1/*
2  A FORE Systems 200E-series driver for ATM on Linux.
3  Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
4
5  Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
6
7  This driver simultaneously supports PCA-200E and SBA-200E adapters
8  on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
9
10  This program is free software; you can redistribute it and/or modify
11  it under the terms of the GNU General Public License as published by
12  the Free Software Foundation; either version 2 of the License, or
13  (at your option) any later version.
14
15  This program is distributed in the hope that it will be useful,
16  but WITHOUT ANY WARRANTY; without even the implied warranty of
17  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  GNU General Public License for more details.
19
20  You should have received a copy of the GNU General Public License
21  along with this program; if not, write to the Free Software
22  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23*/
24
25
26#include <linux/kernel.h>
27#include <linux/slab.h>
28#include <linux/init.h>
29#include <linux/capability.h>
30#include <linux/interrupt.h>
31#include <linux/bitops.h>
32#include <linux/pci.h>
33#include <linux/module.h>
34#include <linux/atmdev.h>
35#include <linux/sonet.h>
36#include <linux/atm_suni.h>
37#include <linux/dma-mapping.h>
38#include <linux/delay.h>
39#include <linux/firmware.h>
40#include <asm/io.h>
41#include <asm/string.h>
42#include <asm/page.h>
43#include <asm/irq.h>
44#include <asm/dma.h>
45#include <asm/byteorder.h>
46#include <asm/uaccess.h>
47#include <linux/atomic.h>
48
49#ifdef CONFIG_SBUS
50#include <linux/of.h>
51#include <linux/of_device.h>
52#include <asm/idprom.h>
53#include <asm/openprom.h>
54#include <asm/oplib.h>
55#include <asm/pgtable.h>
56#endif
57
58#if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
59#define FORE200E_USE_TASKLET
60#endif
61
62#if 0 /* enable the debugging code of the buffer supply queues */
63#define FORE200E_BSQ_DEBUG
64#endif
65
66#if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
67#define FORE200E_52BYTE_AAL0_SDU
68#endif
69
70#include "fore200e.h"
71#include "suni.h"
72
73#define FORE200E_VERSION "0.3e"
74
75#define FORE200E         "fore200e: "
76
77#if 0 /* override .config */
78#define CONFIG_ATM_FORE200E_DEBUG 1
79#endif
80#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
81#define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
82                                                  printk(FORE200E format, ##args); } while (0)
83#else
84#define DPRINTK(level, format, args...)  do {} while (0)
85#endif
86
87
88#define FORE200E_ALIGN(addr, alignment) \
89        ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
90
91#define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
92
93#define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
94
95#define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
96
97#if 1
98#define ASSERT(expr)     if (!(expr)) { \
99			     printk(FORE200E "assertion failed! %s[%d]: %s\n", \
100				    __func__, __LINE__, #expr); \
101			     panic(FORE200E "%s", __func__); \
102			 }
103#else
104#define ASSERT(expr)     do {} while (0)
105#endif
106
107
108static const struct atmdev_ops   fore200e_ops;
109static const struct fore200e_bus fore200e_bus[];
110
111static LIST_HEAD(fore200e_boards);
112
113
114MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
115MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
116MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
117
118
119static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
120    { BUFFER_S1_NBR, BUFFER_L1_NBR },
121    { BUFFER_S2_NBR, BUFFER_L2_NBR }
122};
123
124static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
125    { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
126    { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
127};
128
129
130#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
131static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
132#endif
133
134
135#if 0 /* currently unused */
136static int
137fore200e_fore2atm_aal(enum fore200e_aal aal)
138{
139    switch(aal) {
140    case FORE200E_AAL0:  return ATM_AAL0;
141    case FORE200E_AAL34: return ATM_AAL34;
142    case FORE200E_AAL5:  return ATM_AAL5;
143    }
144
145    return -EINVAL;
146}
147#endif
148
149
150static enum fore200e_aal
151fore200e_atm2fore_aal(int aal)
152{
153    switch(aal) {
154    case ATM_AAL0:  return FORE200E_AAL0;
155    case ATM_AAL34: return FORE200E_AAL34;
156    case ATM_AAL1:
157    case ATM_AAL2:
158    case ATM_AAL5:  return FORE200E_AAL5;
159    }
160
161    return -EINVAL;
162}
163
164
165static char*
166fore200e_irq_itoa(int irq)
167{
168    static char str[8];
169    sprintf(str, "%d", irq);
170    return str;
171}
172
173
174/* allocate and align a chunk of memory intended to hold the data behing exchanged
175   between the driver and the adapter (using streaming DVMA) */
176
177static int
178fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
179{
180    unsigned long offset = 0;
181
182    if (alignment <= sizeof(int))
183	alignment = 0;
184
185    chunk->alloc_size = size + alignment;
186    chunk->align_size = size;
187    chunk->direction  = direction;
188
189    chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL | GFP_DMA);
190    if (chunk->alloc_addr == NULL)
191	return -ENOMEM;
192
193    if (alignment > 0)
194	offset = FORE200E_ALIGN(chunk->alloc_addr, alignment);
195
196    chunk->align_addr = chunk->alloc_addr + offset;
197
198    chunk->dma_addr = fore200e->bus->dma_map(fore200e, chunk->align_addr, chunk->align_size, direction);
199
200    return 0;
201}
202
203
204/* free a chunk of memory */
205
206static void
207fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
208{
209    fore200e->bus->dma_unmap(fore200e, chunk->dma_addr, chunk->dma_size, chunk->direction);
210
211    kfree(chunk->alloc_addr);
212}
213
214
215static void
216fore200e_spin(int msecs)
217{
218    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
219    while (time_before(jiffies, timeout));
220}
221
222
223static int
224fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
225{
226    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
227    int           ok;
228
229    mb();
230    do {
231	if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
232	    break;
233
234    } while (time_before(jiffies, timeout));
235
236#if 1
237    if (!ok) {
238	printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
239	       *addr, val);
240    }
241#endif
242
243    return ok;
244}
245
246
247static int
248fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
249{
250    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
251    int           ok;
252
253    do {
254	if ((ok = (fore200e->bus->read(addr) == val)))
255	    break;
256
257    } while (time_before(jiffies, timeout));
258
259#if 1
260    if (!ok) {
261	printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
262	       fore200e->bus->read(addr), val);
263    }
264#endif
265
266    return ok;
267}
268
269
270static void
271fore200e_free_rx_buf(struct fore200e* fore200e)
272{
273    int scheme, magn, nbr;
274    struct buffer* buffer;
275
276    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
277	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
278
279	    if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
280
281		for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
282
283		    struct chunk* data = &buffer[ nbr ].data;
284
285		    if (data->alloc_addr != NULL)
286			fore200e_chunk_free(fore200e, data);
287		}
288	    }
289	}
290    }
291}
292
293
294static void
295fore200e_uninit_bs_queue(struct fore200e* fore200e)
296{
297    int scheme, magn;
298
299    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
300	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
301
302	    struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
303	    struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
304
305	    if (status->alloc_addr)
306		fore200e->bus->dma_chunk_free(fore200e, status);
307
308	    if (rbd_block->alloc_addr)
309		fore200e->bus->dma_chunk_free(fore200e, rbd_block);
310	}
311    }
312}
313
314
315static int
316fore200e_reset(struct fore200e* fore200e, int diag)
317{
318    int ok;
319
320    fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
321
322    fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
323
324    fore200e->bus->reset(fore200e);
325
326    if (diag) {
327	ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
328	if (ok == 0) {
329
330	    printk(FORE200E "device %s self-test failed\n", fore200e->name);
331	    return -ENODEV;
332	}
333
334	printk(FORE200E "device %s self-test passed\n", fore200e->name);
335
336	fore200e->state = FORE200E_STATE_RESET;
337    }
338
339    return 0;
340}
341
342
343static void
344fore200e_shutdown(struct fore200e* fore200e)
345{
346    printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
347	   fore200e->name, fore200e->phys_base,
348	   fore200e_irq_itoa(fore200e->irq));
349
350    if (fore200e->state > FORE200E_STATE_RESET) {
351	/* first, reset the board to prevent further interrupts or data transfers */
352	fore200e_reset(fore200e, 0);
353    }
354
355    /* then, release all allocated resources */
356    switch(fore200e->state) {
357
358    case FORE200E_STATE_COMPLETE:
359	kfree(fore200e->stats);
360
361    case FORE200E_STATE_IRQ:
362	free_irq(fore200e->irq, fore200e->atm_dev);
363
364    case FORE200E_STATE_ALLOC_BUF:
365	fore200e_free_rx_buf(fore200e);
366
367    case FORE200E_STATE_INIT_BSQ:
368	fore200e_uninit_bs_queue(fore200e);
369
370    case FORE200E_STATE_INIT_RXQ:
371	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.status);
372	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
373
374    case FORE200E_STATE_INIT_TXQ:
375	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.status);
376	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
377
378    case FORE200E_STATE_INIT_CMDQ:
379	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
380
381    case FORE200E_STATE_INITIALIZE:
382	/* nothing to do for that state */
383
384    case FORE200E_STATE_START_FW:
385	/* nothing to do for that state */
386
387    case FORE200E_STATE_RESET:
388	/* nothing to do for that state */
389
390    case FORE200E_STATE_MAP:
391	fore200e->bus->unmap(fore200e);
392
393    case FORE200E_STATE_CONFIGURE:
394	/* nothing to do for that state */
395
396    case FORE200E_STATE_REGISTER:
397	/* XXX shouldn't we *start* by deregistering the device? */
398	atm_dev_deregister(fore200e->atm_dev);
399
400    case FORE200E_STATE_BLANK:
401	/* nothing to do for that state */
402	break;
403    }
404}
405
406
407#ifdef CONFIG_PCI
408
409static u32 fore200e_pca_read(volatile u32 __iomem *addr)
410{
411    /* on big-endian hosts, the board is configured to convert
412       the endianess of slave RAM accesses  */
413    return le32_to_cpu(readl(addr));
414}
415
416
417static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
418{
419    /* on big-endian hosts, the board is configured to convert
420       the endianess of slave RAM accesses  */
421    writel(cpu_to_le32(val), addr);
422}
423
424
425static u32
426fore200e_pca_dma_map(struct fore200e* fore200e, void* virt_addr, int size, int direction)
427{
428    u32 dma_addr = pci_map_single((struct pci_dev*)fore200e->bus_dev, virt_addr, size, direction);
429
430    DPRINTK(3, "PCI DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d,  --> dma_addr = 0x%08x\n",
431	    virt_addr, size, direction, dma_addr);
432
433    return dma_addr;
434}
435
436
437static void
438fore200e_pca_dma_unmap(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
439{
440    DPRINTK(3, "PCI DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d\n",
441	    dma_addr, size, direction);
442
443    pci_unmap_single((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
444}
445
446
447static void
448fore200e_pca_dma_sync_for_cpu(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
449{
450    DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
451
452    pci_dma_sync_single_for_cpu((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
453}
454
455static void
456fore200e_pca_dma_sync_for_device(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
457{
458    DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
459
460    pci_dma_sync_single_for_device((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
461}
462
463
464/* allocate a DMA consistent chunk of memory intended to act as a communication mechanism
465   (to hold descriptors, status, queues, etc.) shared by the driver and the adapter */
466
467static int
468fore200e_pca_dma_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk,
469			     int size, int nbr, int alignment)
470{
471    /* returned chunks are page-aligned */
472    chunk->alloc_size = size * nbr;
473    chunk->alloc_addr = pci_alloc_consistent((struct pci_dev*)fore200e->bus_dev,
474					     chunk->alloc_size,
475					     &chunk->dma_addr);
476
477    if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
478	return -ENOMEM;
479
480    chunk->align_addr = chunk->alloc_addr;
481
482    return 0;
483}
484
485
486/* free a DMA consistent chunk of memory */
487
488static void
489fore200e_pca_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
490{
491    pci_free_consistent((struct pci_dev*)fore200e->bus_dev,
492			chunk->alloc_size,
493			chunk->alloc_addr,
494			chunk->dma_addr);
495}
496
497
498static int
499fore200e_pca_irq_check(struct fore200e* fore200e)
500{
501    /* this is a 1 bit register */
502    int irq_posted = readl(fore200e->regs.pca.psr);
503
504#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
505    if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
506	DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
507    }
508#endif
509
510    return irq_posted;
511}
512
513
514static void
515fore200e_pca_irq_ack(struct fore200e* fore200e)
516{
517    writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
518}
519
520
521static void
522fore200e_pca_reset(struct fore200e* fore200e)
523{
524    writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
525    fore200e_spin(10);
526    writel(0, fore200e->regs.pca.hcr);
527}
528
529
530static int __devinit
531fore200e_pca_map(struct fore200e* fore200e)
532{
533    DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
534
535    fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
536
537    if (fore200e->virt_base == NULL) {
538	printk(FORE200E "can't map device %s\n", fore200e->name);
539	return -EFAULT;
540    }
541
542    DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
543
544    /* gain access to the PCA specific registers  */
545    fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
546    fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
547    fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
548
549    fore200e->state = FORE200E_STATE_MAP;
550    return 0;
551}
552
553
554static void
555fore200e_pca_unmap(struct fore200e* fore200e)
556{
557    DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
558
559    if (fore200e->virt_base != NULL)
560	iounmap(fore200e->virt_base);
561}
562
563
564static int __devinit
565fore200e_pca_configure(struct fore200e* fore200e)
566{
567    struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
568    u8              master_ctrl, latency;
569
570    DPRINTK(2, "device %s being configured\n", fore200e->name);
571
572    if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
573	printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
574	return -EIO;
575    }
576
577    pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
578
579    master_ctrl = master_ctrl
580#if defined(__BIG_ENDIAN)
581	/* request the PCA board to convert the endianess of slave RAM accesses */
582	| PCA200E_CTRL_CONVERT_ENDIAN
583#endif
584#if 0
585        | PCA200E_CTRL_DIS_CACHE_RD
586        | PCA200E_CTRL_DIS_WRT_INVAL
587        | PCA200E_CTRL_ENA_CONT_REQ_MODE
588        | PCA200E_CTRL_2_CACHE_WRT_INVAL
589#endif
590	| PCA200E_CTRL_LARGE_PCI_BURSTS;
591
592    pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
593
594    /* raise latency from 32 (default) to 192, as this seems to prevent NIC
595       lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
596       this may impact the performances of other PCI devices on the same bus, though */
597    latency = 192;
598    pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
599
600    fore200e->state = FORE200E_STATE_CONFIGURE;
601    return 0;
602}
603
604
605static int __init
606fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
607{
608    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
609    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
610    struct prom_opcode      opcode;
611    int                     ok;
612    u32                     prom_dma;
613
614    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
615
616    opcode.opcode = OPCODE_GET_PROM;
617    opcode.pad    = 0;
618
619    prom_dma = fore200e->bus->dma_map(fore200e, prom, sizeof(struct prom_data), DMA_FROM_DEVICE);
620
621    fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
622
623    *entry->status = STATUS_PENDING;
624
625    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
626
627    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
628
629    *entry->status = STATUS_FREE;
630
631    fore200e->bus->dma_unmap(fore200e, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
632
633    if (ok == 0) {
634	printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
635	return -EIO;
636    }
637
638#if defined(__BIG_ENDIAN)
639
640#define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
641
642    /* MAC address is stored as little-endian */
643    swap_here(&prom->mac_addr[0]);
644    swap_here(&prom->mac_addr[4]);
645#endif
646
647    return 0;
648}
649
650
651static int
652fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
653{
654    struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
655
656    return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
657		   pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
658}
659
660#endif /* CONFIG_PCI */
661
662
663#ifdef CONFIG_SBUS
664
665static u32 fore200e_sba_read(volatile u32 __iomem *addr)
666{
667    return sbus_readl(addr);
668}
669
670static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
671{
672    sbus_writel(val, addr);
673}
674
675static u32 fore200e_sba_dma_map(struct fore200e *fore200e, void* virt_addr, int size, int direction)
676{
677	struct platform_device *op = fore200e->bus_dev;
678	u32 dma_addr;
679
680	dma_addr = dma_map_single(&op->dev, virt_addr, size, direction);
681
682	DPRINTK(3, "SBUS DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d --> dma_addr = 0x%08x\n",
683		virt_addr, size, direction, dma_addr);
684
685	return dma_addr;
686}
687
688static void fore200e_sba_dma_unmap(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
689{
690	struct platform_device *op = fore200e->bus_dev;
691
692	DPRINTK(3, "SBUS DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d,\n",
693		dma_addr, size, direction);
694
695	dma_unmap_single(&op->dev, dma_addr, size, direction);
696}
697
698static void fore200e_sba_dma_sync_for_cpu(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
699{
700	struct platform_device *op = fore200e->bus_dev;
701
702	DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
703
704	dma_sync_single_for_cpu(&op->dev, dma_addr, size, direction);
705}
706
707static void fore200e_sba_dma_sync_for_device(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
708{
709	struct platform_device *op = fore200e->bus_dev;
710
711	DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
712
713	dma_sync_single_for_device(&op->dev, dma_addr, size, direction);
714}
715
716/* Allocate a DVMA consistent chunk of memory intended to act as a communication mechanism
717 * (to hold descriptors, status, queues, etc.) shared by the driver and the adapter.
718 */
719static int fore200e_sba_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
720					int size, int nbr, int alignment)
721{
722	struct platform_device *op = fore200e->bus_dev;
723
724	chunk->alloc_size = chunk->align_size = size * nbr;
725
726	/* returned chunks are page-aligned */
727	chunk->alloc_addr = dma_alloc_coherent(&op->dev, chunk->alloc_size,
728					       &chunk->dma_addr, GFP_ATOMIC);
729
730	if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
731		return -ENOMEM;
732
733	chunk->align_addr = chunk->alloc_addr;
734
735	return 0;
736}
737
738/* free a DVMA consistent chunk of memory */
739static void fore200e_sba_dma_chunk_free(struct fore200e *fore200e, struct chunk *chunk)
740{
741	struct platform_device *op = fore200e->bus_dev;
742
743	dma_free_coherent(&op->dev, chunk->alloc_size,
744			  chunk->alloc_addr, chunk->dma_addr);
745}
746
747static void fore200e_sba_irq_enable(struct fore200e *fore200e)
748{
749	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
750	fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
751}
752
753static int fore200e_sba_irq_check(struct fore200e *fore200e)
754{
755	return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
756}
757
758static void fore200e_sba_irq_ack(struct fore200e *fore200e)
759{
760	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
761	fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
762}
763
764static void fore200e_sba_reset(struct fore200e *fore200e)
765{
766	fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
767	fore200e_spin(10);
768	fore200e->bus->write(0, fore200e->regs.sba.hcr);
769}
770
771static int __init fore200e_sba_map(struct fore200e *fore200e)
772{
773	struct platform_device *op = fore200e->bus_dev;
774	unsigned int bursts;
775
776	/* gain access to the SBA specific registers  */
777	fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
778	fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
779	fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
780	fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
781
782	if (!fore200e->virt_base) {
783		printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
784		return -EFAULT;
785	}
786
787	DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
788
789	fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
790
791	/* get the supported DVMA burst sizes */
792	bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
793
794	if (sbus_can_dma_64bit())
795		sbus_set_sbus64(&op->dev, bursts);
796
797	fore200e->state = FORE200E_STATE_MAP;
798	return 0;
799}
800
801static void fore200e_sba_unmap(struct fore200e *fore200e)
802{
803	struct platform_device *op = fore200e->bus_dev;
804
805	of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
806	of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
807	of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
808	of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
809}
810
811static int __init fore200e_sba_configure(struct fore200e *fore200e)
812{
813	fore200e->state = FORE200E_STATE_CONFIGURE;
814	return 0;
815}
816
817static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
818{
819	struct platform_device *op = fore200e->bus_dev;
820	const u8 *prop;
821	int len;
822
823	prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
824	if (!prop)
825		return -ENODEV;
826	memcpy(&prom->mac_addr[4], prop, 4);
827
828	prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
829	if (!prop)
830		return -ENODEV;
831	memcpy(&prom->mac_addr[2], prop, 4);
832
833	prom->serial_number = of_getintprop_default(op->dev.of_node,
834						    "serialnumber", 0);
835	prom->hw_revision = of_getintprop_default(op->dev.of_node,
836						  "promversion", 0);
837
838	return 0;
839}
840
841static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
842{
843	struct platform_device *op = fore200e->bus_dev;
844	const struct linux_prom_registers *regs;
845
846	regs = of_get_property(op->dev.of_node, "reg", NULL);
847
848	return sprintf(page, "   SBUS slot/device:\t\t%d/'%s'\n",
849		       (regs ? regs->which_io : 0), op->dev.of_node->name);
850}
851#endif /* CONFIG_SBUS */
852
853
854static void
855fore200e_tx_irq(struct fore200e* fore200e)
856{
857    struct host_txq*        txq = &fore200e->host_txq;
858    struct host_txq_entry*  entry;
859    struct atm_vcc*         vcc;
860    struct fore200e_vc_map* vc_map;
861
862    if (fore200e->host_txq.txing == 0)
863	return;
864
865    for (;;) {
866
867	entry = &txq->host_entry[ txq->tail ];
868
869        if ((*entry->status & STATUS_COMPLETE) == 0) {
870	    break;
871	}
872
873	DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n",
874		entry, txq->tail, entry->vc_map, entry->skb);
875
876	/* free copy of misaligned data */
877	kfree(entry->data);
878
879	/* remove DMA mapping */
880	fore200e->bus->dma_unmap(fore200e, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
881				 DMA_TO_DEVICE);
882
883	vc_map = entry->vc_map;
884
885	/* vcc closed since the time the entry was submitted for tx? */
886	if ((vc_map->vcc == NULL) ||
887	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
888
889	    DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
890		    fore200e->atm_dev->number);
891
892	    dev_kfree_skb_any(entry->skb);
893	}
894	else {
895	    ASSERT(vc_map->vcc);
896
897	    /* vcc closed then immediately re-opened? */
898	    if (vc_map->incarn != entry->incarn) {
899
900		/* when a vcc is closed, some PDUs may be still pending in the tx queue.
901		   if the same vcc is immediately re-opened, those pending PDUs must
902		   not be popped after the completion of their emission, as they refer
903		   to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
904		   would be decremented by the size of the (unrelated) skb, possibly
905		   leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
906		   we thus bind the tx entry to the current incarnation of the vcc
907		   when the entry is submitted for tx. When the tx later completes,
908		   if the incarnation number of the tx entry does not match the one
909		   of the vcc, then this implies that the vcc has been closed then re-opened.
910		   we thus just drop the skb here. */
911
912		DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
913			fore200e->atm_dev->number);
914
915		dev_kfree_skb_any(entry->skb);
916	    }
917	    else {
918		vcc = vc_map->vcc;
919		ASSERT(vcc);
920
921		/* notify tx completion */
922		if (vcc->pop) {
923		    vcc->pop(vcc, entry->skb);
924		}
925		else {
926		    dev_kfree_skb_any(entry->skb);
927		}
928#if 1
929		/* race fixed by the above incarnation mechanism, but... */
930		if (atomic_read(&sk_atm(vcc)->sk_wmem_alloc) < 0) {
931		    atomic_set(&sk_atm(vcc)->sk_wmem_alloc, 0);
932		}
933#endif
934		/* check error condition */
935		if (*entry->status & STATUS_ERROR)
936		    atomic_inc(&vcc->stats->tx_err);
937		else
938		    atomic_inc(&vcc->stats->tx);
939	    }
940	}
941
942	*entry->status = STATUS_FREE;
943
944	fore200e->host_txq.txing--;
945
946	FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
947    }
948}
949
950
951#ifdef FORE200E_BSQ_DEBUG
952int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
953{
954    struct buffer* buffer;
955    int count = 0;
956
957    buffer = bsq->freebuf;
958    while (buffer) {
959
960	if (buffer->supplied) {
961	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
962		   where, scheme, magn, buffer->index);
963	}
964
965	if (buffer->magn != magn) {
966	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
967		   where, scheme, magn, buffer->index, buffer->magn);
968	}
969
970	if (buffer->scheme != scheme) {
971	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
972		   where, scheme, magn, buffer->index, buffer->scheme);
973	}
974
975	if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
976	    printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
977		   where, scheme, magn, buffer->index);
978	}
979
980	count++;
981	buffer = buffer->next;
982    }
983
984    if (count != bsq->freebuf_count) {
985	printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
986	       where, scheme, magn, count, bsq->freebuf_count);
987    }
988    return 0;
989}
990#endif
991
992
993static void
994fore200e_supply(struct fore200e* fore200e)
995{
996    int  scheme, magn, i;
997
998    struct host_bsq*       bsq;
999    struct host_bsq_entry* entry;
1000    struct buffer*         buffer;
1001
1002    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1003	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1004
1005	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
1006
1007#ifdef FORE200E_BSQ_DEBUG
1008	    bsq_audit(1, bsq, scheme, magn);
1009#endif
1010	    while (bsq->freebuf_count >= RBD_BLK_SIZE) {
1011
1012		DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
1013			RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
1014
1015		entry = &bsq->host_entry[ bsq->head ];
1016
1017		for (i = 0; i < RBD_BLK_SIZE; i++) {
1018
1019		    /* take the first buffer in the free buffer list */
1020		    buffer = bsq->freebuf;
1021		    if (!buffer) {
1022			printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
1023			       scheme, magn, bsq->freebuf_count);
1024			return;
1025		    }
1026		    bsq->freebuf = buffer->next;
1027
1028#ifdef FORE200E_BSQ_DEBUG
1029		    if (buffer->supplied)
1030			printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
1031			       scheme, magn, buffer->index);
1032		    buffer->supplied = 1;
1033#endif
1034		    entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
1035		    entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
1036		}
1037
1038		FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
1039
1040 		/* decrease accordingly the number of free rx buffers */
1041		bsq->freebuf_count -= RBD_BLK_SIZE;
1042
1043		*entry->status = STATUS_PENDING;
1044		fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
1045	    }
1046	}
1047    }
1048}
1049
1050
1051static int
1052fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
1053{
1054    struct sk_buff*      skb;
1055    struct buffer*       buffer;
1056    struct fore200e_vcc* fore200e_vcc;
1057    int                  i, pdu_len = 0;
1058#ifdef FORE200E_52BYTE_AAL0_SDU
1059    u32                  cell_header = 0;
1060#endif
1061
1062    ASSERT(vcc);
1063
1064    fore200e_vcc = FORE200E_VCC(vcc);
1065    ASSERT(fore200e_vcc);
1066
1067#ifdef FORE200E_52BYTE_AAL0_SDU
1068    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
1069
1070	cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
1071	              (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
1072                      (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
1073                      (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) |
1074                       rpd->atm_header.clp;
1075	pdu_len = 4;
1076    }
1077#endif
1078
1079    /* compute total PDU length */
1080    for (i = 0; i < rpd->nseg; i++)
1081	pdu_len += rpd->rsd[ i ].length;
1082
1083    skb = alloc_skb(pdu_len, GFP_ATOMIC);
1084    if (skb == NULL) {
1085	DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
1086
1087	atomic_inc(&vcc->stats->rx_drop);
1088	return -ENOMEM;
1089    }
1090
1091    __net_timestamp(skb);
1092
1093#ifdef FORE200E_52BYTE_AAL0_SDU
1094    if (cell_header) {
1095	*((u32*)skb_put(skb, 4)) = cell_header;
1096    }
1097#endif
1098
1099    /* reassemble segments */
1100    for (i = 0; i < rpd->nseg; i++) {
1101
1102	/* rebuild rx buffer address from rsd handle */
1103	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1104
1105	/* Make device DMA transfer visible to CPU.  */
1106	fore200e->bus->dma_sync_for_cpu(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1107
1108	memcpy(skb_put(skb, rpd->rsd[ i ].length), buffer->data.align_addr, rpd->rsd[ i ].length);
1109
1110	/* Now let the device get at it again.  */
1111	fore200e->bus->dma_sync_for_device(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1112    }
1113
1114    DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1115
1116    if (pdu_len < fore200e_vcc->rx_min_pdu)
1117	fore200e_vcc->rx_min_pdu = pdu_len;
1118    if (pdu_len > fore200e_vcc->rx_max_pdu)
1119	fore200e_vcc->rx_max_pdu = pdu_len;
1120    fore200e_vcc->rx_pdu++;
1121
1122    /* push PDU */
1123    if (atm_charge(vcc, skb->truesize) == 0) {
1124
1125	DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1126		vcc->itf, vcc->vpi, vcc->vci);
1127
1128	dev_kfree_skb_any(skb);
1129
1130	atomic_inc(&vcc->stats->rx_drop);
1131	return -ENOMEM;
1132    }
1133
1134    ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1135
1136    vcc->push(vcc, skb);
1137    atomic_inc(&vcc->stats->rx);
1138
1139    ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1140
1141    return 0;
1142}
1143
1144
1145static void
1146fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1147{
1148    struct host_bsq* bsq;
1149    struct buffer*   buffer;
1150    int              i;
1151
1152    for (i = 0; i < rpd->nseg; i++) {
1153
1154	/* rebuild rx buffer address from rsd handle */
1155	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1156
1157	bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1158
1159#ifdef FORE200E_BSQ_DEBUG
1160	bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1161
1162	if (buffer->supplied == 0)
1163	    printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1164		   buffer->scheme, buffer->magn, buffer->index);
1165	buffer->supplied = 0;
1166#endif
1167
1168	/* re-insert the buffer into the free buffer list */
1169	buffer->next = bsq->freebuf;
1170	bsq->freebuf = buffer;
1171
1172	/* then increment the number of free rx buffers */
1173	bsq->freebuf_count++;
1174    }
1175}
1176
1177
1178static void
1179fore200e_rx_irq(struct fore200e* fore200e)
1180{
1181    struct host_rxq*        rxq = &fore200e->host_rxq;
1182    struct host_rxq_entry*  entry;
1183    struct atm_vcc*         vcc;
1184    struct fore200e_vc_map* vc_map;
1185
1186    for (;;) {
1187
1188	entry = &rxq->host_entry[ rxq->head ];
1189
1190	/* no more received PDUs */
1191	if ((*entry->status & STATUS_COMPLETE) == 0)
1192	    break;
1193
1194	vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1195
1196	if ((vc_map->vcc == NULL) ||
1197	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1198
1199	    DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1200		    fore200e->atm_dev->number,
1201		    entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1202	}
1203	else {
1204	    vcc = vc_map->vcc;
1205	    ASSERT(vcc);
1206
1207	    if ((*entry->status & STATUS_ERROR) == 0) {
1208
1209		fore200e_push_rpd(fore200e, vcc, entry->rpd);
1210	    }
1211	    else {
1212		DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1213			fore200e->atm_dev->number,
1214			entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1215		atomic_inc(&vcc->stats->rx_err);
1216	    }
1217	}
1218
1219	FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1220
1221	fore200e_collect_rpd(fore200e, entry->rpd);
1222
1223	/* rewrite the rpd address to ack the received PDU */
1224	fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1225	*entry->status = STATUS_FREE;
1226
1227	fore200e_supply(fore200e);
1228    }
1229}
1230
1231
1232#ifndef FORE200E_USE_TASKLET
1233static void
1234fore200e_irq(struct fore200e* fore200e)
1235{
1236    unsigned long flags;
1237
1238    spin_lock_irqsave(&fore200e->q_lock, flags);
1239    fore200e_rx_irq(fore200e);
1240    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1241
1242    spin_lock_irqsave(&fore200e->q_lock, flags);
1243    fore200e_tx_irq(fore200e);
1244    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1245}
1246#endif
1247
1248
1249static irqreturn_t
1250fore200e_interrupt(int irq, void* dev)
1251{
1252    struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1253
1254    if (fore200e->bus->irq_check(fore200e) == 0) {
1255
1256	DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1257	return IRQ_NONE;
1258    }
1259    DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1260
1261#ifdef FORE200E_USE_TASKLET
1262    tasklet_schedule(&fore200e->tx_tasklet);
1263    tasklet_schedule(&fore200e->rx_tasklet);
1264#else
1265    fore200e_irq(fore200e);
1266#endif
1267
1268    fore200e->bus->irq_ack(fore200e);
1269    return IRQ_HANDLED;
1270}
1271
1272
1273#ifdef FORE200E_USE_TASKLET
1274static void
1275fore200e_tx_tasklet(unsigned long data)
1276{
1277    struct fore200e* fore200e = (struct fore200e*) data;
1278    unsigned long flags;
1279
1280    DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1281
1282    spin_lock_irqsave(&fore200e->q_lock, flags);
1283    fore200e_tx_irq(fore200e);
1284    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1285}
1286
1287
1288static void
1289fore200e_rx_tasklet(unsigned long data)
1290{
1291    struct fore200e* fore200e = (struct fore200e*) data;
1292    unsigned long    flags;
1293
1294    DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1295
1296    spin_lock_irqsave(&fore200e->q_lock, flags);
1297    fore200e_rx_irq((struct fore200e*) data);
1298    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1299}
1300#endif
1301
1302
1303static int
1304fore200e_select_scheme(struct atm_vcc* vcc)
1305{
1306    /* fairly balance the VCs over (identical) buffer schemes */
1307    int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1308
1309    DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1310	    vcc->itf, vcc->vpi, vcc->vci, scheme);
1311
1312    return scheme;
1313}
1314
1315
1316static int
1317fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1318{
1319    struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1320    struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1321    struct activate_opcode   activ_opcode;
1322    struct deactivate_opcode deactiv_opcode;
1323    struct vpvc              vpvc;
1324    int                      ok;
1325    enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1326
1327    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1328
1329    if (activate) {
1330	FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1331
1332	activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1333	activ_opcode.aal    = aal;
1334	activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1335	activ_opcode.pad    = 0;
1336    }
1337    else {
1338	deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1339	deactiv_opcode.pad    = 0;
1340    }
1341
1342    vpvc.vci = vcc->vci;
1343    vpvc.vpi = vcc->vpi;
1344
1345    *entry->status = STATUS_PENDING;
1346
1347    if (activate) {
1348
1349#ifdef FORE200E_52BYTE_AAL0_SDU
1350	mtu = 48;
1351#endif
1352	/* the MTU is not used by the cp, except in the case of AAL0 */
1353	fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1354	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1355	fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1356    }
1357    else {
1358	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1359	fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1360    }
1361
1362    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1363
1364    *entry->status = STATUS_FREE;
1365
1366    if (ok == 0) {
1367	printk(FORE200E "unable to %s VC %d.%d.%d\n",
1368	       activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1369	return -EIO;
1370    }
1371
1372    DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci,
1373	    activate ? "open" : "clos");
1374
1375    return 0;
1376}
1377
1378
1379#define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1380
1381static void
1382fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1383{
1384    if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1385
1386	/* compute the data cells to idle cells ratio from the tx PCR */
1387	rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1388	rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1389    }
1390    else {
1391	/* disable rate control */
1392	rate->data_cells = rate->idle_cells = 0;
1393    }
1394}
1395
1396
1397static int
1398fore200e_open(struct atm_vcc *vcc)
1399{
1400    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1401    struct fore200e_vcc*    fore200e_vcc;
1402    struct fore200e_vc_map* vc_map;
1403    unsigned long	    flags;
1404    int			    vci = vcc->vci;
1405    short		    vpi = vcc->vpi;
1406
1407    ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1408    ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1409
1410    spin_lock_irqsave(&fore200e->q_lock, flags);
1411
1412    vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1413    if (vc_map->vcc) {
1414
1415	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1416
1417	printk(FORE200E "VC %d.%d.%d already in use\n",
1418	       fore200e->atm_dev->number, vpi, vci);
1419
1420	return -EINVAL;
1421    }
1422
1423    vc_map->vcc = vcc;
1424
1425    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1426
1427    fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1428    if (fore200e_vcc == NULL) {
1429	vc_map->vcc = NULL;
1430	return -ENOMEM;
1431    }
1432
1433    DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1434	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1435	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1436	    fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1437	    vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1438	    fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1439	    vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1440
1441    /* pseudo-CBR bandwidth requested? */
1442    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1443
1444	mutex_lock(&fore200e->rate_mtx);
1445	if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1446	    mutex_unlock(&fore200e->rate_mtx);
1447
1448	    kfree(fore200e_vcc);
1449	    vc_map->vcc = NULL;
1450	    return -EAGAIN;
1451	}
1452
1453	/* reserve bandwidth */
1454	fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1455	mutex_unlock(&fore200e->rate_mtx);
1456    }
1457
1458    vcc->itf = vcc->dev->number;
1459
1460    set_bit(ATM_VF_PARTIAL,&vcc->flags);
1461    set_bit(ATM_VF_ADDR, &vcc->flags);
1462
1463    vcc->dev_data = fore200e_vcc;
1464
1465    if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1466
1467	vc_map->vcc = NULL;
1468
1469	clear_bit(ATM_VF_ADDR, &vcc->flags);
1470	clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1471
1472	vcc->dev_data = NULL;
1473
1474	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1475
1476	kfree(fore200e_vcc);
1477	return -EINVAL;
1478    }
1479
1480    /* compute rate control parameters */
1481    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1482
1483	fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1484	set_bit(ATM_VF_HASQOS, &vcc->flags);
1485
1486	DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1487		vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1488		vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr,
1489		fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1490    }
1491
1492    fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1493    fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1494    fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1495
1496    /* new incarnation of the vcc */
1497    vc_map->incarn = ++fore200e->incarn_count;
1498
1499    /* VC unusable before this flag is set */
1500    set_bit(ATM_VF_READY, &vcc->flags);
1501
1502    return 0;
1503}
1504
1505
1506static void
1507fore200e_close(struct atm_vcc* vcc)
1508{
1509    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1510    struct fore200e_vcc*    fore200e_vcc;
1511    struct fore200e_vc_map* vc_map;
1512    unsigned long           flags;
1513
1514    ASSERT(vcc);
1515    ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1516    ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1517
1518    DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1519
1520    clear_bit(ATM_VF_READY, &vcc->flags);
1521
1522    fore200e_activate_vcin(fore200e, 0, vcc, 0);
1523
1524    spin_lock_irqsave(&fore200e->q_lock, flags);
1525
1526    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1527
1528    /* the vc is no longer considered as "in use" by fore200e_open() */
1529    vc_map->vcc = NULL;
1530
1531    vcc->itf = vcc->vci = vcc->vpi = 0;
1532
1533    fore200e_vcc = FORE200E_VCC(vcc);
1534    vcc->dev_data = NULL;
1535
1536    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1537
1538    /* release reserved bandwidth, if any */
1539    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1540
1541	mutex_lock(&fore200e->rate_mtx);
1542	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1543	mutex_unlock(&fore200e->rate_mtx);
1544
1545	clear_bit(ATM_VF_HASQOS, &vcc->flags);
1546    }
1547
1548    clear_bit(ATM_VF_ADDR, &vcc->flags);
1549    clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1550
1551    ASSERT(fore200e_vcc);
1552    kfree(fore200e_vcc);
1553}
1554
1555
1556static int
1557fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1558{
1559    struct fore200e*        fore200e     = FORE200E_DEV(vcc->dev);
1560    struct fore200e_vcc*    fore200e_vcc = FORE200E_VCC(vcc);
1561    struct fore200e_vc_map* vc_map;
1562    struct host_txq*        txq          = &fore200e->host_txq;
1563    struct host_txq_entry*  entry;
1564    struct tpd*             tpd;
1565    struct tpd_haddr        tpd_haddr;
1566    int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1567    int                     tx_copy      = 0;
1568    int                     tx_len       = skb->len;
1569    u32*                    cell_header  = NULL;
1570    unsigned char*          skb_data;
1571    int                     skb_len;
1572    unsigned char*          data;
1573    unsigned long           flags;
1574
1575    ASSERT(vcc);
1576    ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1577    ASSERT(fore200e);
1578    ASSERT(fore200e_vcc);
1579
1580    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1581	DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1582	dev_kfree_skb_any(skb);
1583	return -EINVAL;
1584    }
1585
1586#ifdef FORE200E_52BYTE_AAL0_SDU
1587    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1588	cell_header = (u32*) skb->data;
1589	skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1590	skb_len     = tx_len = skb->len  - 4;
1591
1592	DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1593    }
1594    else
1595#endif
1596    {
1597	skb_data = skb->data;
1598	skb_len  = skb->len;
1599    }
1600
1601    if (((unsigned long)skb_data) & 0x3) {
1602
1603	DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1604	tx_copy = 1;
1605	tx_len  = skb_len;
1606    }
1607
1608    if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1609
1610        /* this simply NUKES the PCA board */
1611	DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1612	tx_copy = 1;
1613	tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1614    }
1615
1616    if (tx_copy) {
1617	data = kmalloc(tx_len, GFP_ATOMIC | GFP_DMA);
1618	if (data == NULL) {
1619	    if (vcc->pop) {
1620		vcc->pop(vcc, skb);
1621	    }
1622	    else {
1623		dev_kfree_skb_any(skb);
1624	    }
1625	    return -ENOMEM;
1626	}
1627
1628	memcpy(data, skb_data, skb_len);
1629	if (skb_len < tx_len)
1630	    memset(data + skb_len, 0x00, tx_len - skb_len);
1631    }
1632    else {
1633	data = skb_data;
1634    }
1635
1636    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1637    ASSERT(vc_map->vcc == vcc);
1638
1639  retry_here:
1640
1641    spin_lock_irqsave(&fore200e->q_lock, flags);
1642
1643    entry = &txq->host_entry[ txq->head ];
1644
1645    if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1646
1647	/* try to free completed tx queue entries */
1648	fore200e_tx_irq(fore200e);
1649
1650	if (*entry->status != STATUS_FREE) {
1651
1652	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1653
1654	    /* retry once again? */
1655	    if (--retry > 0) {
1656		udelay(50);
1657		goto retry_here;
1658	    }
1659
1660	    atomic_inc(&vcc->stats->tx_err);
1661
1662	    fore200e->tx_sat++;
1663	    DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1664		    fore200e->name, fore200e->cp_queues->heartbeat);
1665	    if (vcc->pop) {
1666		vcc->pop(vcc, skb);
1667	    }
1668	    else {
1669		dev_kfree_skb_any(skb);
1670	    }
1671
1672	    if (tx_copy)
1673		kfree(data);
1674
1675	    return -ENOBUFS;
1676	}
1677    }
1678
1679    entry->incarn = vc_map->incarn;
1680    entry->vc_map = vc_map;
1681    entry->skb    = skb;
1682    entry->data   = tx_copy ? data : NULL;
1683
1684    tpd = entry->tpd;
1685    tpd->tsd[ 0 ].buffer = fore200e->bus->dma_map(fore200e, data, tx_len, DMA_TO_DEVICE);
1686    tpd->tsd[ 0 ].length = tx_len;
1687
1688    FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1689    txq->txing++;
1690
1691    /* The dma_map call above implies a dma_sync so the device can use it,
1692     * thus no explicit dma_sync call is necessary here.
1693     */
1694
1695    DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n",
1696	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1697	    tpd->tsd[0].length, skb_len);
1698
1699    if (skb_len < fore200e_vcc->tx_min_pdu)
1700	fore200e_vcc->tx_min_pdu = skb_len;
1701    if (skb_len > fore200e_vcc->tx_max_pdu)
1702	fore200e_vcc->tx_max_pdu = skb_len;
1703    fore200e_vcc->tx_pdu++;
1704
1705    /* set tx rate control information */
1706    tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1707    tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1708
1709    if (cell_header) {
1710	tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1711	tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1712	tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1713	tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1714	tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1715    }
1716    else {
1717	/* set the ATM header, common to all cells conveying the PDU */
1718	tpd->atm_header.clp = 0;
1719	tpd->atm_header.plt = 0;
1720	tpd->atm_header.vci = vcc->vci;
1721	tpd->atm_header.vpi = vcc->vpi;
1722	tpd->atm_header.gfc = 0;
1723    }
1724
1725    tpd->spec.length = tx_len;
1726    tpd->spec.nseg   = 1;
1727    tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1728    tpd->spec.intr   = 1;
1729
1730    tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1731    tpd_haddr.pad   = 0;
1732    tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1733
1734    *entry->status = STATUS_PENDING;
1735    fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1736
1737    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1738
1739    return 0;
1740}
1741
1742
1743static int
1744fore200e_getstats(struct fore200e* fore200e)
1745{
1746    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1747    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1748    struct stats_opcode     opcode;
1749    int                     ok;
1750    u32                     stats_dma_addr;
1751
1752    if (fore200e->stats == NULL) {
1753	fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL | GFP_DMA);
1754	if (fore200e->stats == NULL)
1755	    return -ENOMEM;
1756    }
1757
1758    stats_dma_addr = fore200e->bus->dma_map(fore200e, fore200e->stats,
1759					    sizeof(struct stats), DMA_FROM_DEVICE);
1760
1761    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1762
1763    opcode.opcode = OPCODE_GET_STATS;
1764    opcode.pad    = 0;
1765
1766    fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1767
1768    *entry->status = STATUS_PENDING;
1769
1770    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1771
1772    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1773
1774    *entry->status = STATUS_FREE;
1775
1776    fore200e->bus->dma_unmap(fore200e, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1777
1778    if (ok == 0) {
1779	printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1780	return -EIO;
1781    }
1782
1783    return 0;
1784}
1785
1786
1787static int
1788fore200e_getsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen)
1789{
1790    /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1791
1792    DPRINTK(2, "getsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1793	    vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1794
1795    return -EINVAL;
1796}
1797
1798
1799static int
1800fore200e_setsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, unsigned int optlen)
1801{
1802    /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1803
1804    DPRINTK(2, "setsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1805	    vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1806
1807    return -EINVAL;
1808}
1809
1810
1811#if 0 /* currently unused */
1812static int
1813fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1814{
1815    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1816    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1817    struct oc3_opcode       opcode;
1818    int                     ok;
1819    u32                     oc3_regs_dma_addr;
1820
1821    oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1822
1823    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1824
1825    opcode.opcode = OPCODE_GET_OC3;
1826    opcode.reg    = 0;
1827    opcode.value  = 0;
1828    opcode.mask   = 0;
1829
1830    fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1831
1832    *entry->status = STATUS_PENDING;
1833
1834    fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1835
1836    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1837
1838    *entry->status = STATUS_FREE;
1839
1840    fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1841
1842    if (ok == 0) {
1843	printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1844	return -EIO;
1845    }
1846
1847    return 0;
1848}
1849#endif
1850
1851
1852static int
1853fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1854{
1855    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1856    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1857    struct oc3_opcode       opcode;
1858    int                     ok;
1859
1860    DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1861
1862    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1863
1864    opcode.opcode = OPCODE_SET_OC3;
1865    opcode.reg    = reg;
1866    opcode.value  = value;
1867    opcode.mask   = mask;
1868
1869    fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1870
1871    *entry->status = STATUS_PENDING;
1872
1873    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1874
1875    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1876
1877    *entry->status = STATUS_FREE;
1878
1879    if (ok == 0) {
1880	printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1881	return -EIO;
1882    }
1883
1884    return 0;
1885}
1886
1887
1888static int
1889fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1890{
1891    u32 mct_value, mct_mask;
1892    int error;
1893
1894    if (!capable(CAP_NET_ADMIN))
1895	return -EPERM;
1896
1897    switch (loop_mode) {
1898
1899    case ATM_LM_NONE:
1900	mct_value = 0;
1901	mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1902	break;
1903
1904    case ATM_LM_LOC_PHY:
1905	mct_value = mct_mask = SUNI_MCT_DLE;
1906	break;
1907
1908    case ATM_LM_RMT_PHY:
1909	mct_value = mct_mask = SUNI_MCT_LLE;
1910	break;
1911
1912    default:
1913	return -EINVAL;
1914    }
1915
1916    error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1917    if (error == 0)
1918	fore200e->loop_mode = loop_mode;
1919
1920    return error;
1921}
1922
1923
1924static int
1925fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1926{
1927    struct sonet_stats tmp;
1928
1929    if (fore200e_getstats(fore200e) < 0)
1930	return -EIO;
1931
1932    tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1933    tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1934    tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1935    tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1936    tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1937    tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1938    tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1939    tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1940	              be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1941	              be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1942    tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1943	              be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1944	              be32_to_cpu(fore200e->stats->aal5.cells_received);
1945
1946    if (arg)
1947	return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;
1948
1949    return 0;
1950}
1951
1952
1953static int
1954fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1955{
1956    struct fore200e* fore200e = FORE200E_DEV(dev);
1957
1958    DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1959
1960    switch (cmd) {
1961
1962    case SONET_GETSTAT:
1963	return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1964
1965    case SONET_GETDIAG:
1966	return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1967
1968    case ATM_SETLOOP:
1969	return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1970
1971    case ATM_GETLOOP:
1972	return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1973
1974    case ATM_QUERYLOOP:
1975	return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1976    }
1977
1978    return -ENOSYS; /* not implemented */
1979}
1980
1981
1982static int
1983fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1984{
1985    struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1986    struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1987
1988    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1989	DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1990	return -EINVAL;
1991    }
1992
1993    DPRINTK(2, "change_qos %d.%d.%d, "
1994	    "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1995	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1996	    "available_cell_rate = %u",
1997	    vcc->itf, vcc->vpi, vcc->vci,
1998	    fore200e_traffic_class[ qos->txtp.traffic_class ],
1999	    qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
2000	    fore200e_traffic_class[ qos->rxtp.traffic_class ],
2001	    qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
2002	    flags, fore200e->available_cell_rate);
2003
2004    if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
2005
2006	mutex_lock(&fore200e->rate_mtx);
2007	if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
2008	    mutex_unlock(&fore200e->rate_mtx);
2009	    return -EAGAIN;
2010	}
2011
2012	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
2013	fore200e->available_cell_rate -= qos->txtp.max_pcr;
2014
2015	mutex_unlock(&fore200e->rate_mtx);
2016
2017	memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
2018
2019	/* update rate control parameters */
2020	fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
2021
2022	set_bit(ATM_VF_HASQOS, &vcc->flags);
2023
2024	return 0;
2025    }
2026
2027    return -EINVAL;
2028}
2029
2030
2031static int __devinit
2032fore200e_irq_request(struct fore200e* fore200e)
2033{
2034    if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
2035
2036	printk(FORE200E "unable to reserve IRQ %s for device %s\n",
2037	       fore200e_irq_itoa(fore200e->irq), fore200e->name);
2038	return -EBUSY;
2039    }
2040
2041    printk(FORE200E "IRQ %s reserved for device %s\n",
2042	   fore200e_irq_itoa(fore200e->irq), fore200e->name);
2043
2044#ifdef FORE200E_USE_TASKLET
2045    tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
2046    tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
2047#endif
2048
2049    fore200e->state = FORE200E_STATE_IRQ;
2050    return 0;
2051}
2052
2053
2054static int __devinit
2055fore200e_get_esi(struct fore200e* fore200e)
2056{
2057    struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL | GFP_DMA);
2058    int ok, i;
2059
2060    if (!prom)
2061	return -ENOMEM;
2062
2063    ok = fore200e->bus->prom_read(fore200e, prom);
2064    if (ok < 0) {
2065	kfree(prom);
2066	return -EBUSY;
2067    }
2068
2069    printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
2070	   fore200e->name,
2071	   (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
2072	   prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
2073
2074    for (i = 0; i < ESI_LEN; i++) {
2075	fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
2076    }
2077
2078    kfree(prom);
2079
2080    return 0;
2081}
2082
2083
2084static int __devinit
2085fore200e_alloc_rx_buf(struct fore200e* fore200e)
2086{
2087    int scheme, magn, nbr, size, i;
2088
2089    struct host_bsq* bsq;
2090    struct buffer*   buffer;
2091
2092    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2093	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2094
2095	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2096
2097	    nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
2098	    size = fore200e_rx_buf_size[ scheme ][ magn ];
2099
2100	    DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
2101
2102	    /* allocate the array of receive buffers */
2103	    buffer = bsq->buffer = kzalloc(nbr * sizeof(struct buffer), GFP_KERNEL);
2104
2105	    if (buffer == NULL)
2106		return -ENOMEM;
2107
2108	    bsq->freebuf = NULL;
2109
2110	    for (i = 0; i < nbr; i++) {
2111
2112		buffer[ i ].scheme = scheme;
2113		buffer[ i ].magn   = magn;
2114#ifdef FORE200E_BSQ_DEBUG
2115		buffer[ i ].index  = i;
2116		buffer[ i ].supplied = 0;
2117#endif
2118
2119		/* allocate the receive buffer body */
2120		if (fore200e_chunk_alloc(fore200e,
2121					 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2122					 DMA_FROM_DEVICE) < 0) {
2123
2124		    while (i > 0)
2125			fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2126		    kfree(buffer);
2127
2128		    return -ENOMEM;
2129		}
2130
2131		/* insert the buffer into the free buffer list */
2132		buffer[ i ].next = bsq->freebuf;
2133		bsq->freebuf = &buffer[ i ];
2134	    }
2135	    /* all the buffers are free, initially */
2136	    bsq->freebuf_count = nbr;
2137
2138#ifdef FORE200E_BSQ_DEBUG
2139	    bsq_audit(3, bsq, scheme, magn);
2140#endif
2141	}
2142    }
2143
2144    fore200e->state = FORE200E_STATE_ALLOC_BUF;
2145    return 0;
2146}
2147
2148
2149static int __devinit
2150fore200e_init_bs_queue(struct fore200e* fore200e)
2151{
2152    int scheme, magn, i;
2153
2154    struct host_bsq*     bsq;
2155    struct cp_bsq_entry __iomem * cp_entry;
2156
2157    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2158	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2159
2160	    DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2161
2162	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2163
2164	    /* allocate and align the array of status words */
2165	    if (fore200e->bus->dma_chunk_alloc(fore200e,
2166					       &bsq->status,
2167					       sizeof(enum status),
2168					       QUEUE_SIZE_BS,
2169					       fore200e->bus->status_alignment) < 0) {
2170		return -ENOMEM;
2171	    }
2172
2173	    /* allocate and align the array of receive buffer descriptors */
2174	    if (fore200e->bus->dma_chunk_alloc(fore200e,
2175					       &bsq->rbd_block,
2176					       sizeof(struct rbd_block),
2177					       QUEUE_SIZE_BS,
2178					       fore200e->bus->descr_alignment) < 0) {
2179
2180		fore200e->bus->dma_chunk_free(fore200e, &bsq->status);
2181		return -ENOMEM;
2182	    }
2183
2184	    /* get the base address of the cp resident buffer supply queue entries */
2185	    cp_entry = fore200e->virt_base +
2186		       fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2187
2188	    /* fill the host resident and cp resident buffer supply queue entries */
2189	    for (i = 0; i < QUEUE_SIZE_BS; i++) {
2190
2191		bsq->host_entry[ i ].status =
2192		                     FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2193	        bsq->host_entry[ i ].rbd_block =
2194		                     FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2195		bsq->host_entry[ i ].rbd_block_dma =
2196		                     FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2197		bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2198
2199		*bsq->host_entry[ i ].status = STATUS_FREE;
2200
2201		fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i),
2202				     &cp_entry[ i ].status_haddr);
2203	    }
2204	}
2205    }
2206
2207    fore200e->state = FORE200E_STATE_INIT_BSQ;
2208    return 0;
2209}
2210
2211
2212static int __devinit
2213fore200e_init_rx_queue(struct fore200e* fore200e)
2214{
2215    struct host_rxq*     rxq =  &fore200e->host_rxq;
2216    struct cp_rxq_entry __iomem * cp_entry;
2217    int i;
2218
2219    DPRINTK(2, "receive queue is being initialized\n");
2220
2221    /* allocate and align the array of status words */
2222    if (fore200e->bus->dma_chunk_alloc(fore200e,
2223				       &rxq->status,
2224				       sizeof(enum status),
2225				       QUEUE_SIZE_RX,
2226				       fore200e->bus->status_alignment) < 0) {
2227	return -ENOMEM;
2228    }
2229
2230    /* allocate and align the array of receive PDU descriptors */
2231    if (fore200e->bus->dma_chunk_alloc(fore200e,
2232				       &rxq->rpd,
2233				       sizeof(struct rpd),
2234				       QUEUE_SIZE_RX,
2235				       fore200e->bus->descr_alignment) < 0) {
2236
2237	fore200e->bus->dma_chunk_free(fore200e, &rxq->status);
2238	return -ENOMEM;
2239    }
2240
2241    /* get the base address of the cp resident rx queue entries */
2242    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2243
2244    /* fill the host resident and cp resident rx entries */
2245    for (i=0; i < QUEUE_SIZE_RX; i++) {
2246
2247	rxq->host_entry[ i ].status =
2248	                     FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2249	rxq->host_entry[ i ].rpd =
2250	                     FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2251	rxq->host_entry[ i ].rpd_dma =
2252	                     FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2253	rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2254
2255	*rxq->host_entry[ i ].status = STATUS_FREE;
2256
2257	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i),
2258			     &cp_entry[ i ].status_haddr);
2259
2260	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2261			     &cp_entry[ i ].rpd_haddr);
2262    }
2263
2264    /* set the head entry of the queue */
2265    rxq->head = 0;
2266
2267    fore200e->state = FORE200E_STATE_INIT_RXQ;
2268    return 0;
2269}
2270
2271
2272static int __devinit
2273fore200e_init_tx_queue(struct fore200e* fore200e)
2274{
2275    struct host_txq*     txq =  &fore200e->host_txq;
2276    struct cp_txq_entry __iomem * cp_entry;
2277    int i;
2278
2279    DPRINTK(2, "transmit queue is being initialized\n");
2280
2281    /* allocate and align the array of status words */
2282    if (fore200e->bus->dma_chunk_alloc(fore200e,
2283				       &txq->status,
2284				       sizeof(enum status),
2285				       QUEUE_SIZE_TX,
2286				       fore200e->bus->status_alignment) < 0) {
2287	return -ENOMEM;
2288    }
2289
2290    /* allocate and align the array of transmit PDU descriptors */
2291    if (fore200e->bus->dma_chunk_alloc(fore200e,
2292				       &txq->tpd,
2293				       sizeof(struct tpd),
2294				       QUEUE_SIZE_TX,
2295				       fore200e->bus->descr_alignment) < 0) {
2296
2297	fore200e->bus->dma_chunk_free(fore200e, &txq->status);
2298	return -ENOMEM;
2299    }
2300
2301    /* get the base address of the cp resident tx queue entries */
2302    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2303
2304    /* fill the host resident and cp resident tx entries */
2305    for (i=0; i < QUEUE_SIZE_TX; i++) {
2306
2307	txq->host_entry[ i ].status =
2308	                     FORE200E_INDEX(txq->status.align_addr, enum status, i);
2309	txq->host_entry[ i ].tpd =
2310	                     FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2311	txq->host_entry[ i ].tpd_dma  =
2312                             FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2313	txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2314
2315	*txq->host_entry[ i ].status = STATUS_FREE;
2316
2317	fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i),
2318			     &cp_entry[ i ].status_haddr);
2319
2320        /* although there is a one-to-one mapping of tx queue entries and tpds,
2321	   we do not write here the DMA (physical) base address of each tpd into
2322	   the related cp resident entry, because the cp relies on this write
2323	   operation to detect that a new pdu has been submitted for tx */
2324    }
2325
2326    /* set the head and tail entries of the queue */
2327    txq->head = 0;
2328    txq->tail = 0;
2329
2330    fore200e->state = FORE200E_STATE_INIT_TXQ;
2331    return 0;
2332}
2333
2334
2335static int __devinit
2336fore200e_init_cmd_queue(struct fore200e* fore200e)
2337{
2338    struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2339    struct cp_cmdq_entry __iomem * cp_entry;
2340    int i;
2341
2342    DPRINTK(2, "command queue is being initialized\n");
2343
2344    /* allocate and align the array of status words */
2345    if (fore200e->bus->dma_chunk_alloc(fore200e,
2346				       &cmdq->status,
2347				       sizeof(enum status),
2348				       QUEUE_SIZE_CMD,
2349				       fore200e->bus->status_alignment) < 0) {
2350	return -ENOMEM;
2351    }
2352
2353    /* get the base address of the cp resident cmd queue entries */
2354    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2355
2356    /* fill the host resident and cp resident cmd entries */
2357    for (i=0; i < QUEUE_SIZE_CMD; i++) {
2358
2359	cmdq->host_entry[ i ].status   =
2360                              FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2361	cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2362
2363	*cmdq->host_entry[ i ].status = STATUS_FREE;
2364
2365	fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i),
2366                             &cp_entry[ i ].status_haddr);
2367    }
2368
2369    /* set the head entry of the queue */
2370    cmdq->head = 0;
2371
2372    fore200e->state = FORE200E_STATE_INIT_CMDQ;
2373    return 0;
2374}
2375
2376
2377static void __devinit
2378fore200e_param_bs_queue(struct fore200e* fore200e,
2379			enum buffer_scheme scheme, enum buffer_magn magn,
2380			int queue_length, int pool_size, int supply_blksize)
2381{
2382    struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2383
2384    fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2385    fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2386    fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2387    fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2388}
2389
2390
2391static int __devinit
2392fore200e_initialize(struct fore200e* fore200e)
2393{
2394    struct cp_queues __iomem * cpq;
2395    int               ok, scheme, magn;
2396
2397    DPRINTK(2, "device %s being initialized\n", fore200e->name);
2398
2399    mutex_init(&fore200e->rate_mtx);
2400    spin_lock_init(&fore200e->q_lock);
2401
2402    cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2403
2404    /* enable cp to host interrupts */
2405    fore200e->bus->write(1, &cpq->imask);
2406
2407    if (fore200e->bus->irq_enable)
2408	fore200e->bus->irq_enable(fore200e);
2409
2410    fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2411
2412    fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2413    fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2414    fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2415
2416    fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2417    fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2418
2419    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2420	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2421	    fore200e_param_bs_queue(fore200e, scheme, magn,
2422				    QUEUE_SIZE_BS,
2423				    fore200e_rx_buf_nbr[ scheme ][ magn ],
2424				    RBD_BLK_SIZE);
2425
2426    /* issue the initialize command */
2427    fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2428    fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2429
2430    ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2431    if (ok == 0) {
2432	printk(FORE200E "device %s initialization failed\n", fore200e->name);
2433	return -ENODEV;
2434    }
2435
2436    printk(FORE200E "device %s initialized\n", fore200e->name);
2437
2438    fore200e->state = FORE200E_STATE_INITIALIZE;
2439    return 0;
2440}
2441
2442
2443static void __devinit
2444fore200e_monitor_putc(struct fore200e* fore200e, char c)
2445{
2446    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2447
2448#if 0
2449    printk("%c", c);
2450#endif
2451    fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2452}
2453
2454
2455static int __devinit
2456fore200e_monitor_getc(struct fore200e* fore200e)
2457{
2458    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2459    unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2460    int                c;
2461
2462    while (time_before(jiffies, timeout)) {
2463
2464	c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2465
2466	if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2467
2468	    fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2469#if 0
2470	    printk("%c", c & 0xFF);
2471#endif
2472	    return c & 0xFF;
2473	}
2474    }
2475
2476    return -1;
2477}
2478
2479
2480static void __devinit
2481fore200e_monitor_puts(struct fore200e* fore200e, char* str)
2482{
2483    while (*str) {
2484
2485	/* the i960 monitor doesn't accept any new character if it has something to say */
2486	while (fore200e_monitor_getc(fore200e) >= 0);
2487
2488	fore200e_monitor_putc(fore200e, *str++);
2489    }
2490
2491    while (fore200e_monitor_getc(fore200e) >= 0);
2492}
2493
2494#ifdef __LITTLE_ENDIAN
2495#define FW_EXT ".bin"
2496#else
2497#define FW_EXT "_ecd.bin2"
2498#endif
2499
2500static int __devinit
2501fore200e_load_and_start_fw(struct fore200e* fore200e)
2502{
2503    const struct firmware *firmware;
2504    struct device *device;
2505    struct fw_header *fw_header;
2506    const __le32 *fw_data;
2507    u32 fw_size;
2508    u32 __iomem *load_addr;
2509    char buf[48];
2510    int err = -ENODEV;
2511
2512    if (strcmp(fore200e->bus->model_name, "PCA-200E") == 0)
2513	device = &((struct pci_dev *) fore200e->bus_dev)->dev;
2514#ifdef CONFIG_SBUS
2515    else if (strcmp(fore200e->bus->model_name, "SBA-200E") == 0)
2516	device = &((struct platform_device *) fore200e->bus_dev)->dev;
2517#endif
2518    else
2519	return err;
2520
2521    sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2522    if ((err = request_firmware(&firmware, buf, device)) < 0) {
2523	printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2524	return err;
2525    }
2526
2527    fw_data = (__le32 *) firmware->data;
2528    fw_size = firmware->size / sizeof(u32);
2529    fw_header = (struct fw_header *) firmware->data;
2530    load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2531
2532    DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2533	    fore200e->name, load_addr, fw_size);
2534
2535    if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2536	printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2537	goto release;
2538    }
2539
2540    for (; fw_size--; fw_data++, load_addr++)
2541	fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2542
2543    DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2544
2545#if defined(__sparc_v9__)
2546    /* reported to be required by SBA cards on some sparc64 hosts */
2547    fore200e_spin(100);
2548#endif
2549
2550    sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2551    fore200e_monitor_puts(fore200e, buf);
2552
2553    if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2554	printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2555	goto release;
2556    }
2557
2558    printk(FORE200E "device %s firmware started\n", fore200e->name);
2559
2560    fore200e->state = FORE200E_STATE_START_FW;
2561    err = 0;
2562
2563release:
2564    release_firmware(firmware);
2565    return err;
2566}
2567
2568
2569static int __devinit
2570fore200e_register(struct fore200e* fore200e, struct device *parent)
2571{
2572    struct atm_dev* atm_dev;
2573
2574    DPRINTK(2, "device %s being registered\n", fore200e->name);
2575
2576    atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2577                               -1, NULL);
2578    if (atm_dev == NULL) {
2579	printk(FORE200E "unable to register device %s\n", fore200e->name);
2580	return -ENODEV;
2581    }
2582
2583    atm_dev->dev_data = fore200e;
2584    fore200e->atm_dev = atm_dev;
2585
2586    atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2587    atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2588
2589    fore200e->available_cell_rate = ATM_OC3_PCR;
2590
2591    fore200e->state = FORE200E_STATE_REGISTER;
2592    return 0;
2593}
2594
2595
2596static int __devinit
2597fore200e_init(struct fore200e* fore200e, struct device *parent)
2598{
2599    if (fore200e_register(fore200e, parent) < 0)
2600	return -ENODEV;
2601
2602    if (fore200e->bus->configure(fore200e) < 0)
2603	return -ENODEV;
2604
2605    if (fore200e->bus->map(fore200e) < 0)
2606	return -ENODEV;
2607
2608    if (fore200e_reset(fore200e, 1) < 0)
2609	return -ENODEV;
2610
2611    if (fore200e_load_and_start_fw(fore200e) < 0)
2612	return -ENODEV;
2613
2614    if (fore200e_initialize(fore200e) < 0)
2615	return -ENODEV;
2616
2617    if (fore200e_init_cmd_queue(fore200e) < 0)
2618	return -ENOMEM;
2619
2620    if (fore200e_init_tx_queue(fore200e) < 0)
2621	return -ENOMEM;
2622
2623    if (fore200e_init_rx_queue(fore200e) < 0)
2624	return -ENOMEM;
2625
2626    if (fore200e_init_bs_queue(fore200e) < 0)
2627	return -ENOMEM;
2628
2629    if (fore200e_alloc_rx_buf(fore200e) < 0)
2630	return -ENOMEM;
2631
2632    if (fore200e_get_esi(fore200e) < 0)
2633	return -EIO;
2634
2635    if (fore200e_irq_request(fore200e) < 0)
2636	return -EBUSY;
2637
2638    fore200e_supply(fore200e);
2639
2640    /* all done, board initialization is now complete */
2641    fore200e->state = FORE200E_STATE_COMPLETE;
2642    return 0;
2643}
2644
2645#ifdef CONFIG_SBUS
2646static const struct of_device_id fore200e_sba_match[];
2647static int __devinit fore200e_sba_probe(struct platform_device *op)
2648{
2649	const struct of_device_id *match;
2650	const struct fore200e_bus *bus;
2651	struct fore200e *fore200e;
2652	static int index = 0;
2653	int err;
2654
2655	match = of_match_device(fore200e_sba_match, &op->dev);
2656	if (!match)
2657		return -EINVAL;
2658	bus = match->data;
2659
2660	fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2661	if (!fore200e)
2662		return -ENOMEM;
2663
2664	fore200e->bus = bus;
2665	fore200e->bus_dev = op;
2666	fore200e->irq = op->archdata.irqs[0];
2667	fore200e->phys_base = op->resource[0].start;
2668
2669	sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2670
2671	err = fore200e_init(fore200e, &op->dev);
2672	if (err < 0) {
2673		fore200e_shutdown(fore200e);
2674		kfree(fore200e);
2675		return err;
2676	}
2677
2678	index++;
2679	dev_set_drvdata(&op->dev, fore200e);
2680
2681	return 0;
2682}
2683
2684static int __devexit fore200e_sba_remove(struct platform_device *op)
2685{
2686	struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2687
2688	fore200e_shutdown(fore200e);
2689	kfree(fore200e);
2690
2691	return 0;
2692}
2693
2694static const struct of_device_id fore200e_sba_match[] = {
2695	{
2696		.name = SBA200E_PROM_NAME,
2697		.data = (void *) &fore200e_bus[1],
2698	},
2699	{},
2700};
2701MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2702
2703static struct platform_driver fore200e_sba_driver = {
2704	.driver = {
2705		.name = "fore_200e",
2706		.owner = THIS_MODULE,
2707		.of_match_table = fore200e_sba_match,
2708	},
2709	.probe		= fore200e_sba_probe,
2710	.remove		= __devexit_p(fore200e_sba_remove),
2711};
2712#endif
2713
2714#ifdef CONFIG_PCI
2715static int __devinit
2716fore200e_pca_detect(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent)
2717{
2718    const struct fore200e_bus* bus = (struct fore200e_bus*) pci_ent->driver_data;
2719    struct fore200e* fore200e;
2720    int err = 0;
2721    static int index = 0;
2722
2723    if (pci_enable_device(pci_dev)) {
2724	err = -EINVAL;
2725	goto out;
2726    }
2727
2728    fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2729    if (fore200e == NULL) {
2730	err = -ENOMEM;
2731	goto out_disable;
2732    }
2733
2734    fore200e->bus       = bus;
2735    fore200e->bus_dev   = pci_dev;
2736    fore200e->irq       = pci_dev->irq;
2737    fore200e->phys_base = pci_resource_start(pci_dev, 0);
2738
2739    sprintf(fore200e->name, "%s-%d", bus->model_name, index - 1);
2740
2741    pci_set_master(pci_dev);
2742
2743    printk(FORE200E "device %s found at 0x%lx, IRQ %s\n",
2744	   fore200e->bus->model_name,
2745	   fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2746
2747    sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2748
2749    err = fore200e_init(fore200e, &pci_dev->dev);
2750    if (err < 0) {
2751	fore200e_shutdown(fore200e);
2752	goto out_free;
2753    }
2754
2755    ++index;
2756    pci_set_drvdata(pci_dev, fore200e);
2757
2758out:
2759    return err;
2760
2761out_free:
2762    kfree(fore200e);
2763out_disable:
2764    pci_disable_device(pci_dev);
2765    goto out;
2766}
2767
2768
2769static void __devexit fore200e_pca_remove_one(struct pci_dev *pci_dev)
2770{
2771    struct fore200e *fore200e;
2772
2773    fore200e = pci_get_drvdata(pci_dev);
2774
2775    fore200e_shutdown(fore200e);
2776    kfree(fore200e);
2777    pci_disable_device(pci_dev);
2778}
2779
2780
2781static struct pci_device_id fore200e_pca_tbl[] = {
2782    { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID,
2783      0, 0, (unsigned long) &fore200e_bus[0] },
2784    { 0, }
2785};
2786
2787MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2788
2789static struct pci_driver fore200e_pca_driver = {
2790    .name =     "fore_200e",
2791    .probe =    fore200e_pca_detect,
2792    .remove =   __devexit_p(fore200e_pca_remove_one),
2793    .id_table = fore200e_pca_tbl,
2794};
2795#endif
2796
2797static int __init fore200e_module_init(void)
2798{
2799	int err;
2800
2801	printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2802
2803#ifdef CONFIG_SBUS
2804	err = platform_driver_register(&fore200e_sba_driver);
2805	if (err)
2806		return err;
2807#endif
2808
2809#ifdef CONFIG_PCI
2810	err = pci_register_driver(&fore200e_pca_driver);
2811#endif
2812
2813#ifdef CONFIG_SBUS
2814	if (err)
2815		platform_driver_unregister(&fore200e_sba_driver);
2816#endif
2817
2818	return err;
2819}
2820
2821static void __exit fore200e_module_cleanup(void)
2822{
2823#ifdef CONFIG_PCI
2824	pci_unregister_driver(&fore200e_pca_driver);
2825#endif
2826#ifdef CONFIG_SBUS
2827	platform_driver_unregister(&fore200e_sba_driver);
2828#endif
2829}
2830
2831static int
2832fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2833{
2834    struct fore200e*     fore200e  = FORE200E_DEV(dev);
2835    struct fore200e_vcc* fore200e_vcc;
2836    struct atm_vcc*      vcc;
2837    int                  i, len, left = *pos;
2838    unsigned long        flags;
2839
2840    if (!left--) {
2841
2842	if (fore200e_getstats(fore200e) < 0)
2843	    return -EIO;
2844
2845	len = sprintf(page,"\n"
2846		       " device:\n"
2847		       "   internal name:\t\t%s\n", fore200e->name);
2848
2849	/* print bus-specific information */
2850	if (fore200e->bus->proc_read)
2851	    len += fore200e->bus->proc_read(fore200e, page + len);
2852
2853	len += sprintf(page + len,
2854		"   interrupt line:\t\t%s\n"
2855		"   physical base address:\t0x%p\n"
2856		"   virtual base address:\t0x%p\n"
2857		"   factory address (ESI):\t%pM\n"
2858		"   board serial number:\t\t%d\n\n",
2859		fore200e_irq_itoa(fore200e->irq),
2860		(void*)fore200e->phys_base,
2861		fore200e->virt_base,
2862		fore200e->esi,
2863		fore200e->esi[4] * 256 + fore200e->esi[5]);
2864
2865	return len;
2866    }
2867
2868    if (!left--)
2869	return sprintf(page,
2870		       "   free small bufs, scheme 1:\t%d\n"
2871		       "   free large bufs, scheme 1:\t%d\n"
2872		       "   free small bufs, scheme 2:\t%d\n"
2873		       "   free large bufs, scheme 2:\t%d\n",
2874		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2875		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2876		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2877		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2878
2879    if (!left--) {
2880	u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2881
2882	len = sprintf(page,"\n\n"
2883		      " cell processor:\n"
2884		      "   heartbeat state:\t\t");
2885
2886	if (hb >> 16 != 0xDEAD)
2887	    len += sprintf(page + len, "0x%08x\n", hb);
2888	else
2889	    len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2890
2891	return len;
2892    }
2893
2894    if (!left--) {
2895	static const char* media_name[] = {
2896	    "unshielded twisted pair",
2897	    "multimode optical fiber ST",
2898	    "multimode optical fiber SC",
2899	    "single-mode optical fiber ST",
2900	    "single-mode optical fiber SC",
2901	    "unknown"
2902	};
2903
2904	static const char* oc3_mode[] = {
2905	    "normal operation",
2906	    "diagnostic loopback",
2907	    "line loopback",
2908	    "unknown"
2909	};
2910
2911	u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2912	u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2913	u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2914	u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2915	u32 oc3_index;
2916
2917	if (media_index > 4)
2918		media_index = 5;
2919
2920	switch (fore200e->loop_mode) {
2921	    case ATM_LM_NONE:    oc3_index = 0;
2922		                 break;
2923	    case ATM_LM_LOC_PHY: oc3_index = 1;
2924		                 break;
2925	    case ATM_LM_RMT_PHY: oc3_index = 2;
2926		                 break;
2927	    default:             oc3_index = 3;
2928	}
2929
2930	return sprintf(page,
2931		       "   firmware release:\t\t%d.%d.%d\n"
2932		       "   monitor release:\t\t%d.%d\n"
2933		       "   media type:\t\t\t%s\n"
2934		       "   OC-3 revision:\t\t0x%x\n"
2935                       "   OC-3 mode:\t\t\t%s",
2936		       fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2937		       mon960_release >> 16, mon960_release << 16 >> 16,
2938		       media_name[ media_index ],
2939		       oc3_revision,
2940		       oc3_mode[ oc3_index ]);
2941    }
2942
2943    if (!left--) {
2944	struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2945
2946	return sprintf(page,
2947		       "\n\n"
2948		       " monitor:\n"
2949		       "   version number:\t\t%d\n"
2950		       "   boot status word:\t\t0x%08x\n",
2951		       fore200e->bus->read(&cp_monitor->mon_version),
2952		       fore200e->bus->read(&cp_monitor->bstat));
2953    }
2954
2955    if (!left--)
2956	return sprintf(page,
2957		       "\n"
2958		       " device statistics:\n"
2959		       "  4b5b:\n"
2960		       "     crc_header_errors:\t\t%10u\n"
2961		       "     framing_errors:\t\t%10u\n",
2962		       be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2963		       be32_to_cpu(fore200e->stats->phy.framing_errors));
2964
2965    if (!left--)
2966	return sprintf(page, "\n"
2967		       "  OC-3:\n"
2968		       "     section_bip8_errors:\t%10u\n"
2969		       "     path_bip8_errors:\t\t%10u\n"
2970		       "     line_bip24_errors:\t\t%10u\n"
2971		       "     line_febe_errors:\t\t%10u\n"
2972		       "     path_febe_errors:\t\t%10u\n"
2973		       "     corr_hcs_errors:\t\t%10u\n"
2974		       "     ucorr_hcs_errors:\t\t%10u\n",
2975		       be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2976		       be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2977		       be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2978		       be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2979		       be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2980		       be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2981		       be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2982
2983    if (!left--)
2984	return sprintf(page,"\n"
2985		       "   ATM:\t\t\t\t     cells\n"
2986		       "     TX:\t\t\t%10u\n"
2987		       "     RX:\t\t\t%10u\n"
2988		       "     vpi out of range:\t\t%10u\n"
2989		       "     vpi no conn:\t\t%10u\n"
2990		       "     vci out of range:\t\t%10u\n"
2991		       "     vci no conn:\t\t%10u\n",
2992		       be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2993		       be32_to_cpu(fore200e->stats->atm.cells_received),
2994		       be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2995		       be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2996		       be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2997		       be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2998
2999    if (!left--)
3000	return sprintf(page,"\n"
3001		       "   AAL0:\t\t\t     cells\n"
3002		       "     TX:\t\t\t%10u\n"
3003		       "     RX:\t\t\t%10u\n"
3004		       "     dropped:\t\t\t%10u\n",
3005		       be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
3006		       be32_to_cpu(fore200e->stats->aal0.cells_received),
3007		       be32_to_cpu(fore200e->stats->aal0.cells_dropped));
3008
3009    if (!left--)
3010	return sprintf(page,"\n"
3011		       "   AAL3/4:\n"
3012		       "     SAR sublayer:\t\t     cells\n"
3013		       "       TX:\t\t\t%10u\n"
3014		       "       RX:\t\t\t%10u\n"
3015		       "       dropped:\t\t\t%10u\n"
3016		       "       CRC errors:\t\t%10u\n"
3017		       "       protocol errors:\t\t%10u\n\n"
3018		       "     CS  sublayer:\t\t      PDUs\n"
3019		       "       TX:\t\t\t%10u\n"
3020		       "       RX:\t\t\t%10u\n"
3021		       "       dropped:\t\t\t%10u\n"
3022		       "       protocol errors:\t\t%10u\n",
3023		       be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
3024		       be32_to_cpu(fore200e->stats->aal34.cells_received),
3025		       be32_to_cpu(fore200e->stats->aal34.cells_dropped),
3026		       be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
3027		       be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
3028		       be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
3029		       be32_to_cpu(fore200e->stats->aal34.cspdus_received),
3030		       be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
3031		       be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
3032
3033    if (!left--)
3034	return sprintf(page,"\n"
3035		       "   AAL5:\n"
3036		       "     SAR sublayer:\t\t     cells\n"
3037		       "       TX:\t\t\t%10u\n"
3038		       "       RX:\t\t\t%10u\n"
3039		       "       dropped:\t\t\t%10u\n"
3040		       "       congestions:\t\t%10u\n\n"
3041		       "     CS  sublayer:\t\t      PDUs\n"
3042		       "       TX:\t\t\t%10u\n"
3043		       "       RX:\t\t\t%10u\n"
3044		       "       dropped:\t\t\t%10u\n"
3045		       "       CRC errors:\t\t%10u\n"
3046		       "       protocol errors:\t\t%10u\n",
3047		       be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
3048		       be32_to_cpu(fore200e->stats->aal5.cells_received),
3049		       be32_to_cpu(fore200e->stats->aal5.cells_dropped),
3050		       be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
3051		       be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
3052		       be32_to_cpu(fore200e->stats->aal5.cspdus_received),
3053		       be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
3054		       be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
3055		       be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
3056
3057    if (!left--)
3058	return sprintf(page,"\n"
3059		       "   AUX:\t\t       allocation failures\n"
3060		       "     small b1:\t\t\t%10u\n"
3061		       "     large b1:\t\t\t%10u\n"
3062		       "     small b2:\t\t\t%10u\n"
3063		       "     large b2:\t\t\t%10u\n"
3064		       "     RX PDUs:\t\t\t%10u\n"
3065		       "     TX PDUs:\t\t\t%10lu\n",
3066		       be32_to_cpu(fore200e->stats->aux.small_b1_failed),
3067		       be32_to_cpu(fore200e->stats->aux.large_b1_failed),
3068		       be32_to_cpu(fore200e->stats->aux.small_b2_failed),
3069		       be32_to_cpu(fore200e->stats->aux.large_b2_failed),
3070		       be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
3071		       fore200e->tx_sat);
3072
3073    if (!left--)
3074	return sprintf(page,"\n"
3075		       " receive carrier:\t\t\t%s\n",
3076		       fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
3077
3078    if (!left--) {
3079        return sprintf(page,"\n"
3080		       " VCCs:\n  address   VPI VCI   AAL "
3081		       "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
3082    }
3083
3084    for (i = 0; i < NBR_CONNECT; i++) {
3085
3086	vcc = fore200e->vc_map[i].vcc;
3087
3088	if (vcc == NULL)
3089	    continue;
3090
3091	spin_lock_irqsave(&fore200e->q_lock, flags);
3092
3093	if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
3094
3095	    fore200e_vcc = FORE200E_VCC(vcc);
3096	    ASSERT(fore200e_vcc);
3097
3098	    len = sprintf(page,
3099			  "  %08x  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
3100			  (u32)(unsigned long)vcc,
3101			  vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
3102			  fore200e_vcc->tx_pdu,
3103			  fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
3104			  fore200e_vcc->tx_max_pdu,
3105			  fore200e_vcc->rx_pdu,
3106			  fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
3107			  fore200e_vcc->rx_max_pdu);
3108
3109	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
3110	    return len;
3111	}
3112
3113	spin_unlock_irqrestore(&fore200e->q_lock, flags);
3114    }
3115
3116    return 0;
3117}
3118
3119module_init(fore200e_module_init);
3120module_exit(fore200e_module_cleanup);
3121
3122
3123static const struct atmdev_ops fore200e_ops =
3124{
3125	.open       = fore200e_open,
3126	.close      = fore200e_close,
3127	.ioctl      = fore200e_ioctl,
3128	.getsockopt = fore200e_getsockopt,
3129	.setsockopt = fore200e_setsockopt,
3130	.send       = fore200e_send,
3131	.change_qos = fore200e_change_qos,
3132	.proc_read  = fore200e_proc_read,
3133	.owner      = THIS_MODULE
3134};
3135
3136
3137static const struct fore200e_bus fore200e_bus[] = {
3138#ifdef CONFIG_PCI
3139    { "PCA-200E", "pca200e", 32, 4, 32,
3140      fore200e_pca_read,
3141      fore200e_pca_write,
3142      fore200e_pca_dma_map,
3143      fore200e_pca_dma_unmap,
3144      fore200e_pca_dma_sync_for_cpu,
3145      fore200e_pca_dma_sync_for_device,
3146      fore200e_pca_dma_chunk_alloc,
3147      fore200e_pca_dma_chunk_free,
3148      fore200e_pca_configure,
3149      fore200e_pca_map,
3150      fore200e_pca_reset,
3151      fore200e_pca_prom_read,
3152      fore200e_pca_unmap,
3153      NULL,
3154      fore200e_pca_irq_check,
3155      fore200e_pca_irq_ack,
3156      fore200e_pca_proc_read,
3157    },
3158#endif
3159#ifdef CONFIG_SBUS
3160    { "SBA-200E", "sba200e", 32, 64, 32,
3161      fore200e_sba_read,
3162      fore200e_sba_write,
3163      fore200e_sba_dma_map,
3164      fore200e_sba_dma_unmap,
3165      fore200e_sba_dma_sync_for_cpu,
3166      fore200e_sba_dma_sync_for_device,
3167      fore200e_sba_dma_chunk_alloc,
3168      fore200e_sba_dma_chunk_free,
3169      fore200e_sba_configure,
3170      fore200e_sba_map,
3171      fore200e_sba_reset,
3172      fore200e_sba_prom_read,
3173      fore200e_sba_unmap,
3174      fore200e_sba_irq_enable,
3175      fore200e_sba_irq_check,
3176      fore200e_sba_irq_ack,
3177      fore200e_sba_proc_read,
3178    },
3179#endif
3180    {}
3181};
3182
3183MODULE_LICENSE("GPL");
3184#ifdef CONFIG_PCI
3185#ifdef __LITTLE_ENDIAN__
3186MODULE_FIRMWARE("pca200e.bin");
3187#else
3188MODULE_FIRMWARE("pca200e_ecd.bin2");
3189#endif
3190#endif /* CONFIG_PCI */
3191#ifdef CONFIG_SBUS
3192MODULE_FIRMWARE("sba200e_ecd.bin2");
3193#endif
3194