smtc.c revision 91a2fcc88634663e9e13dcdfad0e4a860e64aeee
1/* Copyright (C) 2004 Mips Technologies, Inc */
2
3#include <linux/kernel.h>
4#include <linux/sched.h>
5#include <linux/cpumask.h>
6#include <linux/interrupt.h>
7#include <linux/kernel_stat.h>
8#include <linux/module.h>
9
10#include <asm/cpu.h>
11#include <asm/processor.h>
12#include <asm/atomic.h>
13#include <asm/system.h>
14#include <asm/hardirq.h>
15#include <asm/hazards.h>
16#include <asm/irq.h>
17#include <asm/mmu_context.h>
18#include <asm/smp.h>
19#include <asm/mipsregs.h>
20#include <asm/cacheflush.h>
21#include <asm/time.h>
22#include <asm/addrspace.h>
23#include <asm/smtc.h>
24#include <asm/smtc_ipi.h>
25#include <asm/smtc_proc.h>
26
27/*
28 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
29 * in do_IRQ. These are passed in setup_irq_smtc() and stored
30 * in this table.
31 */
32unsigned long irq_hwmask[NR_IRQS];
33
34#define LOCK_MT_PRA() \
35	local_irq_save(flags); \
36	mtflags = dmt()
37
38#define UNLOCK_MT_PRA() \
39	emt(mtflags); \
40	local_irq_restore(flags)
41
42#define LOCK_CORE_PRA() \
43	local_irq_save(flags); \
44	mtflags = dvpe()
45
46#define UNLOCK_CORE_PRA() \
47	evpe(mtflags); \
48	local_irq_restore(flags)
49
50/*
51 * Data structures purely associated with SMTC parallelism
52 */
53
54
55/*
56 * Table for tracking ASIDs whose lifetime is prolonged.
57 */
58
59asiduse smtc_live_asid[MAX_SMTC_TLBS][MAX_SMTC_ASIDS];
60
61/*
62 * Clock interrupt "latch" buffers, per "CPU"
63 */
64
65unsigned int ipi_timer_latch[NR_CPUS];
66
67/*
68 * Number of InterProcessor Interupt (IPI) message buffers to allocate
69 */
70
71#define IPIBUF_PER_CPU 4
72
73static struct smtc_ipi_q IPIQ[NR_CPUS];
74static struct smtc_ipi_q freeIPIq;
75
76
77/* Forward declarations */
78
79void ipi_decode(struct smtc_ipi *);
80static void post_direct_ipi(int cpu, struct smtc_ipi *pipi);
81static void setup_cross_vpe_interrupts(unsigned int nvpe);
82void init_smtc_stats(void);
83
84/* Global SMTC Status */
85
86unsigned int smtc_status = 0;
87
88/* Boot command line configuration overrides */
89
90static int ipibuffers = 0;
91static int nostlb = 0;
92static int asidmask = 0;
93unsigned long smtc_asid_mask = 0xff;
94
95static int __init ipibufs(char *str)
96{
97	get_option(&str, &ipibuffers);
98	return 1;
99}
100
101static int __init stlb_disable(char *s)
102{
103	nostlb = 1;
104	return 1;
105}
106
107static int __init asidmask_set(char *str)
108{
109	get_option(&str, &asidmask);
110	switch (asidmask) {
111	case 0x1:
112	case 0x3:
113	case 0x7:
114	case 0xf:
115	case 0x1f:
116	case 0x3f:
117	case 0x7f:
118	case 0xff:
119		smtc_asid_mask = (unsigned long)asidmask;
120		break;
121	default:
122		printk("ILLEGAL ASID mask 0x%x from command line\n", asidmask);
123	}
124	return 1;
125}
126
127__setup("ipibufs=", ipibufs);
128__setup("nostlb", stlb_disable);
129__setup("asidmask=", asidmask_set);
130
131#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
132
133static int hang_trig = 0;
134
135static int __init hangtrig_enable(char *s)
136{
137	hang_trig = 1;
138	return 1;
139}
140
141
142__setup("hangtrig", hangtrig_enable);
143
144#define DEFAULT_BLOCKED_IPI_LIMIT 32
145
146static int timerq_limit = DEFAULT_BLOCKED_IPI_LIMIT;
147
148static int __init tintq(char *str)
149{
150	get_option(&str, &timerq_limit);
151	return 1;
152}
153
154__setup("tintq=", tintq);
155
156static int imstuckcount[2][8];
157/* vpemask represents IM/IE bits of per-VPE Status registers, low-to-high */
158static int vpemask[2][8] = {
159	{0, 0, 1, 0, 0, 0, 0, 1},
160	{0, 0, 0, 0, 0, 0, 0, 1}
161};
162int tcnoprog[NR_CPUS];
163static atomic_t idle_hook_initialized = {0};
164static int clock_hang_reported[NR_CPUS];
165
166#endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
167
168/* Initialize shared TLB - the should probably migrate to smtc_setup_cpus() */
169
170void __init sanitize_tlb_entries(void)
171{
172	printk("Deprecated sanitize_tlb_entries() invoked\n");
173}
174
175
176/*
177 * Configure shared TLB - VPC configuration bit must be set by caller
178 */
179
180static void smtc_configure_tlb(void)
181{
182	int i,tlbsiz,vpes;
183	unsigned long mvpconf0;
184	unsigned long config1val;
185
186	/* Set up ASID preservation table */
187	for (vpes=0; vpes<MAX_SMTC_TLBS; vpes++) {
188	    for(i = 0; i < MAX_SMTC_ASIDS; i++) {
189		smtc_live_asid[vpes][i] = 0;
190	    }
191	}
192	mvpconf0 = read_c0_mvpconf0();
193
194	if ((vpes = ((mvpconf0 & MVPCONF0_PVPE)
195			>> MVPCONF0_PVPE_SHIFT) + 1) > 1) {
196	    /* If we have multiple VPEs, try to share the TLB */
197	    if ((mvpconf0 & MVPCONF0_TLBS) && !nostlb) {
198		/*
199		 * If TLB sizing is programmable, shared TLB
200		 * size is the total available complement.
201		 * Otherwise, we have to take the sum of all
202		 * static VPE TLB entries.
203		 */
204		if ((tlbsiz = ((mvpconf0 & MVPCONF0_PTLBE)
205				>> MVPCONF0_PTLBE_SHIFT)) == 0) {
206		    /*
207		     * If there's more than one VPE, there had better
208		     * be more than one TC, because we need one to bind
209		     * to each VPE in turn to be able to read
210		     * its configuration state!
211		     */
212		    settc(1);
213		    /* Stop the TC from doing anything foolish */
214		    write_tc_c0_tchalt(TCHALT_H);
215		    mips_ihb();
216		    /* No need to un-Halt - that happens later anyway */
217		    for (i=0; i < vpes; i++) {
218		    	write_tc_c0_tcbind(i);
219			/*
220			 * To be 100% sure we're really getting the right
221			 * information, we exit the configuration state
222			 * and do an IHB after each rebinding.
223			 */
224			write_c0_mvpcontrol(
225				read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
226			mips_ihb();
227			/*
228			 * Only count if the MMU Type indicated is TLB
229			 */
230			if (((read_vpe_c0_config() & MIPS_CONF_MT) >> 7) == 1) {
231				config1val = read_vpe_c0_config1();
232				tlbsiz += ((config1val >> 25) & 0x3f) + 1;
233			}
234
235			/* Put core back in configuration state */
236			write_c0_mvpcontrol(
237				read_c0_mvpcontrol() | MVPCONTROL_VPC );
238			mips_ihb();
239		    }
240		}
241		write_c0_mvpcontrol(read_c0_mvpcontrol() | MVPCONTROL_STLB);
242		ehb();
243
244		/*
245		 * Setup kernel data structures to use software total,
246		 * rather than read the per-VPE Config1 value. The values
247		 * for "CPU 0" gets copied to all the other CPUs as part
248		 * of their initialization in smtc_cpu_setup().
249		 */
250
251		/* MIPS32 limits TLB indices to 64 */
252		if (tlbsiz > 64)
253			tlbsiz = 64;
254		cpu_data[0].tlbsize = current_cpu_data.tlbsize = tlbsiz;
255		smtc_status |= SMTC_TLB_SHARED;
256		local_flush_tlb_all();
257
258		printk("TLB of %d entry pairs shared by %d VPEs\n",
259			tlbsiz, vpes);
260	    } else {
261		printk("WARNING: TLB Not Sharable on SMTC Boot!\n");
262	    }
263	}
264}
265
266
267/*
268 * Incrementally build the CPU map out of constituent MIPS MT cores,
269 * using the specified available VPEs and TCs.  Plaform code needs
270 * to ensure that each MIPS MT core invokes this routine on reset,
271 * one at a time(!).
272 *
273 * This version of the build_cpu_map and prepare_cpus routines assumes
274 * that *all* TCs of a MIPS MT core will be used for Linux, and that
275 * they will be spread across *all* available VPEs (to minimise the
276 * loss of efficiency due to exception service serialization).
277 * An improved version would pick up configuration information and
278 * possibly leave some TCs/VPEs as "slave" processors.
279 *
280 * Use c0_MVPConf0 to find out how many TCs are available, setting up
281 * phys_cpu_present_map and the logical/physical mappings.
282 */
283
284int __init mipsmt_build_cpu_map(int start_cpu_slot)
285{
286	int i, ntcs;
287
288	/*
289	 * The CPU map isn't actually used for anything at this point,
290	 * so it's not clear what else we should do apart from set
291	 * everything up so that "logical" = "physical".
292	 */
293	ntcs = ((read_c0_mvpconf0() & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
294	for (i=start_cpu_slot; i<NR_CPUS && i<ntcs; i++) {
295		cpu_set(i, phys_cpu_present_map);
296		__cpu_number_map[i] = i;
297		__cpu_logical_map[i] = i;
298	}
299	/* Initialize map of CPUs with FPUs */
300	cpus_clear(mt_fpu_cpumask);
301
302	/* One of those TC's is the one booting, and not a secondary... */
303	printk("%i available secondary CPU TC(s)\n", i - 1);
304
305	return i;
306}
307
308/*
309 * Common setup before any secondaries are started
310 * Make sure all CPU's are in a sensible state before we boot any of the
311 * secondaries.
312 *
313 * For MIPS MT "SMTC" operation, we set up all TCs, spread as evenly
314 * as possible across the available VPEs.
315 */
316
317static void smtc_tc_setup(int vpe, int tc, int cpu)
318{
319	settc(tc);
320	write_tc_c0_tchalt(TCHALT_H);
321	mips_ihb();
322	write_tc_c0_tcstatus((read_tc_c0_tcstatus()
323			& ~(TCSTATUS_TKSU | TCSTATUS_DA | TCSTATUS_IXMT))
324			| TCSTATUS_A);
325	write_tc_c0_tccontext(0);
326	/* Bind tc to vpe */
327	write_tc_c0_tcbind(vpe);
328	/* In general, all TCs should have the same cpu_data indications */
329	memcpy(&cpu_data[cpu], &cpu_data[0], sizeof(struct cpuinfo_mips));
330	/* For 34Kf, start with TC/CPU 0 as sole owner of single FPU context */
331	if (cpu_data[0].cputype == CPU_34K)
332		cpu_data[cpu].options &= ~MIPS_CPU_FPU;
333	cpu_data[cpu].vpe_id = vpe;
334	cpu_data[cpu].tc_id = tc;
335}
336
337
338void mipsmt_prepare_cpus(void)
339{
340	int i, vpe, tc, ntc, nvpe, tcpervpe, slop, cpu;
341	unsigned long flags;
342	unsigned long val;
343	int nipi;
344	struct smtc_ipi *pipi;
345
346	/* disable interrupts so we can disable MT */
347	local_irq_save(flags);
348	/* disable MT so we can configure */
349	dvpe();
350	dmt();
351
352	spin_lock_init(&freeIPIq.lock);
353
354	/*
355	 * We probably don't have as many VPEs as we do SMP "CPUs",
356	 * but it's possible - and in any case we'll never use more!
357	 */
358	for (i=0; i<NR_CPUS; i++) {
359		IPIQ[i].head = IPIQ[i].tail = NULL;
360		spin_lock_init(&IPIQ[i].lock);
361		IPIQ[i].depth = 0;
362		ipi_timer_latch[i] = 0;
363	}
364
365	/* cpu_data index starts at zero */
366	cpu = 0;
367	cpu_data[cpu].vpe_id = 0;
368	cpu_data[cpu].tc_id = 0;
369	cpu++;
370
371	/* Report on boot-time options */
372	mips_mt_set_cpuoptions ();
373	if (vpelimit > 0)
374		printk("Limit of %d VPEs set\n", vpelimit);
375	if (tclimit > 0)
376		printk("Limit of %d TCs set\n", tclimit);
377	if (nostlb) {
378		printk("Shared TLB Use Inhibited - UNSAFE for Multi-VPE Operation\n");
379	}
380	if (asidmask)
381		printk("ASID mask value override to 0x%x\n", asidmask);
382
383	/* Temporary */
384#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
385	if (hang_trig)
386		printk("Logic Analyser Trigger on suspected TC hang\n");
387#endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
388
389	/* Put MVPE's into 'configuration state' */
390	write_c0_mvpcontrol( read_c0_mvpcontrol() | MVPCONTROL_VPC );
391
392	val = read_c0_mvpconf0();
393	nvpe = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
394	if (vpelimit > 0 && nvpe > vpelimit)
395		nvpe = vpelimit;
396	ntc = ((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
397	if (ntc > NR_CPUS)
398		ntc = NR_CPUS;
399	if (tclimit > 0 && ntc > tclimit)
400		ntc = tclimit;
401	tcpervpe = ntc / nvpe;
402	slop = ntc % nvpe;	/* Residual TCs, < NVPE */
403
404	/* Set up shared TLB */
405	smtc_configure_tlb();
406
407	for (tc = 0, vpe = 0 ; (vpe < nvpe) && (tc < ntc) ; vpe++) {
408		/*
409		 * Set the MVP bits.
410		 */
411		settc(tc);
412		write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_MVP);
413		if (vpe != 0)
414			printk(", ");
415		printk("VPE %d: TC", vpe);
416		for (i = 0; i < tcpervpe; i++) {
417			/*
418			 * TC 0 is bound to VPE 0 at reset,
419			 * and is presumably executing this
420			 * code.  Leave it alone!
421			 */
422			if (tc != 0) {
423				smtc_tc_setup(vpe,tc, cpu);
424				cpu++;
425			}
426			printk(" %d", tc);
427			tc++;
428		}
429		if (slop) {
430			if (tc != 0) {
431				smtc_tc_setup(vpe,tc, cpu);
432				cpu++;
433			}
434			printk(" %d", tc);
435			tc++;
436			slop--;
437		}
438		if (vpe != 0) {
439			/*
440			 * Clear any stale software interrupts from VPE's Cause
441			 */
442			write_vpe_c0_cause(0);
443
444			/*
445			 * Clear ERL/EXL of VPEs other than 0
446			 * and set restricted interrupt enable/mask.
447			 */
448			write_vpe_c0_status((read_vpe_c0_status()
449				& ~(ST0_BEV | ST0_ERL | ST0_EXL | ST0_IM))
450				| (STATUSF_IP0 | STATUSF_IP1 | STATUSF_IP7
451				| ST0_IE));
452			/*
453			 * set config to be the same as vpe0,
454			 *  particularly kseg0 coherency alg
455			 */
456			write_vpe_c0_config(read_c0_config());
457			/* Clear any pending timer interrupt */
458			write_vpe_c0_compare(0);
459			/* Propagate Config7 */
460			write_vpe_c0_config7(read_c0_config7());
461			write_vpe_c0_count(read_c0_count());
462		}
463		/* enable multi-threading within VPE */
464		write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() | VPECONTROL_TE);
465		/* enable the VPE */
466		write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
467	}
468
469	/*
470	 * Pull any physically present but unused TCs out of circulation.
471	 */
472	while (tc < (((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1)) {
473		cpu_clear(tc, phys_cpu_present_map);
474		cpu_clear(tc, cpu_present_map);
475		tc++;
476	}
477
478	/* release config state */
479	write_c0_mvpcontrol( read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
480
481	printk("\n");
482
483	/* Set up coprocessor affinity CPU mask(s) */
484
485	for (tc = 0; tc < ntc; tc++) {
486		if (cpu_data[tc].options & MIPS_CPU_FPU)
487			cpu_set(tc, mt_fpu_cpumask);
488	}
489
490	/* set up ipi interrupts... */
491
492	/* If we have multiple VPEs running, set up the cross-VPE interrupt */
493
494	setup_cross_vpe_interrupts(nvpe);
495
496	/* Set up queue of free IPI "messages". */
497	nipi = NR_CPUS * IPIBUF_PER_CPU;
498	if (ipibuffers > 0)
499		nipi = ipibuffers;
500
501	pipi = kmalloc(nipi *sizeof(struct smtc_ipi), GFP_KERNEL);
502	if (pipi == NULL)
503		panic("kmalloc of IPI message buffers failed\n");
504	else
505		printk("IPI buffer pool of %d buffers\n", nipi);
506	for (i = 0; i < nipi; i++) {
507		smtc_ipi_nq(&freeIPIq, pipi);
508		pipi++;
509	}
510
511	/* Arm multithreading and enable other VPEs - but all TCs are Halted */
512	emt(EMT_ENABLE);
513	evpe(EVPE_ENABLE);
514	local_irq_restore(flags);
515	/* Initialize SMTC /proc statistics/diagnostics */
516	init_smtc_stats();
517}
518
519
520/*
521 * Setup the PC, SP, and GP of a secondary processor and start it
522 * running!
523 * smp_bootstrap is the place to resume from
524 * __KSTK_TOS(idle) is apparently the stack pointer
525 * (unsigned long)idle->thread_info the gp
526 *
527 */
528void __cpuinit smtc_boot_secondary(int cpu, struct task_struct *idle)
529{
530	extern u32 kernelsp[NR_CPUS];
531	long flags;
532	int mtflags;
533
534	LOCK_MT_PRA();
535	if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
536		dvpe();
537	}
538	settc(cpu_data[cpu].tc_id);
539
540	/* pc */
541	write_tc_c0_tcrestart((unsigned long)&smp_bootstrap);
542
543	/* stack pointer */
544	kernelsp[cpu] = __KSTK_TOS(idle);
545	write_tc_gpr_sp(__KSTK_TOS(idle));
546
547	/* global pointer */
548	write_tc_gpr_gp((unsigned long)task_thread_info(idle));
549
550	smtc_status |= SMTC_MTC_ACTIVE;
551	write_tc_c0_tchalt(0);
552	if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
553		evpe(EVPE_ENABLE);
554	}
555	UNLOCK_MT_PRA();
556}
557
558void smtc_init_secondary(void)
559{
560	/*
561	 * Start timer on secondary VPEs if necessary.
562	 * plat_timer_setup has already have been invoked by init/main
563	 * on "boot" TC.  Like per_cpu_trap_init() hack, this assumes that
564	 * SMTC init code assigns TCs consdecutively and in ascending order
565	 * to across available VPEs.
566	 */
567	if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
568	    ((read_c0_tcbind() & TCBIND_CURVPE)
569	    != cpu_data[smp_processor_id() - 1].vpe_id)){
570		write_c0_compare (read_c0_count() + mips_hpt_frequency/HZ);
571	}
572
573	local_irq_enable();
574}
575
576void smtc_smp_finish(void)
577{
578	printk("TC %d going on-line as CPU %d\n",
579		cpu_data[smp_processor_id()].tc_id, smp_processor_id());
580}
581
582void smtc_cpus_done(void)
583{
584}
585
586/*
587 * Support for SMTC-optimized driver IRQ registration
588 */
589
590/*
591 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
592 * in do_IRQ. These are passed in setup_irq_smtc() and stored
593 * in this table.
594 */
595
596int setup_irq_smtc(unsigned int irq, struct irqaction * new,
597			unsigned long hwmask)
598{
599#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
600	unsigned int vpe = current_cpu_data.vpe_id;
601
602	vpemask[vpe][irq - MIPS_CPU_IRQ_BASE] = 1;
603#endif
604	irq_hwmask[irq] = hwmask;
605
606	return setup_irq(irq, new);
607}
608
609#ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
610/*
611 * Support for IRQ affinity to TCs
612 */
613
614void smtc_set_irq_affinity(unsigned int irq, cpumask_t affinity)
615{
616	/*
617	 * If a "fast path" cache of quickly decodable affinity state
618	 * is maintained, this is where it gets done, on a call up
619	 * from the platform affinity code.
620	 */
621}
622
623void smtc_forward_irq(unsigned int irq)
624{
625	int target;
626
627	/*
628	 * OK wise guy, now figure out how to get the IRQ
629	 * to be serviced on an authorized "CPU".
630	 *
631	 * Ideally, to handle the situation where an IRQ has multiple
632	 * eligible CPUS, we would maintain state per IRQ that would
633	 * allow a fair distribution of service requests.  Since the
634	 * expected use model is any-or-only-one, for simplicity
635	 * and efficiency, we just pick the easiest one to find.
636	 */
637
638	target = first_cpu(irq_desc[irq].affinity);
639
640	/*
641	 * We depend on the platform code to have correctly processed
642	 * IRQ affinity change requests to ensure that the IRQ affinity
643	 * mask has been purged of bits corresponding to nonexistent and
644	 * offline "CPUs", and to TCs bound to VPEs other than the VPE
645	 * connected to the physical interrupt input for the interrupt
646	 * in question.  Otherwise we have a nasty problem with interrupt
647	 * mask management.  This is best handled in non-performance-critical
648	 * platform IRQ affinity setting code,  to minimize interrupt-time
649	 * checks.
650	 */
651
652	/* If no one is eligible, service locally */
653	if (target >= NR_CPUS) {
654		do_IRQ_no_affinity(irq);
655		return;
656	}
657
658	smtc_send_ipi(target, IRQ_AFFINITY_IPI, irq);
659}
660
661#endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
662
663/*
664 * IPI model for SMTC is tricky, because interrupts aren't TC-specific.
665 * Within a VPE one TC can interrupt another by different approaches.
666 * The easiest to get right would probably be to make all TCs except
667 * the target IXMT and set a software interrupt, but an IXMT-based
668 * scheme requires that a handler must run before a new IPI could
669 * be sent, which would break the "broadcast" loops in MIPS MT.
670 * A more gonzo approach within a VPE is to halt the TC, extract
671 * its Restart, Status, and a couple of GPRs, and program the Restart
672 * address to emulate an interrupt.
673 *
674 * Within a VPE, one can be confident that the target TC isn't in
675 * a critical EXL state when halted, since the write to the Halt
676 * register could not have issued on the writing thread if the
677 * halting thread had EXL set. So k0 and k1 of the target TC
678 * can be used by the injection code.  Across VPEs, one can't
679 * be certain that the target TC isn't in a critical exception
680 * state. So we try a two-step process of sending a software
681 * interrupt to the target VPE, which either handles the event
682 * itself (if it was the target) or injects the event within
683 * the VPE.
684 */
685
686static void smtc_ipi_qdump(void)
687{
688	int i;
689
690	for (i = 0; i < NR_CPUS ;i++) {
691		printk("IPIQ[%d]: head = 0x%x, tail = 0x%x, depth = %d\n",
692			i, (unsigned)IPIQ[i].head, (unsigned)IPIQ[i].tail,
693			IPIQ[i].depth);
694	}
695}
696
697/*
698 * The standard atomic.h primitives don't quite do what we want
699 * here: We need an atomic add-and-return-previous-value (which
700 * could be done with atomic_add_return and a decrement) and an
701 * atomic set/zero-and-return-previous-value (which can't really
702 * be done with the atomic.h primitives). And since this is
703 * MIPS MT, we can assume that we have LL/SC.
704 */
705static __inline__ int atomic_postincrement(unsigned int *pv)
706{
707	unsigned long result;
708
709	unsigned long temp;
710
711	__asm__ __volatile__(
712	"1:	ll	%0, %2					\n"
713	"	addu	%1, %0, 1				\n"
714	"	sc	%1, %2					\n"
715	"	beqz	%1, 1b					\n"
716	__WEAK_LLSC_MB
717	: "=&r" (result), "=&r" (temp), "=m" (*pv)
718	: "m" (*pv)
719	: "memory");
720
721	return result;
722}
723
724void smtc_send_ipi(int cpu, int type, unsigned int action)
725{
726	int tcstatus;
727	struct smtc_ipi *pipi;
728	long flags;
729	int mtflags;
730
731	if (cpu == smp_processor_id()) {
732		printk("Cannot Send IPI to self!\n");
733		return;
734	}
735	/* Set up a descriptor, to be delivered either promptly or queued */
736	pipi = smtc_ipi_dq(&freeIPIq);
737	if (pipi == NULL) {
738		bust_spinlocks(1);
739		mips_mt_regdump(dvpe());
740		panic("IPI Msg. Buffers Depleted\n");
741	}
742	pipi->type = type;
743	pipi->arg = (void *)action;
744	pipi->dest = cpu;
745	if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
746		/* If not on same VPE, enqueue and send cross-VPE interupt */
747		smtc_ipi_nq(&IPIQ[cpu], pipi);
748		LOCK_CORE_PRA();
749		settc(cpu_data[cpu].tc_id);
750		write_vpe_c0_cause(read_vpe_c0_cause() | C_SW1);
751		UNLOCK_CORE_PRA();
752	} else {
753		/*
754		 * Not sufficient to do a LOCK_MT_PRA (dmt) here,
755		 * since ASID shootdown on the other VPE may
756		 * collide with this operation.
757		 */
758		LOCK_CORE_PRA();
759		settc(cpu_data[cpu].tc_id);
760		/* Halt the targeted TC */
761		write_tc_c0_tchalt(TCHALT_H);
762		mips_ihb();
763
764		/*
765	 	 * Inspect TCStatus - if IXMT is set, we have to queue
766		 * a message. Otherwise, we set up the "interrupt"
767		 * of the other TC
768	 	 */
769		tcstatus = read_tc_c0_tcstatus();
770
771		if ((tcstatus & TCSTATUS_IXMT) != 0) {
772			/*
773			 * Spin-waiting here can deadlock,
774			 * so we queue the message for the target TC.
775			 */
776			write_tc_c0_tchalt(0);
777			UNLOCK_CORE_PRA();
778			/* Try to reduce redundant timer interrupt messages */
779			if (type == SMTC_CLOCK_TICK) {
780			    if (atomic_postincrement(&ipi_timer_latch[cpu])!=0){
781				smtc_ipi_nq(&freeIPIq, pipi);
782				return;
783			    }
784			}
785			smtc_ipi_nq(&IPIQ[cpu], pipi);
786		} else {
787			post_direct_ipi(cpu, pipi);
788			write_tc_c0_tchalt(0);
789			UNLOCK_CORE_PRA();
790		}
791	}
792}
793
794/*
795 * Send IPI message to Halted TC, TargTC/TargVPE already having been set
796 */
797static void post_direct_ipi(int cpu, struct smtc_ipi *pipi)
798{
799	struct pt_regs *kstack;
800	unsigned long tcstatus;
801	unsigned long tcrestart;
802	extern u32 kernelsp[NR_CPUS];
803	extern void __smtc_ipi_vector(void);
804
805	/* Extract Status, EPC from halted TC */
806	tcstatus = read_tc_c0_tcstatus();
807	tcrestart = read_tc_c0_tcrestart();
808	/* If TCRestart indicates a WAIT instruction, advance the PC */
809	if ((tcrestart & 0x80000000)
810	    && ((*(unsigned int *)tcrestart & 0xfe00003f) == 0x42000020)) {
811		tcrestart += 4;
812	}
813	/*
814	 * Save on TC's future kernel stack
815	 *
816	 * CU bit of Status is indicator that TC was
817	 * already running on a kernel stack...
818	 */
819	if (tcstatus & ST0_CU0)  {
820		/* Note that this "- 1" is pointer arithmetic */
821		kstack = ((struct pt_regs *)read_tc_gpr_sp()) - 1;
822	} else {
823		kstack = ((struct pt_regs *)kernelsp[cpu]) - 1;
824	}
825
826	kstack->cp0_epc = (long)tcrestart;
827	/* Save TCStatus */
828	kstack->cp0_tcstatus = tcstatus;
829	/* Pass token of operation to be performed kernel stack pad area */
830	kstack->pad0[4] = (unsigned long)pipi;
831	/* Pass address of function to be called likewise */
832	kstack->pad0[5] = (unsigned long)&ipi_decode;
833	/* Set interrupt exempt and kernel mode */
834	tcstatus |= TCSTATUS_IXMT;
835	tcstatus &= ~TCSTATUS_TKSU;
836	write_tc_c0_tcstatus(tcstatus);
837	ehb();
838	/* Set TC Restart address to be SMTC IPI vector */
839	write_tc_c0_tcrestart(__smtc_ipi_vector);
840}
841
842static void ipi_resched_interrupt(void)
843{
844	/* Return from interrupt should be enough to cause scheduler check */
845}
846
847
848static void ipi_call_interrupt(void)
849{
850	/* Invoke generic function invocation code in smp.c */
851	smp_call_function_interrupt();
852}
853
854void ipi_decode(struct smtc_ipi *pipi)
855{
856	void *arg_copy = pipi->arg;
857	int type_copy = pipi->type;
858	int dest_copy = pipi->dest;
859
860	smtc_ipi_nq(&freeIPIq, pipi);
861	switch (type_copy) {
862	case SMTC_CLOCK_TICK:
863		irq_enter();
864		kstat_this_cpu.irqs[MIPS_CPU_IRQ_BASE + cp0_compare_irq]++;
865		/* Invoke Clock "Interrupt" */
866		ipi_timer_latch[dest_copy] = 0;
867#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
868		clock_hang_reported[dest_copy] = 0;
869#endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
870		local_timer_interrupt(0);
871		irq_exit();
872		break;
873	case LINUX_SMP_IPI:
874		switch ((int)arg_copy) {
875		case SMP_RESCHEDULE_YOURSELF:
876			ipi_resched_interrupt();
877			break;
878		case SMP_CALL_FUNCTION:
879			ipi_call_interrupt();
880			break;
881		default:
882			printk("Impossible SMTC IPI Argument 0x%x\n",
883				(int)arg_copy);
884			break;
885		}
886		break;
887#ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
888	case IRQ_AFFINITY_IPI:
889		/*
890		 * Accept a "forwarded" interrupt that was initially
891		 * taken by a TC who doesn't have affinity for the IRQ.
892		 */
893		do_IRQ_no_affinity((int)arg_copy);
894		break;
895#endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
896	default:
897		printk("Impossible SMTC IPI Type 0x%x\n", type_copy);
898		break;
899	}
900}
901
902void deferred_smtc_ipi(void)
903{
904	struct smtc_ipi *pipi;
905	unsigned long flags;
906/* DEBUG */
907	int q = smp_processor_id();
908
909	/*
910	 * Test is not atomic, but much faster than a dequeue,
911	 * and the vast majority of invocations will have a null queue.
912	 */
913	if (IPIQ[q].head != NULL) {
914		while((pipi = smtc_ipi_dq(&IPIQ[q])) != NULL) {
915			/* ipi_decode() should be called with interrupts off */
916			local_irq_save(flags);
917			ipi_decode(pipi);
918			local_irq_restore(flags);
919		}
920	}
921}
922
923/*
924 * Send clock tick to all TCs except the one executing the funtion
925 */
926
927void smtc_timer_broadcast(void)
928{
929	int cpu;
930	int myTC = cpu_data[smp_processor_id()].tc_id;
931	int myVPE = cpu_data[smp_processor_id()].vpe_id;
932
933	smtc_cpu_stats[smp_processor_id()].timerints++;
934
935	for_each_online_cpu(cpu) {
936		if (cpu_data[cpu].vpe_id == myVPE &&
937		    cpu_data[cpu].tc_id != myTC)
938			smtc_send_ipi(cpu, SMTC_CLOCK_TICK, 0);
939	}
940}
941
942/*
943 * Cross-VPE interrupts in the SMTC prototype use "software interrupts"
944 * set via cross-VPE MTTR manipulation of the Cause register. It would be
945 * in some regards preferable to have external logic for "doorbell" hardware
946 * interrupts.
947 */
948
949static int cpu_ipi_irq = MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_IRQ;
950
951static irqreturn_t ipi_interrupt(int irq, void *dev_idm)
952{
953	int my_vpe = cpu_data[smp_processor_id()].vpe_id;
954	int my_tc = cpu_data[smp_processor_id()].tc_id;
955	int cpu;
956	struct smtc_ipi *pipi;
957	unsigned long tcstatus;
958	int sent;
959	long flags;
960	unsigned int mtflags;
961	unsigned int vpflags;
962
963	/*
964	 * So long as cross-VPE interrupts are done via
965	 * MFTR/MTTR read-modify-writes of Cause, we need
966	 * to stop other VPEs whenever the local VPE does
967	 * anything similar.
968	 */
969	local_irq_save(flags);
970	vpflags = dvpe();
971	clear_c0_cause(0x100 << MIPS_CPU_IPI_IRQ);
972	set_c0_status(0x100 << MIPS_CPU_IPI_IRQ);
973	irq_enable_hazard();
974	evpe(vpflags);
975	local_irq_restore(flags);
976
977	/*
978	 * Cross-VPE Interrupt handler: Try to directly deliver IPIs
979	 * queued for TCs on this VPE other than the current one.
980	 * Return-from-interrupt should cause us to drain the queue
981	 * for the current TC, so we ought not to have to do it explicitly here.
982	 */
983
984	for_each_online_cpu(cpu) {
985		if (cpu_data[cpu].vpe_id != my_vpe)
986			continue;
987
988		pipi = smtc_ipi_dq(&IPIQ[cpu]);
989		if (pipi != NULL) {
990			if (cpu_data[cpu].tc_id != my_tc) {
991				sent = 0;
992				LOCK_MT_PRA();
993				settc(cpu_data[cpu].tc_id);
994				write_tc_c0_tchalt(TCHALT_H);
995				mips_ihb();
996				tcstatus = read_tc_c0_tcstatus();
997				if ((tcstatus & TCSTATUS_IXMT) == 0) {
998					post_direct_ipi(cpu, pipi);
999					sent = 1;
1000				}
1001				write_tc_c0_tchalt(0);
1002				UNLOCK_MT_PRA();
1003				if (!sent) {
1004					smtc_ipi_req(&IPIQ[cpu], pipi);
1005				}
1006			} else {
1007				/*
1008				 * ipi_decode() should be called
1009				 * with interrupts off
1010				 */
1011				local_irq_save(flags);
1012				ipi_decode(pipi);
1013				local_irq_restore(flags);
1014			}
1015		}
1016	}
1017
1018	return IRQ_HANDLED;
1019}
1020
1021static void ipi_irq_dispatch(void)
1022{
1023	do_IRQ(cpu_ipi_irq);
1024}
1025
1026static struct irqaction irq_ipi = {
1027	.handler	= ipi_interrupt,
1028	.flags		= IRQF_DISABLED,
1029	.name		= "SMTC_IPI",
1030	.flags		= IRQF_PERCPU
1031};
1032
1033static void setup_cross_vpe_interrupts(unsigned int nvpe)
1034{
1035	if (nvpe < 1)
1036		return;
1037
1038	if (!cpu_has_vint)
1039		panic("SMTC Kernel requires Vectored Interupt support");
1040
1041	set_vi_handler(MIPS_CPU_IPI_IRQ, ipi_irq_dispatch);
1042
1043	setup_irq_smtc(cpu_ipi_irq, &irq_ipi, (0x100 << MIPS_CPU_IPI_IRQ));
1044
1045	set_irq_handler(cpu_ipi_irq, handle_percpu_irq);
1046}
1047
1048/*
1049 * SMTC-specific hacks invoked from elsewhere in the kernel.
1050 *
1051 * smtc_ipi_replay is called from raw_local_irq_restore which is only ever
1052 * called with interrupts disabled.  We do rely on interrupts being disabled
1053 * here because using spin_lock_irqsave()/spin_unlock_irqrestore() would
1054 * result in a recursive call to raw_local_irq_restore().
1055 */
1056
1057static void __smtc_ipi_replay(void)
1058{
1059	unsigned int cpu = smp_processor_id();
1060
1061	/*
1062	 * To the extent that we've ever turned interrupts off,
1063	 * we may have accumulated deferred IPIs.  This is subtle.
1064	 * If we use the smtc_ipi_qdepth() macro, we'll get an
1065	 * exact number - but we'll also disable interrupts
1066	 * and create a window of failure where a new IPI gets
1067	 * queued after we test the depth but before we re-enable
1068	 * interrupts. So long as IXMT never gets set, however,
1069	 * we should be OK:  If we pick up something and dispatch
1070	 * it here, that's great. If we see nothing, but concurrent
1071	 * with this operation, another TC sends us an IPI, IXMT
1072	 * is clear, and we'll handle it as a real pseudo-interrupt
1073	 * and not a pseudo-pseudo interrupt.
1074	 */
1075	if (IPIQ[cpu].depth > 0) {
1076		while (1) {
1077			struct smtc_ipi_q *q = &IPIQ[cpu];
1078			struct smtc_ipi *pipi;
1079			extern void self_ipi(struct smtc_ipi *);
1080
1081			spin_lock(&q->lock);
1082			pipi = __smtc_ipi_dq(q);
1083			spin_unlock(&q->lock);
1084			if (!pipi)
1085				break;
1086
1087			self_ipi(pipi);
1088			smtc_cpu_stats[cpu].selfipis++;
1089		}
1090	}
1091}
1092
1093void smtc_ipi_replay(void)
1094{
1095	raw_local_irq_disable();
1096	__smtc_ipi_replay();
1097}
1098
1099EXPORT_SYMBOL(smtc_ipi_replay);
1100
1101void smtc_idle_loop_hook(void)
1102{
1103#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
1104	int im;
1105	int flags;
1106	int mtflags;
1107	int bit;
1108	int vpe;
1109	int tc;
1110	int hook_ntcs;
1111	/*
1112	 * printk within DMT-protected regions can deadlock,
1113	 * so buffer diagnostic messages for later output.
1114	 */
1115	char *pdb_msg;
1116	char id_ho_db_msg[768]; /* worst-case use should be less than 700 */
1117
1118	if (atomic_read(&idle_hook_initialized) == 0) { /* fast test */
1119		if (atomic_add_return(1, &idle_hook_initialized) == 1) {
1120			int mvpconf0;
1121			/* Tedious stuff to just do once */
1122			mvpconf0 = read_c0_mvpconf0();
1123			hook_ntcs = ((mvpconf0 & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
1124			if (hook_ntcs > NR_CPUS)
1125				hook_ntcs = NR_CPUS;
1126			for (tc = 0; tc < hook_ntcs; tc++) {
1127				tcnoprog[tc] = 0;
1128				clock_hang_reported[tc] = 0;
1129	    		}
1130			for (vpe = 0; vpe < 2; vpe++)
1131				for (im = 0; im < 8; im++)
1132					imstuckcount[vpe][im] = 0;
1133			printk("Idle loop test hook initialized for %d TCs\n", hook_ntcs);
1134			atomic_set(&idle_hook_initialized, 1000);
1135		} else {
1136			/* Someone else is initializing in parallel - let 'em finish */
1137			while (atomic_read(&idle_hook_initialized) < 1000)
1138				;
1139		}
1140	}
1141
1142	/* Have we stupidly left IXMT set somewhere? */
1143	if (read_c0_tcstatus() & 0x400) {
1144		write_c0_tcstatus(read_c0_tcstatus() & ~0x400);
1145		ehb();
1146		printk("Dangling IXMT in cpu_idle()\n");
1147	}
1148
1149	/* Have we stupidly left an IM bit turned off? */
1150#define IM_LIMIT 2000
1151	local_irq_save(flags);
1152	mtflags = dmt();
1153	pdb_msg = &id_ho_db_msg[0];
1154	im = read_c0_status();
1155	vpe = current_cpu_data.vpe_id;
1156	for (bit = 0; bit < 8; bit++) {
1157		/*
1158		 * In current prototype, I/O interrupts
1159		 * are masked for VPE > 0
1160		 */
1161		if (vpemask[vpe][bit]) {
1162			if (!(im & (0x100 << bit)))
1163				imstuckcount[vpe][bit]++;
1164			else
1165				imstuckcount[vpe][bit] = 0;
1166			if (imstuckcount[vpe][bit] > IM_LIMIT) {
1167				set_c0_status(0x100 << bit);
1168				ehb();
1169				imstuckcount[vpe][bit] = 0;
1170				pdb_msg += sprintf(pdb_msg,
1171					"Dangling IM %d fixed for VPE %d\n", bit,
1172					vpe);
1173			}
1174		}
1175	}
1176
1177	/*
1178	 * Now that we limit outstanding timer IPIs, check for hung TC
1179	 */
1180	for (tc = 0; tc < NR_CPUS; tc++) {
1181		/* Don't check ourself - we'll dequeue IPIs just below */
1182		if ((tc != smp_processor_id()) &&
1183		    ipi_timer_latch[tc] > timerq_limit) {
1184		    if (clock_hang_reported[tc] == 0) {
1185			pdb_msg += sprintf(pdb_msg,
1186				"TC %d looks hung with timer latch at %d\n",
1187				tc, ipi_timer_latch[tc]);
1188			clock_hang_reported[tc]++;
1189			}
1190		}
1191	}
1192	emt(mtflags);
1193	local_irq_restore(flags);
1194	if (pdb_msg != &id_ho_db_msg[0])
1195		printk("CPU%d: %s", smp_processor_id(), id_ho_db_msg);
1196#endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
1197
1198	/*
1199	 * Replay any accumulated deferred IPIs. If "Instant Replay"
1200	 * is in use, there should never be any.
1201	 */
1202#ifndef CONFIG_MIPS_MT_SMTC_INSTANT_REPLAY
1203	{
1204		unsigned long flags;
1205
1206		local_irq_save(flags);
1207		__smtc_ipi_replay();
1208		local_irq_restore(flags);
1209	}
1210#endif /* CONFIG_MIPS_MT_SMTC_INSTANT_REPLAY */
1211}
1212
1213void smtc_soft_dump(void)
1214{
1215	int i;
1216
1217	printk("Counter Interrupts taken per CPU (TC)\n");
1218	for (i=0; i < NR_CPUS; i++) {
1219		printk("%d: %ld\n", i, smtc_cpu_stats[i].timerints);
1220	}
1221	printk("Self-IPI invocations:\n");
1222	for (i=0; i < NR_CPUS; i++) {
1223		printk("%d: %ld\n", i, smtc_cpu_stats[i].selfipis);
1224	}
1225	smtc_ipi_qdump();
1226	printk("Timer IPI Backlogs:\n");
1227	for (i=0; i < NR_CPUS; i++) {
1228		printk("%d: %d\n", i, ipi_timer_latch[i]);
1229	}
1230	printk("%d Recoveries of \"stolen\" FPU\n",
1231	       atomic_read(&smtc_fpu_recoveries));
1232}
1233
1234
1235/*
1236 * TLB management routines special to SMTC
1237 */
1238
1239void smtc_get_new_mmu_context(struct mm_struct *mm, unsigned long cpu)
1240{
1241	unsigned long flags, mtflags, tcstat, prevhalt, asid;
1242	int tlb, i;
1243
1244	/*
1245	 * It would be nice to be able to use a spinlock here,
1246	 * but this is invoked from within TLB flush routines
1247	 * that protect themselves with DVPE, so if a lock is
1248	 * held by another TC, it'll never be freed.
1249	 *
1250	 * DVPE/DMT must not be done with interrupts enabled,
1251	 * so even so most callers will already have disabled
1252	 * them, let's be really careful...
1253	 */
1254
1255	local_irq_save(flags);
1256	if (smtc_status & SMTC_TLB_SHARED) {
1257		mtflags = dvpe();
1258		tlb = 0;
1259	} else {
1260		mtflags = dmt();
1261		tlb = cpu_data[cpu].vpe_id;
1262	}
1263	asid = asid_cache(cpu);
1264
1265	do {
1266		if (!((asid += ASID_INC) & ASID_MASK) ) {
1267			if (cpu_has_vtag_icache)
1268				flush_icache_all();
1269			/* Traverse all online CPUs (hack requires contigous range) */
1270			for (i = 0; i < num_online_cpus(); i++) {
1271				/*
1272				 * We don't need to worry about our own CPU, nor those of
1273				 * CPUs who don't share our TLB.
1274				 */
1275				if ((i != smp_processor_id()) &&
1276				    ((smtc_status & SMTC_TLB_SHARED) ||
1277				     (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))) {
1278					settc(cpu_data[i].tc_id);
1279					prevhalt = read_tc_c0_tchalt() & TCHALT_H;
1280					if (!prevhalt) {
1281						write_tc_c0_tchalt(TCHALT_H);
1282						mips_ihb();
1283					}
1284					tcstat = read_tc_c0_tcstatus();
1285					smtc_live_asid[tlb][(tcstat & ASID_MASK)] |= (asiduse)(0x1 << i);
1286					if (!prevhalt)
1287						write_tc_c0_tchalt(0);
1288				}
1289			}
1290			if (!asid)		/* fix version if needed */
1291				asid = ASID_FIRST_VERSION;
1292			local_flush_tlb_all();	/* start new asid cycle */
1293		}
1294	} while (smtc_live_asid[tlb][(asid & ASID_MASK)]);
1295
1296	/*
1297	 * SMTC shares the TLB within VPEs and possibly across all VPEs.
1298	 */
1299	for (i = 0; i < num_online_cpus(); i++) {
1300		if ((smtc_status & SMTC_TLB_SHARED) ||
1301		    (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))
1302			cpu_context(i, mm) = asid_cache(i) = asid;
1303	}
1304
1305	if (smtc_status & SMTC_TLB_SHARED)
1306		evpe(mtflags);
1307	else
1308		emt(mtflags);
1309	local_irq_restore(flags);
1310}
1311
1312/*
1313 * Invoked from macros defined in mmu_context.h
1314 * which must already have disabled interrupts
1315 * and done a DVPE or DMT as appropriate.
1316 */
1317
1318void smtc_flush_tlb_asid(unsigned long asid)
1319{
1320	int entry;
1321	unsigned long ehi;
1322
1323	entry = read_c0_wired();
1324
1325	/* Traverse all non-wired entries */
1326	while (entry < current_cpu_data.tlbsize) {
1327		write_c0_index(entry);
1328		ehb();
1329		tlb_read();
1330		ehb();
1331		ehi = read_c0_entryhi();
1332		if ((ehi & ASID_MASK) == asid) {
1333		    /*
1334		     * Invalidate only entries with specified ASID,
1335		     * makiing sure all entries differ.
1336		     */
1337		    write_c0_entryhi(CKSEG0 + (entry << (PAGE_SHIFT + 1)));
1338		    write_c0_entrylo0(0);
1339		    write_c0_entrylo1(0);
1340		    mtc0_tlbw_hazard();
1341		    tlb_write_indexed();
1342		}
1343		entry++;
1344	}
1345	write_c0_index(PARKED_INDEX);
1346	tlbw_use_hazard();
1347}
1348
1349/*
1350 * Support for single-threading cache flush operations.
1351 */
1352
1353static int halt_state_save[NR_CPUS];
1354
1355/*
1356 * To really, really be sure that nothing is being done
1357 * by other TCs, halt them all.  This code assumes that
1358 * a DVPE has already been done, so while their Halted
1359 * state is theoretically architecturally unstable, in
1360 * practice, it's not going to change while we're looking
1361 * at it.
1362 */
1363
1364void smtc_cflush_lockdown(void)
1365{
1366	int cpu;
1367
1368	for_each_online_cpu(cpu) {
1369		if (cpu != smp_processor_id()) {
1370			settc(cpu_data[cpu].tc_id);
1371			halt_state_save[cpu] = read_tc_c0_tchalt();
1372			write_tc_c0_tchalt(TCHALT_H);
1373		}
1374	}
1375	mips_ihb();
1376}
1377
1378/* It would be cheating to change the cpu_online states during a flush! */
1379
1380void smtc_cflush_release(void)
1381{
1382	int cpu;
1383
1384	/*
1385	 * Start with a hazard barrier to ensure
1386	 * that all CACHE ops have played through.
1387	 */
1388	mips_ihb();
1389
1390	for_each_online_cpu(cpu) {
1391		if (cpu != smp_processor_id()) {
1392			settc(cpu_data[cpu].tc_id);
1393			write_tc_c0_tchalt(halt_state_save[cpu]);
1394		}
1395	}
1396	mips_ihb();
1397}
1398