init.c revision 1c395176962176660bb108f90e97e1686cfe0d85
1/*
2 * Copyright (C) 1995  Linus Torvalds
3 * Copyright 2010 Tilera Corporation. All Rights Reserved.
4 *
5 *   This program is free software; you can redistribute it and/or
6 *   modify it under the terms of the GNU General Public License
7 *   as published by the Free Software Foundation, version 2.
8 *
9 *   This program is distributed in the hope that it will be useful, but
10 *   WITHOUT ANY WARRANTY; without even the implied warranty of
11 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 *   NON INFRINGEMENT.  See the GNU General Public License for
13 *   more details.
14 */
15
16#include <linux/module.h>
17#include <linux/signal.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/errno.h>
21#include <linux/string.h>
22#include <linux/types.h>
23#include <linux/ptrace.h>
24#include <linux/mman.h>
25#include <linux/mm.h>
26#include <linux/hugetlb.h>
27#include <linux/swap.h>
28#include <linux/smp.h>
29#include <linux/init.h>
30#include <linux/highmem.h>
31#include <linux/pagemap.h>
32#include <linux/poison.h>
33#include <linux/bootmem.h>
34#include <linux/slab.h>
35#include <linux/proc_fs.h>
36#include <linux/efi.h>
37#include <linux/memory_hotplug.h>
38#include <linux/uaccess.h>
39#include <asm/mmu_context.h>
40#include <asm/processor.h>
41#include <asm/system.h>
42#include <asm/pgtable.h>
43#include <asm/pgalloc.h>
44#include <asm/dma.h>
45#include <asm/fixmap.h>
46#include <asm/tlb.h>
47#include <asm/tlbflush.h>
48#include <asm/sections.h>
49#include <asm/setup.h>
50#include <asm/homecache.h>
51#include <hv/hypervisor.h>
52#include <arch/chip.h>
53
54#include "migrate.h"
55
56#define clear_pgd(pmdptr) (*(pmdptr) = hv_pte(0))
57
58#ifndef __tilegx__
59unsigned long VMALLOC_RESERVE = CONFIG_VMALLOC_RESERVE;
60EXPORT_SYMBOL(VMALLOC_RESERVE);
61#endif
62
63/* Create an L2 page table */
64static pte_t * __init alloc_pte(void)
65{
66	return __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0);
67}
68
69/*
70 * L2 page tables per controller.  We allocate these all at once from
71 * the bootmem allocator and store them here.  This saves on kernel L2
72 * page table memory, compared to allocating a full 64K page per L2
73 * page table, and also means that in cases where we use huge pages,
74 * we are guaranteed to later be able to shatter those huge pages and
75 * switch to using these page tables instead, without requiring
76 * further allocation.  Each l2_ptes[] entry points to the first page
77 * table for the first hugepage-size piece of memory on the
78 * controller; other page tables are just indexed directly, i.e. the
79 * L2 page tables are contiguous in memory for each controller.
80 */
81static pte_t *l2_ptes[MAX_NUMNODES];
82static int num_l2_ptes[MAX_NUMNODES];
83
84static void init_prealloc_ptes(int node, int pages)
85{
86	BUG_ON(pages & (HV_L2_ENTRIES-1));
87	if (pages) {
88		num_l2_ptes[node] = pages;
89		l2_ptes[node] = __alloc_bootmem(pages * sizeof(pte_t),
90						HV_PAGE_TABLE_ALIGN, 0);
91	}
92}
93
94pte_t *get_prealloc_pte(unsigned long pfn)
95{
96	int node = pfn_to_nid(pfn);
97	pfn &= ~(-1UL << (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT));
98	BUG_ON(node >= MAX_NUMNODES);
99	BUG_ON(pfn >= num_l2_ptes[node]);
100	return &l2_ptes[node][pfn];
101}
102
103/*
104 * What caching do we expect pages from the heap to have when
105 * they are allocated during bootup?  (Once we've installed the
106 * "real" swapper_pg_dir.)
107 */
108static int initial_heap_home(void)
109{
110#if CHIP_HAS_CBOX_HOME_MAP()
111	if (hash_default)
112		return PAGE_HOME_HASH;
113#endif
114	return smp_processor_id();
115}
116
117/*
118 * Place a pointer to an L2 page table in a middle page
119 * directory entry.
120 */
121static void __init assign_pte(pmd_t *pmd, pte_t *page_table)
122{
123	phys_addr_t pa = __pa(page_table);
124	unsigned long l2_ptfn = pa >> HV_LOG2_PAGE_TABLE_ALIGN;
125	pte_t pteval = hv_pte_set_ptfn(__pgprot(_PAGE_TABLE), l2_ptfn);
126	BUG_ON((pa & (HV_PAGE_TABLE_ALIGN-1)) != 0);
127	pteval = pte_set_home(pteval, initial_heap_home());
128	*(pte_t *)pmd = pteval;
129	if (page_table != (pte_t *)pmd_page_vaddr(*pmd))
130		BUG();
131}
132
133#ifdef __tilegx__
134
135#if HV_L1_SIZE != HV_L2_SIZE
136# error Rework assumption that L1 and L2 page tables are same size.
137#endif
138
139/* Since pmd_t arrays and pte_t arrays are the same size, just use casts. */
140static inline pmd_t *alloc_pmd(void)
141{
142	return (pmd_t *)alloc_pte();
143}
144
145static inline void assign_pmd(pud_t *pud, pmd_t *pmd)
146{
147	assign_pte((pmd_t *)pud, (pte_t *)pmd);
148}
149
150#endif /* __tilegx__ */
151
152/* Replace the given pmd with a full PTE table. */
153void __init shatter_pmd(pmd_t *pmd)
154{
155	pte_t *pte = get_prealloc_pte(pte_pfn(*(pte_t *)pmd));
156	assign_pte(pmd, pte);
157}
158
159#ifdef CONFIG_HIGHMEM
160/*
161 * This function initializes a certain range of kernel virtual memory
162 * with new bootmem page tables, everywhere page tables are missing in
163 * the given range.
164 */
165
166/*
167 * NOTE: The pagetables are allocated contiguous on the physical space
168 * so we can cache the place of the first one and move around without
169 * checking the pgd every time.
170 */
171static void __init page_table_range_init(unsigned long start,
172					 unsigned long end, pgd_t *pgd_base)
173{
174	pgd_t *pgd;
175	int pgd_idx;
176	unsigned long vaddr;
177
178	vaddr = start;
179	pgd_idx = pgd_index(vaddr);
180	pgd = pgd_base + pgd_idx;
181
182	for ( ; (pgd_idx < PTRS_PER_PGD) && (vaddr != end); pgd++, pgd_idx++) {
183		pmd_t *pmd = pmd_offset(pud_offset(pgd, vaddr), vaddr);
184		if (pmd_none(*pmd))
185			assign_pte(pmd, alloc_pte());
186		vaddr += PMD_SIZE;
187	}
188}
189#endif /* CONFIG_HIGHMEM */
190
191
192#if CHIP_HAS_CBOX_HOME_MAP()
193
194static int __initdata ktext_hash = 1;  /* .text pages */
195static int __initdata kdata_hash = 1;  /* .data and .bss pages */
196int __write_once hash_default = 1;     /* kernel allocator pages */
197EXPORT_SYMBOL(hash_default);
198int __write_once kstack_hash = 1;      /* if no homecaching, use h4h */
199#endif /* CHIP_HAS_CBOX_HOME_MAP */
200
201/*
202 * CPUs to use to for striping the pages of kernel data.  If hash-for-home
203 * is available, this is only relevant if kcache_hash sets up the
204 * .data and .bss to be page-homed, and we don't want the default mode
205 * of using the full set of kernel cpus for the striping.
206 */
207static __initdata struct cpumask kdata_mask;
208static __initdata int kdata_arg_seen;
209
210int __write_once kdata_huge;       /* if no homecaching, small pages */
211
212
213/* Combine a generic pgprot_t with cache home to get a cache-aware pgprot. */
214static pgprot_t __init construct_pgprot(pgprot_t prot, int home)
215{
216	prot = pte_set_home(prot, home);
217#if CHIP_HAS_CBOX_HOME_MAP()
218	if (home == PAGE_HOME_IMMUTABLE) {
219		if (ktext_hash)
220			prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_HASH_L3);
221		else
222			prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_NO_L3);
223	}
224#endif
225	return prot;
226}
227
228/*
229 * For a given kernel data VA, how should it be cached?
230 * We return the complete pgprot_t with caching bits set.
231 */
232static pgprot_t __init init_pgprot(ulong address)
233{
234	int cpu;
235	unsigned long page;
236	enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };
237
238#if CHIP_HAS_CBOX_HOME_MAP()
239	/* For kdata=huge, everything is just hash-for-home. */
240	if (kdata_huge)
241		return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
242#endif
243
244	/* We map the aliased pages of permanent text inaccessible. */
245	if (address < (ulong) _sinittext - CODE_DELTA)
246		return PAGE_NONE;
247
248	/*
249	 * We map read-only data non-coherent for performance.  We could
250	 * use neighborhood caching on TILE64, but it's not clear it's a win.
251	 */
252	if ((address >= (ulong) __start_rodata &&
253	     address < (ulong) __end_rodata) ||
254	    address == (ulong) empty_zero_page) {
255		return construct_pgprot(PAGE_KERNEL_RO, PAGE_HOME_IMMUTABLE);
256	}
257
258	/* As a performance optimization, keep the boot init stack here. */
259	if (address >= (ulong)&init_thread_union &&
260	    address < (ulong)&init_thread_union + THREAD_SIZE)
261		return construct_pgprot(PAGE_KERNEL, smp_processor_id());
262
263#ifndef __tilegx__
264#if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
265	/* Force the atomic_locks[] array page to be hash-for-home. */
266	if (address == (ulong) atomic_locks)
267		return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
268#endif
269#endif
270
271	/*
272	 * Everything else that isn't data or bss is heap, so mark it
273	 * with the initial heap home (hash-for-home, or this cpu).  This
274	 * includes any addresses after the loaded image and any address before
275	 * _einitdata, since we already captured the case of text before
276	 * _sinittext, and __pa(einittext) is approximately __pa(sinitdata).
277	 *
278	 * All the LOWMEM pages that we mark this way will get their
279	 * struct page homecache properly marked later, in set_page_homes().
280	 * The HIGHMEM pages we leave with a default zero for their
281	 * homes, but with a zero free_time we don't have to actually
282	 * do a flush action the first time we use them, either.
283	 */
284	if (address >= (ulong) _end || address < (ulong) _einitdata)
285		return construct_pgprot(PAGE_KERNEL, initial_heap_home());
286
287#if CHIP_HAS_CBOX_HOME_MAP()
288	/* Use hash-for-home if requested for data/bss. */
289	if (kdata_hash)
290		return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
291#endif
292
293	/*
294	 * Make the w1data homed like heap to start with, to avoid
295	 * making it part of the page-striped data area when we're just
296	 * going to convert it to read-only soon anyway.
297	 */
298	if (address >= (ulong)__w1data_begin && address < (ulong)__w1data_end)
299		return construct_pgprot(PAGE_KERNEL, initial_heap_home());
300
301	/*
302	 * Otherwise we just hand out consecutive cpus.  To avoid
303	 * requiring this function to hold state, we just walk forward from
304	 * _sdata by PAGE_SIZE, skipping the readonly and init data, to reach
305	 * the requested address, while walking cpu home around kdata_mask.
306	 * This is typically no more than a dozen or so iterations.
307	 */
308	page = (((ulong)__w1data_end) + PAGE_SIZE - 1) & PAGE_MASK;
309	BUG_ON(address < page || address >= (ulong)_end);
310	cpu = cpumask_first(&kdata_mask);
311	for (; page < address; page += PAGE_SIZE) {
312		if (page >= (ulong)&init_thread_union &&
313		    page < (ulong)&init_thread_union + THREAD_SIZE)
314			continue;
315		if (page == (ulong)empty_zero_page)
316			continue;
317#ifndef __tilegx__
318#if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
319		if (page == (ulong)atomic_locks)
320			continue;
321#endif
322#endif
323		cpu = cpumask_next(cpu, &kdata_mask);
324		if (cpu == NR_CPUS)
325			cpu = cpumask_first(&kdata_mask);
326	}
327	return construct_pgprot(PAGE_KERNEL, cpu);
328}
329
330/*
331 * This function sets up how we cache the kernel text.  If we have
332 * hash-for-home support, normally that is used instead (see the
333 * kcache_hash boot flag for more information).  But if we end up
334 * using a page-based caching technique, this option sets up the
335 * details of that.  In addition, the "ktext=nocache" option may
336 * always be used to disable local caching of text pages, if desired.
337 */
338
339static int __initdata ktext_arg_seen;
340static int __initdata ktext_small;
341static int __initdata ktext_local;
342static int __initdata ktext_all;
343static int __initdata ktext_nondataplane;
344static int __initdata ktext_nocache;
345static struct cpumask __initdata ktext_mask;
346
347static int __init setup_ktext(char *str)
348{
349	if (str == NULL)
350		return -EINVAL;
351
352	/* If you have a leading "nocache", turn off ktext caching */
353	if (strncmp(str, "nocache", 7) == 0) {
354		ktext_nocache = 1;
355		pr_info("ktext: disabling local caching of kernel text\n");
356		str += 7;
357		if (*str == ',')
358			++str;
359		if (*str == '\0')
360			return 0;
361	}
362
363	ktext_arg_seen = 1;
364
365	/* Default setting on Tile64: use a huge page */
366	if (strcmp(str, "huge") == 0)
367		pr_info("ktext: using one huge locally cached page\n");
368
369	/* Pay TLB cost but get no cache benefit: cache small pages locally */
370	else if (strcmp(str, "local") == 0) {
371		ktext_small = 1;
372		ktext_local = 1;
373		pr_info("ktext: using small pages with local caching\n");
374	}
375
376	/* Neighborhood cache ktext pages on all cpus. */
377	else if (strcmp(str, "all") == 0) {
378		ktext_small = 1;
379		ktext_all = 1;
380		pr_info("ktext: using maximal caching neighborhood\n");
381	}
382
383
384	/* Neighborhood ktext pages on specified mask */
385	else if (cpulist_parse(str, &ktext_mask) == 0) {
386		char buf[NR_CPUS * 5];
387		cpulist_scnprintf(buf, sizeof(buf), &ktext_mask);
388		if (cpumask_weight(&ktext_mask) > 1) {
389			ktext_small = 1;
390			pr_info("ktext: using caching neighborhood %s "
391			       "with small pages\n", buf);
392		} else {
393			pr_info("ktext: caching on cpu %s with one huge page\n",
394			       buf);
395		}
396	}
397
398	else if (*str)
399		return -EINVAL;
400
401	return 0;
402}
403
404early_param("ktext", setup_ktext);
405
406
407static inline pgprot_t ktext_set_nocache(pgprot_t prot)
408{
409	if (!ktext_nocache)
410		prot = hv_pte_set_nc(prot);
411#if CHIP_HAS_NC_AND_NOALLOC_BITS()
412	else
413		prot = hv_pte_set_no_alloc_l2(prot);
414#endif
415	return prot;
416}
417
418#ifndef __tilegx__
419static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
420{
421	return pmd_offset(pud_offset(&pgtables[pgd_index(va)], va), va);
422}
423#else
424static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
425{
426	pud_t *pud = pud_offset(&pgtables[pgd_index(va)], va);
427	if (pud_none(*pud))
428		assign_pmd(pud, alloc_pmd());
429	return pmd_offset(pud, va);
430}
431#endif
432
433/* Temporary page table we use for staging. */
434static pgd_t pgtables[PTRS_PER_PGD]
435 __attribute__((aligned(HV_PAGE_TABLE_ALIGN)));
436
437/*
438 * This maps the physical memory to kernel virtual address space, a total
439 * of max_low_pfn pages, by creating page tables starting from address
440 * PAGE_OFFSET.
441 *
442 * This routine transitions us from using a set of compiled-in large
443 * pages to using some more precise caching, including removing access
444 * to code pages mapped at PAGE_OFFSET (executed only at MEM_SV_START)
445 * marking read-only data as locally cacheable, striping the remaining
446 * .data and .bss across all the available tiles, and removing access
447 * to pages above the top of RAM (thus ensuring a page fault from a bad
448 * virtual address rather than a hypervisor shoot down for accessing
449 * memory outside the assigned limits).
450 */
451static void __init kernel_physical_mapping_init(pgd_t *pgd_base)
452{
453	unsigned long address, pfn;
454	pmd_t *pmd;
455	pte_t *pte;
456	int pte_ofs;
457	const struct cpumask *my_cpu_mask = cpumask_of(smp_processor_id());
458	struct cpumask kstripe_mask;
459	int rc, i;
460
461#if CHIP_HAS_CBOX_HOME_MAP()
462	if (ktext_arg_seen && ktext_hash) {
463		pr_warning("warning: \"ktext\" boot argument ignored"
464			   " if \"kcache_hash\" sets up text hash-for-home\n");
465		ktext_small = 0;
466	}
467
468	if (kdata_arg_seen && kdata_hash) {
469		pr_warning("warning: \"kdata\" boot argument ignored"
470			   " if \"kcache_hash\" sets up data hash-for-home\n");
471	}
472
473	if (kdata_huge && !hash_default) {
474		pr_warning("warning: disabling \"kdata=huge\"; requires"
475			  " kcache_hash=all or =allbutstack\n");
476		kdata_huge = 0;
477	}
478#endif
479
480	/*
481	 * Set up a mask for cpus to use for kernel striping.
482	 * This is normally all cpus, but minus dataplane cpus if any.
483	 * If the dataplane covers the whole chip, we stripe over
484	 * the whole chip too.
485	 */
486	cpumask_copy(&kstripe_mask, cpu_possible_mask);
487	if (!kdata_arg_seen)
488		kdata_mask = kstripe_mask;
489
490	/* Allocate and fill in L2 page tables */
491	for (i = 0; i < MAX_NUMNODES; ++i) {
492#ifdef CONFIG_HIGHMEM
493		unsigned long end_pfn = node_lowmem_end_pfn[i];
494#else
495		unsigned long end_pfn = node_end_pfn[i];
496#endif
497		unsigned long end_huge_pfn = 0;
498
499		/* Pre-shatter the last huge page to allow per-cpu pages. */
500		if (kdata_huge)
501			end_huge_pfn = end_pfn - (HPAGE_SIZE >> PAGE_SHIFT);
502
503		pfn = node_start_pfn[i];
504
505		/* Allocate enough memory to hold L2 page tables for node. */
506		init_prealloc_ptes(i, end_pfn - pfn);
507
508		address = (unsigned long) pfn_to_kaddr(pfn);
509		while (pfn < end_pfn) {
510			BUG_ON(address & (HPAGE_SIZE-1));
511			pmd = get_pmd(pgtables, address);
512			pte = get_prealloc_pte(pfn);
513			if (pfn < end_huge_pfn) {
514				pgprot_t prot = init_pgprot(address);
515				*(pte_t *)pmd = pte_mkhuge(pfn_pte(pfn, prot));
516				for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
517				     pfn++, pte_ofs++, address += PAGE_SIZE)
518					pte[pte_ofs] = pfn_pte(pfn, prot);
519			} else {
520				if (kdata_huge)
521					printk(KERN_DEBUG "pre-shattered huge"
522					       " page at %#lx\n", address);
523				for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
524				     pfn++, pte_ofs++, address += PAGE_SIZE) {
525					pgprot_t prot = init_pgprot(address);
526					pte[pte_ofs] = pfn_pte(pfn, prot);
527				}
528				assign_pte(pmd, pte);
529			}
530		}
531	}
532
533	/*
534	 * Set or check ktext_map now that we have cpu_possible_mask
535	 * and kstripe_mask to work with.
536	 */
537	if (ktext_all)
538		cpumask_copy(&ktext_mask, cpu_possible_mask);
539	else if (ktext_nondataplane)
540		ktext_mask = kstripe_mask;
541	else if (!cpumask_empty(&ktext_mask)) {
542		/* Sanity-check any mask that was requested */
543		struct cpumask bad;
544		cpumask_andnot(&bad, &ktext_mask, cpu_possible_mask);
545		cpumask_and(&ktext_mask, &ktext_mask, cpu_possible_mask);
546		if (!cpumask_empty(&bad)) {
547			char buf[NR_CPUS * 5];
548			cpulist_scnprintf(buf, sizeof(buf), &bad);
549			pr_info("ktext: not using unavailable cpus %s\n", buf);
550		}
551		if (cpumask_empty(&ktext_mask)) {
552			pr_warning("ktext: no valid cpus; caching on %d.\n",
553				   smp_processor_id());
554			cpumask_copy(&ktext_mask,
555				     cpumask_of(smp_processor_id()));
556		}
557	}
558
559	address = MEM_SV_INTRPT;
560	pmd = get_pmd(pgtables, address);
561	if (ktext_small) {
562		/* Allocate an L2 PTE for the kernel text */
563		int cpu = 0;
564		pgprot_t prot = construct_pgprot(PAGE_KERNEL_EXEC,
565						 PAGE_HOME_IMMUTABLE);
566
567		if (ktext_local) {
568			if (ktext_nocache)
569				prot = hv_pte_set_mode(prot,
570						       HV_PTE_MODE_UNCACHED);
571			else
572				prot = hv_pte_set_mode(prot,
573						       HV_PTE_MODE_CACHE_NO_L3);
574		} else {
575			prot = hv_pte_set_mode(prot,
576					       HV_PTE_MODE_CACHE_TILE_L3);
577			cpu = cpumask_first(&ktext_mask);
578
579			prot = ktext_set_nocache(prot);
580		}
581
582		BUG_ON(address != (unsigned long)_stext);
583		pfn = 0;  /* code starts at PA 0 */
584		pte = alloc_pte();
585		for (pte_ofs = 0; address < (unsigned long)_einittext;
586		     pfn++, pte_ofs++, address += PAGE_SIZE) {
587			if (!ktext_local) {
588				prot = set_remote_cache_cpu(prot, cpu);
589				cpu = cpumask_next(cpu, &ktext_mask);
590				if (cpu == NR_CPUS)
591					cpu = cpumask_first(&ktext_mask);
592			}
593			pte[pte_ofs] = pfn_pte(pfn, prot);
594		}
595		assign_pte(pmd, pte);
596	} else {
597		pte_t pteval = pfn_pte(0, PAGE_KERNEL_EXEC);
598		pteval = pte_mkhuge(pteval);
599#if CHIP_HAS_CBOX_HOME_MAP()
600		if (ktext_hash) {
601			pteval = hv_pte_set_mode(pteval,
602						 HV_PTE_MODE_CACHE_HASH_L3);
603			pteval = ktext_set_nocache(pteval);
604		} else
605#endif /* CHIP_HAS_CBOX_HOME_MAP() */
606		if (cpumask_weight(&ktext_mask) == 1) {
607			pteval = set_remote_cache_cpu(pteval,
608					      cpumask_first(&ktext_mask));
609			pteval = hv_pte_set_mode(pteval,
610						 HV_PTE_MODE_CACHE_TILE_L3);
611			pteval = ktext_set_nocache(pteval);
612		} else if (ktext_nocache)
613			pteval = hv_pte_set_mode(pteval,
614						 HV_PTE_MODE_UNCACHED);
615		else
616			pteval = hv_pte_set_mode(pteval,
617						 HV_PTE_MODE_CACHE_NO_L3);
618		*(pte_t *)pmd = pteval;
619	}
620
621	/* Set swapper_pgprot here so it is flushed to memory right away. */
622	swapper_pgprot = init_pgprot((unsigned long)swapper_pg_dir);
623
624	/*
625	 * Since we may be changing the caching of the stack and page
626	 * table itself, we invoke an assembly helper to do the
627	 * following steps:
628	 *
629	 *  - flush the cache so we start with an empty slate
630	 *  - install pgtables[] as the real page table
631	 *  - flush the TLB so the new page table takes effect
632	 */
633	rc = flush_and_install_context(__pa(pgtables),
634				       init_pgprot((unsigned long)pgtables),
635				       __get_cpu_var(current_asid),
636				       cpumask_bits(my_cpu_mask));
637	BUG_ON(rc != 0);
638
639	/* Copy the page table back to the normal swapper_pg_dir. */
640	memcpy(pgd_base, pgtables, sizeof(pgtables));
641	__install_page_table(pgd_base, __get_cpu_var(current_asid),
642			     swapper_pgprot);
643
644	/*
645	 * We just read swapper_pgprot and thus brought it into the cache,
646	 * with its new home & caching mode.  When we start the other CPUs,
647	 * they're going to reference swapper_pgprot via their initial fake
648	 * VA-is-PA mappings, which cache everything locally.  At that
649	 * time, if it's in our cache with a conflicting home, the
650	 * simulator's coherence checker will complain.  So, flush it out
651	 * of our cache; we're not going to ever use it again anyway.
652	 */
653	__insn_finv(&swapper_pgprot);
654}
655
656/*
657 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
658 * is valid. The argument is a physical page number.
659 *
660 * On Tile, the only valid things for which we can just hand out unchecked
661 * PTEs are the kernel code and data.  Anything else might change its
662 * homing with time, and we wouldn't know to adjust the /dev/mem PTEs.
663 * Note that init_thread_union is released to heap soon after boot,
664 * so we include it in the init data.
665 *
666 * For TILE-Gx, we might want to consider allowing access to PA
667 * regions corresponding to PCI space, etc.
668 */
669int devmem_is_allowed(unsigned long pagenr)
670{
671	return pagenr < kaddr_to_pfn(_end) &&
672		!(pagenr >= kaddr_to_pfn(&init_thread_union) ||
673		  pagenr < kaddr_to_pfn(_einitdata)) &&
674		!(pagenr >= kaddr_to_pfn(_sinittext) ||
675		  pagenr <= kaddr_to_pfn(_einittext-1));
676}
677
678#ifdef CONFIG_HIGHMEM
679static void __init permanent_kmaps_init(pgd_t *pgd_base)
680{
681	pgd_t *pgd;
682	pud_t *pud;
683	pmd_t *pmd;
684	pte_t *pte;
685	unsigned long vaddr;
686
687	vaddr = PKMAP_BASE;
688	page_table_range_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base);
689
690	pgd = swapper_pg_dir + pgd_index(vaddr);
691	pud = pud_offset(pgd, vaddr);
692	pmd = pmd_offset(pud, vaddr);
693	pte = pte_offset_kernel(pmd, vaddr);
694	pkmap_page_table = pte;
695}
696#endif /* CONFIG_HIGHMEM */
697
698
699static void __init init_free_pfn_range(unsigned long start, unsigned long end)
700{
701	unsigned long pfn;
702	struct page *page = pfn_to_page(start);
703
704	for (pfn = start; pfn < end; ) {
705		/* Optimize by freeing pages in large batches */
706		int order = __ffs(pfn);
707		int count, i;
708		struct page *p;
709
710		if (order >= MAX_ORDER)
711			order = MAX_ORDER-1;
712		count = 1 << order;
713		while (pfn + count > end) {
714			count >>= 1;
715			--order;
716		}
717		for (p = page, i = 0; i < count; ++i, ++p) {
718			__ClearPageReserved(p);
719			/*
720			 * Hacky direct set to avoid unnecessary
721			 * lock take/release for EVERY page here.
722			 */
723			p->_count.counter = 0;
724			p->_mapcount.counter = -1;
725		}
726		init_page_count(page);
727		__free_pages(page, order);
728		totalram_pages += count;
729
730		page += count;
731		pfn += count;
732	}
733}
734
735static void __init set_non_bootmem_pages_init(void)
736{
737	struct zone *z;
738	for_each_zone(z) {
739		unsigned long start, end;
740		int nid = z->zone_pgdat->node_id;
741		int idx = zone_idx(z);
742
743		start = z->zone_start_pfn;
744		if (start == 0)
745			continue;  /* bootmem */
746		end = start + z->spanned_pages;
747		if (idx == ZONE_NORMAL) {
748			BUG_ON(start != node_start_pfn[nid]);
749			start = node_free_pfn[nid];
750		}
751#ifdef CONFIG_HIGHMEM
752		if (idx == ZONE_HIGHMEM)
753			totalhigh_pages += z->spanned_pages;
754#endif
755		if (kdata_huge) {
756			unsigned long percpu_pfn = node_percpu_pfn[nid];
757			if (start < percpu_pfn && end > percpu_pfn)
758				end = percpu_pfn;
759		}
760#ifdef CONFIG_PCI
761		if (start <= pci_reserve_start_pfn &&
762		    end > pci_reserve_start_pfn) {
763			if (end > pci_reserve_end_pfn)
764				init_free_pfn_range(pci_reserve_end_pfn, end);
765			end = pci_reserve_start_pfn;
766		}
767#endif
768		init_free_pfn_range(start, end);
769	}
770}
771
772/*
773 * paging_init() sets up the page tables - note that all of lowmem is
774 * already mapped by head.S.
775 */
776void __init paging_init(void)
777{
778#ifdef CONFIG_HIGHMEM
779	unsigned long vaddr, end;
780#endif
781#ifdef __tilegx__
782	pud_t *pud;
783#endif
784	pgd_t *pgd_base = swapper_pg_dir;
785
786	kernel_physical_mapping_init(pgd_base);
787
788#ifdef CONFIG_HIGHMEM
789	/*
790	 * Fixed mappings, only the page table structure has to be
791	 * created - mappings will be set by set_fixmap():
792	 */
793	vaddr = __fix_to_virt(__end_of_fixed_addresses - 1) & PMD_MASK;
794	end = (FIXADDR_TOP + PMD_SIZE - 1) & PMD_MASK;
795	page_table_range_init(vaddr, end, pgd_base);
796	permanent_kmaps_init(pgd_base);
797#endif
798
799#ifdef __tilegx__
800	/*
801	 * Since GX allocates just one pmd_t array worth of vmalloc space,
802	 * we go ahead and allocate it statically here, then share it
803	 * globally.  As a result we don't have to worry about any task
804	 * changing init_mm once we get up and running, and there's no
805	 * need for e.g. vmalloc_sync_all().
806	 */
807	BUILD_BUG_ON(pgd_index(VMALLOC_START) != pgd_index(VMALLOC_END));
808	pud = pud_offset(pgd_base + pgd_index(VMALLOC_START), VMALLOC_START);
809	assign_pmd(pud, alloc_pmd());
810#endif
811}
812
813
814/*
815 * Walk the kernel page tables and derive the page_home() from
816 * the PTEs, so that set_pte() can properly validate the caching
817 * of all PTEs it sees.
818 */
819void __init set_page_homes(void)
820{
821}
822
823static void __init set_max_mapnr_init(void)
824{
825#ifdef CONFIG_FLATMEM
826	max_mapnr = max_low_pfn;
827#endif
828}
829
830void __init mem_init(void)
831{
832	int codesize, datasize, initsize;
833	int i;
834#ifndef __tilegx__
835	void *last;
836#endif
837
838#ifdef CONFIG_FLATMEM
839	if (!mem_map)
840		BUG();
841#endif
842
843#ifdef CONFIG_HIGHMEM
844	/* check that fixmap and pkmap do not overlap */
845	if (PKMAP_ADDR(LAST_PKMAP-1) >= FIXADDR_START) {
846		pr_err("fixmap and kmap areas overlap"
847		       " - this will crash\n");
848		pr_err("pkstart: %lxh pkend: %lxh fixstart %lxh\n",
849		       PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP-1),
850		       FIXADDR_START);
851		BUG();
852	}
853#endif
854
855	set_max_mapnr_init();
856
857	/* this will put all bootmem onto the freelists */
858	totalram_pages += free_all_bootmem();
859
860	/* count all remaining LOWMEM and give all HIGHMEM to page allocator */
861	set_non_bootmem_pages_init();
862
863	codesize =  (unsigned long)&_etext - (unsigned long)&_text;
864	datasize =  (unsigned long)&_end - (unsigned long)&_sdata;
865	initsize =  (unsigned long)&_einittext - (unsigned long)&_sinittext;
866	initsize += (unsigned long)&_einitdata - (unsigned long)&_sinitdata;
867
868	pr_info("Memory: %luk/%luk available (%dk kernel code, %dk data, %dk init, %ldk highmem)\n",
869		(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
870		num_physpages << (PAGE_SHIFT-10),
871		codesize >> 10,
872		datasize >> 10,
873		initsize >> 10,
874		(unsigned long) (totalhigh_pages << (PAGE_SHIFT-10))
875	       );
876
877	/*
878	 * In debug mode, dump some interesting memory mappings.
879	 */
880#ifdef CONFIG_HIGHMEM
881	printk(KERN_DEBUG "  KMAP    %#lx - %#lx\n",
882	       FIXADDR_START, FIXADDR_TOP + PAGE_SIZE - 1);
883	printk(KERN_DEBUG "  PKMAP   %#lx - %#lx\n",
884	       PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP) - 1);
885#endif
886#ifdef CONFIG_HUGEVMAP
887	printk(KERN_DEBUG "  HUGEMAP %#lx - %#lx\n",
888	       HUGE_VMAP_BASE, HUGE_VMAP_END - 1);
889#endif
890	printk(KERN_DEBUG "  VMALLOC %#lx - %#lx\n",
891	       _VMALLOC_START, _VMALLOC_END - 1);
892#ifdef __tilegx__
893	for (i = MAX_NUMNODES-1; i >= 0; --i) {
894		struct pglist_data *node = &node_data[i];
895		if (node->node_present_pages) {
896			unsigned long start = (unsigned long)
897				pfn_to_kaddr(node->node_start_pfn);
898			unsigned long end = start +
899				(node->node_present_pages << PAGE_SHIFT);
900			printk(KERN_DEBUG "  MEM%d    %#lx - %#lx\n",
901			       i, start, end - 1);
902		}
903	}
904#else
905	last = high_memory;
906	for (i = MAX_NUMNODES-1; i >= 0; --i) {
907		if ((unsigned long)vbase_map[i] != -1UL) {
908			printk(KERN_DEBUG "  LOWMEM%d %#lx - %#lx\n",
909			       i, (unsigned long) (vbase_map[i]),
910			       (unsigned long) (last-1));
911			last = vbase_map[i];
912		}
913	}
914#endif
915
916#ifndef __tilegx__
917	/*
918	 * Convert from using one lock for all atomic operations to
919	 * one per cpu.
920	 */
921	__init_atomic_per_cpu();
922#endif
923}
924
925/*
926 * this is for the non-NUMA, single node SMP system case.
927 * Specifically, in the case of x86, we will always add
928 * memory to the highmem for now.
929 */
930#ifndef CONFIG_NEED_MULTIPLE_NODES
931int arch_add_memory(u64 start, u64 size)
932{
933	struct pglist_data *pgdata = &contig_page_data;
934	struct zone *zone = pgdata->node_zones + MAX_NR_ZONES-1;
935	unsigned long start_pfn = start >> PAGE_SHIFT;
936	unsigned long nr_pages = size >> PAGE_SHIFT;
937
938	return __add_pages(zone, start_pfn, nr_pages);
939}
940
941int remove_memory(u64 start, u64 size)
942{
943	return -EINVAL;
944}
945#endif
946
947struct kmem_cache *pgd_cache;
948
949void __init pgtable_cache_init(void)
950{
951	pgd_cache = kmem_cache_create("pgd", SIZEOF_PGD, SIZEOF_PGD, 0, NULL);
952	if (!pgd_cache)
953		panic("pgtable_cache_init(): Cannot create pgd cache");
954}
955
956#if !CHIP_HAS_COHERENT_LOCAL_CACHE()
957/*
958 * The __w1data area holds data that is only written during initialization,
959 * and is read-only and thus freely cacheable thereafter.  Fix the page
960 * table entries that cover that region accordingly.
961 */
962static void mark_w1data_ro(void)
963{
964	/* Loop over page table entries */
965	unsigned long addr = (unsigned long)__w1data_begin;
966	BUG_ON((addr & (PAGE_SIZE-1)) != 0);
967	for (; addr <= (unsigned long)__w1data_end - 1; addr += PAGE_SIZE) {
968		unsigned long pfn = kaddr_to_pfn((void *)addr);
969		pte_t *ptep = virt_to_pte(NULL, addr);
970		BUG_ON(pte_huge(*ptep));   /* not relevant for kdata_huge */
971		set_pte_at(&init_mm, addr, ptep, pfn_pte(pfn, PAGE_KERNEL_RO));
972	}
973}
974#endif
975
976#ifdef CONFIG_DEBUG_PAGEALLOC
977static long __write_once initfree;
978#else
979static long __write_once initfree = 1;
980#endif
981
982/* Select whether to free (1) or mark unusable (0) the __init pages. */
983static int __init set_initfree(char *str)
984{
985	long val;
986	if (strict_strtol(str, 0, &val) == 0) {
987		initfree = val;
988		pr_info("initfree: %s free init pages\n",
989			initfree ? "will" : "won't");
990	}
991	return 1;
992}
993__setup("initfree=", set_initfree);
994
995static void free_init_pages(char *what, unsigned long begin, unsigned long end)
996{
997	unsigned long addr = (unsigned long) begin;
998
999	if (kdata_huge && !initfree) {
1000		pr_warning("Warning: ignoring initfree=0:"
1001			   " incompatible with kdata=huge\n");
1002		initfree = 1;
1003	}
1004	end = (end + PAGE_SIZE - 1) & PAGE_MASK;
1005	local_flush_tlb_pages(NULL, begin, PAGE_SIZE, end - begin);
1006	for (addr = begin; addr < end; addr += PAGE_SIZE) {
1007		/*
1008		 * Note we just reset the home here directly in the
1009		 * page table.  We know this is safe because our caller
1010		 * just flushed the caches on all the other cpus,
1011		 * and they won't be touching any of these pages.
1012		 */
1013		int pfn = kaddr_to_pfn((void *)addr);
1014		struct page *page = pfn_to_page(pfn);
1015		pte_t *ptep = virt_to_pte(NULL, addr);
1016		if (!initfree) {
1017			/*
1018			 * If debugging page accesses then do not free
1019			 * this memory but mark them not present - any
1020			 * buggy init-section access will create a
1021			 * kernel page fault:
1022			 */
1023			pte_clear(&init_mm, addr, ptep);
1024			continue;
1025		}
1026		__ClearPageReserved(page);
1027		init_page_count(page);
1028		if (pte_huge(*ptep))
1029			BUG_ON(!kdata_huge);
1030		else
1031			set_pte_at(&init_mm, addr, ptep,
1032				   pfn_pte(pfn, PAGE_KERNEL));
1033		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1034		free_page(addr);
1035		totalram_pages++;
1036	}
1037	pr_info("Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
1038}
1039
1040void free_initmem(void)
1041{
1042	const unsigned long text_delta = MEM_SV_INTRPT - PAGE_OFFSET;
1043
1044	/*
1045	 * Evict the dirty initdata on the boot cpu, evict the w1data
1046	 * wherever it's homed, and evict all the init code everywhere.
1047	 * We are guaranteed that no one will touch the init pages any
1048	 * more, and although other cpus may be touching the w1data,
1049	 * we only actually change the caching on tile64, which won't
1050	 * be keeping local copies in the other tiles' caches anyway.
1051	 */
1052	homecache_evict(&cpu_cacheable_map);
1053
1054	/* Free the data pages that we won't use again after init. */
1055	free_init_pages("unused kernel data",
1056			(unsigned long)_sinitdata,
1057			(unsigned long)_einitdata);
1058
1059	/*
1060	 * Free the pages mapped from 0xc0000000 that correspond to code
1061	 * pages from MEM_SV_INTRPT that we won't use again after init.
1062	 */
1063	free_init_pages("unused kernel text",
1064			(unsigned long)_sinittext - text_delta,
1065			(unsigned long)_einittext - text_delta);
1066
1067#if !CHIP_HAS_COHERENT_LOCAL_CACHE()
1068	/*
1069	 * Upgrade the .w1data section to globally cached.
1070	 * We don't do this on tilepro, since the cache architecture
1071	 * pretty much makes it irrelevant, and in any case we end
1072	 * up having racing issues with other tiles that may touch
1073	 * the data after we flush the cache but before we update
1074	 * the PTEs and flush the TLBs, causing sharer shootdowns
1075	 * later.  Even though this is to clean data, it seems like
1076	 * an unnecessary complication.
1077	 */
1078	mark_w1data_ro();
1079#endif
1080
1081	/* Do a global TLB flush so everyone sees the changes. */
1082	flush_tlb_all();
1083}
1084