1#ifndef _ASM_POWERPC_IO_H
2#define _ASM_POWERPC_IO_H
3#ifdef __KERNEL__
4
5#define ARCH_HAS_IOREMAP_WC
6
7/*
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14/* Check of existence of legacy devices */
15extern int check_legacy_ioport(unsigned long base_port);
16#define I8042_DATA_REG	0x60
17#define FDC_BASE	0x3f0
18/* only relevant for PReP */
19#define _PIDXR		0x279
20#define _PNPWRP		0xa79
21#define PNPBIOS_BASE	0xf000
22
23#include <linux/device.h>
24#include <linux/io.h>
25
26#include <linux/compiler.h>
27#include <asm/page.h>
28#include <asm/byteorder.h>
29#include <asm/synch.h>
30#include <asm/delay.h>
31#include <asm/mmu.h>
32
33#include <asm-generic/iomap.h>
34
35#ifdef CONFIG_PPC64
36#include <asm/paca.h>
37#endif
38
39#define SIO_CONFIG_RA	0x398
40#define SIO_CONFIG_RD	0x399
41
42#define SLOW_DOWN_IO
43
44/* 32 bits uses slightly different variables for the various IO
45 * bases. Most of this file only uses _IO_BASE though which we
46 * define properly based on the platform
47 */
48#ifndef CONFIG_PCI
49#define _IO_BASE	0
50#define _ISA_MEM_BASE	0
51#define PCI_DRAM_OFFSET 0
52#elif defined(CONFIG_PPC32)
53#define _IO_BASE	isa_io_base
54#define _ISA_MEM_BASE	isa_mem_base
55#define PCI_DRAM_OFFSET	pci_dram_offset
56#else
57#define _IO_BASE	pci_io_base
58#define _ISA_MEM_BASE	isa_mem_base
59#define PCI_DRAM_OFFSET	0
60#endif
61
62extern unsigned long isa_io_base;
63extern unsigned long pci_io_base;
64extern unsigned long pci_dram_offset;
65
66extern resource_size_t isa_mem_base;
67
68#if defined(CONFIG_PPC32) && defined(CONFIG_PPC_INDIRECT_IO)
69#error CONFIG_PPC_INDIRECT_IO is not yet supported on 32 bits
70#endif
71
72/*
73 *
74 * Low level MMIO accessors
75 *
76 * This provides the non-bus specific accessors to MMIO. Those are PowerPC
77 * specific and thus shouldn't be used in generic code. The accessors
78 * provided here are:
79 *
80 *	in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64
81 *	out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64
82 *	_insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns
83 *
84 * Those operate directly on a kernel virtual address. Note that the prototype
85 * for the out_* accessors has the arguments in opposite order from the usual
86 * linux PCI accessors. Unlike those, they take the address first and the value
87 * next.
88 *
89 * Note: I might drop the _ns suffix on the stream operations soon as it is
90 * simply normal for stream operations to not swap in the first place.
91 *
92 */
93
94#ifdef CONFIG_PPC64
95#define IO_SET_SYNC_FLAG()	do { local_paca->io_sync = 1; } while(0)
96#else
97#define IO_SET_SYNC_FLAG()
98#endif
99
100/* gcc 4.0 and older doesn't have 'Z' constraint */
101#if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ == 0)
102#define DEF_MMIO_IN_LE(name, size, insn)				\
103static inline u##size name(const volatile u##size __iomem *addr)	\
104{									\
105	u##size ret;							\
106	__asm__ __volatile__("sync;"#insn" %0,0,%1;twi 0,%0,0;isync"	\
107		: "=r" (ret) : "r" (addr), "m" (*addr) : "memory");	\
108	return ret;							\
109}
110
111#define DEF_MMIO_OUT_LE(name, size, insn) 				\
112static inline void name(volatile u##size __iomem *addr, u##size val)	\
113{									\
114	__asm__ __volatile__("sync;"#insn" %1,0,%2"			\
115		: "=m" (*addr) : "r" (val), "r" (addr) : "memory");	\
116	IO_SET_SYNC_FLAG();						\
117}
118#else /* newer gcc */
119#define DEF_MMIO_IN_LE(name, size, insn)				\
120static inline u##size name(const volatile u##size __iomem *addr)	\
121{									\
122	u##size ret;							\
123	__asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync"	\
124		: "=r" (ret) : "Z" (*addr) : "memory");			\
125	return ret;							\
126}
127
128#define DEF_MMIO_OUT_LE(name, size, insn) 				\
129static inline void name(volatile u##size __iomem *addr, u##size val)	\
130{									\
131	__asm__ __volatile__("sync;"#insn" %1,%y0"			\
132		: "=Z" (*addr) : "r" (val) : "memory");			\
133	IO_SET_SYNC_FLAG();						\
134}
135#endif
136
137#define DEF_MMIO_IN_BE(name, size, insn)				\
138static inline u##size name(const volatile u##size __iomem *addr)	\
139{									\
140	u##size ret;							\
141	__asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\
142		: "=r" (ret) : "m" (*addr) : "memory");			\
143	return ret;							\
144}
145
146#define DEF_MMIO_OUT_BE(name, size, insn)				\
147static inline void name(volatile u##size __iomem *addr, u##size val)	\
148{									\
149	__asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0"			\
150		: "=m" (*addr) : "r" (val) : "memory");			\
151	IO_SET_SYNC_FLAG();						\
152}
153
154
155DEF_MMIO_IN_BE(in_8,     8, lbz);
156DEF_MMIO_IN_BE(in_be16, 16, lhz);
157DEF_MMIO_IN_BE(in_be32, 32, lwz);
158DEF_MMIO_IN_LE(in_le16, 16, lhbrx);
159DEF_MMIO_IN_LE(in_le32, 32, lwbrx);
160
161DEF_MMIO_OUT_BE(out_8,     8, stb);
162DEF_MMIO_OUT_BE(out_be16, 16, sth);
163DEF_MMIO_OUT_BE(out_be32, 32, stw);
164DEF_MMIO_OUT_LE(out_le16, 16, sthbrx);
165DEF_MMIO_OUT_LE(out_le32, 32, stwbrx);
166
167#ifdef __powerpc64__
168DEF_MMIO_OUT_BE(out_be64, 64, std);
169DEF_MMIO_IN_BE(in_be64, 64, ld);
170
171/* There is no asm instructions for 64 bits reverse loads and stores */
172static inline u64 in_le64(const volatile u64 __iomem *addr)
173{
174	return swab64(in_be64(addr));
175}
176
177static inline void out_le64(volatile u64 __iomem *addr, u64 val)
178{
179	out_be64(addr, swab64(val));
180}
181#endif /* __powerpc64__ */
182
183/*
184 * Low level IO stream instructions are defined out of line for now
185 */
186extern void _insb(const volatile u8 __iomem *addr, void *buf, long count);
187extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count);
188extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count);
189extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count);
190extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count);
191extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count);
192
193/* The _ns naming is historical and will be removed. For now, just #define
194 * the non _ns equivalent names
195 */
196#define _insw	_insw_ns
197#define _insl	_insl_ns
198#define _outsw	_outsw_ns
199#define _outsl	_outsl_ns
200
201
202/*
203 * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line
204 */
205
206extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n);
207extern void _memcpy_fromio(void *dest, const volatile void __iomem *src,
208			   unsigned long n);
209extern void _memcpy_toio(volatile void __iomem *dest, const void *src,
210			 unsigned long n);
211
212/*
213 *
214 * PCI and standard ISA accessors
215 *
216 * Those are globally defined linux accessors for devices on PCI or ISA
217 * busses. They follow the Linux defined semantics. The current implementation
218 * for PowerPC is as close as possible to the x86 version of these, and thus
219 * provides fairly heavy weight barriers for the non-raw versions
220 *
221 * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_IO
222 * allowing the platform to provide its own implementation of some or all
223 * of the accessors.
224 */
225
226/*
227 * Include the EEH definitions when EEH is enabled only so they don't get
228 * in the way when building for 32 bits
229 */
230#ifdef CONFIG_EEH
231#include <asm/eeh.h>
232#endif
233
234/* Shortcut to the MMIO argument pointer */
235#define PCI_IO_ADDR	volatile void __iomem *
236
237/* Indirect IO address tokens:
238 *
239 * When CONFIG_PPC_INDIRECT_IO is set, the platform can provide hooks
240 * on all IOs. (Note that this is all 64 bits only for now)
241 *
242 * To help platforms who may need to differenciate MMIO addresses in
243 * their hooks, a bitfield is reserved for use by the platform near the
244 * top of MMIO addresses (not PIO, those have to cope the hard way).
245 *
246 * This bit field is 12 bits and is at the top of the IO virtual
247 * addresses PCI_IO_INDIRECT_TOKEN_MASK.
248 *
249 * The kernel virtual space is thus:
250 *
251 *  0xD000000000000000		: vmalloc
252 *  0xD000080000000000		: PCI PHB IO space
253 *  0xD000080080000000		: ioremap
254 *  0xD0000fffffffffff		: end of ioremap region
255 *
256 * Since the top 4 bits are reserved as the region ID, we use thus
257 * the next 12 bits and keep 4 bits available for the future if the
258 * virtual address space is ever to be extended.
259 *
260 * The direct IO mapping operations will then mask off those bits
261 * before doing the actual access, though that only happen when
262 * CONFIG_PPC_INDIRECT_IO is set, thus be careful when you use that
263 * mechanism
264 */
265
266#ifdef CONFIG_PPC_INDIRECT_IO
267#define PCI_IO_IND_TOKEN_MASK	0x0fff000000000000ul
268#define PCI_IO_IND_TOKEN_SHIFT	48
269#define PCI_FIX_ADDR(addr)						\
270	((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK))
271#define PCI_GET_ADDR_TOKEN(addr)					\
272	(((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> 		\
273		PCI_IO_IND_TOKEN_SHIFT)
274#define PCI_SET_ADDR_TOKEN(addr, token) 				\
275do {									\
276	unsigned long __a = (unsigned long)(addr);			\
277	__a &= ~PCI_IO_IND_TOKEN_MASK;					\
278	__a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT;	\
279	(addr) = (void __iomem *)__a;					\
280} while(0)
281#else
282#define PCI_FIX_ADDR(addr) (addr)
283#endif
284
285
286/*
287 * Non ordered and non-swapping "raw" accessors
288 */
289
290static inline unsigned char __raw_readb(const volatile void __iomem *addr)
291{
292	return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr);
293}
294static inline unsigned short __raw_readw(const volatile void __iomem *addr)
295{
296	return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr);
297}
298static inline unsigned int __raw_readl(const volatile void __iomem *addr)
299{
300	return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr);
301}
302static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr)
303{
304	*(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v;
305}
306static inline void __raw_writew(unsigned short v, volatile void __iomem *addr)
307{
308	*(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v;
309}
310static inline void __raw_writel(unsigned int v, volatile void __iomem *addr)
311{
312	*(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v;
313}
314
315#ifdef __powerpc64__
316static inline unsigned long __raw_readq(const volatile void __iomem *addr)
317{
318	return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr);
319}
320static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr)
321{
322	*(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v;
323}
324#endif /* __powerpc64__ */
325
326/*
327 *
328 * PCI PIO and MMIO accessors.
329 *
330 *
331 * On 32 bits, PIO operations have a recovery mechanism in case they trigger
332 * machine checks (which they occasionally do when probing non existing
333 * IO ports on some platforms, like PowerMac and 8xx).
334 * I always found it to be of dubious reliability and I am tempted to get
335 * rid of it one of these days. So if you think it's important to keep it,
336 * please voice up asap. We never had it for 64 bits and I do not intend
337 * to port it over
338 */
339
340#ifdef CONFIG_PPC32
341
342#define __do_in_asm(name, op)				\
343static inline unsigned int name(unsigned int port)	\
344{							\
345	unsigned int x;					\
346	__asm__ __volatile__(				\
347		"sync\n"				\
348		"0:"	op "	%0,0,%1\n"		\
349		"1:	twi	0,%0,0\n"		\
350		"2:	isync\n"			\
351		"3:	nop\n"				\
352		"4:\n"					\
353		".section .fixup,\"ax\"\n"		\
354		"5:	li	%0,-1\n"		\
355		"	b	4b\n"			\
356		".previous\n"				\
357		".section __ex_table,\"a\"\n"		\
358		"	.align	2\n"			\
359		"	.long	0b,5b\n"		\
360		"	.long	1b,5b\n"		\
361		"	.long	2b,5b\n"		\
362		"	.long	3b,5b\n"		\
363		".previous"				\
364		: "=&r" (x)				\
365		: "r" (port + _IO_BASE)			\
366		: "memory");  				\
367	return x;					\
368}
369
370#define __do_out_asm(name, op)				\
371static inline void name(unsigned int val, unsigned int port) \
372{							\
373	__asm__ __volatile__(				\
374		"sync\n"				\
375		"0:" op " %0,0,%1\n"			\
376		"1:	sync\n"				\
377		"2:\n"					\
378		".section __ex_table,\"a\"\n"		\
379		"	.align	2\n"			\
380		"	.long	0b,2b\n"		\
381		"	.long	1b,2b\n"		\
382		".previous"				\
383		: : "r" (val), "r" (port + _IO_BASE)	\
384		: "memory");   	   	   		\
385}
386
387__do_in_asm(_rec_inb, "lbzx")
388__do_in_asm(_rec_inw, "lhbrx")
389__do_in_asm(_rec_inl, "lwbrx")
390__do_out_asm(_rec_outb, "stbx")
391__do_out_asm(_rec_outw, "sthbrx")
392__do_out_asm(_rec_outl, "stwbrx")
393
394#endif /* CONFIG_PPC32 */
395
396/* The "__do_*" operations below provide the actual "base" implementation
397 * for each of the defined accessors. Some of them use the out_* functions
398 * directly, some of them still use EEH, though we might change that in the
399 * future. Those macros below provide the necessary argument swapping and
400 * handling of the IO base for PIO.
401 *
402 * They are themselves used by the macros that define the actual accessors
403 * and can be used by the hooks if any.
404 *
405 * Note that PIO operations are always defined in terms of their corresonding
406 * MMIO operations. That allows platforms like iSeries who want to modify the
407 * behaviour of both to only hook on the MMIO version and get both. It's also
408 * possible to hook directly at the toplevel PIO operation if they have to
409 * be handled differently
410 */
411#define __do_writeb(val, addr)	out_8(PCI_FIX_ADDR(addr), val)
412#define __do_writew(val, addr)	out_le16(PCI_FIX_ADDR(addr), val)
413#define __do_writel(val, addr)	out_le32(PCI_FIX_ADDR(addr), val)
414#define __do_writeq(val, addr)	out_le64(PCI_FIX_ADDR(addr), val)
415#define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val)
416#define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val)
417#define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val)
418
419#ifdef CONFIG_EEH
420#define __do_readb(addr)	eeh_readb(PCI_FIX_ADDR(addr))
421#define __do_readw(addr)	eeh_readw(PCI_FIX_ADDR(addr))
422#define __do_readl(addr)	eeh_readl(PCI_FIX_ADDR(addr))
423#define __do_readq(addr)	eeh_readq(PCI_FIX_ADDR(addr))
424#define __do_readw_be(addr)	eeh_readw_be(PCI_FIX_ADDR(addr))
425#define __do_readl_be(addr)	eeh_readl_be(PCI_FIX_ADDR(addr))
426#define __do_readq_be(addr)	eeh_readq_be(PCI_FIX_ADDR(addr))
427#else /* CONFIG_EEH */
428#define __do_readb(addr)	in_8(PCI_FIX_ADDR(addr))
429#define __do_readw(addr)	in_le16(PCI_FIX_ADDR(addr))
430#define __do_readl(addr)	in_le32(PCI_FIX_ADDR(addr))
431#define __do_readq(addr)	in_le64(PCI_FIX_ADDR(addr))
432#define __do_readw_be(addr)	in_be16(PCI_FIX_ADDR(addr))
433#define __do_readl_be(addr)	in_be32(PCI_FIX_ADDR(addr))
434#define __do_readq_be(addr)	in_be64(PCI_FIX_ADDR(addr))
435#endif /* !defined(CONFIG_EEH) */
436
437#ifdef CONFIG_PPC32
438#define __do_outb(val, port)	_rec_outb(val, port)
439#define __do_outw(val, port)	_rec_outw(val, port)
440#define __do_outl(val, port)	_rec_outl(val, port)
441#define __do_inb(port)		_rec_inb(port)
442#define __do_inw(port)		_rec_inw(port)
443#define __do_inl(port)		_rec_inl(port)
444#else /* CONFIG_PPC32 */
445#define __do_outb(val, port)	writeb(val,(PCI_IO_ADDR)_IO_BASE+port);
446#define __do_outw(val, port)	writew(val,(PCI_IO_ADDR)_IO_BASE+port);
447#define __do_outl(val, port)	writel(val,(PCI_IO_ADDR)_IO_BASE+port);
448#define __do_inb(port)		readb((PCI_IO_ADDR)_IO_BASE + port);
449#define __do_inw(port)		readw((PCI_IO_ADDR)_IO_BASE + port);
450#define __do_inl(port)		readl((PCI_IO_ADDR)_IO_BASE + port);
451#endif /* !CONFIG_PPC32 */
452
453#ifdef CONFIG_EEH
454#define __do_readsb(a, b, n)	eeh_readsb(PCI_FIX_ADDR(a), (b), (n))
455#define __do_readsw(a, b, n)	eeh_readsw(PCI_FIX_ADDR(a), (b), (n))
456#define __do_readsl(a, b, n)	eeh_readsl(PCI_FIX_ADDR(a), (b), (n))
457#else /* CONFIG_EEH */
458#define __do_readsb(a, b, n)	_insb(PCI_FIX_ADDR(a), (b), (n))
459#define __do_readsw(a, b, n)	_insw(PCI_FIX_ADDR(a), (b), (n))
460#define __do_readsl(a, b, n)	_insl(PCI_FIX_ADDR(a), (b), (n))
461#endif /* !CONFIG_EEH */
462#define __do_writesb(a, b, n)	_outsb(PCI_FIX_ADDR(a),(b),(n))
463#define __do_writesw(a, b, n)	_outsw(PCI_FIX_ADDR(a),(b),(n))
464#define __do_writesl(a, b, n)	_outsl(PCI_FIX_ADDR(a),(b),(n))
465
466#define __do_insb(p, b, n)	readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
467#define __do_insw(p, b, n)	readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
468#define __do_insl(p, b, n)	readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
469#define __do_outsb(p, b, n)	writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
470#define __do_outsw(p, b, n)	writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
471#define __do_outsl(p, b, n)	writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
472
473#define __do_memset_io(addr, c, n)	\
474				_memset_io(PCI_FIX_ADDR(addr), c, n)
475#define __do_memcpy_toio(dst, src, n)	\
476				_memcpy_toio(PCI_FIX_ADDR(dst), src, n)
477
478#ifdef CONFIG_EEH
479#define __do_memcpy_fromio(dst, src, n)	\
480				eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n)
481#else /* CONFIG_EEH */
482#define __do_memcpy_fromio(dst, src, n)	\
483				_memcpy_fromio(dst,PCI_FIX_ADDR(src),n)
484#endif /* !CONFIG_EEH */
485
486#ifdef CONFIG_PPC_INDIRECT_PIO
487#define DEF_PCI_HOOK_pio(x)	x
488#else
489#define DEF_PCI_HOOK_pio(x)	NULL
490#endif
491
492#ifdef CONFIG_PPC_INDIRECT_MMIO
493#define DEF_PCI_HOOK_mem(x)	x
494#else
495#define DEF_PCI_HOOK_mem(x)	NULL
496#endif
497
498/* Structure containing all the hooks */
499extern struct ppc_pci_io {
500
501#define DEF_PCI_AC_RET(name, ret, at, al, space, aa)	ret (*name) at;
502#define DEF_PCI_AC_NORET(name, at, al, space, aa)	void (*name) at;
503
504#include <asm/io-defs.h>
505
506#undef DEF_PCI_AC_RET
507#undef DEF_PCI_AC_NORET
508
509} ppc_pci_io;
510
511/* The inline wrappers */
512#define DEF_PCI_AC_RET(name, ret, at, al, space, aa)		\
513static inline ret name at					\
514{								\
515	if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)	\
516		return ppc_pci_io.name al;			\
517	return __do_##name al;					\
518}
519
520#define DEF_PCI_AC_NORET(name, at, al, space, aa)		\
521static inline void name at					\
522{								\
523	if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)		\
524		ppc_pci_io.name al;				\
525	else							\
526		__do_##name al;					\
527}
528
529#include <asm/io-defs.h>
530
531#undef DEF_PCI_AC_RET
532#undef DEF_PCI_AC_NORET
533
534/* Some drivers check for the presence of readq & writeq with
535 * a #ifdef, so we make them happy here.
536 */
537#ifdef __powerpc64__
538#define readq	readq
539#define writeq	writeq
540#endif
541
542/*
543 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
544 * access
545 */
546#define xlate_dev_mem_ptr(p)	__va(p)
547
548/*
549 * Convert a virtual cached pointer to an uncached pointer
550 */
551#define xlate_dev_kmem_ptr(p)	p
552
553/*
554 * We don't do relaxed operations yet, at least not with this semantic
555 */
556#define readb_relaxed(addr) readb(addr)
557#define readw_relaxed(addr) readw(addr)
558#define readl_relaxed(addr) readl(addr)
559#define readq_relaxed(addr) readq(addr)
560
561#ifdef CONFIG_PPC32
562#define mmiowb()
563#else
564/*
565 * Enforce synchronisation of stores vs. spin_unlock
566 * (this does it explicitly, though our implementation of spin_unlock
567 * does it implicitely too)
568 */
569static inline void mmiowb(void)
570{
571	unsigned long tmp;
572
573	__asm__ __volatile__("sync; li %0,0; stb %0,%1(13)"
574	: "=&r" (tmp) : "i" (offsetof(struct paca_struct, io_sync))
575	: "memory");
576}
577#endif /* !CONFIG_PPC32 */
578
579static inline void iosync(void)
580{
581        __asm__ __volatile__ ("sync" : : : "memory");
582}
583
584/* Enforce in-order execution of data I/O.
585 * No distinction between read/write on PPC; use eieio for all three.
586 * Those are fairly week though. They don't provide a barrier between
587 * MMIO and cacheable storage nor do they provide a barrier vs. locks,
588 * they only provide barriers between 2 __raw MMIO operations and
589 * possibly break write combining.
590 */
591#define iobarrier_rw() eieio()
592#define iobarrier_r()  eieio()
593#define iobarrier_w()  eieio()
594
595
596/*
597 * output pause versions need a delay at least for the
598 * w83c105 ide controller in a p610.
599 */
600#define inb_p(port)             inb(port)
601#define outb_p(val, port)       (udelay(1), outb((val), (port)))
602#define inw_p(port)             inw(port)
603#define outw_p(val, port)       (udelay(1), outw((val), (port)))
604#define inl_p(port)             inl(port)
605#define outl_p(val, port)       (udelay(1), outl((val), (port)))
606
607
608#define IO_SPACE_LIMIT ~(0UL)
609
610
611/**
612 * ioremap     -   map bus memory into CPU space
613 * @address:   bus address of the memory
614 * @size:      size of the resource to map
615 *
616 * ioremap performs a platform specific sequence of operations to
617 * make bus memory CPU accessible via the readb/readw/readl/writeb/
618 * writew/writel functions and the other mmio helpers. The returned
619 * address is not guaranteed to be usable directly as a virtual
620 * address.
621 *
622 * We provide a few variations of it:
623 *
624 * * ioremap is the standard one and provides non-cacheable guarded mappings
625 *   and can be hooked by the platform via ppc_md
626 *
627 * * ioremap_prot allows to specify the page flags as an argument and can
628 *   also be hooked by the platform via ppc_md.
629 *
630 * * ioremap_nocache is identical to ioremap
631 *
632 * * ioremap_wc enables write combining
633 *
634 * * iounmap undoes such a mapping and can be hooked
635 *
636 * * __ioremap_at (and the pending __iounmap_at) are low level functions to
637 *   create hand-made mappings for use only by the PCI code and cannot
638 *   currently be hooked. Must be page aligned.
639 *
640 * * __ioremap is the low level implementation used by ioremap and
641 *   ioremap_prot and cannot be hooked (but can be used by a hook on one
642 *   of the previous ones)
643 *
644 * * __ioremap_caller is the same as above but takes an explicit caller
645 *   reference rather than using __builtin_return_address(0)
646 *
647 * * __iounmap, is the low level implementation used by iounmap and cannot
648 *   be hooked (but can be used by a hook on iounmap)
649 *
650 */
651extern void __iomem *ioremap(phys_addr_t address, unsigned long size);
652extern void __iomem *ioremap_prot(phys_addr_t address, unsigned long size,
653				  unsigned long flags);
654extern void __iomem *ioremap_wc(phys_addr_t address, unsigned long size);
655#define ioremap_nocache(addr, size)	ioremap((addr), (size))
656
657extern void iounmap(volatile void __iomem *addr);
658
659extern void __iomem *__ioremap(phys_addr_t, unsigned long size,
660			       unsigned long flags);
661extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size,
662				      unsigned long flags, void *caller);
663
664extern void __iounmap(volatile void __iomem *addr);
665
666extern void __iomem * __ioremap_at(phys_addr_t pa, void *ea,
667				   unsigned long size, unsigned long flags);
668extern void __iounmap_at(void *ea, unsigned long size);
669
670/*
671 * When CONFIG_PPC_INDIRECT_IO is set, we use the generic iomap implementation
672 * which needs some additional definitions here. They basically allow PIO
673 * space overall to be 1GB. This will work as long as we never try to use
674 * iomap to map MMIO below 1GB which should be fine on ppc64
675 */
676#define HAVE_ARCH_PIO_SIZE		1
677#define PIO_OFFSET			0x00000000UL
678#define PIO_MASK			(FULL_IO_SIZE - 1)
679#define PIO_RESERVED			(FULL_IO_SIZE)
680
681#define mmio_read16be(addr)		readw_be(addr)
682#define mmio_read32be(addr)		readl_be(addr)
683#define mmio_write16be(val, addr)	writew_be(val, addr)
684#define mmio_write32be(val, addr)	writel_be(val, addr)
685#define mmio_insb(addr, dst, count)	readsb(addr, dst, count)
686#define mmio_insw(addr, dst, count)	readsw(addr, dst, count)
687#define mmio_insl(addr, dst, count)	readsl(addr, dst, count)
688#define mmio_outsb(addr, src, count)	writesb(addr, src, count)
689#define mmio_outsw(addr, src, count)	writesw(addr, src, count)
690#define mmio_outsl(addr, src, count)	writesl(addr, src, count)
691
692/**
693 *	virt_to_phys	-	map virtual addresses to physical
694 *	@address: address to remap
695 *
696 *	The returned physical address is the physical (CPU) mapping for
697 *	the memory address given. It is only valid to use this function on
698 *	addresses directly mapped or allocated via kmalloc.
699 *
700 *	This function does not give bus mappings for DMA transfers. In
701 *	almost all conceivable cases a device driver should not be using
702 *	this function
703 */
704static inline unsigned long virt_to_phys(volatile void * address)
705{
706	return __pa((unsigned long)address);
707}
708
709/**
710 *	phys_to_virt	-	map physical address to virtual
711 *	@address: address to remap
712 *
713 *	The returned virtual address is a current CPU mapping for
714 *	the memory address given. It is only valid to use this function on
715 *	addresses that have a kernel mapping
716 *
717 *	This function does not handle bus mappings for DMA transfers. In
718 *	almost all conceivable cases a device driver should not be using
719 *	this function
720 */
721static inline void * phys_to_virt(unsigned long address)
722{
723	return (void *)__va(address);
724}
725
726/*
727 * Change "struct page" to physical address.
728 */
729#define page_to_phys(page)	((phys_addr_t)page_to_pfn(page) << PAGE_SHIFT)
730
731/*
732 * 32 bits still uses virt_to_bus() for it's implementation of DMA
733 * mappings se we have to keep it defined here. We also have some old
734 * drivers (shame shame shame) that use bus_to_virt() and haven't been
735 * fixed yet so I need to define it here.
736 */
737#ifdef CONFIG_PPC32
738
739static inline unsigned long virt_to_bus(volatile void * address)
740{
741        if (address == NULL)
742		return 0;
743        return __pa(address) + PCI_DRAM_OFFSET;
744}
745
746static inline void * bus_to_virt(unsigned long address)
747{
748        if (address == 0)
749		return NULL;
750        return __va(address - PCI_DRAM_OFFSET);
751}
752
753#define page_to_bus(page)	(page_to_phys(page) + PCI_DRAM_OFFSET)
754
755#endif /* CONFIG_PPC32 */
756
757/* access ports */
758#define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) |  (_v))
759#define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v))
760
761#define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) |  (_v))
762#define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v))
763
764#define setbits8(_addr, _v) out_8((_addr), in_8(_addr) |  (_v))
765#define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v))
766
767/* Clear and set bits in one shot.  These macros can be used to clear and
768 * set multiple bits in a register using a single read-modify-write.  These
769 * macros can also be used to set a multiple-bit bit pattern using a mask,
770 * by specifying the mask in the 'clear' parameter and the new bit pattern
771 * in the 'set' parameter.
772 */
773
774#define clrsetbits(type, addr, clear, set) \
775	out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
776
777#ifdef __powerpc64__
778#define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set)
779#define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set)
780#endif
781
782#define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
783#define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
784
785#define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
786#define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set)
787
788#define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
789
790void __iomem *devm_ioremap_prot(struct device *dev, resource_size_t offset,
791				size_t size, unsigned long flags);
792
793#endif /* __KERNEL__ */
794
795#endif /* _ASM_POWERPC_IO_H */
796