1/*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10#include <linux/thread_info.h>
11#include <linux/capability.h>
12#include <linux/miscdevice.h>
13#include <linux/ratelimit.h>
14#include <linux/kallsyms.h>
15#include <linux/rcupdate.h>
16#include <linux/kobject.h>
17#include <linux/uaccess.h>
18#include <linux/kdebug.h>
19#include <linux/kernel.h>
20#include <linux/percpu.h>
21#include <linux/string.h>
22#include <linux/device.h>
23#include <linux/syscore_ops.h>
24#include <linux/delay.h>
25#include <linux/ctype.h>
26#include <linux/sched.h>
27#include <linux/sysfs.h>
28#include <linux/types.h>
29#include <linux/slab.h>
30#include <linux/init.h>
31#include <linux/kmod.h>
32#include <linux/poll.h>
33#include <linux/nmi.h>
34#include <linux/cpu.h>
35#include <linux/smp.h>
36#include <linux/fs.h>
37#include <linux/mm.h>
38#include <linux/debugfs.h>
39#include <linux/irq_work.h>
40#include <linux/export.h>
41
42#include <asm/processor.h>
43#include <asm/mce.h>
44#include <asm/msr.h>
45
46#include "mce-internal.h"
47
48static DEFINE_MUTEX(mce_chrdev_read_mutex);
49
50#define rcu_dereference_check_mce(p) \
51	rcu_dereference_index_check((p), \
52			      rcu_read_lock_sched_held() || \
53			      lockdep_is_held(&mce_chrdev_read_mutex))
54
55#define CREATE_TRACE_POINTS
56#include <trace/events/mce.h>
57
58int mce_disabled __read_mostly;
59
60#define MISC_MCELOG_MINOR	227
61
62#define SPINUNIT 100	/* 100ns */
63
64atomic_t mce_entry;
65
66DEFINE_PER_CPU(unsigned, mce_exception_count);
67
68/*
69 * Tolerant levels:
70 *   0: always panic on uncorrected errors, log corrected errors
71 *   1: panic or SIGBUS on uncorrected errors, log corrected errors
72 *   2: SIGBUS or log uncorrected errors (if possible), log corrected errors
73 *   3: never panic or SIGBUS, log all errors (for testing only)
74 */
75static int			tolerant		__read_mostly = 1;
76static int			banks			__read_mostly;
77static int			rip_msr			__read_mostly;
78static int			mce_bootlog		__read_mostly = -1;
79static int			monarch_timeout		__read_mostly = -1;
80static int			mce_panic_timeout	__read_mostly;
81static int			mce_dont_log_ce		__read_mostly;
82int				mce_cmci_disabled	__read_mostly;
83int				mce_ignore_ce		__read_mostly;
84int				mce_ser			__read_mostly;
85
86struct mce_bank                *mce_banks		__read_mostly;
87
88/* User mode helper program triggered by machine check event */
89static unsigned long		mce_need_notify;
90static char			mce_helper[128];
91static char			*mce_helper_argv[2] = { mce_helper, NULL };
92
93static DECLARE_WAIT_QUEUE_HEAD(mce_chrdev_wait);
94
95static DEFINE_PER_CPU(struct mce, mces_seen);
96static int			cpu_missing;
97
98/* MCA banks polled by the period polling timer for corrected events */
99DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
100	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
101};
102
103static DEFINE_PER_CPU(struct work_struct, mce_work);
104
105/*
106 * CPU/chipset specific EDAC code can register a notifier call here to print
107 * MCE errors in a human-readable form.
108 */
109ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
110
111/* Do initial initialization of a struct mce */
112void mce_setup(struct mce *m)
113{
114	memset(m, 0, sizeof(struct mce));
115	m->cpu = m->extcpu = smp_processor_id();
116	rdtscll(m->tsc);
117	/* We hope get_seconds stays lockless */
118	m->time = get_seconds();
119	m->cpuvendor = boot_cpu_data.x86_vendor;
120	m->cpuid = cpuid_eax(1);
121	m->socketid = cpu_data(m->extcpu).phys_proc_id;
122	m->apicid = cpu_data(m->extcpu).initial_apicid;
123	rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
124}
125
126DEFINE_PER_CPU(struct mce, injectm);
127EXPORT_PER_CPU_SYMBOL_GPL(injectm);
128
129/*
130 * Lockless MCE logging infrastructure.
131 * This avoids deadlocks on printk locks without having to break locks. Also
132 * separate MCEs from kernel messages to avoid bogus bug reports.
133 */
134
135static struct mce_log mcelog = {
136	.signature	= MCE_LOG_SIGNATURE,
137	.len		= MCE_LOG_LEN,
138	.recordlen	= sizeof(struct mce),
139};
140
141void mce_log(struct mce *mce)
142{
143	unsigned next, entry;
144	int ret = 0;
145
146	/* Emit the trace record: */
147	trace_mce_record(mce);
148
149	ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, mce);
150	if (ret == NOTIFY_STOP)
151		return;
152
153	mce->finished = 0;
154	wmb();
155	for (;;) {
156		entry = rcu_dereference_check_mce(mcelog.next);
157		for (;;) {
158
159			/*
160			 * When the buffer fills up discard new entries.
161			 * Assume that the earlier errors are the more
162			 * interesting ones:
163			 */
164			if (entry >= MCE_LOG_LEN) {
165				set_bit(MCE_OVERFLOW,
166					(unsigned long *)&mcelog.flags);
167				return;
168			}
169			/* Old left over entry. Skip: */
170			if (mcelog.entry[entry].finished) {
171				entry++;
172				continue;
173			}
174			break;
175		}
176		smp_rmb();
177		next = entry + 1;
178		if (cmpxchg(&mcelog.next, entry, next) == entry)
179			break;
180	}
181	memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
182	wmb();
183	mcelog.entry[entry].finished = 1;
184	wmb();
185
186	mce->finished = 1;
187	set_bit(0, &mce_need_notify);
188}
189
190static void drain_mcelog_buffer(void)
191{
192	unsigned int next, i, prev = 0;
193
194	next = ACCESS_ONCE(mcelog.next);
195
196	do {
197		struct mce *m;
198
199		/* drain what was logged during boot */
200		for (i = prev; i < next; i++) {
201			unsigned long start = jiffies;
202			unsigned retries = 1;
203
204			m = &mcelog.entry[i];
205
206			while (!m->finished) {
207				if (time_after_eq(jiffies, start + 2*retries))
208					retries++;
209
210				cpu_relax();
211
212				if (!m->finished && retries >= 4) {
213					pr_err("MCE: skipping error being logged currently!\n");
214					break;
215				}
216			}
217			smp_rmb();
218			atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
219		}
220
221		memset(mcelog.entry + prev, 0, (next - prev) * sizeof(*m));
222		prev = next;
223		next = cmpxchg(&mcelog.next, prev, 0);
224	} while (next != prev);
225}
226
227
228void mce_register_decode_chain(struct notifier_block *nb)
229{
230	atomic_notifier_chain_register(&x86_mce_decoder_chain, nb);
231	drain_mcelog_buffer();
232}
233EXPORT_SYMBOL_GPL(mce_register_decode_chain);
234
235void mce_unregister_decode_chain(struct notifier_block *nb)
236{
237	atomic_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
238}
239EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
240
241static void print_mce(struct mce *m)
242{
243	int ret = 0;
244
245	pr_emerg(HW_ERR "CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
246	       m->extcpu, m->mcgstatus, m->bank, m->status);
247
248	if (m->ip) {
249		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
250			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
251				m->cs, m->ip);
252
253		if (m->cs == __KERNEL_CS)
254			print_symbol("{%s}", m->ip);
255		pr_cont("\n");
256	}
257
258	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
259	if (m->addr)
260		pr_cont("ADDR %llx ", m->addr);
261	if (m->misc)
262		pr_cont("MISC %llx ", m->misc);
263
264	pr_cont("\n");
265	/*
266	 * Note this output is parsed by external tools and old fields
267	 * should not be changed.
268	 */
269	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
270		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
271		cpu_data(m->extcpu).microcode);
272
273	/*
274	 * Print out human-readable details about the MCE error,
275	 * (if the CPU has an implementation for that)
276	 */
277	ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
278	if (ret == NOTIFY_STOP)
279		return;
280
281	pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
282}
283
284#define PANIC_TIMEOUT 5 /* 5 seconds */
285
286static atomic_t mce_paniced;
287
288static int fake_panic;
289static atomic_t mce_fake_paniced;
290
291/* Panic in progress. Enable interrupts and wait for final IPI */
292static void wait_for_panic(void)
293{
294	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
295
296	preempt_disable();
297	local_irq_enable();
298	while (timeout-- > 0)
299		udelay(1);
300	if (panic_timeout == 0)
301		panic_timeout = mce_panic_timeout;
302	panic("Panicing machine check CPU died");
303}
304
305static void mce_panic(char *msg, struct mce *final, char *exp)
306{
307	int i, apei_err = 0;
308
309	if (!fake_panic) {
310		/*
311		 * Make sure only one CPU runs in machine check panic
312		 */
313		if (atomic_inc_return(&mce_paniced) > 1)
314			wait_for_panic();
315		barrier();
316
317		bust_spinlocks(1);
318		console_verbose();
319	} else {
320		/* Don't log too much for fake panic */
321		if (atomic_inc_return(&mce_fake_paniced) > 1)
322			return;
323	}
324	/* First print corrected ones that are still unlogged */
325	for (i = 0; i < MCE_LOG_LEN; i++) {
326		struct mce *m = &mcelog.entry[i];
327		if (!(m->status & MCI_STATUS_VAL))
328			continue;
329		if (!(m->status & MCI_STATUS_UC)) {
330			print_mce(m);
331			if (!apei_err)
332				apei_err = apei_write_mce(m);
333		}
334	}
335	/* Now print uncorrected but with the final one last */
336	for (i = 0; i < MCE_LOG_LEN; i++) {
337		struct mce *m = &mcelog.entry[i];
338		if (!(m->status & MCI_STATUS_VAL))
339			continue;
340		if (!(m->status & MCI_STATUS_UC))
341			continue;
342		if (!final || memcmp(m, final, sizeof(struct mce))) {
343			print_mce(m);
344			if (!apei_err)
345				apei_err = apei_write_mce(m);
346		}
347	}
348	if (final) {
349		print_mce(final);
350		if (!apei_err)
351			apei_err = apei_write_mce(final);
352	}
353	if (cpu_missing)
354		pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
355	if (exp)
356		pr_emerg(HW_ERR "Machine check: %s\n", exp);
357	if (!fake_panic) {
358		if (panic_timeout == 0)
359			panic_timeout = mce_panic_timeout;
360		panic(msg);
361	} else
362		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
363}
364
365/* Support code for software error injection */
366
367static int msr_to_offset(u32 msr)
368{
369	unsigned bank = __this_cpu_read(injectm.bank);
370
371	if (msr == rip_msr)
372		return offsetof(struct mce, ip);
373	if (msr == MSR_IA32_MCx_STATUS(bank))
374		return offsetof(struct mce, status);
375	if (msr == MSR_IA32_MCx_ADDR(bank))
376		return offsetof(struct mce, addr);
377	if (msr == MSR_IA32_MCx_MISC(bank))
378		return offsetof(struct mce, misc);
379	if (msr == MSR_IA32_MCG_STATUS)
380		return offsetof(struct mce, mcgstatus);
381	return -1;
382}
383
384/* MSR access wrappers used for error injection */
385static u64 mce_rdmsrl(u32 msr)
386{
387	u64 v;
388
389	if (__this_cpu_read(injectm.finished)) {
390		int offset = msr_to_offset(msr);
391
392		if (offset < 0)
393			return 0;
394		return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
395	}
396
397	if (rdmsrl_safe(msr, &v)) {
398		WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
399		/*
400		 * Return zero in case the access faulted. This should
401		 * not happen normally but can happen if the CPU does
402		 * something weird, or if the code is buggy.
403		 */
404		v = 0;
405	}
406
407	return v;
408}
409
410static void mce_wrmsrl(u32 msr, u64 v)
411{
412	if (__this_cpu_read(injectm.finished)) {
413		int offset = msr_to_offset(msr);
414
415		if (offset >= 0)
416			*(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
417		return;
418	}
419	wrmsrl(msr, v);
420}
421
422/*
423 * Collect all global (w.r.t. this processor) status about this machine
424 * check into our "mce" struct so that we can use it later to assess
425 * the severity of the problem as we read per-bank specific details.
426 */
427static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
428{
429	mce_setup(m);
430
431	m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
432	if (regs) {
433		/*
434		 * Get the address of the instruction at the time of
435		 * the machine check error.
436		 */
437		if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
438			m->ip = regs->ip;
439			m->cs = regs->cs;
440
441			/*
442			 * When in VM86 mode make the cs look like ring 3
443			 * always. This is a lie, but it's better than passing
444			 * the additional vm86 bit around everywhere.
445			 */
446			if (v8086_mode(regs))
447				m->cs |= 3;
448		}
449		/* Use accurate RIP reporting if available. */
450		if (rip_msr)
451			m->ip = mce_rdmsrl(rip_msr);
452	}
453}
454
455/*
456 * Simple lockless ring to communicate PFNs from the exception handler with the
457 * process context work function. This is vastly simplified because there's
458 * only a single reader and a single writer.
459 */
460#define MCE_RING_SIZE 16	/* we use one entry less */
461
462struct mce_ring {
463	unsigned short start;
464	unsigned short end;
465	unsigned long ring[MCE_RING_SIZE];
466};
467static DEFINE_PER_CPU(struct mce_ring, mce_ring);
468
469/* Runs with CPU affinity in workqueue */
470static int mce_ring_empty(void)
471{
472	struct mce_ring *r = &__get_cpu_var(mce_ring);
473
474	return r->start == r->end;
475}
476
477static int mce_ring_get(unsigned long *pfn)
478{
479	struct mce_ring *r;
480	int ret = 0;
481
482	*pfn = 0;
483	get_cpu();
484	r = &__get_cpu_var(mce_ring);
485	if (r->start == r->end)
486		goto out;
487	*pfn = r->ring[r->start];
488	r->start = (r->start + 1) % MCE_RING_SIZE;
489	ret = 1;
490out:
491	put_cpu();
492	return ret;
493}
494
495/* Always runs in MCE context with preempt off */
496static int mce_ring_add(unsigned long pfn)
497{
498	struct mce_ring *r = &__get_cpu_var(mce_ring);
499	unsigned next;
500
501	next = (r->end + 1) % MCE_RING_SIZE;
502	if (next == r->start)
503		return -1;
504	r->ring[r->end] = pfn;
505	wmb();
506	r->end = next;
507	return 0;
508}
509
510int mce_available(struct cpuinfo_x86 *c)
511{
512	if (mce_disabled)
513		return 0;
514	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
515}
516
517static void mce_schedule_work(void)
518{
519	if (!mce_ring_empty()) {
520		struct work_struct *work = &__get_cpu_var(mce_work);
521		if (!work_pending(work))
522			schedule_work(work);
523	}
524}
525
526DEFINE_PER_CPU(struct irq_work, mce_irq_work);
527
528static void mce_irq_work_cb(struct irq_work *entry)
529{
530	mce_notify_irq();
531	mce_schedule_work();
532}
533
534static void mce_report_event(struct pt_regs *regs)
535{
536	if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
537		mce_notify_irq();
538		/*
539		 * Triggering the work queue here is just an insurance
540		 * policy in case the syscall exit notify handler
541		 * doesn't run soon enough or ends up running on the
542		 * wrong CPU (can happen when audit sleeps)
543		 */
544		mce_schedule_work();
545		return;
546	}
547
548	irq_work_queue(&__get_cpu_var(mce_irq_work));
549}
550
551/*
552 * Read ADDR and MISC registers.
553 */
554static void mce_read_aux(struct mce *m, int i)
555{
556	if (m->status & MCI_STATUS_MISCV)
557		m->misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
558	if (m->status & MCI_STATUS_ADDRV) {
559		m->addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
560
561		/*
562		 * Mask the reported address by the reported granularity.
563		 */
564		if (mce_ser && (m->status & MCI_STATUS_MISCV)) {
565			u8 shift = MCI_MISC_ADDR_LSB(m->misc);
566			m->addr >>= shift;
567			m->addr <<= shift;
568		}
569	}
570}
571
572DEFINE_PER_CPU(unsigned, mce_poll_count);
573
574/*
575 * Poll for corrected events or events that happened before reset.
576 * Those are just logged through /dev/mcelog.
577 *
578 * This is executed in standard interrupt context.
579 *
580 * Note: spec recommends to panic for fatal unsignalled
581 * errors here. However this would be quite problematic --
582 * we would need to reimplement the Monarch handling and
583 * it would mess up the exclusion between exception handler
584 * and poll hander -- * so we skip this for now.
585 * These cases should not happen anyways, or only when the CPU
586 * is already totally * confused. In this case it's likely it will
587 * not fully execute the machine check handler either.
588 */
589void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
590{
591	struct mce m;
592	int i;
593
594	percpu_inc(mce_poll_count);
595
596	mce_gather_info(&m, NULL);
597
598	for (i = 0; i < banks; i++) {
599		if (!mce_banks[i].ctl || !test_bit(i, *b))
600			continue;
601
602		m.misc = 0;
603		m.addr = 0;
604		m.bank = i;
605		m.tsc = 0;
606
607		barrier();
608		m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
609		if (!(m.status & MCI_STATUS_VAL))
610			continue;
611
612		/*
613		 * Uncorrected or signalled events are handled by the exception
614		 * handler when it is enabled, so don't process those here.
615		 *
616		 * TBD do the same check for MCI_STATUS_EN here?
617		 */
618		if (!(flags & MCP_UC) &&
619		    (m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)))
620			continue;
621
622		mce_read_aux(&m, i);
623
624		if (!(flags & MCP_TIMESTAMP))
625			m.tsc = 0;
626		/*
627		 * Don't get the IP here because it's unlikely to
628		 * have anything to do with the actual error location.
629		 */
630		if (!(flags & MCP_DONTLOG) && !mce_dont_log_ce)
631			mce_log(&m);
632
633		/*
634		 * Clear state for this bank.
635		 */
636		mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
637	}
638
639	/*
640	 * Don't clear MCG_STATUS here because it's only defined for
641	 * exceptions.
642	 */
643
644	sync_core();
645}
646EXPORT_SYMBOL_GPL(machine_check_poll);
647
648/*
649 * Do a quick check if any of the events requires a panic.
650 * This decides if we keep the events around or clear them.
651 */
652static int mce_no_way_out(struct mce *m, char **msg)
653{
654	int i;
655
656	for (i = 0; i < banks; i++) {
657		m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
658		if (mce_severity(m, tolerant, msg) >= MCE_PANIC_SEVERITY)
659			return 1;
660	}
661	return 0;
662}
663
664/*
665 * Variable to establish order between CPUs while scanning.
666 * Each CPU spins initially until executing is equal its number.
667 */
668static atomic_t mce_executing;
669
670/*
671 * Defines order of CPUs on entry. First CPU becomes Monarch.
672 */
673static atomic_t mce_callin;
674
675/*
676 * Check if a timeout waiting for other CPUs happened.
677 */
678static int mce_timed_out(u64 *t)
679{
680	/*
681	 * The others already did panic for some reason.
682	 * Bail out like in a timeout.
683	 * rmb() to tell the compiler that system_state
684	 * might have been modified by someone else.
685	 */
686	rmb();
687	if (atomic_read(&mce_paniced))
688		wait_for_panic();
689	if (!monarch_timeout)
690		goto out;
691	if ((s64)*t < SPINUNIT) {
692		/* CHECKME: Make panic default for 1 too? */
693		if (tolerant < 1)
694			mce_panic("Timeout synchronizing machine check over CPUs",
695				  NULL, NULL);
696		cpu_missing = 1;
697		return 1;
698	}
699	*t -= SPINUNIT;
700out:
701	touch_nmi_watchdog();
702	return 0;
703}
704
705/*
706 * The Monarch's reign.  The Monarch is the CPU who entered
707 * the machine check handler first. It waits for the others to
708 * raise the exception too and then grades them. When any
709 * error is fatal panic. Only then let the others continue.
710 *
711 * The other CPUs entering the MCE handler will be controlled by the
712 * Monarch. They are called Subjects.
713 *
714 * This way we prevent any potential data corruption in a unrecoverable case
715 * and also makes sure always all CPU's errors are examined.
716 *
717 * Also this detects the case of a machine check event coming from outer
718 * space (not detected by any CPUs) In this case some external agent wants
719 * us to shut down, so panic too.
720 *
721 * The other CPUs might still decide to panic if the handler happens
722 * in a unrecoverable place, but in this case the system is in a semi-stable
723 * state and won't corrupt anything by itself. It's ok to let the others
724 * continue for a bit first.
725 *
726 * All the spin loops have timeouts; when a timeout happens a CPU
727 * typically elects itself to be Monarch.
728 */
729static void mce_reign(void)
730{
731	int cpu;
732	struct mce *m = NULL;
733	int global_worst = 0;
734	char *msg = NULL;
735	char *nmsg = NULL;
736
737	/*
738	 * This CPU is the Monarch and the other CPUs have run
739	 * through their handlers.
740	 * Grade the severity of the errors of all the CPUs.
741	 */
742	for_each_possible_cpu(cpu) {
743		int severity = mce_severity(&per_cpu(mces_seen, cpu), tolerant,
744					    &nmsg);
745		if (severity > global_worst) {
746			msg = nmsg;
747			global_worst = severity;
748			m = &per_cpu(mces_seen, cpu);
749		}
750	}
751
752	/*
753	 * Cannot recover? Panic here then.
754	 * This dumps all the mces in the log buffer and stops the
755	 * other CPUs.
756	 */
757	if (m && global_worst >= MCE_PANIC_SEVERITY && tolerant < 3)
758		mce_panic("Fatal Machine check", m, msg);
759
760	/*
761	 * For UC somewhere we let the CPU who detects it handle it.
762	 * Also must let continue the others, otherwise the handling
763	 * CPU could deadlock on a lock.
764	 */
765
766	/*
767	 * No machine check event found. Must be some external
768	 * source or one CPU is hung. Panic.
769	 */
770	if (global_worst <= MCE_KEEP_SEVERITY && tolerant < 3)
771		mce_panic("Machine check from unknown source", NULL, NULL);
772
773	/*
774	 * Now clear all the mces_seen so that they don't reappear on
775	 * the next mce.
776	 */
777	for_each_possible_cpu(cpu)
778		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
779}
780
781static atomic_t global_nwo;
782
783/*
784 * Start of Monarch synchronization. This waits until all CPUs have
785 * entered the exception handler and then determines if any of them
786 * saw a fatal event that requires panic. Then it executes them
787 * in the entry order.
788 * TBD double check parallel CPU hotunplug
789 */
790static int mce_start(int *no_way_out)
791{
792	int order;
793	int cpus = num_online_cpus();
794	u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
795
796	if (!timeout)
797		return -1;
798
799	atomic_add(*no_way_out, &global_nwo);
800	/*
801	 * global_nwo should be updated before mce_callin
802	 */
803	smp_wmb();
804	order = atomic_inc_return(&mce_callin);
805
806	/*
807	 * Wait for everyone.
808	 */
809	while (atomic_read(&mce_callin) != cpus) {
810		if (mce_timed_out(&timeout)) {
811			atomic_set(&global_nwo, 0);
812			return -1;
813		}
814		ndelay(SPINUNIT);
815	}
816
817	/*
818	 * mce_callin should be read before global_nwo
819	 */
820	smp_rmb();
821
822	if (order == 1) {
823		/*
824		 * Monarch: Starts executing now, the others wait.
825		 */
826		atomic_set(&mce_executing, 1);
827	} else {
828		/*
829		 * Subject: Now start the scanning loop one by one in
830		 * the original callin order.
831		 * This way when there are any shared banks it will be
832		 * only seen by one CPU before cleared, avoiding duplicates.
833		 */
834		while (atomic_read(&mce_executing) < order) {
835			if (mce_timed_out(&timeout)) {
836				atomic_set(&global_nwo, 0);
837				return -1;
838			}
839			ndelay(SPINUNIT);
840		}
841	}
842
843	/*
844	 * Cache the global no_way_out state.
845	 */
846	*no_way_out = atomic_read(&global_nwo);
847
848	return order;
849}
850
851/*
852 * Synchronize between CPUs after main scanning loop.
853 * This invokes the bulk of the Monarch processing.
854 */
855static int mce_end(int order)
856{
857	int ret = -1;
858	u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
859
860	if (!timeout)
861		goto reset;
862	if (order < 0)
863		goto reset;
864
865	/*
866	 * Allow others to run.
867	 */
868	atomic_inc(&mce_executing);
869
870	if (order == 1) {
871		/* CHECKME: Can this race with a parallel hotplug? */
872		int cpus = num_online_cpus();
873
874		/*
875		 * Monarch: Wait for everyone to go through their scanning
876		 * loops.
877		 */
878		while (atomic_read(&mce_executing) <= cpus) {
879			if (mce_timed_out(&timeout))
880				goto reset;
881			ndelay(SPINUNIT);
882		}
883
884		mce_reign();
885		barrier();
886		ret = 0;
887	} else {
888		/*
889		 * Subject: Wait for Monarch to finish.
890		 */
891		while (atomic_read(&mce_executing) != 0) {
892			if (mce_timed_out(&timeout))
893				goto reset;
894			ndelay(SPINUNIT);
895		}
896
897		/*
898		 * Don't reset anything. That's done by the Monarch.
899		 */
900		return 0;
901	}
902
903	/*
904	 * Reset all global state.
905	 */
906reset:
907	atomic_set(&global_nwo, 0);
908	atomic_set(&mce_callin, 0);
909	barrier();
910
911	/*
912	 * Let others run again.
913	 */
914	atomic_set(&mce_executing, 0);
915	return ret;
916}
917
918/*
919 * Check if the address reported by the CPU is in a format we can parse.
920 * It would be possible to add code for most other cases, but all would
921 * be somewhat complicated (e.g. segment offset would require an instruction
922 * parser). So only support physical addresses up to page granuality for now.
923 */
924static int mce_usable_address(struct mce *m)
925{
926	if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
927		return 0;
928	if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
929		return 0;
930	if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
931		return 0;
932	return 1;
933}
934
935static void mce_clear_state(unsigned long *toclear)
936{
937	int i;
938
939	for (i = 0; i < banks; i++) {
940		if (test_bit(i, toclear))
941			mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
942	}
943}
944
945/*
946 * Need to save faulting physical address associated with a process
947 * in the machine check handler some place where we can grab it back
948 * later in mce_notify_process()
949 */
950#define	MCE_INFO_MAX	16
951
952struct mce_info {
953	atomic_t		inuse;
954	struct task_struct	*t;
955	__u64			paddr;
956	int			restartable;
957} mce_info[MCE_INFO_MAX];
958
959static void mce_save_info(__u64 addr, int c)
960{
961	struct mce_info *mi;
962
963	for (mi = mce_info; mi < &mce_info[MCE_INFO_MAX]; mi++) {
964		if (atomic_cmpxchg(&mi->inuse, 0, 1) == 0) {
965			mi->t = current;
966			mi->paddr = addr;
967			mi->restartable = c;
968			return;
969		}
970	}
971
972	mce_panic("Too many concurrent recoverable errors", NULL, NULL);
973}
974
975static struct mce_info *mce_find_info(void)
976{
977	struct mce_info *mi;
978
979	for (mi = mce_info; mi < &mce_info[MCE_INFO_MAX]; mi++)
980		if (atomic_read(&mi->inuse) && mi->t == current)
981			return mi;
982	return NULL;
983}
984
985static void mce_clear_info(struct mce_info *mi)
986{
987	atomic_set(&mi->inuse, 0);
988}
989
990/*
991 * The actual machine check handler. This only handles real
992 * exceptions when something got corrupted coming in through int 18.
993 *
994 * This is executed in NMI context not subject to normal locking rules. This
995 * implies that most kernel services cannot be safely used. Don't even
996 * think about putting a printk in there!
997 *
998 * On Intel systems this is entered on all CPUs in parallel through
999 * MCE broadcast. However some CPUs might be broken beyond repair,
1000 * so be always careful when synchronizing with others.
1001 */
1002void do_machine_check(struct pt_regs *regs, long error_code)
1003{
1004	struct mce m, *final;
1005	int i;
1006	int worst = 0;
1007	int severity;
1008	/*
1009	 * Establish sequential order between the CPUs entering the machine
1010	 * check handler.
1011	 */
1012	int order;
1013	/*
1014	 * If no_way_out gets set, there is no safe way to recover from this
1015	 * MCE.  If tolerant is cranked up, we'll try anyway.
1016	 */
1017	int no_way_out = 0;
1018	/*
1019	 * If kill_it gets set, there might be a way to recover from this
1020	 * error.
1021	 */
1022	int kill_it = 0;
1023	DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1024	char *msg = "Unknown";
1025
1026	atomic_inc(&mce_entry);
1027
1028	percpu_inc(mce_exception_count);
1029
1030	if (!banks)
1031		goto out;
1032
1033	mce_gather_info(&m, regs);
1034
1035	final = &__get_cpu_var(mces_seen);
1036	*final = m;
1037
1038	no_way_out = mce_no_way_out(&m, &msg);
1039
1040	barrier();
1041
1042	/*
1043	 * When no restart IP might need to kill or panic.
1044	 * Assume the worst for now, but if we find the
1045	 * severity is MCE_AR_SEVERITY we have other options.
1046	 */
1047	if (!(m.mcgstatus & MCG_STATUS_RIPV))
1048		kill_it = 1;
1049
1050	/*
1051	 * Go through all the banks in exclusion of the other CPUs.
1052	 * This way we don't report duplicated events on shared banks
1053	 * because the first one to see it will clear it.
1054	 */
1055	order = mce_start(&no_way_out);
1056	for (i = 0; i < banks; i++) {
1057		__clear_bit(i, toclear);
1058		if (!mce_banks[i].ctl)
1059			continue;
1060
1061		m.misc = 0;
1062		m.addr = 0;
1063		m.bank = i;
1064
1065		m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
1066		if ((m.status & MCI_STATUS_VAL) == 0)
1067			continue;
1068
1069		/*
1070		 * Non uncorrected or non signaled errors are handled by
1071		 * machine_check_poll. Leave them alone, unless this panics.
1072		 */
1073		if (!(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1074			!no_way_out)
1075			continue;
1076
1077		/*
1078		 * Set taint even when machine check was not enabled.
1079		 */
1080		add_taint(TAINT_MACHINE_CHECK);
1081
1082		severity = mce_severity(&m, tolerant, NULL);
1083
1084		/*
1085		 * When machine check was for corrected handler don't touch,
1086		 * unless we're panicing.
1087		 */
1088		if (severity == MCE_KEEP_SEVERITY && !no_way_out)
1089			continue;
1090		__set_bit(i, toclear);
1091		if (severity == MCE_NO_SEVERITY) {
1092			/*
1093			 * Machine check event was not enabled. Clear, but
1094			 * ignore.
1095			 */
1096			continue;
1097		}
1098
1099		mce_read_aux(&m, i);
1100
1101		/*
1102		 * Action optional error. Queue address for later processing.
1103		 * When the ring overflows we just ignore the AO error.
1104		 * RED-PEN add some logging mechanism when
1105		 * usable_address or mce_add_ring fails.
1106		 * RED-PEN don't ignore overflow for tolerant == 0
1107		 */
1108		if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
1109			mce_ring_add(m.addr >> PAGE_SHIFT);
1110
1111		mce_log(&m);
1112
1113		if (severity > worst) {
1114			*final = m;
1115			worst = severity;
1116		}
1117	}
1118
1119	/* mce_clear_state will clear *final, save locally for use later */
1120	m = *final;
1121
1122	if (!no_way_out)
1123		mce_clear_state(toclear);
1124
1125	/*
1126	 * Do most of the synchronization with other CPUs.
1127	 * When there's any problem use only local no_way_out state.
1128	 */
1129	if (mce_end(order) < 0)
1130		no_way_out = worst >= MCE_PANIC_SEVERITY;
1131
1132	/*
1133	 * At insane "tolerant" levels we take no action. Otherwise
1134	 * we only die if we have no other choice. For less serious
1135	 * issues we try to recover, or limit damage to the current
1136	 * process.
1137	 */
1138	if (tolerant < 3) {
1139		if (no_way_out)
1140			mce_panic("Fatal machine check on current CPU", &m, msg);
1141		if (worst == MCE_AR_SEVERITY) {
1142			/* schedule action before return to userland */
1143			mce_save_info(m.addr, m.mcgstatus & MCG_STATUS_RIPV);
1144			set_thread_flag(TIF_MCE_NOTIFY);
1145		} else if (kill_it) {
1146			force_sig(SIGBUS, current);
1147		}
1148	}
1149
1150	if (worst > 0)
1151		mce_report_event(regs);
1152	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1153out:
1154	atomic_dec(&mce_entry);
1155	sync_core();
1156}
1157EXPORT_SYMBOL_GPL(do_machine_check);
1158
1159#ifndef CONFIG_MEMORY_FAILURE
1160int memory_failure(unsigned long pfn, int vector, int flags)
1161{
1162	/* mce_severity() should not hand us an ACTION_REQUIRED error */
1163	BUG_ON(flags & MF_ACTION_REQUIRED);
1164	printk(KERN_ERR "Uncorrected memory error in page 0x%lx ignored\n"
1165		"Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n", pfn);
1166
1167	return 0;
1168}
1169#endif
1170
1171/*
1172 * Called in process context that interrupted by MCE and marked with
1173 * TIF_MCE_NOTIFY, just before returning to erroneous userland.
1174 * This code is allowed to sleep.
1175 * Attempt possible recovery such as calling the high level VM handler to
1176 * process any corrupted pages, and kill/signal current process if required.
1177 * Action required errors are handled here.
1178 */
1179void mce_notify_process(void)
1180{
1181	unsigned long pfn;
1182	struct mce_info *mi = mce_find_info();
1183
1184	if (!mi)
1185		mce_panic("Lost physical address for unconsumed uncorrectable error", NULL, NULL);
1186	pfn = mi->paddr >> PAGE_SHIFT;
1187
1188	clear_thread_flag(TIF_MCE_NOTIFY);
1189
1190	pr_err("Uncorrected hardware memory error in user-access at %llx",
1191		 mi->paddr);
1192	/*
1193	 * We must call memory_failure() here even if the current process is
1194	 * doomed. We still need to mark the page as poisoned and alert any
1195	 * other users of the page.
1196	 */
1197	if (memory_failure(pfn, MCE_VECTOR, MF_ACTION_REQUIRED) < 0 ||
1198			   mi->restartable == 0) {
1199		pr_err("Memory error not recovered");
1200		force_sig(SIGBUS, current);
1201	}
1202	mce_clear_info(mi);
1203}
1204
1205/*
1206 * Action optional processing happens here (picking up
1207 * from the list of faulting pages that do_machine_check()
1208 * placed into the "ring").
1209 */
1210static void mce_process_work(struct work_struct *dummy)
1211{
1212	unsigned long pfn;
1213
1214	while (mce_ring_get(&pfn))
1215		memory_failure(pfn, MCE_VECTOR, 0);
1216}
1217
1218#ifdef CONFIG_X86_MCE_INTEL
1219/***
1220 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1221 * @cpu: The CPU on which the event occurred.
1222 * @status: Event status information
1223 *
1224 * This function should be called by the thermal interrupt after the
1225 * event has been processed and the decision was made to log the event
1226 * further.
1227 *
1228 * The status parameter will be saved to the 'status' field of 'struct mce'
1229 * and historically has been the register value of the
1230 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1231 */
1232void mce_log_therm_throt_event(__u64 status)
1233{
1234	struct mce m;
1235
1236	mce_setup(&m);
1237	m.bank = MCE_THERMAL_BANK;
1238	m.status = status;
1239	mce_log(&m);
1240}
1241#endif /* CONFIG_X86_MCE_INTEL */
1242
1243/*
1244 * Periodic polling timer for "silent" machine check errors.  If the
1245 * poller finds an MCE, poll 2x faster.  When the poller finds no more
1246 * errors, poll 2x slower (up to check_interval seconds).
1247 */
1248static int check_interval = 5 * 60; /* 5 minutes */
1249
1250static DEFINE_PER_CPU(int, mce_next_interval); /* in jiffies */
1251static DEFINE_PER_CPU(struct timer_list, mce_timer);
1252
1253static void mce_start_timer(unsigned long data)
1254{
1255	struct timer_list *t = &per_cpu(mce_timer, data);
1256	int *n;
1257
1258	WARN_ON(smp_processor_id() != data);
1259
1260	if (mce_available(__this_cpu_ptr(&cpu_info))) {
1261		machine_check_poll(MCP_TIMESTAMP,
1262				&__get_cpu_var(mce_poll_banks));
1263	}
1264
1265	/*
1266	 * Alert userspace if needed.  If we logged an MCE, reduce the
1267	 * polling interval, otherwise increase the polling interval.
1268	 */
1269	n = &__get_cpu_var(mce_next_interval);
1270	if (mce_notify_irq())
1271		*n = max(*n/2, HZ/100);
1272	else
1273		*n = min(*n*2, (int)round_jiffies_relative(check_interval*HZ));
1274
1275	t->expires = jiffies + *n;
1276	add_timer_on(t, smp_processor_id());
1277}
1278
1279/* Must not be called in IRQ context where del_timer_sync() can deadlock */
1280static void mce_timer_delete_all(void)
1281{
1282	int cpu;
1283
1284	for_each_online_cpu(cpu)
1285		del_timer_sync(&per_cpu(mce_timer, cpu));
1286}
1287
1288static void mce_do_trigger(struct work_struct *work)
1289{
1290	call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1291}
1292
1293static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1294
1295/*
1296 * Notify the user(s) about new machine check events.
1297 * Can be called from interrupt context, but not from machine check/NMI
1298 * context.
1299 */
1300int mce_notify_irq(void)
1301{
1302	/* Not more than two messages every minute */
1303	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1304
1305	if (test_and_clear_bit(0, &mce_need_notify)) {
1306		/* wake processes polling /dev/mcelog */
1307		wake_up_interruptible(&mce_chrdev_wait);
1308
1309		/*
1310		 * There is no risk of missing notifications because
1311		 * work_pending is always cleared before the function is
1312		 * executed.
1313		 */
1314		if (mce_helper[0] && !work_pending(&mce_trigger_work))
1315			schedule_work(&mce_trigger_work);
1316
1317		if (__ratelimit(&ratelimit))
1318			pr_info(HW_ERR "Machine check events logged\n");
1319
1320		return 1;
1321	}
1322	return 0;
1323}
1324EXPORT_SYMBOL_GPL(mce_notify_irq);
1325
1326static int __cpuinit __mcheck_cpu_mce_banks_init(void)
1327{
1328	int i;
1329
1330	mce_banks = kzalloc(banks * sizeof(struct mce_bank), GFP_KERNEL);
1331	if (!mce_banks)
1332		return -ENOMEM;
1333	for (i = 0; i < banks; i++) {
1334		struct mce_bank *b = &mce_banks[i];
1335
1336		b->ctl = -1ULL;
1337		b->init = 1;
1338	}
1339	return 0;
1340}
1341
1342/*
1343 * Initialize Machine Checks for a CPU.
1344 */
1345static int __cpuinit __mcheck_cpu_cap_init(void)
1346{
1347	unsigned b;
1348	u64 cap;
1349
1350	rdmsrl(MSR_IA32_MCG_CAP, cap);
1351
1352	b = cap & MCG_BANKCNT_MASK;
1353	if (!banks)
1354		printk(KERN_INFO "mce: CPU supports %d MCE banks\n", b);
1355
1356	if (b > MAX_NR_BANKS) {
1357		printk(KERN_WARNING
1358		       "MCE: Using only %u machine check banks out of %u\n",
1359			MAX_NR_BANKS, b);
1360		b = MAX_NR_BANKS;
1361	}
1362
1363	/* Don't support asymmetric configurations today */
1364	WARN_ON(banks != 0 && b != banks);
1365	banks = b;
1366	if (!mce_banks) {
1367		int err = __mcheck_cpu_mce_banks_init();
1368
1369		if (err)
1370			return err;
1371	}
1372
1373	/* Use accurate RIP reporting if available. */
1374	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1375		rip_msr = MSR_IA32_MCG_EIP;
1376
1377	if (cap & MCG_SER_P)
1378		mce_ser = 1;
1379
1380	return 0;
1381}
1382
1383static void __mcheck_cpu_init_generic(void)
1384{
1385	mce_banks_t all_banks;
1386	u64 cap;
1387	int i;
1388
1389	/*
1390	 * Log the machine checks left over from the previous reset.
1391	 */
1392	bitmap_fill(all_banks, MAX_NR_BANKS);
1393	machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks);
1394
1395	set_in_cr4(X86_CR4_MCE);
1396
1397	rdmsrl(MSR_IA32_MCG_CAP, cap);
1398	if (cap & MCG_CTL_P)
1399		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1400
1401	for (i = 0; i < banks; i++) {
1402		struct mce_bank *b = &mce_banks[i];
1403
1404		if (!b->init)
1405			continue;
1406		wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1407		wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
1408	}
1409}
1410
1411/* Add per CPU specific workarounds here */
1412static int __cpuinit __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1413{
1414	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1415		pr_info("MCE: unknown CPU type - not enabling MCE support.\n");
1416		return -EOPNOTSUPP;
1417	}
1418
1419	/* This should be disabled by the BIOS, but isn't always */
1420	if (c->x86_vendor == X86_VENDOR_AMD) {
1421		if (c->x86 == 15 && banks > 4) {
1422			/*
1423			 * disable GART TBL walk error reporting, which
1424			 * trips off incorrectly with the IOMMU & 3ware
1425			 * & Cerberus:
1426			 */
1427			clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1428		}
1429		if (c->x86 <= 17 && mce_bootlog < 0) {
1430			/*
1431			 * Lots of broken BIOS around that don't clear them
1432			 * by default and leave crap in there. Don't log:
1433			 */
1434			mce_bootlog = 0;
1435		}
1436		/*
1437		 * Various K7s with broken bank 0 around. Always disable
1438		 * by default.
1439		 */
1440		 if (c->x86 == 6 && banks > 0)
1441			mce_banks[0].ctl = 0;
1442	}
1443
1444	if (c->x86_vendor == X86_VENDOR_INTEL) {
1445		/*
1446		 * SDM documents that on family 6 bank 0 should not be written
1447		 * because it aliases to another special BIOS controlled
1448		 * register.
1449		 * But it's not aliased anymore on model 0x1a+
1450		 * Don't ignore bank 0 completely because there could be a
1451		 * valid event later, merely don't write CTL0.
1452		 */
1453
1454		if (c->x86 == 6 && c->x86_model < 0x1A && banks > 0)
1455			mce_banks[0].init = 0;
1456
1457		/*
1458		 * All newer Intel systems support MCE broadcasting. Enable
1459		 * synchronization with a one second timeout.
1460		 */
1461		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1462			monarch_timeout < 0)
1463			monarch_timeout = USEC_PER_SEC;
1464
1465		/*
1466		 * There are also broken BIOSes on some Pentium M and
1467		 * earlier systems:
1468		 */
1469		if (c->x86 == 6 && c->x86_model <= 13 && mce_bootlog < 0)
1470			mce_bootlog = 0;
1471	}
1472	if (monarch_timeout < 0)
1473		monarch_timeout = 0;
1474	if (mce_bootlog != 0)
1475		mce_panic_timeout = 30;
1476
1477	return 0;
1478}
1479
1480static int __cpuinit __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1481{
1482	if (c->x86 != 5)
1483		return 0;
1484
1485	switch (c->x86_vendor) {
1486	case X86_VENDOR_INTEL:
1487		intel_p5_mcheck_init(c);
1488		return 1;
1489		break;
1490	case X86_VENDOR_CENTAUR:
1491		winchip_mcheck_init(c);
1492		return 1;
1493		break;
1494	}
1495
1496	return 0;
1497}
1498
1499static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1500{
1501	switch (c->x86_vendor) {
1502	case X86_VENDOR_INTEL:
1503		mce_intel_feature_init(c);
1504		break;
1505	case X86_VENDOR_AMD:
1506		mce_amd_feature_init(c);
1507		break;
1508	default:
1509		break;
1510	}
1511}
1512
1513static void __mcheck_cpu_init_timer(void)
1514{
1515	struct timer_list *t = &__get_cpu_var(mce_timer);
1516	int *n = &__get_cpu_var(mce_next_interval);
1517
1518	setup_timer(t, mce_start_timer, smp_processor_id());
1519
1520	if (mce_ignore_ce)
1521		return;
1522
1523	*n = check_interval * HZ;
1524	if (!*n)
1525		return;
1526	t->expires = round_jiffies(jiffies + *n);
1527	add_timer_on(t, smp_processor_id());
1528}
1529
1530/* Handle unconfigured int18 (should never happen) */
1531static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1532{
1533	printk(KERN_ERR "CPU#%d: Unexpected int18 (Machine Check).\n",
1534	       smp_processor_id());
1535}
1536
1537/* Call the installed machine check handler for this CPU setup. */
1538void (*machine_check_vector)(struct pt_regs *, long error_code) =
1539						unexpected_machine_check;
1540
1541/*
1542 * Called for each booted CPU to set up machine checks.
1543 * Must be called with preempt off:
1544 */
1545void __cpuinit mcheck_cpu_init(struct cpuinfo_x86 *c)
1546{
1547	if (mce_disabled)
1548		return;
1549
1550	if (__mcheck_cpu_ancient_init(c))
1551		return;
1552
1553	if (!mce_available(c))
1554		return;
1555
1556	if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1557		mce_disabled = 1;
1558		return;
1559	}
1560
1561	machine_check_vector = do_machine_check;
1562
1563	__mcheck_cpu_init_generic();
1564	__mcheck_cpu_init_vendor(c);
1565	__mcheck_cpu_init_timer();
1566	INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
1567	init_irq_work(&__get_cpu_var(mce_irq_work), &mce_irq_work_cb);
1568}
1569
1570/*
1571 * mce_chrdev: Character device /dev/mcelog to read and clear the MCE log.
1572 */
1573
1574static DEFINE_SPINLOCK(mce_chrdev_state_lock);
1575static int mce_chrdev_open_count;	/* #times opened */
1576static int mce_chrdev_open_exclu;	/* already open exclusive? */
1577
1578static int mce_chrdev_open(struct inode *inode, struct file *file)
1579{
1580	spin_lock(&mce_chrdev_state_lock);
1581
1582	if (mce_chrdev_open_exclu ||
1583	    (mce_chrdev_open_count && (file->f_flags & O_EXCL))) {
1584		spin_unlock(&mce_chrdev_state_lock);
1585
1586		return -EBUSY;
1587	}
1588
1589	if (file->f_flags & O_EXCL)
1590		mce_chrdev_open_exclu = 1;
1591	mce_chrdev_open_count++;
1592
1593	spin_unlock(&mce_chrdev_state_lock);
1594
1595	return nonseekable_open(inode, file);
1596}
1597
1598static int mce_chrdev_release(struct inode *inode, struct file *file)
1599{
1600	spin_lock(&mce_chrdev_state_lock);
1601
1602	mce_chrdev_open_count--;
1603	mce_chrdev_open_exclu = 0;
1604
1605	spin_unlock(&mce_chrdev_state_lock);
1606
1607	return 0;
1608}
1609
1610static void collect_tscs(void *data)
1611{
1612	unsigned long *cpu_tsc = (unsigned long *)data;
1613
1614	rdtscll(cpu_tsc[smp_processor_id()]);
1615}
1616
1617static int mce_apei_read_done;
1618
1619/* Collect MCE record of previous boot in persistent storage via APEI ERST. */
1620static int __mce_read_apei(char __user **ubuf, size_t usize)
1621{
1622	int rc;
1623	u64 record_id;
1624	struct mce m;
1625
1626	if (usize < sizeof(struct mce))
1627		return -EINVAL;
1628
1629	rc = apei_read_mce(&m, &record_id);
1630	/* Error or no more MCE record */
1631	if (rc <= 0) {
1632		mce_apei_read_done = 1;
1633		/*
1634		 * When ERST is disabled, mce_chrdev_read() should return
1635		 * "no record" instead of "no device."
1636		 */
1637		if (rc == -ENODEV)
1638			return 0;
1639		return rc;
1640	}
1641	rc = -EFAULT;
1642	if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
1643		return rc;
1644	/*
1645	 * In fact, we should have cleared the record after that has
1646	 * been flushed to the disk or sent to network in
1647	 * /sbin/mcelog, but we have no interface to support that now,
1648	 * so just clear it to avoid duplication.
1649	 */
1650	rc = apei_clear_mce(record_id);
1651	if (rc) {
1652		mce_apei_read_done = 1;
1653		return rc;
1654	}
1655	*ubuf += sizeof(struct mce);
1656
1657	return 0;
1658}
1659
1660static ssize_t mce_chrdev_read(struct file *filp, char __user *ubuf,
1661				size_t usize, loff_t *off)
1662{
1663	char __user *buf = ubuf;
1664	unsigned long *cpu_tsc;
1665	unsigned prev, next;
1666	int i, err;
1667
1668	cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1669	if (!cpu_tsc)
1670		return -ENOMEM;
1671
1672	mutex_lock(&mce_chrdev_read_mutex);
1673
1674	if (!mce_apei_read_done) {
1675		err = __mce_read_apei(&buf, usize);
1676		if (err || buf != ubuf)
1677			goto out;
1678	}
1679
1680	next = rcu_dereference_check_mce(mcelog.next);
1681
1682	/* Only supports full reads right now */
1683	err = -EINVAL;
1684	if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
1685		goto out;
1686
1687	err = 0;
1688	prev = 0;
1689	do {
1690		for (i = prev; i < next; i++) {
1691			unsigned long start = jiffies;
1692			struct mce *m = &mcelog.entry[i];
1693
1694			while (!m->finished) {
1695				if (time_after_eq(jiffies, start + 2)) {
1696					memset(m, 0, sizeof(*m));
1697					goto timeout;
1698				}
1699				cpu_relax();
1700			}
1701			smp_rmb();
1702			err |= copy_to_user(buf, m, sizeof(*m));
1703			buf += sizeof(*m);
1704timeout:
1705			;
1706		}
1707
1708		memset(mcelog.entry + prev, 0,
1709		       (next - prev) * sizeof(struct mce));
1710		prev = next;
1711		next = cmpxchg(&mcelog.next, prev, 0);
1712	} while (next != prev);
1713
1714	synchronize_sched();
1715
1716	/*
1717	 * Collect entries that were still getting written before the
1718	 * synchronize.
1719	 */
1720	on_each_cpu(collect_tscs, cpu_tsc, 1);
1721
1722	for (i = next; i < MCE_LOG_LEN; i++) {
1723		struct mce *m = &mcelog.entry[i];
1724
1725		if (m->finished && m->tsc < cpu_tsc[m->cpu]) {
1726			err |= copy_to_user(buf, m, sizeof(*m));
1727			smp_rmb();
1728			buf += sizeof(*m);
1729			memset(m, 0, sizeof(*m));
1730		}
1731	}
1732
1733	if (err)
1734		err = -EFAULT;
1735
1736out:
1737	mutex_unlock(&mce_chrdev_read_mutex);
1738	kfree(cpu_tsc);
1739
1740	return err ? err : buf - ubuf;
1741}
1742
1743static unsigned int mce_chrdev_poll(struct file *file, poll_table *wait)
1744{
1745	poll_wait(file, &mce_chrdev_wait, wait);
1746	if (rcu_access_index(mcelog.next))
1747		return POLLIN | POLLRDNORM;
1748	if (!mce_apei_read_done && apei_check_mce())
1749		return POLLIN | POLLRDNORM;
1750	return 0;
1751}
1752
1753static long mce_chrdev_ioctl(struct file *f, unsigned int cmd,
1754				unsigned long arg)
1755{
1756	int __user *p = (int __user *)arg;
1757
1758	if (!capable(CAP_SYS_ADMIN))
1759		return -EPERM;
1760
1761	switch (cmd) {
1762	case MCE_GET_RECORD_LEN:
1763		return put_user(sizeof(struct mce), p);
1764	case MCE_GET_LOG_LEN:
1765		return put_user(MCE_LOG_LEN, p);
1766	case MCE_GETCLEAR_FLAGS: {
1767		unsigned flags;
1768
1769		do {
1770			flags = mcelog.flags;
1771		} while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1772
1773		return put_user(flags, p);
1774	}
1775	default:
1776		return -ENOTTY;
1777	}
1778}
1779
1780static ssize_t (*mce_write)(struct file *filp, const char __user *ubuf,
1781			    size_t usize, loff_t *off);
1782
1783void register_mce_write_callback(ssize_t (*fn)(struct file *filp,
1784			     const char __user *ubuf,
1785			     size_t usize, loff_t *off))
1786{
1787	mce_write = fn;
1788}
1789EXPORT_SYMBOL_GPL(register_mce_write_callback);
1790
1791ssize_t mce_chrdev_write(struct file *filp, const char __user *ubuf,
1792			 size_t usize, loff_t *off)
1793{
1794	if (mce_write)
1795		return mce_write(filp, ubuf, usize, off);
1796	else
1797		return -EINVAL;
1798}
1799
1800static const struct file_operations mce_chrdev_ops = {
1801	.open			= mce_chrdev_open,
1802	.release		= mce_chrdev_release,
1803	.read			= mce_chrdev_read,
1804	.write			= mce_chrdev_write,
1805	.poll			= mce_chrdev_poll,
1806	.unlocked_ioctl		= mce_chrdev_ioctl,
1807	.llseek			= no_llseek,
1808};
1809
1810static struct miscdevice mce_chrdev_device = {
1811	MISC_MCELOG_MINOR,
1812	"mcelog",
1813	&mce_chrdev_ops,
1814};
1815
1816/*
1817 * mce=off Disables machine check
1818 * mce=no_cmci Disables CMCI
1819 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1820 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1821 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1822 *	monarchtimeout is how long to wait for other CPUs on machine
1823 *	check, or 0 to not wait
1824 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1825 * mce=nobootlog Don't log MCEs from before booting.
1826 */
1827static int __init mcheck_enable(char *str)
1828{
1829	if (*str == 0) {
1830		enable_p5_mce();
1831		return 1;
1832	}
1833	if (*str == '=')
1834		str++;
1835	if (!strcmp(str, "off"))
1836		mce_disabled = 1;
1837	else if (!strcmp(str, "no_cmci"))
1838		mce_cmci_disabled = 1;
1839	else if (!strcmp(str, "dont_log_ce"))
1840		mce_dont_log_ce = 1;
1841	else if (!strcmp(str, "ignore_ce"))
1842		mce_ignore_ce = 1;
1843	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1844		mce_bootlog = (str[0] == 'b');
1845	else if (isdigit(str[0])) {
1846		get_option(&str, &tolerant);
1847		if (*str == ',') {
1848			++str;
1849			get_option(&str, &monarch_timeout);
1850		}
1851	} else {
1852		printk(KERN_INFO "mce argument %s ignored. Please use /sys\n",
1853		       str);
1854		return 0;
1855	}
1856	return 1;
1857}
1858__setup("mce", mcheck_enable);
1859
1860int __init mcheck_init(void)
1861{
1862	mcheck_intel_therm_init();
1863
1864	return 0;
1865}
1866
1867/*
1868 * mce_syscore: PM support
1869 */
1870
1871/*
1872 * Disable machine checks on suspend and shutdown. We can't really handle
1873 * them later.
1874 */
1875static int mce_disable_error_reporting(void)
1876{
1877	int i;
1878
1879	for (i = 0; i < banks; i++) {
1880		struct mce_bank *b = &mce_banks[i];
1881
1882		if (b->init)
1883			wrmsrl(MSR_IA32_MCx_CTL(i), 0);
1884	}
1885	return 0;
1886}
1887
1888static int mce_syscore_suspend(void)
1889{
1890	return mce_disable_error_reporting();
1891}
1892
1893static void mce_syscore_shutdown(void)
1894{
1895	mce_disable_error_reporting();
1896}
1897
1898/*
1899 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1900 * Only one CPU is active at this time, the others get re-added later using
1901 * CPU hotplug:
1902 */
1903static void mce_syscore_resume(void)
1904{
1905	__mcheck_cpu_init_generic();
1906	__mcheck_cpu_init_vendor(__this_cpu_ptr(&cpu_info));
1907}
1908
1909static struct syscore_ops mce_syscore_ops = {
1910	.suspend	= mce_syscore_suspend,
1911	.shutdown	= mce_syscore_shutdown,
1912	.resume		= mce_syscore_resume,
1913};
1914
1915/*
1916 * mce_device: Sysfs support
1917 */
1918
1919static void mce_cpu_restart(void *data)
1920{
1921	if (!mce_available(__this_cpu_ptr(&cpu_info)))
1922		return;
1923	__mcheck_cpu_init_generic();
1924	__mcheck_cpu_init_timer();
1925}
1926
1927/* Reinit MCEs after user configuration changes */
1928static void mce_restart(void)
1929{
1930	mce_timer_delete_all();
1931	on_each_cpu(mce_cpu_restart, NULL, 1);
1932}
1933
1934/* Toggle features for corrected errors */
1935static void mce_disable_cmci(void *data)
1936{
1937	if (!mce_available(__this_cpu_ptr(&cpu_info)))
1938		return;
1939	cmci_clear();
1940}
1941
1942static void mce_enable_ce(void *all)
1943{
1944	if (!mce_available(__this_cpu_ptr(&cpu_info)))
1945		return;
1946	cmci_reenable();
1947	cmci_recheck();
1948	if (all)
1949		__mcheck_cpu_init_timer();
1950}
1951
1952static struct bus_type mce_subsys = {
1953	.name		= "machinecheck",
1954	.dev_name	= "machinecheck",
1955};
1956
1957DEFINE_PER_CPU(struct device *, mce_device);
1958
1959__cpuinitdata
1960void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
1961
1962static inline struct mce_bank *attr_to_bank(struct device_attribute *attr)
1963{
1964	return container_of(attr, struct mce_bank, attr);
1965}
1966
1967static ssize_t show_bank(struct device *s, struct device_attribute *attr,
1968			 char *buf)
1969{
1970	return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
1971}
1972
1973static ssize_t set_bank(struct device *s, struct device_attribute *attr,
1974			const char *buf, size_t size)
1975{
1976	u64 new;
1977
1978	if (strict_strtoull(buf, 0, &new) < 0)
1979		return -EINVAL;
1980
1981	attr_to_bank(attr)->ctl = new;
1982	mce_restart();
1983
1984	return size;
1985}
1986
1987static ssize_t
1988show_trigger(struct device *s, struct device_attribute *attr, char *buf)
1989{
1990	strcpy(buf, mce_helper);
1991	strcat(buf, "\n");
1992	return strlen(mce_helper) + 1;
1993}
1994
1995static ssize_t set_trigger(struct device *s, struct device_attribute *attr,
1996				const char *buf, size_t siz)
1997{
1998	char *p;
1999
2000	strncpy(mce_helper, buf, sizeof(mce_helper));
2001	mce_helper[sizeof(mce_helper)-1] = 0;
2002	p = strchr(mce_helper, '\n');
2003
2004	if (p)
2005		*p = 0;
2006
2007	return strlen(mce_helper) + !!p;
2008}
2009
2010static ssize_t set_ignore_ce(struct device *s,
2011			     struct device_attribute *attr,
2012			     const char *buf, size_t size)
2013{
2014	u64 new;
2015
2016	if (strict_strtoull(buf, 0, &new) < 0)
2017		return -EINVAL;
2018
2019	if (mce_ignore_ce ^ !!new) {
2020		if (new) {
2021			/* disable ce features */
2022			mce_timer_delete_all();
2023			on_each_cpu(mce_disable_cmci, NULL, 1);
2024			mce_ignore_ce = 1;
2025		} else {
2026			/* enable ce features */
2027			mce_ignore_ce = 0;
2028			on_each_cpu(mce_enable_ce, (void *)1, 1);
2029		}
2030	}
2031	return size;
2032}
2033
2034static ssize_t set_cmci_disabled(struct device *s,
2035				 struct device_attribute *attr,
2036				 const char *buf, size_t size)
2037{
2038	u64 new;
2039
2040	if (strict_strtoull(buf, 0, &new) < 0)
2041		return -EINVAL;
2042
2043	if (mce_cmci_disabled ^ !!new) {
2044		if (new) {
2045			/* disable cmci */
2046			on_each_cpu(mce_disable_cmci, NULL, 1);
2047			mce_cmci_disabled = 1;
2048		} else {
2049			/* enable cmci */
2050			mce_cmci_disabled = 0;
2051			on_each_cpu(mce_enable_ce, NULL, 1);
2052		}
2053	}
2054	return size;
2055}
2056
2057static ssize_t store_int_with_restart(struct device *s,
2058				      struct device_attribute *attr,
2059				      const char *buf, size_t size)
2060{
2061	ssize_t ret = device_store_int(s, attr, buf, size);
2062	mce_restart();
2063	return ret;
2064}
2065
2066static DEVICE_ATTR(trigger, 0644, show_trigger, set_trigger);
2067static DEVICE_INT_ATTR(tolerant, 0644, tolerant);
2068static DEVICE_INT_ATTR(monarch_timeout, 0644, monarch_timeout);
2069static DEVICE_INT_ATTR(dont_log_ce, 0644, mce_dont_log_ce);
2070
2071static struct dev_ext_attribute dev_attr_check_interval = {
2072	__ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2073	&check_interval
2074};
2075
2076static struct dev_ext_attribute dev_attr_ignore_ce = {
2077	__ATTR(ignore_ce, 0644, device_show_int, set_ignore_ce),
2078	&mce_ignore_ce
2079};
2080
2081static struct dev_ext_attribute dev_attr_cmci_disabled = {
2082	__ATTR(cmci_disabled, 0644, device_show_int, set_cmci_disabled),
2083	&mce_cmci_disabled
2084};
2085
2086static struct device_attribute *mce_device_attrs[] = {
2087	&dev_attr_tolerant.attr,
2088	&dev_attr_check_interval.attr,
2089	&dev_attr_trigger,
2090	&dev_attr_monarch_timeout.attr,
2091	&dev_attr_dont_log_ce.attr,
2092	&dev_attr_ignore_ce.attr,
2093	&dev_attr_cmci_disabled.attr,
2094	NULL
2095};
2096
2097static cpumask_var_t mce_device_initialized;
2098
2099static void mce_device_release(struct device *dev)
2100{
2101	kfree(dev);
2102}
2103
2104/* Per cpu device init. All of the cpus still share the same ctrl bank: */
2105static __cpuinit int mce_device_create(unsigned int cpu)
2106{
2107	struct device *dev;
2108	int err;
2109	int i, j;
2110
2111	if (!mce_available(&boot_cpu_data))
2112		return -EIO;
2113
2114	dev = kzalloc(sizeof *dev, GFP_KERNEL);
2115	if (!dev)
2116		return -ENOMEM;
2117	dev->id  = cpu;
2118	dev->bus = &mce_subsys;
2119	dev->release = &mce_device_release;
2120
2121	err = device_register(dev);
2122	if (err)
2123		return err;
2124
2125	for (i = 0; mce_device_attrs[i]; i++) {
2126		err = device_create_file(dev, mce_device_attrs[i]);
2127		if (err)
2128			goto error;
2129	}
2130	for (j = 0; j < banks; j++) {
2131		err = device_create_file(dev, &mce_banks[j].attr);
2132		if (err)
2133			goto error2;
2134	}
2135	cpumask_set_cpu(cpu, mce_device_initialized);
2136	per_cpu(mce_device, cpu) = dev;
2137
2138	return 0;
2139error2:
2140	while (--j >= 0)
2141		device_remove_file(dev, &mce_banks[j].attr);
2142error:
2143	while (--i >= 0)
2144		device_remove_file(dev, mce_device_attrs[i]);
2145
2146	device_unregister(dev);
2147
2148	return err;
2149}
2150
2151static __cpuinit void mce_device_remove(unsigned int cpu)
2152{
2153	struct device *dev = per_cpu(mce_device, cpu);
2154	int i;
2155
2156	if (!cpumask_test_cpu(cpu, mce_device_initialized))
2157		return;
2158
2159	for (i = 0; mce_device_attrs[i]; i++)
2160		device_remove_file(dev, mce_device_attrs[i]);
2161
2162	for (i = 0; i < banks; i++)
2163		device_remove_file(dev, &mce_banks[i].attr);
2164
2165	device_unregister(dev);
2166	cpumask_clear_cpu(cpu, mce_device_initialized);
2167	per_cpu(mce_device, cpu) = NULL;
2168}
2169
2170/* Make sure there are no machine checks on offlined CPUs. */
2171static void __cpuinit mce_disable_cpu(void *h)
2172{
2173	unsigned long action = *(unsigned long *)h;
2174	int i;
2175
2176	if (!mce_available(__this_cpu_ptr(&cpu_info)))
2177		return;
2178
2179	if (!(action & CPU_TASKS_FROZEN))
2180		cmci_clear();
2181	for (i = 0; i < banks; i++) {
2182		struct mce_bank *b = &mce_banks[i];
2183
2184		if (b->init)
2185			wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2186	}
2187}
2188
2189static void __cpuinit mce_reenable_cpu(void *h)
2190{
2191	unsigned long action = *(unsigned long *)h;
2192	int i;
2193
2194	if (!mce_available(__this_cpu_ptr(&cpu_info)))
2195		return;
2196
2197	if (!(action & CPU_TASKS_FROZEN))
2198		cmci_reenable();
2199	for (i = 0; i < banks; i++) {
2200		struct mce_bank *b = &mce_banks[i];
2201
2202		if (b->init)
2203			wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
2204	}
2205}
2206
2207/* Get notified when a cpu comes on/off. Be hotplug friendly. */
2208static int __cpuinit
2209mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
2210{
2211	unsigned int cpu = (unsigned long)hcpu;
2212	struct timer_list *t = &per_cpu(mce_timer, cpu);
2213
2214	switch (action) {
2215	case CPU_ONLINE:
2216	case CPU_ONLINE_FROZEN:
2217		mce_device_create(cpu);
2218		if (threshold_cpu_callback)
2219			threshold_cpu_callback(action, cpu);
2220		break;
2221	case CPU_DEAD:
2222	case CPU_DEAD_FROZEN:
2223		if (threshold_cpu_callback)
2224			threshold_cpu_callback(action, cpu);
2225		mce_device_remove(cpu);
2226		break;
2227	case CPU_DOWN_PREPARE:
2228	case CPU_DOWN_PREPARE_FROZEN:
2229		del_timer_sync(t);
2230		smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
2231		break;
2232	case CPU_DOWN_FAILED:
2233	case CPU_DOWN_FAILED_FROZEN:
2234		if (!mce_ignore_ce && check_interval) {
2235			t->expires = round_jiffies(jiffies +
2236					   __get_cpu_var(mce_next_interval));
2237			add_timer_on(t, cpu);
2238		}
2239		smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
2240		break;
2241	case CPU_POST_DEAD:
2242		/* intentionally ignoring frozen here */
2243		cmci_rediscover(cpu);
2244		break;
2245	}
2246	return NOTIFY_OK;
2247}
2248
2249static struct notifier_block mce_cpu_notifier __cpuinitdata = {
2250	.notifier_call = mce_cpu_callback,
2251};
2252
2253static __init void mce_init_banks(void)
2254{
2255	int i;
2256
2257	for (i = 0; i < banks; i++) {
2258		struct mce_bank *b = &mce_banks[i];
2259		struct device_attribute *a = &b->attr;
2260
2261		sysfs_attr_init(&a->attr);
2262		a->attr.name	= b->attrname;
2263		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2264
2265		a->attr.mode	= 0644;
2266		a->show		= show_bank;
2267		a->store	= set_bank;
2268	}
2269}
2270
2271static __init int mcheck_init_device(void)
2272{
2273	int err;
2274	int i = 0;
2275
2276	if (!mce_available(&boot_cpu_data))
2277		return -EIO;
2278
2279	zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL);
2280
2281	mce_init_banks();
2282
2283	err = subsys_system_register(&mce_subsys, NULL);
2284	if (err)
2285		return err;
2286
2287	for_each_online_cpu(i) {
2288		err = mce_device_create(i);
2289		if (err)
2290			return err;
2291	}
2292
2293	register_syscore_ops(&mce_syscore_ops);
2294	register_hotcpu_notifier(&mce_cpu_notifier);
2295
2296	/* register character device /dev/mcelog */
2297	misc_register(&mce_chrdev_device);
2298
2299	return err;
2300}
2301device_initcall(mcheck_init_device);
2302
2303/*
2304 * Old style boot options parsing. Only for compatibility.
2305 */
2306static int __init mcheck_disable(char *str)
2307{
2308	mce_disabled = 1;
2309	return 1;
2310}
2311__setup("nomce", mcheck_disable);
2312
2313#ifdef CONFIG_DEBUG_FS
2314struct dentry *mce_get_debugfs_dir(void)
2315{
2316	static struct dentry *dmce;
2317
2318	if (!dmce)
2319		dmce = debugfs_create_dir("mce", NULL);
2320
2321	return dmce;
2322}
2323
2324static void mce_reset(void)
2325{
2326	cpu_missing = 0;
2327	atomic_set(&mce_fake_paniced, 0);
2328	atomic_set(&mce_executing, 0);
2329	atomic_set(&mce_callin, 0);
2330	atomic_set(&global_nwo, 0);
2331}
2332
2333static int fake_panic_get(void *data, u64 *val)
2334{
2335	*val = fake_panic;
2336	return 0;
2337}
2338
2339static int fake_panic_set(void *data, u64 val)
2340{
2341	mce_reset();
2342	fake_panic = val;
2343	return 0;
2344}
2345
2346DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2347			fake_panic_set, "%llu\n");
2348
2349static int __init mcheck_debugfs_init(void)
2350{
2351	struct dentry *dmce, *ffake_panic;
2352
2353	dmce = mce_get_debugfs_dir();
2354	if (!dmce)
2355		return -ENOMEM;
2356	ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2357					  &fake_panic_fops);
2358	if (!ffake_panic)
2359		return -ENOMEM;
2360
2361	return 0;
2362}
2363late_initcall(mcheck_debugfs_init);
2364#endif
2365