvpconf0() & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
307	for (i=start_cpu_slot; i<NR_CPUS && i<ntcs; i++) {
308		set_cpu_possible(i, true);
309		__cpu_number_map[i] = i;
310		__cpu_logical_map[i] = i;
311	}
312#ifdef CONFIG_MIPS_MT_FPAFF
313	/* Initialize map of CPUs with FPUs */
314	cpus_clear(mt_fpu_cpumask);
315#endif
316
317	/* One of those TC's is the one booting, and not a secondary... */
318	printk("%i available secondary CPU TC(s)\n", i - 1);
319
320	return i;
321}
322
323/*
324 * Common setup before any secondaries are started
325 * Make sure all CPU's are in a sensible state before we boot any of the
326 * secondaries.
327 *
328 * For MIPS MT "SMTC" operation, we set up all TCs, spread as evenly
329 * as possible across the available VPEs.
330 */
331
332static void smtc_tc_setup(int vpe, int tc, int cpu)
333{
334	settc(tc);
335	write_tc_c0_tchalt(TCHALT_H);
336	mips_ihb();
337	write_tc_c0_tcstatus((read_tc_c0_tcstatus()
338			& ~(TCSTATUS_TKSU | TCSTATUS_DA | TCSTATUS_IXMT))
339			| TCSTATUS_A);
340	/*
341	 * TCContext gets an offset from the base of the IPIQ array
342	 * to be used in low-level code to detect the presence of
343	 * an active IPI queue
344	 */
345	write_tc_c0_tccontext((sizeof(struct smtc_ipi_q) * cpu) << 16);
346	/* Bind tc to vpe */
347	write_tc_c0_tcbind(vpe);
348	/* In general, all TCs should have the same cpu_data indications */
349	memcpy(&cpu_data[cpu], &cpu_data[0], sizeof(struct cpuinfo_mips));
350	/* For 34Kf, start with TC/CPU 0 as sole owner of single FPU context */
351	if (cpu_data[0].cputype == CPU_34K ||
352	    cpu_data[0].cputype == CPU_1004K)
353		cpu_data[cpu].options &= ~MIPS_CPU_FPU;
354	cpu_data[cpu].vpe_id = vpe;
355	cpu_data[cpu].tc_id = tc;
356	/* Multi-core SMTC hasn't been tested, but be prepared */
357	cpu_data[cpu].core = (read_vpe_c0_ebase() >> 1) & 0xff;
358}
359
360/*
361 * Tweak to get Count registes in as close a sync as possible.
362 * Value seems good for 34K-class cores.
363 */
364
365#define CP0_SKEW 8
366
367void smtc_prepare_cpus(int cpus)
368{
369	int i, vpe, tc, ntc, nvpe, tcpervpe[NR_CPUS], slop, cpu;
370	unsigned long flags;
371	unsigned long val;
372	int nipi;
373	struct smtc_ipi *pipi;
374
375	/* disable interrupts so we can disable MT */
376	local_irq_save(flags);
377	/* disable MT so we can configure */
378	dvpe();
379	dmt();
380
381	spin_lock_init(&freeIPIq.lock);
382
383	/*
384	 * We probably don't have as many VPEs as we do SMP "CPUs",
385	 * but it's possible - and in any case we'll never use more!
386	 */
387	for (i=0; i<NR_CPUS; i++) {
388		IPIQ[i].head = IPIQ[i].tail = NULL;
389		spin_lock_init(&IPIQ[i].lock);
390		IPIQ[i].depth = 0;
391		IPIQ[i].resched_flag = 0; /* No reschedules queued initially */
392	}
393
394	/* cpu_data index starts at zero */
395	cpu = 0;
396	cpu_data[cpu].vpe_id = 0;
397	cpu_data[cpu].tc_id = 0;
398	cpu_data[cpu].core = (read_c0_ebase() >> 1) & 0xff;
399	cpu++;
400
401	/* Report on boot-time options */
402	mips_mt_set_cpuoptions();
403	if (vpelimit > 0)
404		printk("Limit of %d VPEs set\n", vpelimit);
405	if (tclimit > 0)
406		printk("Limit of %d TCs set\n", tclimit);
407	if (nostlb) {
408		printk("Shared TLB Use Inhibited - UNSAFE for Multi-VPE Operation\n");
409	}
410	if (asidmask)
411		printk("ASID mask value override to 0x%x\n", asidmask);
412
413	/* Temporary */
414#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
415	if (hang_trig)
416		printk("Logic Analyser Trigger on suspected TC hang\n");
417#endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
418
419	/* Put MVPE's into 'configuration state' */
420	write_c0_mvpcontrol( read_c0_mvpcontrol() | MVPCONTROL_VPC );
421
422	val = read_c0_mvpconf0();
423	nvpe = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
424	if (vpelimit > 0 && nvpe > vpelimit)
425		nvpe = vpelimit;
426	ntc = ((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
427	if (ntc > NR_CPUS)
428		ntc = NR_CPUS;
429	if (tclimit > 0 && ntc > tclimit)
430		ntc = tclimit;
431	slop = ntc % nvpe;
432	for (i = 0; i < nvpe; i++) {
433		tcpervpe[i] = ntc / nvpe;
434		if (slop) {
435			if((slop - i) > 0) tcpervpe[i]++;
436		}
437	}
438	/* Handle command line override for VPE0 */
439	if (vpe0limit > ntc) vpe0limit = ntc;
440	if (vpe0limit > 0) {
441		int slopslop;
442		if (vpe0limit < tcpervpe[0]) {
443		    /* Reducing TC count - distribute to others */
444		    slop = tcpervpe[0] - vpe0limit;
445		    slopslop = slop % (nvpe - 1);
446		    tcpervpe[0] = vpe0limit;
447		    for (i = 1; i < nvpe; i++) {
448			tcpervpe[i] += slop / (nvpe - 1);
449			if(slopslop && ((slopslop - (i - 1) > 0)))
450				tcpervpe[i]++;
451		    }
452		} else if (vpe0limit > tcpervpe[0]) {
453		    /* Increasing TC count - steal from others */
454		    slop = vpe0limit - tcpervpe[0];
455		    slopslop = slop % (nvpe - 1);
456		    tcpervpe[0] = vpe0limit;
457		    for (i = 1; i < nvpe; i++) {
458			tcpervpe[i] -= slop / (nvpe - 1);
459			if(slopslop && ((slopslop - (i - 1) > 0)))
460				tcpervpe[i]--;
461		    }
462		}
463	}
464
465	/* Set up shared TLB */
466	smtc_configure_tlb();
467
468	for (tc = 0, vpe = 0 ; (vpe < nvpe) && (tc < ntc) ; vpe++) {
469		if (tcpervpe[vpe] == 0)
470			continue;
471		if (vpe != 0)
472			printk(", ");
473		printk("VPE %d: TC", vpe);
474		for (i = 0; i < tcpervpe[vpe]; i++) {
475			/*
476			 * TC 0 is bound to VPE 0 at reset,
477			 * and is presumably executing this
478			 * code.  Leave it alone!
479			 */
480			if (tc != 0) {
481				smtc_tc_setup(vpe, tc, cpu);
482				cpu++;
483			}
484			printk(" %d", tc);
485			tc++;
486		}
487		if (vpe != 0) {
488			/*
489			 * Allow this VPE to control others.
490			 */
491			write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() |
492					      VPECONF0_MVP);
493
494			/*
495			 * Clear any stale software interrupts from VPE's Cause
496			 */
497			write_vpe_c0_cause(0);
498
499			/*
500			 * Clear ERL/EXL of VPEs other than 0
501			 * and set restricted interrupt enable/mask.
502			 */
503			write_vpe_c0_status((read_vpe_c0_status()
504				& ~(ST0_BEV | ST0_ERL | ST0_EXL | ST0_IM))
505				| (STATUSF_IP0 | STATUSF_IP1 | STATUSF_IP7
506				| ST0_IE));
507			/*
508			 * set config to be the same as vpe0,
509			 *  particularly kseg0 coherency alg
510			 */
511			write_vpe_c0_config(read_c0_config());
512			/* Clear any pending timer interrupt */
513			write_vpe_c0_compare(0);
514			/* Propagate Config7 */
515			write_vpe_c0_config7(read_c0_config7());
516			write_vpe_c0_count(read_c0_count() + CP0_SKEW);
517			ehb();
518		}
519		/* enable multi-threading within VPE */
520		write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() | VPECONTROL_TE);
521		/* enable the VPE */
522		write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
523	}
524
525	/*
526	 * Pull any physically present but unused TCs out of circulation.
527	 */
528	while (tc < (((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1)) {
529		set_cpu_possible(tc, false);
530		set_cpu_present(tc, false);
531		tc++;
532	}
533
534	/* release config state */
535	write_c0_mvpcontrol( read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
536
537	printk("\n");
538
539	/* Set up coprocessor affinity CPU mask(s) */
540
541#ifdef CONFIG_MIPS_MT_FPAFF
542	for (tc = 0; tc < ntc; tc++) {
543		if (cpu_data[tc].options & MIPS_CPU_FPU)
544			cpu_set(tc, mt_fpu_cpumask);
545	}
546#endif
547
548	/* set up ipi interrupts... */
549
550	/* If we have multiple VPEs running, set up the cross-VPE interrupt */
551
552	setup_cross_vpe_interrupts(nvpe);
553
554	/* Set up queue of free IPI "messages". */
555	nipi = NR_CPUS * IPIBUF_PER_CPU;
556	if (ipibuffers > 0)
557		nipi = ipibuffers;
558
559	pipi = kmalloc(nipi *sizeof(struct smtc_ipi), GFP_KERNEL);
560	if (pipi == NULL)
561		panic("kmalloc of IPI message buffers failed\n");
562	else
563		printk("IPI buffer pool of %d buffers\n", nipi);
564	for (i = 0; i < nipi; i++) {
565		smtc_ipi_nq(&freeIPIq, pipi);
566		pipi++;
567	}
568
569	/* Arm multithreading and enable other VPEs - but all TCs are Halted */
570	emt(EMT_ENABLE);
571	evpe(EVPE_ENABLE);
572	local_irq_restore(flags);
573	/* Initialize SMTC /proc statistics/diagnostics */
574	init_smtc_stats();
575}
576
577
578/*
579 * Setup the PC, SP, and GP of a secondary processor and start it
580 * running!
581 * smp_bootstrap is the place to resume from
582 * __KSTK_TOS(idle) is apparently the stack pointer
583 * (unsigned long)idle->thread_info the gp
584 *
585 */
586void __cpuinit smtc_boot_secondary(int cpu, struct task_struct *idle)
587{
588	extern u32 kernelsp[NR_CPUS];
589	unsigned long flags;
590	int mtflags;
591
592	LOCK_MT_PRA();
593	if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
594		dvpe();
595	}
596	settc(cpu_data[cpu].tc_id);
597
598	/* pc */
599	write_tc_c0_tcrestart((unsigned long)&smp_bootstrap);
600
601	/* stack pointer */
602	kernelsp[cpu] = __KSTK_TOS(idle);
603	write_tc_gpr_sp(__KSTK_TOS(idle));
604
605	/* global pointer */
606	write_tc_gpr_gp((unsigned long)task_thread_info(idle));
607
608	smtc_status |= SMTC_MTC_ACTIVE;
609	write_tc_c0_tchalt(0);
610	if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
611		evpe(EVPE_ENABLE);
612	}
613	UNLOCK_MT_PRA();
614}
615
616void smtc_init_secondary(void)
617{
618	local_irq_enable();
619}
620
621void smtc_smp_finish(void)
622{
623	int cpu = smp_processor_id();
624
625	/*
626	 * Lowest-numbered CPU per VPE starts a clock tick.
627	 * Like per_cpu_trap_init() hack, this assumes that
628	 * SMTC init code assigns TCs consdecutively and
629	 * in ascending order across available VPEs.
630	 */
631	if (cpu > 0 && (cpu_data[cpu].vpe_id != cpu_data[cpu - 1].vpe_id))
632		write_c0_compare(read_c0_count() + mips_hpt_frequency/HZ);
633
634	printk("TC %d going on-line as CPU %d\n",
635		cpu_data[smp_processor_id()].tc_id, smp_processor_id());
636}
637
638void smtc_cpus_done(void)
639{
640}
641
642/*
643 * Support for SMTC-optimized driver IRQ registration
644 */
645
646/*
647 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
648 * in do_IRQ. These are passed in setup_irq_smtc() and stored
649 * in this table.
650 */
651
652int setup_irq_smtc(unsigned int irq, struct irqaction * new,
653			unsigned long hwmask)
654{
655#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
656	unsigned int vpe = current_cpu_data.vpe_id;
657
658	vpemask[vpe][irq - MIPS_CPU_IRQ_BASE] = 1;
659#endif
660	irq_hwmask[irq] = hwmask;
661
662	return setup_irq(irq, new);
663}
664
665#ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
666/*
667 * Support for IRQ affinity to TCs
668 */
669
670void smtc_set_irq_affinity(unsigned int irq, cpumask_t affinity)
671{
672	/*
673	 * If a "fast path" cache of quickly decodable affinity state
674	 * is maintained, this is where it gets done, on a call up
675	 * from the platform affinity code.
676	 */
677}
678
679void smtc_forward_irq(unsigned int irq)
680{
681	int target;
682
683	/*
684	 * OK wise guy, now figure out how to get the IRQ
685	 * to be serviced on an authorized "CPU".
686	 *
687	 * Ideally, to handle the situation where an IRQ has multiple
688	 * eligible CPUS, we would maintain state per IRQ that would
689	 * allow a fair distribution of service requests.  Since the
690	 * expected use model is any-or-only-one, for simplicity
691	 * and efficiency, we just pick the easiest one to find.
692	 */
693
694	target = cpumask_first(irq_desc[irq].affinity);
695
696	/*
697	 * We depend on the platform code to have correctly processed
698	 * IRQ affinity change requests to ensure that the IRQ affinity
699	 * mask has been purged of bits corresponding to nonexistent and
700	 * offline "CPUs", and to TCs bound to VPEs other than the VPE
701	 * connected to the physical interrupt input for the interrupt
702	 * in question.  Otherwise we have a nasty problem with interrupt
703	 * mask management.  This is best handled in non-performance-critical
704	 * platform IRQ affinity setting code,  to minimize interrupt-time
705	 * checks.
706	 */
707
708	/* If no one is eligible, service locally */
709	if (target >= NR_CPUS) {
710		do_IRQ_no_affinity(irq);
711		return;
712	}
713
714	smtc_send_ipi(target, IRQ_AFFINITY_IPI, irq);
715}
716
717#endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
718
719/*
720 * IPI model for SMTC is tricky, because interrupts aren't TC-specific.
721 * Within a VPE one TC can interrupt another by different approaches.
722 * The easiest to get right would probably be to make all TCs except
723 * the target IXMT and set a software interrupt, but an IXMT-based
724 * scheme requires that a handler must run before a new IPI could
725 * be sent, which would break the "broadcast" loops in MIPS MT.
726 * A more gonzo approach within a VPE is to halt the TC, extract
727 * its Restart, Status, and a couple of GPRs, and program the Restart
728 * address to emulate an interrupt.
729 *
730 * Within a VPE, one can be confident that the target TC isn't in
731 * a critical EXL state when halted, since the write to the Halt
732 * register could not have issued on the writing thread if the
733 * halting thread had EXL set. So k0 and k1 of the target TC
734 * can be used by the injection code.  Across VPEs, one can't
735 * be certain that the target TC isn't in a critical exception
736 * state. So we try a two-step process of sending a software
737 * interrupt to the target VPE, which either handles the event
738 * itself (if it was the target) or injects the event within
739 * the VPE.
740 */
741
742static void smtc_ipi_qdump(void)
743{
744	int i;
745	struct smtc_ipi *temp;
746
747	for (i = 0; i < NR_CPUS ;i++) {
748		pr_info("IPIQ[%d]: head = 0x%x, tail = 0x%x, depth = %d\n",
749			i, (unsigned)IPIQ[i].head, (unsigned)IPIQ[i].tail,
750			IPIQ[i].depth);
751		temp = IPIQ[i].head;
752
753		while (temp != IPIQ[i].tail) {
754			pr_debug("%d %d %d: ", temp->type, temp->dest,
755			       (int)temp->arg);
756#ifdef	SMTC_IPI_DEBUG
757		    pr_debug("%u %lu\n", temp->sender, temp->stamp);
758#else
759		    pr_debug("\n");
760#endif
761		    temp = temp->flink;
762		}
763	}
764}
765
766/*
767 * The standard atomic.h primitives don't quite do what we want
768 * here: We need an atomic add-and-return-previous-value (which
769 * could be done with atomic_add_return and a decrement) and an
770 * atomic set/zero-and-return-previous-value (which can't really
771 * be done with the atomic.h primitives). And since this is
772 * MIPS MT, we can assume that we have LL/SC.
773 */
774static inline int atomic_postincrement(atomic_t *v)
775{
776	unsigned long result;
777
778	unsigned long temp;
779
780	__asm__ __volatile__(
781	"1:	ll	%0, %2					\n"
782	"	addu	%1, %0, 1				\n"
783	"	sc	%1, %2					\n"
784	"	beqz	%1, 1b					\n"
785	__WEAK_LLSC_MB
786	: "=&r" (result), "=&r" (temp), "=m" (v->counter)
787	: "m" (v->counter)
788	: "memory");
789
790	return result;
791}
792
793void smtc_send_ipi(int cpu, int type, unsigned int action)
794{
795	int tcstatus;
796	struct smtc_ipi *pipi;
797	unsigned long flags;
798	int mtflags;
799	unsigned long tcrestart;
800	extern void r4k_wait_irqoff(void), __pastwait(void);
801	int set_resched_flag = (type == LINUX_SMP_IPI &&
802				action == SMP_RESCHEDULE_YOURSELF);
803
804	if (cpu == smp_processor_id()) {
805		printk("Cannot Send IPI to self!\n");
806		return;
807	}
808	if (set_resched_flag && IPIQ[cpu].resched_flag != 0)
809		return; /* There is a reschedule queued already */
810
811	/* Set up a descriptor, to be delivered either promptly or queued */
812	pipi = smtc_ipi_dq(&freeIPIq);
813	if (pipi == NULL) {
814		bust_spinlocks(1);
815		mips_mt_regdump(dvpe());
816		panic("IPI Msg. Buffers Depleted\n");
817	}
818	pipi->type = type;
819	pipi->arg = (void *)action;
820	pipi->dest = cpu;
821	if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
822		/* If not on same VPE, enqueue and send cross-VPE interrupt */
823		IPIQ[cpu].resched_flag |= set_resched_flag;
824		smtc_ipi_nq(&IPIQ[cpu], pipi);
825		LOCK_CORE_PRA();
826		settc(cpu_data[cpu].tc_id);
827		write_vpe_c0_cause(read_vpe_c0_cause() | C_SW1);
828		UNLOCK_CORE_PRA();
829	} else {
830		/*
831		 * Not sufficient to do a LOCK_MT_PRA (dmt) here,
832		 * since ASID shootdown on the other VPE may
833		 * collide with this operation.
834		 */
835		LOCK_CORE_PRA();
836		settc(cpu_data[cpu].tc_id);
837		/* Halt the targeted TC */
838		write_tc_c0_tchalt(TCHALT_H);
839		mips_ihb();
840
841		/*
842	 	 * Inspect TCStatus - if IXMT is set, we have to queue
843		 * a message. Otherwise, we set up the "interrupt"
844		 * of the other TC
845	 	 */
846		tcstatus = read_tc_c0_tcstatus();
847
848		if ((tcstatus & TCSTATUS_IXMT) != 0) {
849			/*
850			 * If we're in the the irq-off version of the wait
851			 * loop, we need to force exit from the wait and
852			 * do a direct post of the IPI.
853			 */
854			if (cpu_wait == r4k_wait_irqoff) {
855				tcrestart = read_tc_c0_tcrestart();
856				if (tcrestart >= (unsigned long)r4k_wait_irqoff
857				    && tcrestart < (unsigned long)__pastwait) {
858					write_tc_c0_tcrestart(__pastwait);
859					tcstatus &= ~TCSTATUS_IXMT;
860					write_tc_c0_tcstatus(tcstatus);
861					goto postdirect;
862				}
863			}
864			/*
865			 * Otherwise we queue the message for the target TC
866			 * to pick up when he does a local_irq_restore()
867			 */
868			write_tc_c0_tchalt(0);
869			UNLOCK_CORE_PRA();
870			IPIQ[cpu].resched_flag |= set_resched_flag;
871			smtc_ipi_nq(&IPIQ[cpu], pipi);
872		} else {
873postdirect:
874			post_direct_ipi(cpu, pipi);
875			write_tc_c0_tchalt(0);
876			UNLOCK_CORE_PRA();
877		}
878	}
879}
880
881/*
882 * Send IPI message to Halted TC, TargTC/TargVPE already having been set
883 */
884static void post_direct_ipi(int cpu, struct smtc_ipi *pipi)
885{
886	struct pt_regs *kstack;
887	unsigned long tcstatus;
888	unsigned long tcrestart;
889	extern u32 kernelsp[NR_CPUS];
890	extern void __smtc_ipi_vector(void);
891//printk("%s: on %d for %d\n", __func__, smp_processor_id(), cpu);
892
893	/* Extract Status, EPC from halted TC */
894	tcstatus = read_tc_c0_tcstatus();
895	tcrestart = read_tc_c0_tcrestart();
896	/* If TCRestart indicates a WAIT instruction, advance the PC */
897	if ((tcrestart & 0x80000000)
898	    && ((*(unsigned int *)tcrestart & 0xfe00003f) == 0x42000020)) {
899		tcrestart += 4;
900	}
901	/*
902	 * Save on TC's future kernel stack
903	 *
904	 * CU bit of Status is indicator that TC was
905	 * already running on a kernel stack...
906	 */
907	if (tcstatus & ST0_CU0)  {
908		/* Note that this "- 1" is pointer arithmetic */
909		kstack = ((struct pt_regs *)read_tc_gpr_sp()) - 1;
910	} else {
911		kstack = ((struct pt_regs *)kernelsp[cpu]) - 1;
912	}
913
914	kstack->cp0_epc = (long)tcrestart;
915	/* Save TCStatus */
916	kstack->cp0_tcstatus = tcstatus;
917	/* Pass token of operation to be performed kernel stack pad area */
918	kstack->pad0[4] = (unsigned long)pipi;
919	/* Pass address of function to be called likewise */
920	kstack->pad0[5] = (unsigned long)&ipi_decode;
921	/* Set interrupt exempt and kernel mode */
922	tcstatus |= TCSTATUS_IXMT;
923	tcstatus &= ~TCSTATUS_TKSU;
924	write_tc_c0_tcstatus(tcstatus);
925	ehb();
926	/* Set TC Restart address to be SMTC IPI vector */
927	write_tc_c0_tcrestart(__smtc_ipi_vector);
928}
929
930static void ipi_resched_interrupt(void)
931{
932	/* Return from interrupt should be enough to cause scheduler check */
933}
934
935static void ipi_call_interrupt(void)
936{
937	/* Invoke generic function invocation code in smp.c */
938	smp_call_function_interrupt();
939}
940
941DECLARE_PER_CPU(struct clock_event_device, mips_clockevent_device);
942
943static void __irq_entry smtc_clock_tick_interrupt(void)
944{
945	unsigned int cpu = smp_processor_id();
946	struct clock_event_device *cd;
947	int irq = MIPS_CPU_IRQ_BASE + 1;
948
949	irq_enter();
950	kstat_incr_irqs_this_cpu(irq, irq_to_desc(irq));
951	cd = &per_cpu(mips_clockevent_device, cpu);
952	cd->event_handler(cd);
953	irq_exit();
954}
955
956void ipi_decode(struct smtc_ipi *pipi)
957{
958	void *arg_copy = pipi->arg;
959	int type_copy = pipi->type;
960
961	smtc_ipi_nq(&freeIPIq, pipi);
962
963	switch (type_copy) {
964	case SMTC_CLOCK_TICK:
965		smtc_clock_tick_interrupt();
966		break;
967
968	case LINUX_SMP_IPI:
969		switch ((int)arg_copy) {
970		case SMP_RESCHEDULE_YOURSELF:
971			ipi_resched_interrupt();
972			break;
973		case SMP_CALL_FUNCTION:
974			ipi_call_interrupt();
975			break;
976		default:
977			printk("Impossible SMTC IPI Argument 0x%x\n",
978				(int)arg_copy);
979			break;
980		}
981		break;
982#ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
983	case IRQ_AFFINITY_IPI:
984		/*
985		 * Accept a "forwarded" interrupt that was initially
986		 * taken by a TC who doesn't have affinity for the IRQ.
987		 */
988		do_IRQ_no_affinity((int)arg_copy);
989		break;
990#endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
991	default:
992		printk("Impossible SMTC IPI Type 0x%x\n", type_copy);
993		break;
994	}
995}
996
997/*
998 * Similar to smtc_ipi_replay(), but invoked from context restore,
999 * so it reuses the current exception frame rather than set up a
1000 * new one with self_ipi.
1001 */
1002
1003void deferred_smtc_ipi(void)
1004{
1005	int cpu = smp_processor_id();
1006
1007	/*
1008	 * Test is not atomic, but much faster than a dequeue,
1009	 * and the vast majority of invocations will have a null queue.
1010	 * If irq_disabled when this was called, then any IPIs queued
1011	 * after we test last will be taken on the next irq_enable/restore.
1012	 * If interrupts were enabled, then any IPIs added after the
1013	 * last test will be taken directly.
1014	 */
1015
1016	while (IPIQ[cpu].head != NULL) {
1017		struct smtc_ipi_q *q = &IPIQ[cpu];
1018		struct smtc_ipi *pipi;
1019		unsigned long flags;
1020
1021		/*
1022		 * It may be possible we'll come in with interrupts
1023		 * already enabled.
1024		 */
1025		local_irq_save(flags);
1026		spin_lock(&q->lock);
1027		pipi = __smtc_ipi_dq(q);
1028		spin_unlock(&q->lock);
1029		if (pipi != NULL) {
1030			if (pipi->type == LINUX_SMP_IPI &&
1031			    (int)pipi->arg == SMP_RESCHEDULE_YOURSELF)
1032				IPIQ[cpu].resched_flag = 0;
1033			ipi_decode(pipi);
1034		}
1035		/*
1036		 * The use of the __raw_local restore isn't
1037		 * as obviously necessary here as in smtc_ipi_replay(),
1038		 * but it's more efficient, given that we're already
1039		 * running down the IPI queue.
1040		 */
1041		__raw_local_irq_restore(flags);
1042	}
1043}
1044
1045/*
1046 * Cross-VPE interrupts in the SMTC prototype use "software interrupts"
1047 * set via cross-VPE MTTR manipulation of the Cause register. It would be
1048 * in some regards preferable to have external logic for "doorbell" hardware
1049 * interrupts.
1050 */
1051
1052static int cpu_ipi_irq = MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_IRQ;
1053
1054static irqreturn_t ipi_interrupt(int irq, void *dev_idm)
1055{
1056	int my_vpe = cpu_data[smp_processor_id()].vpe_id;
1057	int my_tc = cpu_data[smp_processor_id()].tc_id;
1058	int cpu;
1059	struct smtc_ipi *pipi;
1060	unsigned long tcstatus;
1061	int sent;
1062	unsigned long flags;
1063	unsigned int mtflags;
1064	unsigned int vpflags;
1065
1066	/*
1067	 * So long as cross-VPE interrupts are done via
1068	 * MFTR/MTTR read-modify-writes of Cause, we need
1069	 * to stop other VPEs whenever the local VPE does
1070	 * anything similar.
1071	 */
1072	local_irq_save(flags);
1073	vpflags = dvpe();
1074	clear_c0_cause(0x100 << MIPS_CPU_IPI_IRQ);
1075	set_c0_status(0x100 << MIPS_CPU_IPI_IRQ);
1076	irq_enable_hazard();
1077	evpe(vpflags);
1078	local_irq_restore(flags);
1079
1080	/*
1081	 * Cross-VPE Interrupt handler: Try to directly deliver IPIs
1082	 * queued for TCs on this VPE other than the current one.
1083	 * Return-from-interrupt should cause us to drain the queue
1084	 * for the current TC, so we ought not to have to do it explicitly here.
1085	 */
1086
1087	for_each_online_cpu(cpu) {
1088		if (cpu_data[cpu].vpe_id != my_vpe)
1089			continue;
1090
1091		pipi = smtc_ipi_dq(&IPIQ[cpu]);
1092		if (pipi != NULL) {
1093			if (cpu_data[cpu].tc_id != my_tc) {
1094				sent = 0;
1095				LOCK_MT_PRA();
1096				settc(cpu_data[cpu].tc_id);
1097				write_tc_c0_tchalt(TCHALT_H);
1098				mips_ihb();
1099				tcstatus = read_tc_c0_tcstatus();
1100				if ((tcstatus & TCSTATUS_IXMT) == 0) {
1101					post_direct_ipi(cpu, pipi);
1102					sent = 1;
1103				}
1104				write_tc_c0_tchalt(0);
1105				UNLOCK_MT_PRA();
1106				if (!sent) {
1107					smtc_ipi_req(&IPIQ[cpu], pipi);
1108				}
1109			} else {
1110				/*
1111				 * ipi_decode() should be called
1112				 * with interrupts off
1113				 */
1114				local_irq_save(flags);
1115				if (pipi->type == LINUX_SMP_IPI &&
1116				    (int)pipi->arg == SMP_RESCHEDULE_YOURSELF)
1117					IPIQ[cpu].resched_flag = 0;
1118				ipi_decode(pipi);
1119				local_irq_restore(flags);
1120			}
1121		}
1122	}
1123
1124	return IRQ_HANDLED;
1125}
1126
1127static void ipi_irq_dispatch(void)
1128{
1129	do_IRQ(cpu_ipi_irq);
1130}
1131
1132static struct irqaction irq_ipi = {
1133	.handler	= ipi_interrupt,
1134	.flags		= IRQF_DISABLED | IRQF_PERCPU,
1135	.name		= "SMTC_IPI"
1136};
1137
1138static void setup_cross_vpe_interrupts(unsigned int nvpe)
1139{
1140	if (nvpe < 1)
1141		return;
1142
1143	if (!cpu_has_vint)
1144		panic("SMTC Kernel requires Vectored Interrupt support");
1145
1146	set_vi_handler(MIPS_CPU_IPI_IRQ, ipi_irq_dispatch);
1147
1148	setup_irq_smtc(cpu_ipi_irq, &irq_ipi, (0x100 << MIPS_CPU_IPI_IRQ));
1149
1150	set_irq_handler(cpu_ipi_irq, handle_percpu_irq);
1151}
1152
1153/*
1154 * SMTC-specific hacks invoked from elsewhere in the kernel.
1155 */
1156
1157 /*
1158  * smtc_ipi_replay is called from raw_local_irq_restore
1159  */
1160
1161void smtc_ipi_replay(void)
1162{
1163	unsigned int cpu = smp_processor_id();
1164
1165	/*
1166	 * To the extent that we've ever turned interrupts off,
1167	 * we may have accumulated deferred IPIs.  This is subtle.
1168	 * we should be OK:  If we pick up something and dispatch
1169	 * it here, that's great. If we see nothing, but concurrent
1170	 * with this operation, another TC sends us an IPI, IXMT
1171	 * is clear, and we'll handle it as a real pseudo-interrupt
1172	 * and not a pseudo-pseudo interrupt.  The important thing
1173	 * is to do the last check for queued message *after* the
1174	 * re-enabling of interrupts.
1175	 */
1176	while (IPIQ[cpu].head != NULL) {
1177		struct smtc_ipi_q *q = &IPIQ[cpu];
1178		struct smtc_ipi *pipi;
1179		unsigned long flags;
1180
1181		/*
1182		 * It's just possible we'll come in with interrupts
1183		 * already enabled.
1184		 */
1185		local_irq_save(flags);
1186
1187		spin_lock(&q->lock);
1188		pipi = __smtc_ipi_dq(q);
1189		spin_unlock(&q->lock);
1190		/*
1191		 ** But use a raw restore here to avoid recursion.
1192		 */
1193		__raw_local_irq_restore(flags);
1194
1195		if (pipi) {
1196			self_ipi(pipi);
1197			smtc_cpu_stats[cpu].selfipis++;
1198		}
1199	}
1200}
1201
1202EXPORT_SYMBOL(smtc_ipi_replay);
1203
1204void smtc_idle_loop_hook(void)
1205{
1206#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
1207	int im;
1208	int flags;
1209	int mtflags;
1210	int bit;
1211	int vpe;
1212	int tc;
1213	int hook_ntcs;
1214	/*
1215	 * printk within DMT-protected regions can deadlock,
1216	 * so buffer diagnostic messages for later output.
1217	 */
1218	char *pdb_msg;
1219	char id_ho_db_msg[768]; /* worst-case use should be less than 700 */
1220
1221	if (atomic_read(&idle_hook_initialized) == 0) { /* fast test */
1222		if (atomic_add_return(1, &idle_hook_initialized) == 1) {
1223			int mvpconf0;
1224			/* Tedious stuff to just do once */
1225			mvpconf0 = read_c0_mvpconf0();
1226			hook_ntcs = ((mvpconf0 & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
1227			if (hook_ntcs > NR_CPUS)
1228				hook_ntcs = NR_CPUS;
1229			for (tc = 0; tc < hook_ntcs; tc++) {
1230				tcnoprog[tc] = 0;
1231				clock_hang_reported[tc] = 0;
1232	    		}
1233			for (vpe = 0; vpe < 2; vpe++)
1234				for (im = 0; im < 8; im++)
1235					imstuckcount[vpe][im] = 0;
1236			printk("Idle loop test hook initialized for %d TCs\n", hook_ntcs);
1237			atomic_set(&idle_hook_initialized, 1000);
1238		} else {
1239			/* Someone else is initializing in parallel - let 'em finish */
1240			while (atomic_read(&idle_hook_initialized) < 1000)
1241				;
1242		}
1243	}
1244
1245	/* Have we stupidly left IXMT set somewhere? */
1246	if (read_c0_tcstatus() & 0x400) {
1247		write_c0_tcstatus(read_c0_tcstatus() & ~0x400);
1248		ehb();
1249		printk("Dangling IXMT in cpu_idle()\n");
1250	}
1251
1252	/* Have we stupidly left an IM bit turned off? */
1253#define IM_LIMIT 2000
1254	local_irq_save(flags);
1255	mtflags = dmt();
1256	pdb_msg = &id_ho_db_msg[0];
1257	im = read_c0_status();
1258	vpe = current_cpu_data.vpe_id;
1259	for (bit = 0; bit < 8; bit++) {
1260		/*
1261		 * In current prototype, I/O interrupts
1262		 * are masked for VPE > 0
1263		 */
1264		if (vpemask[vpe][bit]) {
1265			if (!(im & (0x100 << bit)))
1266				imstuckcount[vpe][bit]++;
1267			else
1268				imstuckcount[vpe][bit] = 0;
1269			if (imstuckcount[vpe][bit] > IM_LIMIT) {
1270				set_c0_status(0x100 << bit);
1271				ehb();
1272				imstuckcount[vpe][bit] = 0;
1273				pdb_msg += sprintf(pdb_msg,
1274					"Dangling IM %d fixed for VPE %d\n", bit,
1275					vpe);
1276			}
1277		}
1278	}
1279
1280	emt(mtflags);
1281	local_irq_restore(flags);
1282	if (pdb_msg != &id_ho_db_msg[0])
1283		printk("CPU%d: %s", smp_processor_id(), id_ho_db_msg);
1284#endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
1285
1286	smtc_ipi_replay();
1287}
1288
1289void smtc_soft_dump(void)
1290{
1291	int i;
1292
1293	printk("Counter Interrupts taken per CPU (TC)\n");
1294	for (i=0; i < NR_CPUS; i++) {
1295		printk("%d: %ld\n", i, smtc_cpu_stats[i].timerints);
1296	}
1297	printk("Self-IPI invocations:\n");
1298	for (i=0; i < NR_CPUS; i++) {
1299		printk("%d: %ld\n", i, smtc_cpu_stats[i].selfipis);
1300	}
1301	smtc_ipi_qdump();
1302	printk("%d Recoveries of \"stolen\" FPU\n",
1303	       atomic_read(&smtc_fpu_recoveries));
1304}
1305
1306
1307/*
1308 * TLB management routines special to SMTC
1309 */
1310
1311void smtc_get_new_mmu_context(struct mm_struct *mm, unsigned long cpu)
1312{
1313	unsigned long flags, mtflags, tcstat, prevhalt, asid;
1314	int tlb, i;
1315
1316	/*
1317	 * It would be nice to be able to use a spinlock here,
1318	 * but this is invoked from within TLB flush routines
1319	 * that protect themselves with DVPE, so if a lock is
1320	 * held by another TC, it'll never be freed.
1321	 *
1322	 * DVPE/DMT must not be done with interrupts enabled,
1323	 * so even so most callers will already have disabled
1324	 * them, let's be really careful...
1325	 */
1326
1327	local_irq_save(flags);
1328	if (smtc_status & SMTC_TLB_SHARED) {
1329		mtflags = dvpe();
1330		tlb = 0;
1331	} else {
1332		mtflags = dmt();
1333		tlb = cpu_data[cpu].vpe_id;
1334	}
1335	asid = asid_cache(cpu);
1336
1337	do {
1338		if (!((asid += ASID_INC) & ASID_MASK) ) {
1339			if (cpu_has_vtag_icache)
1340				flush_icache_all();
1341			/* Traverse all online CPUs (hack requires contiguous range) */
1342			for_each_online_cpu(i) {
1343				/*
1344				 * We don't need to worry about our own CPU, nor those of
1345				 * CPUs who don't share our TLB.
1346				 */
1347				if ((i != smp_processor_id()) &&
1348				    ((smtc_status & SMTC_TLB_SHARED) ||
1349				     (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))) {
1350					settc(cpu_data[i].tc_id);
1351					prevhalt = read_tc_c0_tchalt() & TCHALT_H;
1352					if (!prevhalt) {
1353						write_tc_c0_tchalt(TCHALT_H);
1354						mips_ihb();
1355					}
1356					tcstat = read_tc_c0_tcstatus();
1357					smtc_live_asid[tlb][(tcstat & ASID_MASK)] |= (asiduse)(0x1 << i);
1358					if (!prevhalt)
1359						write_tc_c0_tchalt(0);
1360				}
1361			}
1362			if (!asid)		/* fix version if needed */
1363				asid = ASID_FIRST_VERSION;
1364			local_flush_tlb_all();	/* start new asid cycle */
1365		}
1366	} while (smtc_live_asid[tlb][(asid & ASID_MASK)]);
1367
1368	/*
1369	 * SMTC shares the TLB within VPEs and possibly across all VPEs.
1370	 */
1371	for_each_online_cpu(i) {
1372		if ((smtc_status & SMTC_TLB_SHARED) ||
1373		    (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))
1374			cpu_context(i, mm) = asid_cache(i) = asid;
1375	}
1376
1377	if (smtc_status & SMTC_TLB_SHARED)
1378		evpe(mtflags);
1379	else
1380		emt(mtflags);
1381	local_irq_restore(flags);
1382}
1383
1384/*
1385 * Invoked from macros defined in mmu_context.h
1386 * which must already have disabled interrupts
1387 * and done a DVPE or DMT as appropriate.
1388 */
1389
1390void smtc_flush_tlb_asid(unsigned long asid)
1391{
1392	int entry;
1393	unsigned long ehi;
1394
1395	entry = read_c0_wired();
1396
1397	/* Traverse all non-wired entries */
1398	while (entry < current_cpu_data.tlbsize) {
1399		write_c0_index(entry);
1400		ehb();
1401		tlb_read();
1402		ehb();
1403		ehi = read_c0_entryhi();
1404		if ((ehi & ASID_MASK) == asid) {
1405		    /*
1406		     * Invalidate only entries with specified ASID,
1407		     * makiing sure all entries differ.
1408		     */
1409		    write_c0_entryhi(CKSEG0 + (entry << (PAGE_SHIFT + 1)));
1410		    write_c0_entrylo0(0);
1411		    write_c0_entrylo1(0);
1412		    mtc0_tlbw_hazard();
1413		    tlb_write_indexed();
1414		}
1415		entry++;
1416	}
1417	write_c0_index(PARKED_INDEX);
1418	tlbw_use_hazard();
1419}
1420
1421/*
1422 * Support for single-threading cache flush operations.
1423 */
1424
1425static int halt_state_save[NR_CPUS];
1426
1427/*
1428 * To really, really be sure that nothing is being done
1429 * by other TCs, halt them all.  This code assumes that
1430 * a DVPE has already been done, so while their Halted
1431 * state is theoretically architecturally unstable, in
1432 * practice, it's not going to change while we're looking
1433 * at it.
1434 */
1435
1436void smtc_cflush_lockdown(void)
1437{
1438	int cpu;
1439
1440	for_each_online_cpu(cpu) {
1441		if (cpu != smp_processor_id()) {
1442			settc(cpu_data[cpu].tc_id);
1443			halt_state_save[cpu] = read_tc_c0_tchalt();
1444			write_tc_c0_tchalt(TCHALT_H);
1445		}
1446	}
1447	mips_ihb();
1448}
1449
1450/* It would be cheating to change the cpu_online states during a flush! */
1451
1452void smtc_cflush_release(void)
1453{
1454	int cpu;
1455
1456	/*
1457	 * Start with a hazard barrier to ensure
1458	 * that all CACHE ops have played through.
1459	 */
1460	mips_ihb();
1461
1462	for_each_online_cpu(cpu) {
1463		if (cpu != smp_processor_id()) {
1464			settc(cpu_data[cpu].tc_id);
1465			write_tc_c0_tchalt(halt_state_save[cpu]);
1466		}
1467	}
1468	mips_ihb();
1469}
1470