smtc.c revision e0daad449c5195fa4552c60392eeee4e5c58d31c
1/* Copyright (C) 2004 Mips Technologies, Inc */
2
3#include <linux/kernel.h>
4#include <linux/sched.h>
5#include <linux/cpumask.h>
6#include <linux/interrupt.h>
7#include <linux/module.h>
8
9#include <asm/cpu.h>
10#include <asm/processor.h>
11#include <asm/atomic.h>
12#include <asm/system.h>
13#include <asm/hardirq.h>
14#include <asm/hazards.h>
15#include <asm/mmu_context.h>
16#include <asm/smp.h>
17#include <asm/mipsregs.h>
18#include <asm/cacheflush.h>
19#include <asm/time.h>
20#include <asm/addrspace.h>
21#include <asm/smtc.h>
22#include <asm/smtc_ipi.h>
23#include <asm/smtc_proc.h>
24
25/*
26 * This file should be built into the kernel only if CONFIG_MIPS_MT_SMTC is set.
27 */
28
29#define MIPS_CPU_IPI_IRQ	1
30
31#define LOCK_MT_PRA() \
32	local_irq_save(flags); \
33	mtflags = dmt()
34
35#define UNLOCK_MT_PRA() \
36	emt(mtflags); \
37	local_irq_restore(flags)
38
39#define LOCK_CORE_PRA() \
40	local_irq_save(flags); \
41	mtflags = dvpe()
42
43#define UNLOCK_CORE_PRA() \
44	evpe(mtflags); \
45	local_irq_restore(flags)
46
47/*
48 * Data structures purely associated with SMTC parallelism
49 */
50
51
52/*
53 * Table for tracking ASIDs whose lifetime is prolonged.
54 */
55
56asiduse smtc_live_asid[MAX_SMTC_TLBS][MAX_SMTC_ASIDS];
57
58/*
59 * Clock interrupt "latch" buffers, per "CPU"
60 */
61
62unsigned int ipi_timer_latch[NR_CPUS];
63
64/*
65 * Number of InterProcessor Interupt (IPI) message buffers to allocate
66 */
67
68#define IPIBUF_PER_CPU 4
69
70struct smtc_ipi_q IPIQ[NR_CPUS];
71struct smtc_ipi_q freeIPIq;
72
73
74/* Forward declarations */
75
76void ipi_decode(struct smtc_ipi *);
77void post_direct_ipi(int cpu, struct smtc_ipi *pipi);
78void setup_cross_vpe_interrupts(void);
79void init_smtc_stats(void);
80
81/* Global SMTC Status */
82
83unsigned int smtc_status = 0;
84
85/* Boot command line configuration overrides */
86
87static int vpelimit = 0;
88static int tclimit = 0;
89static int ipibuffers = 0;
90static int nostlb = 0;
91static int asidmask = 0;
92unsigned long smtc_asid_mask = 0xff;
93
94static int __init maxvpes(char *str)
95{
96	get_option(&str, &vpelimit);
97	return 1;
98}
99
100static int __init maxtcs(char *str)
101{
102	get_option(&str, &tclimit);
103	return 1;
104}
105
106static int __init ipibufs(char *str)
107{
108	get_option(&str, &ipibuffers);
109	return 1;
110}
111
112static int __init stlb_disable(char *s)
113{
114	nostlb = 1;
115	return 1;
116}
117
118static int __init asidmask_set(char *str)
119{
120	get_option(&str, &asidmask);
121	switch (asidmask) {
122	case 0x1:
123	case 0x3:
124	case 0x7:
125	case 0xf:
126	case 0x1f:
127	case 0x3f:
128	case 0x7f:
129	case 0xff:
130		smtc_asid_mask = (unsigned long)asidmask;
131		break;
132	default:
133		printk("ILLEGAL ASID mask 0x%x from command line\n", asidmask);
134	}
135	return 1;
136}
137
138__setup("maxvpes=", maxvpes);
139__setup("maxtcs=", maxtcs);
140__setup("ipibufs=", ipibufs);
141__setup("nostlb", stlb_disable);
142__setup("asidmask=", asidmask_set);
143
144/* Enable additional debug checks before going into CPU idle loop */
145#define SMTC_IDLE_HOOK_DEBUG
146
147#ifdef SMTC_IDLE_HOOK_DEBUG
148
149static int hang_trig = 0;
150
151static int __init hangtrig_enable(char *s)
152{
153	hang_trig = 1;
154	return 1;
155}
156
157
158__setup("hangtrig", hangtrig_enable);
159
160#define DEFAULT_BLOCKED_IPI_LIMIT 32
161
162static int timerq_limit = DEFAULT_BLOCKED_IPI_LIMIT;
163
164static int __init tintq(char *str)
165{
166	get_option(&str, &timerq_limit);
167	return 1;
168}
169
170__setup("tintq=", tintq);
171
172int imstuckcount[2][8];
173/* vpemask represents IM/IE bits of per-VPE Status registers, low-to-high */
174int vpemask[2][8] = {{0,1,1,0,0,0,0,1},{0,1,0,0,0,0,0,1}};
175int tcnoprog[NR_CPUS];
176static atomic_t idle_hook_initialized = {0};
177static int clock_hang_reported[NR_CPUS];
178
179#endif /* SMTC_IDLE_HOOK_DEBUG */
180
181/* Initialize shared TLB - the should probably migrate to smtc_setup_cpus() */
182
183void __init sanitize_tlb_entries(void)
184{
185	printk("Deprecated sanitize_tlb_entries() invoked\n");
186}
187
188
189/*
190 * Configure shared TLB - VPC configuration bit must be set by caller
191 */
192
193void smtc_configure_tlb(void)
194{
195	int i,tlbsiz,vpes;
196	unsigned long mvpconf0;
197	unsigned long config1val;
198
199	/* Set up ASID preservation table */
200	for (vpes=0; vpes<MAX_SMTC_TLBS; vpes++) {
201	    for(i = 0; i < MAX_SMTC_ASIDS; i++) {
202		smtc_live_asid[vpes][i] = 0;
203	    }
204	}
205	mvpconf0 = read_c0_mvpconf0();
206
207	if ((vpes = ((mvpconf0 & MVPCONF0_PVPE)
208			>> MVPCONF0_PVPE_SHIFT) + 1) > 1) {
209	    /* If we have multiple VPEs, try to share the TLB */
210	    if ((mvpconf0 & MVPCONF0_TLBS) && !nostlb) {
211		/*
212		 * If TLB sizing is programmable, shared TLB
213		 * size is the total available complement.
214		 * Otherwise, we have to take the sum of all
215		 * static VPE TLB entries.
216		 */
217		if ((tlbsiz = ((mvpconf0 & MVPCONF0_PTLBE)
218				>> MVPCONF0_PTLBE_SHIFT)) == 0) {
219		    /*
220		     * If there's more than one VPE, there had better
221		     * be more than one TC, because we need one to bind
222		     * to each VPE in turn to be able to read
223		     * its configuration state!
224		     */
225		    settc(1);
226		    /* Stop the TC from doing anything foolish */
227		    write_tc_c0_tchalt(TCHALT_H);
228		    mips_ihb();
229		    /* No need to un-Halt - that happens later anyway */
230		    for (i=0; i < vpes; i++) {
231		    	write_tc_c0_tcbind(i);
232			/*
233			 * To be 100% sure we're really getting the right
234			 * information, we exit the configuration state
235			 * and do an IHB after each rebinding.
236			 */
237			write_c0_mvpcontrol(
238				read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
239			mips_ihb();
240			/*
241			 * Only count if the MMU Type indicated is TLB
242			 */
243			if (((read_vpe_c0_config() & MIPS_CONF_MT) >> 7) == 1) {
244				config1val = read_vpe_c0_config1();
245				tlbsiz += ((config1val >> 25) & 0x3f) + 1;
246			}
247
248			/* Put core back in configuration state */
249			write_c0_mvpcontrol(
250				read_c0_mvpcontrol() | MVPCONTROL_VPC );
251			mips_ihb();
252		    }
253		}
254		write_c0_mvpcontrol(read_c0_mvpcontrol() | MVPCONTROL_STLB);
255		ehb();
256
257		/*
258		 * Setup kernel data structures to use software total,
259		 * rather than read the per-VPE Config1 value. The values
260		 * for "CPU 0" gets copied to all the other CPUs as part
261		 * of their initialization in smtc_cpu_setup().
262		 */
263
264		/* MIPS32 limits TLB indices to 64 */
265		if (tlbsiz > 64)
266			tlbsiz = 64;
267		cpu_data[0].tlbsize = current_cpu_data.tlbsize = tlbsiz;
268		smtc_status |= SMTC_TLB_SHARED;
269		local_flush_tlb_all();
270
271		printk("TLB of %d entry pairs shared by %d VPEs\n",
272			tlbsiz, vpes);
273	    } else {
274		printk("WARNING: TLB Not Sharable on SMTC Boot!\n");
275	    }
276	}
277}
278
279
280/*
281 * Incrementally build the CPU map out of constituent MIPS MT cores,
282 * using the specified available VPEs and TCs.  Plaform code needs
283 * to ensure that each MIPS MT core invokes this routine on reset,
284 * one at a time(!).
285 *
286 * This version of the build_cpu_map and prepare_cpus routines assumes
287 * that *all* TCs of a MIPS MT core will be used for Linux, and that
288 * they will be spread across *all* available VPEs (to minimise the
289 * loss of efficiency due to exception service serialization).
290 * An improved version would pick up configuration information and
291 * possibly leave some TCs/VPEs as "slave" processors.
292 *
293 * Use c0_MVPConf0 to find out how many TCs are available, setting up
294 * phys_cpu_present_map and the logical/physical mappings.
295 */
296
297int __init mipsmt_build_cpu_map(int start_cpu_slot)
298{
299	int i, ntcs;
300
301	/*
302	 * The CPU map isn't actually used for anything at this point,
303	 * so it's not clear what else we should do apart from set
304	 * everything up so that "logical" = "physical".
305	 */
306	ntcs = ((read_c0_mvpconf0() & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
307	for (i=start_cpu_slot; i<NR_CPUS && i<ntcs; i++) {
308		cpu_set(i, phys_cpu_present_map);
309		__cpu_number_map[i] = i;
310		__cpu_logical_map[i] = i;
311	}
312	/* Initialize map of CPUs with FPUs */
313	cpus_clear(mt_fpu_cpumask);
314
315	/* One of those TC's is the one booting, and not a secondary... */
316	printk("%i available secondary CPU TC(s)\n", i - 1);
317
318	return i;
319}
320
321/*
322 * Common setup before any secondaries are started
323 * Make sure all CPU's are in a sensible state before we boot any of the
324 * secondaries.
325 *
326 * For MIPS MT "SMTC" operation, we set up all TCs, spread as evenly
327 * as possible across the available VPEs.
328 */
329
330static void smtc_tc_setup(int vpe, int tc, int cpu)
331{
332	settc(tc);
333	write_tc_c0_tchalt(TCHALT_H);
334	mips_ihb();
335	write_tc_c0_tcstatus((read_tc_c0_tcstatus()
336			& ~(TCSTATUS_TKSU | TCSTATUS_DA | TCSTATUS_IXMT))
337			| TCSTATUS_A);
338	write_tc_c0_tccontext(0);
339	/* Bind tc to vpe */
340	write_tc_c0_tcbind(vpe);
341	/* In general, all TCs should have the same cpu_data indications */
342	memcpy(&cpu_data[cpu], &cpu_data[0], sizeof(struct cpuinfo_mips));
343	/* For 34Kf, start with TC/CPU 0 as sole owner of single FPU context */
344	if (cpu_data[0].cputype == CPU_34K)
345		cpu_data[cpu].options &= ~MIPS_CPU_FPU;
346	cpu_data[cpu].vpe_id = vpe;
347	cpu_data[cpu].tc_id = tc;
348}
349
350
351void mipsmt_prepare_cpus(void)
352{
353	int i, vpe, tc, ntc, nvpe, tcpervpe, slop, cpu;
354	unsigned long flags;
355	unsigned long val;
356	int nipi;
357	struct smtc_ipi *pipi;
358
359	/* disable interrupts so we can disable MT */
360	local_irq_save(flags);
361	/* disable MT so we can configure */
362	dvpe();
363	dmt();
364
365	spin_lock_init(&freeIPIq.lock);
366
367	/*
368	 * We probably don't have as many VPEs as we do SMP "CPUs",
369	 * but it's possible - and in any case we'll never use more!
370	 */
371	for (i=0; i<NR_CPUS; i++) {
372		IPIQ[i].head = IPIQ[i].tail = NULL;
373		spin_lock_init(&IPIQ[i].lock);
374		IPIQ[i].depth = 0;
375		ipi_timer_latch[i] = 0;
376	}
377
378	/* cpu_data index starts at zero */
379	cpu = 0;
380	cpu_data[cpu].vpe_id = 0;
381	cpu_data[cpu].tc_id = 0;
382	cpu++;
383
384	/* Report on boot-time options */
385	mips_mt_set_cpuoptions ();
386	if (vpelimit > 0)
387		printk("Limit of %d VPEs set\n", vpelimit);
388	if (tclimit > 0)
389		printk("Limit of %d TCs set\n", tclimit);
390	if (nostlb) {
391		printk("Shared TLB Use Inhibited - UNSAFE for Multi-VPE Operation\n");
392	}
393	if (asidmask)
394		printk("ASID mask value override to 0x%x\n", asidmask);
395
396	/* Temporary */
397#ifdef SMTC_IDLE_HOOK_DEBUG
398	if (hang_trig)
399		printk("Logic Analyser Trigger on suspected TC hang\n");
400#endif /* SMTC_IDLE_HOOK_DEBUG */
401
402	/* Put MVPE's into 'configuration state' */
403	write_c0_mvpcontrol( read_c0_mvpcontrol() | MVPCONTROL_VPC );
404
405	val = read_c0_mvpconf0();
406	nvpe = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
407	if (vpelimit > 0 && nvpe > vpelimit)
408		nvpe = vpelimit;
409	ntc = ((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
410	if (ntc > NR_CPUS)
411		ntc = NR_CPUS;
412	if (tclimit > 0 && ntc > tclimit)
413		ntc = tclimit;
414	tcpervpe = ntc / nvpe;
415	slop = ntc % nvpe;	/* Residual TCs, < NVPE */
416
417	/* Set up shared TLB */
418	smtc_configure_tlb();
419
420	for (tc = 0, vpe = 0 ; (vpe < nvpe) && (tc < ntc) ; vpe++) {
421		/*
422		 * Set the MVP bits.
423		 */
424		settc(tc);
425		write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_MVP);
426		if (vpe != 0)
427			printk(", ");
428		printk("VPE %d: TC", vpe);
429		for (i = 0; i < tcpervpe; i++) {
430			/*
431			 * TC 0 is bound to VPE 0 at reset,
432			 * and is presumably executing this
433			 * code.  Leave it alone!
434			 */
435			if (tc != 0) {
436				smtc_tc_setup(vpe,tc, cpu);
437				cpu++;
438			}
439			printk(" %d", tc);
440			tc++;
441		}
442		if (slop) {
443			if (tc != 0) {
444				smtc_tc_setup(vpe,tc, cpu);
445				cpu++;
446			}
447			printk(" %d", tc);
448			tc++;
449			slop--;
450		}
451		if (vpe != 0) {
452			/*
453			 * Clear any stale software interrupts from VPE's Cause
454			 */
455			write_vpe_c0_cause(0);
456
457			/*
458			 * Clear ERL/EXL of VPEs other than 0
459			 * and set restricted interrupt enable/mask.
460			 */
461			write_vpe_c0_status((read_vpe_c0_status()
462				& ~(ST0_BEV | ST0_ERL | ST0_EXL | ST0_IM))
463				| (STATUSF_IP0 | STATUSF_IP1 | STATUSF_IP7
464				| ST0_IE));
465			/*
466			 * set config to be the same as vpe0,
467			 *  particularly kseg0 coherency alg
468			 */
469			write_vpe_c0_config(read_c0_config());
470			/* Clear any pending timer interrupt */
471			write_vpe_c0_compare(0);
472			/* Propagate Config7 */
473			write_vpe_c0_config7(read_c0_config7());
474			write_vpe_c0_count(read_c0_count());
475		}
476		/* enable multi-threading within VPE */
477		write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() | VPECONTROL_TE);
478		/* enable the VPE */
479		write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
480	}
481
482	/*
483	 * Pull any physically present but unused TCs out of circulation.
484	 */
485	while (tc < (((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1)) {
486		cpu_clear(tc, phys_cpu_present_map);
487		cpu_clear(tc, cpu_present_map);
488		tc++;
489	}
490
491	/* release config state */
492	write_c0_mvpcontrol( read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
493
494	printk("\n");
495
496	/* Set up coprocessor affinity CPU mask(s) */
497
498	for (tc = 0; tc < ntc; tc++) {
499		if (cpu_data[tc].options & MIPS_CPU_FPU)
500			cpu_set(tc, mt_fpu_cpumask);
501	}
502
503	/* set up ipi interrupts... */
504
505	/* If we have multiple VPEs running, set up the cross-VPE interrupt */
506
507	if (nvpe > 1)
508		setup_cross_vpe_interrupts();
509
510	/* Set up queue of free IPI "messages". */
511	nipi = NR_CPUS * IPIBUF_PER_CPU;
512	if (ipibuffers > 0)
513		nipi = ipibuffers;
514
515	pipi = kmalloc(nipi *sizeof(struct smtc_ipi), GFP_KERNEL);
516	if (pipi == NULL)
517		panic("kmalloc of IPI message buffers failed\n");
518	else
519		printk("IPI buffer pool of %d buffers\n", nipi);
520	for (i = 0; i < nipi; i++) {
521		smtc_ipi_nq(&freeIPIq, pipi);
522		pipi++;
523	}
524
525	/* Arm multithreading and enable other VPEs - but all TCs are Halted */
526	emt(EMT_ENABLE);
527	evpe(EVPE_ENABLE);
528	local_irq_restore(flags);
529	/* Initialize SMTC /proc statistics/diagnostics */
530	init_smtc_stats();
531}
532
533
534/*
535 * Setup the PC, SP, and GP of a secondary processor and start it
536 * running!
537 * smp_bootstrap is the place to resume from
538 * __KSTK_TOS(idle) is apparently the stack pointer
539 * (unsigned long)idle->thread_info the gp
540 *
541 */
542void smtc_boot_secondary(int cpu, struct task_struct *idle)
543{
544	extern u32 kernelsp[NR_CPUS];
545	long flags;
546	int mtflags;
547
548	LOCK_MT_PRA();
549	if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
550		dvpe();
551	}
552	settc(cpu_data[cpu].tc_id);
553
554	/* pc */
555	write_tc_c0_tcrestart((unsigned long)&smp_bootstrap);
556
557	/* stack pointer */
558	kernelsp[cpu] = __KSTK_TOS(idle);
559	write_tc_gpr_sp(__KSTK_TOS(idle));
560
561	/* global pointer */
562	write_tc_gpr_gp((unsigned long)idle->thread_info);
563
564	smtc_status |= SMTC_MTC_ACTIVE;
565	write_tc_c0_tchalt(0);
566	if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
567		evpe(EVPE_ENABLE);
568	}
569	UNLOCK_MT_PRA();
570}
571
572void smtc_init_secondary(void)
573{
574	/*
575	 * Start timer on secondary VPEs if necessary.
576	 * plat_timer_setup has already have been invoked by init/main
577	 * on "boot" TC.  Like per_cpu_trap_init() hack, this assumes that
578	 * SMTC init code assigns TCs consdecutively and in ascending order
579	 * to across available VPEs.
580	 */
581	if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
582	    ((read_c0_tcbind() & TCBIND_CURVPE)
583	    != cpu_data[smp_processor_id() - 1].vpe_id)){
584		write_c0_compare (read_c0_count() + mips_hpt_frequency/HZ);
585	}
586
587	local_irq_enable();
588}
589
590void smtc_smp_finish(void)
591{
592	printk("TC %d going on-line as CPU %d\n",
593		cpu_data[smp_processor_id()].tc_id, smp_processor_id());
594}
595
596void smtc_cpus_done(void)
597{
598}
599
600/*
601 * Support for SMTC-optimized driver IRQ registration
602 */
603
604/*
605 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
606 * in do_IRQ. These are passed in setup_irq_smtc() and stored
607 * in this table.
608 */
609
610int setup_irq_smtc(unsigned int irq, struct irqaction * new,
611			unsigned long hwmask)
612{
613	irq_hwmask[irq] = hwmask;
614
615	return setup_irq(irq, new);
616}
617
618/*
619 * IPI model for SMTC is tricky, because interrupts aren't TC-specific.
620 * Within a VPE one TC can interrupt another by different approaches.
621 * The easiest to get right would probably be to make all TCs except
622 * the target IXMT and set a software interrupt, but an IXMT-based
623 * scheme requires that a handler must run before a new IPI could
624 * be sent, which would break the "broadcast" loops in MIPS MT.
625 * A more gonzo approach within a VPE is to halt the TC, extract
626 * its Restart, Status, and a couple of GPRs, and program the Restart
627 * address to emulate an interrupt.
628 *
629 * Within a VPE, one can be confident that the target TC isn't in
630 * a critical EXL state when halted, since the write to the Halt
631 * register could not have issued on the writing thread if the
632 * halting thread had EXL set. So k0 and k1 of the target TC
633 * can be used by the injection code.  Across VPEs, one can't
634 * be certain that the target TC isn't in a critical exception
635 * state. So we try a two-step process of sending a software
636 * interrupt to the target VPE, which either handles the event
637 * itself (if it was the target) or injects the event within
638 * the VPE.
639 */
640
641void smtc_ipi_qdump(void)
642{
643	int i;
644
645	for (i = 0; i < NR_CPUS ;i++) {
646		printk("IPIQ[%d]: head = 0x%x, tail = 0x%x, depth = %d\n",
647			i, (unsigned)IPIQ[i].head, (unsigned)IPIQ[i].tail,
648			IPIQ[i].depth);
649	}
650}
651
652/*
653 * The standard atomic.h primitives don't quite do what we want
654 * here: We need an atomic add-and-return-previous-value (which
655 * could be done with atomic_add_return and a decrement) and an
656 * atomic set/zero-and-return-previous-value (which can't really
657 * be done with the atomic.h primitives). And since this is
658 * MIPS MT, we can assume that we have LL/SC.
659 */
660static __inline__ int atomic_postincrement(unsigned int *pv)
661{
662	unsigned long result;
663
664	unsigned long temp;
665
666	__asm__ __volatile__(
667	"1:	ll	%0, %2					\n"
668	"	addu	%1, %0, 1				\n"
669	"	sc	%1, %2					\n"
670	"	beqz	%1, 1b					\n"
671	"	sync						\n"
672	: "=&r" (result), "=&r" (temp), "=m" (*pv)
673	: "m" (*pv)
674	: "memory");
675
676	return result;
677}
678
679void smtc_send_ipi(int cpu, int type, unsigned int action)
680{
681	int tcstatus;
682	struct smtc_ipi *pipi;
683	long flags;
684	int mtflags;
685
686	if (cpu == smp_processor_id()) {
687		printk("Cannot Send IPI to self!\n");
688		return;
689	}
690	/* Set up a descriptor, to be delivered either promptly or queued */
691	pipi = smtc_ipi_dq(&freeIPIq);
692	if (pipi == NULL) {
693		bust_spinlocks(1);
694		mips_mt_regdump(dvpe());
695		panic("IPI Msg. Buffers Depleted\n");
696	}
697	pipi->type = type;
698	pipi->arg = (void *)action;
699	pipi->dest = cpu;
700	if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
701		/* If not on same VPE, enqueue and send cross-VPE interupt */
702		smtc_ipi_nq(&IPIQ[cpu], pipi);
703		LOCK_CORE_PRA();
704		settc(cpu_data[cpu].tc_id);
705		write_vpe_c0_cause(read_vpe_c0_cause() | C_SW1);
706		UNLOCK_CORE_PRA();
707	} else {
708		/*
709		 * Not sufficient to do a LOCK_MT_PRA (dmt) here,
710		 * since ASID shootdown on the other VPE may
711		 * collide with this operation.
712		 */
713		LOCK_CORE_PRA();
714		settc(cpu_data[cpu].tc_id);
715		/* Halt the targeted TC */
716		write_tc_c0_tchalt(TCHALT_H);
717		mips_ihb();
718
719		/*
720	 	 * Inspect TCStatus - if IXMT is set, we have to queue
721		 * a message. Otherwise, we set up the "interrupt"
722		 * of the other TC
723	 	 */
724		tcstatus = read_tc_c0_tcstatus();
725
726		if ((tcstatus & TCSTATUS_IXMT) != 0) {
727			/*
728			 * Spin-waiting here can deadlock,
729			 * so we queue the message for the target TC.
730			 */
731			write_tc_c0_tchalt(0);
732			UNLOCK_CORE_PRA();
733			/* Try to reduce redundant timer interrupt messages */
734			if (type == SMTC_CLOCK_TICK) {
735			    if (atomic_postincrement(&ipi_timer_latch[cpu])!=0){
736				smtc_ipi_nq(&freeIPIq, pipi);
737				return;
738			    }
739			}
740			smtc_ipi_nq(&IPIQ[cpu], pipi);
741		} else {
742			post_direct_ipi(cpu, pipi);
743			write_tc_c0_tchalt(0);
744			UNLOCK_CORE_PRA();
745		}
746	}
747}
748
749/*
750 * Send IPI message to Halted TC, TargTC/TargVPE already having been set
751 */
752void post_direct_ipi(int cpu, struct smtc_ipi *pipi)
753{
754	struct pt_regs *kstack;
755	unsigned long tcstatus;
756	unsigned long tcrestart;
757	extern u32 kernelsp[NR_CPUS];
758	extern void __smtc_ipi_vector(void);
759
760	/* Extract Status, EPC from halted TC */
761	tcstatus = read_tc_c0_tcstatus();
762	tcrestart = read_tc_c0_tcrestart();
763	/* If TCRestart indicates a WAIT instruction, advance the PC */
764	if ((tcrestart & 0x80000000)
765	    && ((*(unsigned int *)tcrestart & 0xfe00003f) == 0x42000020)) {
766		tcrestart += 4;
767	}
768	/*
769	 * Save on TC's future kernel stack
770	 *
771	 * CU bit of Status is indicator that TC was
772	 * already running on a kernel stack...
773	 */
774	if (tcstatus & ST0_CU0)  {
775		/* Note that this "- 1" is pointer arithmetic */
776		kstack = ((struct pt_regs *)read_tc_gpr_sp()) - 1;
777	} else {
778		kstack = ((struct pt_regs *)kernelsp[cpu]) - 1;
779	}
780
781	kstack->cp0_epc = (long)tcrestart;
782	/* Save TCStatus */
783	kstack->cp0_tcstatus = tcstatus;
784	/* Pass token of operation to be performed kernel stack pad area */
785	kstack->pad0[4] = (unsigned long)pipi;
786	/* Pass address of function to be called likewise */
787	kstack->pad0[5] = (unsigned long)&ipi_decode;
788	/* Set interrupt exempt and kernel mode */
789	tcstatus |= TCSTATUS_IXMT;
790	tcstatus &= ~TCSTATUS_TKSU;
791	write_tc_c0_tcstatus(tcstatus);
792	ehb();
793	/* Set TC Restart address to be SMTC IPI vector */
794	write_tc_c0_tcrestart(__smtc_ipi_vector);
795}
796
797static void ipi_resched_interrupt(void)
798{
799	/* Return from interrupt should be enough to cause scheduler check */
800}
801
802
803static void ipi_call_interrupt(void)
804{
805	/* Invoke generic function invocation code in smp.c */
806	smp_call_function_interrupt();
807}
808
809void ipi_decode(struct smtc_ipi *pipi)
810{
811	void *arg_copy = pipi->arg;
812	int type_copy = pipi->type;
813	int dest_copy = pipi->dest;
814
815	smtc_ipi_nq(&freeIPIq, pipi);
816	switch (type_copy) {
817	case SMTC_CLOCK_TICK:
818		/* Invoke Clock "Interrupt" */
819		ipi_timer_latch[dest_copy] = 0;
820#ifdef SMTC_IDLE_HOOK_DEBUG
821		clock_hang_reported[dest_copy] = 0;
822#endif /* SMTC_IDLE_HOOK_DEBUG */
823		local_timer_interrupt(0, NULL);
824		break;
825	case LINUX_SMP_IPI:
826		switch ((int)arg_copy) {
827		case SMP_RESCHEDULE_YOURSELF:
828			ipi_resched_interrupt();
829			break;
830		case SMP_CALL_FUNCTION:
831			ipi_call_interrupt();
832			break;
833		default:
834			printk("Impossible SMTC IPI Argument 0x%x\n",
835				(int)arg_copy);
836			break;
837		}
838		break;
839	default:
840		printk("Impossible SMTC IPI Type 0x%x\n", type_copy);
841		break;
842	}
843}
844
845void deferred_smtc_ipi(void)
846{
847	struct smtc_ipi *pipi;
848	unsigned long flags;
849/* DEBUG */
850	int q = smp_processor_id();
851
852	/*
853	 * Test is not atomic, but much faster than a dequeue,
854	 * and the vast majority of invocations will have a null queue.
855	 */
856	if (IPIQ[q].head != NULL) {
857		while((pipi = smtc_ipi_dq(&IPIQ[q])) != NULL) {
858			/* ipi_decode() should be called with interrupts off */
859			local_irq_save(flags);
860			ipi_decode(pipi);
861			local_irq_restore(flags);
862		}
863	}
864}
865
866/*
867 * Send clock tick to all TCs except the one executing the funtion
868 */
869
870void smtc_timer_broadcast(int vpe)
871{
872	int cpu;
873	int myTC = cpu_data[smp_processor_id()].tc_id;
874	int myVPE = cpu_data[smp_processor_id()].vpe_id;
875
876	smtc_cpu_stats[smp_processor_id()].timerints++;
877
878	for_each_online_cpu(cpu) {
879		if (cpu_data[cpu].vpe_id == myVPE &&
880		    cpu_data[cpu].tc_id != myTC)
881			smtc_send_ipi(cpu, SMTC_CLOCK_TICK, 0);
882	}
883}
884
885/*
886 * Cross-VPE interrupts in the SMTC prototype use "software interrupts"
887 * set via cross-VPE MTTR manipulation of the Cause register. It would be
888 * in some regards preferable to have external logic for "doorbell" hardware
889 * interrupts.
890 */
891
892static int cpu_ipi_irq = MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_IRQ;
893
894static irqreturn_t ipi_interrupt(int irq, void *dev_idm)
895{
896	int my_vpe = cpu_data[smp_processor_id()].vpe_id;
897	int my_tc = cpu_data[smp_processor_id()].tc_id;
898	int cpu;
899	struct smtc_ipi *pipi;
900	unsigned long tcstatus;
901	int sent;
902	long flags;
903	unsigned int mtflags;
904	unsigned int vpflags;
905
906	/*
907	 * So long as cross-VPE interrupts are done via
908	 * MFTR/MTTR read-modify-writes of Cause, we need
909	 * to stop other VPEs whenever the local VPE does
910	 * anything similar.
911	 */
912	local_irq_save(flags);
913	vpflags = dvpe();
914	clear_c0_cause(0x100 << MIPS_CPU_IPI_IRQ);
915	set_c0_status(0x100 << MIPS_CPU_IPI_IRQ);
916	irq_enable_hazard();
917	evpe(vpflags);
918	local_irq_restore(flags);
919
920	/*
921	 * Cross-VPE Interrupt handler: Try to directly deliver IPIs
922	 * queued for TCs on this VPE other than the current one.
923	 * Return-from-interrupt should cause us to drain the queue
924	 * for the current TC, so we ought not to have to do it explicitly here.
925	 */
926
927	for_each_online_cpu(cpu) {
928		if (cpu_data[cpu].vpe_id != my_vpe)
929			continue;
930
931		pipi = smtc_ipi_dq(&IPIQ[cpu]);
932		if (pipi != NULL) {
933			if (cpu_data[cpu].tc_id != my_tc) {
934				sent = 0;
935				LOCK_MT_PRA();
936				settc(cpu_data[cpu].tc_id);
937				write_tc_c0_tchalt(TCHALT_H);
938				mips_ihb();
939				tcstatus = read_tc_c0_tcstatus();
940				if ((tcstatus & TCSTATUS_IXMT) == 0) {
941					post_direct_ipi(cpu, pipi);
942					sent = 1;
943				}
944				write_tc_c0_tchalt(0);
945				UNLOCK_MT_PRA();
946				if (!sent) {
947					smtc_ipi_req(&IPIQ[cpu], pipi);
948				}
949			} else {
950				/*
951				 * ipi_decode() should be called
952				 * with interrupts off
953				 */
954				local_irq_save(flags);
955				ipi_decode(pipi);
956				local_irq_restore(flags);
957			}
958		}
959	}
960
961	return IRQ_HANDLED;
962}
963
964static void ipi_irq_dispatch(void)
965{
966	do_IRQ(cpu_ipi_irq);
967}
968
969static struct irqaction irq_ipi;
970
971void setup_cross_vpe_interrupts(void)
972{
973	if (!cpu_has_vint)
974		panic("SMTC Kernel requires Vectored Interupt support");
975
976	set_vi_handler(MIPS_CPU_IPI_IRQ, ipi_irq_dispatch);
977
978	irq_ipi.handler = ipi_interrupt;
979	irq_ipi.flags = IRQF_DISABLED;
980	irq_ipi.name = "SMTC_IPI";
981
982	setup_irq_smtc(cpu_ipi_irq, &irq_ipi, (0x100 << MIPS_CPU_IPI_IRQ));
983
984	irq_desc[cpu_ipi_irq].status |= IRQ_PER_CPU;
985	set_irq_handler(cpu_ipi_irq, handle_percpu_irq);
986}
987
988/*
989 * SMTC-specific hacks invoked from elsewhere in the kernel.
990 */
991
992void smtc_ipi_replay(void)
993{
994	/*
995	 * To the extent that we've ever turned interrupts off,
996	 * we may have accumulated deferred IPIs.  This is subtle.
997	 * If we use the smtc_ipi_qdepth() macro, we'll get an
998	 * exact number - but we'll also disable interrupts
999	 * and create a window of failure where a new IPI gets
1000	 * queued after we test the depth but before we re-enable
1001	 * interrupts. So long as IXMT never gets set, however,
1002	 * we should be OK:  If we pick up something and dispatch
1003	 * it here, that's great. If we see nothing, but concurrent
1004	 * with this operation, another TC sends us an IPI, IXMT
1005	 * is clear, and we'll handle it as a real pseudo-interrupt
1006	 * and not a pseudo-pseudo interrupt.
1007	 */
1008	if (IPIQ[smp_processor_id()].depth > 0) {
1009		struct smtc_ipi *pipi;
1010		extern void self_ipi(struct smtc_ipi *);
1011
1012		while ((pipi = smtc_ipi_dq(&IPIQ[smp_processor_id()]))) {
1013			self_ipi(pipi);
1014			smtc_cpu_stats[smp_processor_id()].selfipis++;
1015		}
1016	}
1017}
1018
1019EXPORT_SYMBOL(smtc_ipi_replay);
1020
1021void smtc_idle_loop_hook(void)
1022{
1023#ifdef SMTC_IDLE_HOOK_DEBUG
1024	int im;
1025	int flags;
1026	int mtflags;
1027	int bit;
1028	int vpe;
1029	int tc;
1030	int hook_ntcs;
1031	/*
1032	 * printk within DMT-protected regions can deadlock,
1033	 * so buffer diagnostic messages for later output.
1034	 */
1035	char *pdb_msg;
1036	char id_ho_db_msg[768]; /* worst-case use should be less than 700 */
1037
1038	if (atomic_read(&idle_hook_initialized) == 0) { /* fast test */
1039		if (atomic_add_return(1, &idle_hook_initialized) == 1) {
1040			int mvpconf0;
1041			/* Tedious stuff to just do once */
1042			mvpconf0 = read_c0_mvpconf0();
1043			hook_ntcs = ((mvpconf0 & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
1044			if (hook_ntcs > NR_CPUS)
1045				hook_ntcs = NR_CPUS;
1046			for (tc = 0; tc < hook_ntcs; tc++) {
1047				tcnoprog[tc] = 0;
1048				clock_hang_reported[tc] = 0;
1049	    		}
1050			for (vpe = 0; vpe < 2; vpe++)
1051				for (im = 0; im < 8; im++)
1052					imstuckcount[vpe][im] = 0;
1053			printk("Idle loop test hook initialized for %d TCs\n", hook_ntcs);
1054			atomic_set(&idle_hook_initialized, 1000);
1055		} else {
1056			/* Someone else is initializing in parallel - let 'em finish */
1057			while (atomic_read(&idle_hook_initialized) < 1000)
1058				;
1059		}
1060	}
1061
1062	/* Have we stupidly left IXMT set somewhere? */
1063	if (read_c0_tcstatus() & 0x400) {
1064		write_c0_tcstatus(read_c0_tcstatus() & ~0x400);
1065		ehb();
1066		printk("Dangling IXMT in cpu_idle()\n");
1067	}
1068
1069	/* Have we stupidly left an IM bit turned off? */
1070#define IM_LIMIT 2000
1071	local_irq_save(flags);
1072	mtflags = dmt();
1073	pdb_msg = &id_ho_db_msg[0];
1074	im = read_c0_status();
1075	vpe = cpu_data[smp_processor_id()].vpe_id;
1076	for (bit = 0; bit < 8; bit++) {
1077		/*
1078		 * In current prototype, I/O interrupts
1079		 * are masked for VPE > 0
1080		 */
1081		if (vpemask[vpe][bit]) {
1082			if (!(im & (0x100 << bit)))
1083				imstuckcount[vpe][bit]++;
1084			else
1085				imstuckcount[vpe][bit] = 0;
1086			if (imstuckcount[vpe][bit] > IM_LIMIT) {
1087				set_c0_status(0x100 << bit);
1088				ehb();
1089				imstuckcount[vpe][bit] = 0;
1090				pdb_msg += sprintf(pdb_msg,
1091					"Dangling IM %d fixed for VPE %d\n", bit,
1092					vpe);
1093			}
1094		}
1095	}
1096
1097	/*
1098	 * Now that we limit outstanding timer IPIs, check for hung TC
1099	 */
1100	for (tc = 0; tc < NR_CPUS; tc++) {
1101		/* Don't check ourself - we'll dequeue IPIs just below */
1102		if ((tc != smp_processor_id()) &&
1103		    ipi_timer_latch[tc] > timerq_limit) {
1104		    if (clock_hang_reported[tc] == 0) {
1105			pdb_msg += sprintf(pdb_msg,
1106				"TC %d looks hung with timer latch at %d\n",
1107				tc, ipi_timer_latch[tc]);
1108			clock_hang_reported[tc]++;
1109			}
1110		}
1111	}
1112	emt(mtflags);
1113	local_irq_restore(flags);
1114	if (pdb_msg != &id_ho_db_msg[0])
1115		printk("CPU%d: %s", smp_processor_id(), id_ho_db_msg);
1116#endif /* SMTC_IDLE_HOOK_DEBUG */
1117
1118	/*
1119	 * Replay any accumulated deferred IPIs. If "Instant Replay"
1120	 * is in use, there should never be any.
1121	 */
1122#ifndef CONFIG_MIPS_MT_SMTC_INSTANT_REPLAY
1123	smtc_ipi_replay();
1124#endif /* CONFIG_MIPS_MT_SMTC_INSTANT_REPLAY */
1125}
1126
1127void smtc_soft_dump(void)
1128{
1129	int i;
1130
1131	printk("Counter Interrupts taken per CPU (TC)\n");
1132	for (i=0; i < NR_CPUS; i++) {
1133		printk("%d: %ld\n", i, smtc_cpu_stats[i].timerints);
1134	}
1135	printk("Self-IPI invocations:\n");
1136	for (i=0; i < NR_CPUS; i++) {
1137		printk("%d: %ld\n", i, smtc_cpu_stats[i].selfipis);
1138	}
1139	smtc_ipi_qdump();
1140	printk("Timer IPI Backlogs:\n");
1141	for (i=0; i < NR_CPUS; i++) {
1142		printk("%d: %d\n", i, ipi_timer_latch[i]);
1143	}
1144	printk("%d Recoveries of \"stolen\" FPU\n",
1145	       atomic_read(&smtc_fpu_recoveries));
1146}
1147
1148
1149/*
1150 * TLB management routines special to SMTC
1151 */
1152
1153void smtc_get_new_mmu_context(struct mm_struct *mm, unsigned long cpu)
1154{
1155	unsigned long flags, mtflags, tcstat, prevhalt, asid;
1156	int tlb, i;
1157
1158	/*
1159	 * It would be nice to be able to use a spinlock here,
1160	 * but this is invoked from within TLB flush routines
1161	 * that protect themselves with DVPE, so if a lock is
1162	 * held by another TC, it'll never be freed.
1163	 *
1164	 * DVPE/DMT must not be done with interrupts enabled,
1165	 * so even so most callers will already have disabled
1166	 * them, let's be really careful...
1167	 */
1168
1169	local_irq_save(flags);
1170	if (smtc_status & SMTC_TLB_SHARED) {
1171		mtflags = dvpe();
1172		tlb = 0;
1173	} else {
1174		mtflags = dmt();
1175		tlb = cpu_data[cpu].vpe_id;
1176	}
1177	asid = asid_cache(cpu);
1178
1179	do {
1180		if (!((asid += ASID_INC) & ASID_MASK) ) {
1181			if (cpu_has_vtag_icache)
1182				flush_icache_all();
1183			/* Traverse all online CPUs (hack requires contigous range) */
1184			for (i = 0; i < num_online_cpus(); i++) {
1185				/*
1186				 * We don't need to worry about our own CPU, nor those of
1187				 * CPUs who don't share our TLB.
1188				 */
1189				if ((i != smp_processor_id()) &&
1190				    ((smtc_status & SMTC_TLB_SHARED) ||
1191				     (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))) {
1192					settc(cpu_data[i].tc_id);
1193					prevhalt = read_tc_c0_tchalt() & TCHALT_H;
1194					if (!prevhalt) {
1195						write_tc_c0_tchalt(TCHALT_H);
1196						mips_ihb();
1197					}
1198					tcstat = read_tc_c0_tcstatus();
1199					smtc_live_asid[tlb][(tcstat & ASID_MASK)] |= (asiduse)(0x1 << i);
1200					if (!prevhalt)
1201						write_tc_c0_tchalt(0);
1202				}
1203			}
1204			if (!asid)		/* fix version if needed */
1205				asid = ASID_FIRST_VERSION;
1206			local_flush_tlb_all();	/* start new asid cycle */
1207		}
1208	} while (smtc_live_asid[tlb][(asid & ASID_MASK)]);
1209
1210	/*
1211	 * SMTC shares the TLB within VPEs and possibly across all VPEs.
1212	 */
1213	for (i = 0; i < num_online_cpus(); i++) {
1214		if ((smtc_status & SMTC_TLB_SHARED) ||
1215		    (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))
1216			cpu_context(i, mm) = asid_cache(i) = asid;
1217	}
1218
1219	if (smtc_status & SMTC_TLB_SHARED)
1220		evpe(mtflags);
1221	else
1222		emt(mtflags);
1223	local_irq_restore(flags);
1224}
1225
1226/*
1227 * Invoked from macros defined in mmu_context.h
1228 * which must already have disabled interrupts
1229 * and done a DVPE or DMT as appropriate.
1230 */
1231
1232void smtc_flush_tlb_asid(unsigned long asid)
1233{
1234	int entry;
1235	unsigned long ehi;
1236
1237	entry = read_c0_wired();
1238
1239	/* Traverse all non-wired entries */
1240	while (entry < current_cpu_data.tlbsize) {
1241		write_c0_index(entry);
1242		ehb();
1243		tlb_read();
1244		ehb();
1245		ehi = read_c0_entryhi();
1246		if ((ehi & ASID_MASK) == asid) {
1247		    /*
1248		     * Invalidate only entries with specified ASID,
1249		     * makiing sure all entries differ.
1250		     */
1251		    write_c0_entryhi(CKSEG0 + (entry << (PAGE_SHIFT + 1)));
1252		    write_c0_entrylo0(0);
1253		    write_c0_entrylo1(0);
1254		    mtc0_tlbw_hazard();
1255		    tlb_write_indexed();
1256		}
1257		entry++;
1258	}
1259	write_c0_index(PARKED_INDEX);
1260	tlbw_use_hazard();
1261}
1262
1263/*
1264 * Support for single-threading cache flush operations.
1265 */
1266
1267int halt_state_save[NR_CPUS];
1268
1269/*
1270 * To really, really be sure that nothing is being done
1271 * by other TCs, halt them all.  This code assumes that
1272 * a DVPE has already been done, so while their Halted
1273 * state is theoretically architecturally unstable, in
1274 * practice, it's not going to change while we're looking
1275 * at it.
1276 */
1277
1278void smtc_cflush_lockdown(void)
1279{
1280	int cpu;
1281
1282	for_each_online_cpu(cpu) {
1283		if (cpu != smp_processor_id()) {
1284			settc(cpu_data[cpu].tc_id);
1285			halt_state_save[cpu] = read_tc_c0_tchalt();
1286			write_tc_c0_tchalt(TCHALT_H);
1287		}
1288	}
1289	mips_ihb();
1290}
1291
1292/* It would be cheating to change the cpu_online states during a flush! */
1293
1294void smtc_cflush_release(void)
1295{
1296	int cpu;
1297
1298	/*
1299	 * Start with a hazard barrier to ensure
1300	 * that all CACHE ops have played through.
1301	 */
1302	mips_ihb();
1303
1304	for_each_online_cpu(cpu) {
1305		if (cpu != smp_processor_id()) {
1306			settc(cpu_data[cpu].tc_id);
1307			write_tc_c0_tchalt(halt_state_save[cpu]);
1308		}
1309	}
1310	mips_ihb();
1311}
1312