1/*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19#include <linux/nvme.h>
20#include <linux/bio.h>
21#include <linux/bitops.h>
22#include <linux/blkdev.h>
23#include <linux/delay.h>
24#include <linux/errno.h>
25#include <linux/fs.h>
26#include <linux/genhd.h>
27#include <linux/idr.h>
28#include <linux/init.h>
29#include <linux/interrupt.h>
30#include <linux/io.h>
31#include <linux/kdev_t.h>
32#include <linux/kthread.h>
33#include <linux/kernel.h>
34#include <linux/mm.h>
35#include <linux/module.h>
36#include <linux/moduleparam.h>
37#include <linux/pci.h>
38#include <linux/poison.h>
39#include <linux/sched.h>
40#include <linux/slab.h>
41#include <linux/types.h>
42
43#include <asm-generic/io-64-nonatomic-lo-hi.h>
44
45#define NVME_Q_DEPTH 1024
46#define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
47#define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
48#define NVME_MINORS 64
49#define NVME_IO_TIMEOUT	(5 * HZ)
50#define ADMIN_TIMEOUT	(60 * HZ)
51
52static int nvme_major;
53module_param(nvme_major, int, 0);
54
55static int use_threaded_interrupts;
56module_param(use_threaded_interrupts, int, 0);
57
58static DEFINE_SPINLOCK(dev_list_lock);
59static LIST_HEAD(dev_list);
60static struct task_struct *nvme_thread;
61
62/*
63 * Represents an NVM Express device.  Each nvme_dev is a PCI function.
64 */
65struct nvme_dev {
66	struct list_head node;
67	struct nvme_queue **queues;
68	u32 __iomem *dbs;
69	struct pci_dev *pci_dev;
70	struct dma_pool *prp_page_pool;
71	struct dma_pool *prp_small_pool;
72	int instance;
73	int queue_count;
74	int db_stride;
75	u32 ctrl_config;
76	struct msix_entry *entry;
77	struct nvme_bar __iomem *bar;
78	struct list_head namespaces;
79	char serial[20];
80	char model[40];
81	char firmware_rev[8];
82};
83
84/*
85 * An NVM Express namespace is equivalent to a SCSI LUN
86 */
87struct nvme_ns {
88	struct list_head list;
89
90	struct nvme_dev *dev;
91	struct request_queue *queue;
92	struct gendisk *disk;
93
94	int ns_id;
95	int lba_shift;
96};
97
98/*
99 * An NVM Express queue.  Each device has at least two (one for admin
100 * commands and one for I/O commands).
101 */
102struct nvme_queue {
103	struct device *q_dmadev;
104	struct nvme_dev *dev;
105	spinlock_t q_lock;
106	struct nvme_command *sq_cmds;
107	volatile struct nvme_completion *cqes;
108	dma_addr_t sq_dma_addr;
109	dma_addr_t cq_dma_addr;
110	wait_queue_head_t sq_full;
111	wait_queue_t sq_cong_wait;
112	struct bio_list sq_cong;
113	u32 __iomem *q_db;
114	u16 q_depth;
115	u16 cq_vector;
116	u16 sq_head;
117	u16 sq_tail;
118	u16 cq_head;
119	u16 cq_phase;
120	unsigned long cmdid_data[];
121};
122
123/*
124 * Check we didin't inadvertently grow the command struct
125 */
126static inline void _nvme_check_size(void)
127{
128	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
129	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
130	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
131	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
132	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
133	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
134	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
135	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
136	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
137}
138
139typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
140						struct nvme_completion *);
141
142struct nvme_cmd_info {
143	nvme_completion_fn fn;
144	void *ctx;
145	unsigned long timeout;
146};
147
148static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
149{
150	return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
151}
152
153/**
154 * alloc_cmdid() - Allocate a Command ID
155 * @nvmeq: The queue that will be used for this command
156 * @ctx: A pointer that will be passed to the handler
157 * @handler: The function to call on completion
158 *
159 * Allocate a Command ID for a queue.  The data passed in will
160 * be passed to the completion handler.  This is implemented by using
161 * the bottom two bits of the ctx pointer to store the handler ID.
162 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
163 * We can change this if it becomes a problem.
164 *
165 * May be called with local interrupts disabled and the q_lock held,
166 * or with interrupts enabled and no locks held.
167 */
168static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
169				nvme_completion_fn handler, unsigned timeout)
170{
171	int depth = nvmeq->q_depth - 1;
172	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
173	int cmdid;
174
175	do {
176		cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
177		if (cmdid >= depth)
178			return -EBUSY;
179	} while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
180
181	info[cmdid].fn = handler;
182	info[cmdid].ctx = ctx;
183	info[cmdid].timeout = jiffies + timeout;
184	return cmdid;
185}
186
187static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
188				nvme_completion_fn handler, unsigned timeout)
189{
190	int cmdid;
191	wait_event_killable(nvmeq->sq_full,
192		(cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
193	return (cmdid < 0) ? -EINTR : cmdid;
194}
195
196/* Special values must be less than 0x1000 */
197#define CMD_CTX_BASE		((void *)POISON_POINTER_DELTA)
198#define CMD_CTX_CANCELLED	(0x30C + CMD_CTX_BASE)
199#define CMD_CTX_COMPLETED	(0x310 + CMD_CTX_BASE)
200#define CMD_CTX_INVALID		(0x314 + CMD_CTX_BASE)
201#define CMD_CTX_FLUSH		(0x318 + CMD_CTX_BASE)
202
203static void special_completion(struct nvme_dev *dev, void *ctx,
204						struct nvme_completion *cqe)
205{
206	if (ctx == CMD_CTX_CANCELLED)
207		return;
208	if (ctx == CMD_CTX_FLUSH)
209		return;
210	if (ctx == CMD_CTX_COMPLETED) {
211		dev_warn(&dev->pci_dev->dev,
212				"completed id %d twice on queue %d\n",
213				cqe->command_id, le16_to_cpup(&cqe->sq_id));
214		return;
215	}
216	if (ctx == CMD_CTX_INVALID) {
217		dev_warn(&dev->pci_dev->dev,
218				"invalid id %d completed on queue %d\n",
219				cqe->command_id, le16_to_cpup(&cqe->sq_id));
220		return;
221	}
222
223	dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
224}
225
226/*
227 * Called with local interrupts disabled and the q_lock held.  May not sleep.
228 */
229static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
230						nvme_completion_fn *fn)
231{
232	void *ctx;
233	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
234
235	if (cmdid >= nvmeq->q_depth) {
236		*fn = special_completion;
237		return CMD_CTX_INVALID;
238	}
239	*fn = info[cmdid].fn;
240	ctx = info[cmdid].ctx;
241	info[cmdid].fn = special_completion;
242	info[cmdid].ctx = CMD_CTX_COMPLETED;
243	clear_bit(cmdid, nvmeq->cmdid_data);
244	wake_up(&nvmeq->sq_full);
245	return ctx;
246}
247
248static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
249						nvme_completion_fn *fn)
250{
251	void *ctx;
252	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
253	if (fn)
254		*fn = info[cmdid].fn;
255	ctx = info[cmdid].ctx;
256	info[cmdid].fn = special_completion;
257	info[cmdid].ctx = CMD_CTX_CANCELLED;
258	return ctx;
259}
260
261static struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
262{
263	return dev->queues[get_cpu() + 1];
264}
265
266static void put_nvmeq(struct nvme_queue *nvmeq)
267{
268	put_cpu();
269}
270
271/**
272 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
273 * @nvmeq: The queue to use
274 * @cmd: The command to send
275 *
276 * Safe to use from interrupt context
277 */
278static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
279{
280	unsigned long flags;
281	u16 tail;
282	spin_lock_irqsave(&nvmeq->q_lock, flags);
283	tail = nvmeq->sq_tail;
284	memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
285	if (++tail == nvmeq->q_depth)
286		tail = 0;
287	writel(tail, nvmeq->q_db);
288	nvmeq->sq_tail = tail;
289	spin_unlock_irqrestore(&nvmeq->q_lock, flags);
290
291	return 0;
292}
293
294/*
295 * The nvme_iod describes the data in an I/O, including the list of PRP
296 * entries.  You can't see it in this data structure because C doesn't let
297 * me express that.  Use nvme_alloc_iod to ensure there's enough space
298 * allocated to store the PRP list.
299 */
300struct nvme_iod {
301	void *private;		/* For the use of the submitter of the I/O */
302	int npages;		/* In the PRP list. 0 means small pool in use */
303	int offset;		/* Of PRP list */
304	int nents;		/* Used in scatterlist */
305	int length;		/* Of data, in bytes */
306	dma_addr_t first_dma;
307	struct scatterlist sg[0];
308};
309
310static __le64 **iod_list(struct nvme_iod *iod)
311{
312	return ((void *)iod) + iod->offset;
313}
314
315/*
316 * Will slightly overestimate the number of pages needed.  This is OK
317 * as it only leads to a small amount of wasted memory for the lifetime of
318 * the I/O.
319 */
320static int nvme_npages(unsigned size)
321{
322	unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
323	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
324}
325
326static struct nvme_iod *
327nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
328{
329	struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
330				sizeof(__le64 *) * nvme_npages(nbytes) +
331				sizeof(struct scatterlist) * nseg, gfp);
332
333	if (iod) {
334		iod->offset = offsetof(struct nvme_iod, sg[nseg]);
335		iod->npages = -1;
336		iod->length = nbytes;
337	}
338
339	return iod;
340}
341
342static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
343{
344	const int last_prp = PAGE_SIZE / 8 - 1;
345	int i;
346	__le64 **list = iod_list(iod);
347	dma_addr_t prp_dma = iod->first_dma;
348
349	if (iod->npages == 0)
350		dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
351	for (i = 0; i < iod->npages; i++) {
352		__le64 *prp_list = list[i];
353		dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
354		dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
355		prp_dma = next_prp_dma;
356	}
357	kfree(iod);
358}
359
360static void requeue_bio(struct nvme_dev *dev, struct bio *bio)
361{
362	struct nvme_queue *nvmeq = get_nvmeq(dev);
363	if (bio_list_empty(&nvmeq->sq_cong))
364		add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
365	bio_list_add(&nvmeq->sq_cong, bio);
366	put_nvmeq(nvmeq);
367	wake_up_process(nvme_thread);
368}
369
370static void bio_completion(struct nvme_dev *dev, void *ctx,
371						struct nvme_completion *cqe)
372{
373	struct nvme_iod *iod = ctx;
374	struct bio *bio = iod->private;
375	u16 status = le16_to_cpup(&cqe->status) >> 1;
376
377	dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
378			bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
379	nvme_free_iod(dev, iod);
380	if (status) {
381		bio_endio(bio, -EIO);
382	} else if (bio->bi_vcnt > bio->bi_idx) {
383		requeue_bio(dev, bio);
384	} else {
385		bio_endio(bio, 0);
386	}
387}
388
389/* length is in bytes.  gfp flags indicates whether we may sleep. */
390static int nvme_setup_prps(struct nvme_dev *dev,
391			struct nvme_common_command *cmd, struct nvme_iod *iod,
392			int total_len, gfp_t gfp)
393{
394	struct dma_pool *pool;
395	int length = total_len;
396	struct scatterlist *sg = iod->sg;
397	int dma_len = sg_dma_len(sg);
398	u64 dma_addr = sg_dma_address(sg);
399	int offset = offset_in_page(dma_addr);
400	__le64 *prp_list;
401	__le64 **list = iod_list(iod);
402	dma_addr_t prp_dma;
403	int nprps, i;
404
405	cmd->prp1 = cpu_to_le64(dma_addr);
406	length -= (PAGE_SIZE - offset);
407	if (length <= 0)
408		return total_len;
409
410	dma_len -= (PAGE_SIZE - offset);
411	if (dma_len) {
412		dma_addr += (PAGE_SIZE - offset);
413	} else {
414		sg = sg_next(sg);
415		dma_addr = sg_dma_address(sg);
416		dma_len = sg_dma_len(sg);
417	}
418
419	if (length <= PAGE_SIZE) {
420		cmd->prp2 = cpu_to_le64(dma_addr);
421		return total_len;
422	}
423
424	nprps = DIV_ROUND_UP(length, PAGE_SIZE);
425	if (nprps <= (256 / 8)) {
426		pool = dev->prp_small_pool;
427		iod->npages = 0;
428	} else {
429		pool = dev->prp_page_pool;
430		iod->npages = 1;
431	}
432
433	prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
434	if (!prp_list) {
435		cmd->prp2 = cpu_to_le64(dma_addr);
436		iod->npages = -1;
437		return (total_len - length) + PAGE_SIZE;
438	}
439	list[0] = prp_list;
440	iod->first_dma = prp_dma;
441	cmd->prp2 = cpu_to_le64(prp_dma);
442	i = 0;
443	for (;;) {
444		if (i == PAGE_SIZE / 8) {
445			__le64 *old_prp_list = prp_list;
446			prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
447			if (!prp_list)
448				return total_len - length;
449			list[iod->npages++] = prp_list;
450			prp_list[0] = old_prp_list[i - 1];
451			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
452			i = 1;
453		}
454		prp_list[i++] = cpu_to_le64(dma_addr);
455		dma_len -= PAGE_SIZE;
456		dma_addr += PAGE_SIZE;
457		length -= PAGE_SIZE;
458		if (length <= 0)
459			break;
460		if (dma_len > 0)
461			continue;
462		BUG_ON(dma_len < 0);
463		sg = sg_next(sg);
464		dma_addr = sg_dma_address(sg);
465		dma_len = sg_dma_len(sg);
466	}
467
468	return total_len;
469}
470
471/* NVMe scatterlists require no holes in the virtual address */
472#define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2)	((vec2)->bv_offset || \
473			(((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
474
475static int nvme_map_bio(struct device *dev, struct nvme_iod *iod,
476		struct bio *bio, enum dma_data_direction dma_dir, int psegs)
477{
478	struct bio_vec *bvec, *bvprv = NULL;
479	struct scatterlist *sg = NULL;
480	int i, old_idx, length = 0, nsegs = 0;
481
482	sg_init_table(iod->sg, psegs);
483	old_idx = bio->bi_idx;
484	bio_for_each_segment(bvec, bio, i) {
485		if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
486			sg->length += bvec->bv_len;
487		} else {
488			if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
489				break;
490			sg = sg ? sg + 1 : iod->sg;
491			sg_set_page(sg, bvec->bv_page, bvec->bv_len,
492							bvec->bv_offset);
493			nsegs++;
494		}
495		length += bvec->bv_len;
496		bvprv = bvec;
497	}
498	bio->bi_idx = i;
499	iod->nents = nsegs;
500	sg_mark_end(sg);
501	if (dma_map_sg(dev, iod->sg, iod->nents, dma_dir) == 0) {
502		bio->bi_idx = old_idx;
503		return -ENOMEM;
504	}
505	return length;
506}
507
508static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
509								int cmdid)
510{
511	struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
512
513	memset(cmnd, 0, sizeof(*cmnd));
514	cmnd->common.opcode = nvme_cmd_flush;
515	cmnd->common.command_id = cmdid;
516	cmnd->common.nsid = cpu_to_le32(ns->ns_id);
517
518	if (++nvmeq->sq_tail == nvmeq->q_depth)
519		nvmeq->sq_tail = 0;
520	writel(nvmeq->sq_tail, nvmeq->q_db);
521
522	return 0;
523}
524
525static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
526{
527	int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
528					special_completion, NVME_IO_TIMEOUT);
529	if (unlikely(cmdid < 0))
530		return cmdid;
531
532	return nvme_submit_flush(nvmeq, ns, cmdid);
533}
534
535/*
536 * Called with local interrupts disabled and the q_lock held.  May not sleep.
537 */
538static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
539								struct bio *bio)
540{
541	struct nvme_command *cmnd;
542	struct nvme_iod *iod;
543	enum dma_data_direction dma_dir;
544	int cmdid, length, result = -ENOMEM;
545	u16 control;
546	u32 dsmgmt;
547	int psegs = bio_phys_segments(ns->queue, bio);
548
549	if ((bio->bi_rw & REQ_FLUSH) && psegs) {
550		result = nvme_submit_flush_data(nvmeq, ns);
551		if (result)
552			return result;
553	}
554
555	iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC);
556	if (!iod)
557		goto nomem;
558	iod->private = bio;
559
560	result = -EBUSY;
561	cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
562	if (unlikely(cmdid < 0))
563		goto free_iod;
564
565	if ((bio->bi_rw & REQ_FLUSH) && !psegs)
566		return nvme_submit_flush(nvmeq, ns, cmdid);
567
568	control = 0;
569	if (bio->bi_rw & REQ_FUA)
570		control |= NVME_RW_FUA;
571	if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
572		control |= NVME_RW_LR;
573
574	dsmgmt = 0;
575	if (bio->bi_rw & REQ_RAHEAD)
576		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
577
578	cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
579
580	memset(cmnd, 0, sizeof(*cmnd));
581	if (bio_data_dir(bio)) {
582		cmnd->rw.opcode = nvme_cmd_write;
583		dma_dir = DMA_TO_DEVICE;
584	} else {
585		cmnd->rw.opcode = nvme_cmd_read;
586		dma_dir = DMA_FROM_DEVICE;
587	}
588
589	result = nvme_map_bio(nvmeq->q_dmadev, iod, bio, dma_dir, psegs);
590	if (result < 0)
591		goto free_iod;
592	length = result;
593
594	cmnd->rw.command_id = cmdid;
595	cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
596	length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
597								GFP_ATOMIC);
598	cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
599	cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
600	cmnd->rw.control = cpu_to_le16(control);
601	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
602
603	bio->bi_sector += length >> 9;
604
605	if (++nvmeq->sq_tail == nvmeq->q_depth)
606		nvmeq->sq_tail = 0;
607	writel(nvmeq->sq_tail, nvmeq->q_db);
608
609	return 0;
610
611 free_iod:
612	nvme_free_iod(nvmeq->dev, iod);
613 nomem:
614	return result;
615}
616
617static void nvme_make_request(struct request_queue *q, struct bio *bio)
618{
619	struct nvme_ns *ns = q->queuedata;
620	struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
621	int result = -EBUSY;
622
623	spin_lock_irq(&nvmeq->q_lock);
624	if (bio_list_empty(&nvmeq->sq_cong))
625		result = nvme_submit_bio_queue(nvmeq, ns, bio);
626	if (unlikely(result)) {
627		if (bio_list_empty(&nvmeq->sq_cong))
628			add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
629		bio_list_add(&nvmeq->sq_cong, bio);
630	}
631
632	spin_unlock_irq(&nvmeq->q_lock);
633	put_nvmeq(nvmeq);
634}
635
636static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
637{
638	u16 head, phase;
639
640	head = nvmeq->cq_head;
641	phase = nvmeq->cq_phase;
642
643	for (;;) {
644		void *ctx;
645		nvme_completion_fn fn;
646		struct nvme_completion cqe = nvmeq->cqes[head];
647		if ((le16_to_cpu(cqe.status) & 1) != phase)
648			break;
649		nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
650		if (++head == nvmeq->q_depth) {
651			head = 0;
652			phase = !phase;
653		}
654
655		ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
656		fn(nvmeq->dev, ctx, &cqe);
657	}
658
659	/* If the controller ignores the cq head doorbell and continuously
660	 * writes to the queue, it is theoretically possible to wrap around
661	 * the queue twice and mistakenly return IRQ_NONE.  Linux only
662	 * requires that 0.1% of your interrupts are handled, so this isn't
663	 * a big problem.
664	 */
665	if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
666		return IRQ_NONE;
667
668	writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
669	nvmeq->cq_head = head;
670	nvmeq->cq_phase = phase;
671
672	return IRQ_HANDLED;
673}
674
675static irqreturn_t nvme_irq(int irq, void *data)
676{
677	irqreturn_t result;
678	struct nvme_queue *nvmeq = data;
679	spin_lock(&nvmeq->q_lock);
680	result = nvme_process_cq(nvmeq);
681	spin_unlock(&nvmeq->q_lock);
682	return result;
683}
684
685static irqreturn_t nvme_irq_check(int irq, void *data)
686{
687	struct nvme_queue *nvmeq = data;
688	struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
689	if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
690		return IRQ_NONE;
691	return IRQ_WAKE_THREAD;
692}
693
694static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
695{
696	spin_lock_irq(&nvmeq->q_lock);
697	cancel_cmdid(nvmeq, cmdid, NULL);
698	spin_unlock_irq(&nvmeq->q_lock);
699}
700
701struct sync_cmd_info {
702	struct task_struct *task;
703	u32 result;
704	int status;
705};
706
707static void sync_completion(struct nvme_dev *dev, void *ctx,
708						struct nvme_completion *cqe)
709{
710	struct sync_cmd_info *cmdinfo = ctx;
711	cmdinfo->result = le32_to_cpup(&cqe->result);
712	cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
713	wake_up_process(cmdinfo->task);
714}
715
716/*
717 * Returns 0 on success.  If the result is negative, it's a Linux error code;
718 * if the result is positive, it's an NVM Express status code
719 */
720static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
721			struct nvme_command *cmd, u32 *result, unsigned timeout)
722{
723	int cmdid;
724	struct sync_cmd_info cmdinfo;
725
726	cmdinfo.task = current;
727	cmdinfo.status = -EINTR;
728
729	cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
730								timeout);
731	if (cmdid < 0)
732		return cmdid;
733	cmd->common.command_id = cmdid;
734
735	set_current_state(TASK_KILLABLE);
736	nvme_submit_cmd(nvmeq, cmd);
737	schedule();
738
739	if (cmdinfo.status == -EINTR) {
740		nvme_abort_command(nvmeq, cmdid);
741		return -EINTR;
742	}
743
744	if (result)
745		*result = cmdinfo.result;
746
747	return cmdinfo.status;
748}
749
750static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
751								u32 *result)
752{
753	return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
754}
755
756static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
757{
758	int status;
759	struct nvme_command c;
760
761	memset(&c, 0, sizeof(c));
762	c.delete_queue.opcode = opcode;
763	c.delete_queue.qid = cpu_to_le16(id);
764
765	status = nvme_submit_admin_cmd(dev, &c, NULL);
766	if (status)
767		return -EIO;
768	return 0;
769}
770
771static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
772						struct nvme_queue *nvmeq)
773{
774	int status;
775	struct nvme_command c;
776	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
777
778	memset(&c, 0, sizeof(c));
779	c.create_cq.opcode = nvme_admin_create_cq;
780	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
781	c.create_cq.cqid = cpu_to_le16(qid);
782	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
783	c.create_cq.cq_flags = cpu_to_le16(flags);
784	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
785
786	status = nvme_submit_admin_cmd(dev, &c, NULL);
787	if (status)
788		return -EIO;
789	return 0;
790}
791
792static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
793						struct nvme_queue *nvmeq)
794{
795	int status;
796	struct nvme_command c;
797	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
798
799	memset(&c, 0, sizeof(c));
800	c.create_sq.opcode = nvme_admin_create_sq;
801	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
802	c.create_sq.sqid = cpu_to_le16(qid);
803	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
804	c.create_sq.sq_flags = cpu_to_le16(flags);
805	c.create_sq.cqid = cpu_to_le16(qid);
806
807	status = nvme_submit_admin_cmd(dev, &c, NULL);
808	if (status)
809		return -EIO;
810	return 0;
811}
812
813static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
814{
815	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
816}
817
818static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
819{
820	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
821}
822
823static int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
824							dma_addr_t dma_addr)
825{
826	struct nvme_command c;
827
828	memset(&c, 0, sizeof(c));
829	c.identify.opcode = nvme_admin_identify;
830	c.identify.nsid = cpu_to_le32(nsid);
831	c.identify.prp1 = cpu_to_le64(dma_addr);
832	c.identify.cns = cpu_to_le32(cns);
833
834	return nvme_submit_admin_cmd(dev, &c, NULL);
835}
836
837static int nvme_get_features(struct nvme_dev *dev, unsigned fid,
838				unsigned dword11, dma_addr_t dma_addr)
839{
840	struct nvme_command c;
841
842	memset(&c, 0, sizeof(c));
843	c.features.opcode = nvme_admin_get_features;
844	c.features.prp1 = cpu_to_le64(dma_addr);
845	c.features.fid = cpu_to_le32(fid);
846	c.features.dword11 = cpu_to_le32(dword11);
847
848	return nvme_submit_admin_cmd(dev, &c, NULL);
849}
850
851static int nvme_set_features(struct nvme_dev *dev, unsigned fid,
852			unsigned dword11, dma_addr_t dma_addr, u32 *result)
853{
854	struct nvme_command c;
855
856	memset(&c, 0, sizeof(c));
857	c.features.opcode = nvme_admin_set_features;
858	c.features.prp1 = cpu_to_le64(dma_addr);
859	c.features.fid = cpu_to_le32(fid);
860	c.features.dword11 = cpu_to_le32(dword11);
861
862	return nvme_submit_admin_cmd(dev, &c, result);
863}
864
865static void nvme_free_queue(struct nvme_dev *dev, int qid)
866{
867	struct nvme_queue *nvmeq = dev->queues[qid];
868	int vector = dev->entry[nvmeq->cq_vector].vector;
869
870	irq_set_affinity_hint(vector, NULL);
871	free_irq(vector, nvmeq);
872
873	/* Don't tell the adapter to delete the admin queue */
874	if (qid) {
875		adapter_delete_sq(dev, qid);
876		adapter_delete_cq(dev, qid);
877	}
878
879	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
880				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
881	dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
882					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
883	kfree(nvmeq);
884}
885
886static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
887							int depth, int vector)
888{
889	struct device *dmadev = &dev->pci_dev->dev;
890	unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
891	struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
892	if (!nvmeq)
893		return NULL;
894
895	nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
896					&nvmeq->cq_dma_addr, GFP_KERNEL);
897	if (!nvmeq->cqes)
898		goto free_nvmeq;
899	memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
900
901	nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
902					&nvmeq->sq_dma_addr, GFP_KERNEL);
903	if (!nvmeq->sq_cmds)
904		goto free_cqdma;
905
906	nvmeq->q_dmadev = dmadev;
907	nvmeq->dev = dev;
908	spin_lock_init(&nvmeq->q_lock);
909	nvmeq->cq_head = 0;
910	nvmeq->cq_phase = 1;
911	init_waitqueue_head(&nvmeq->sq_full);
912	init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
913	bio_list_init(&nvmeq->sq_cong);
914	nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
915	nvmeq->q_depth = depth;
916	nvmeq->cq_vector = vector;
917
918	return nvmeq;
919
920 free_cqdma:
921	dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
922							nvmeq->cq_dma_addr);
923 free_nvmeq:
924	kfree(nvmeq);
925	return NULL;
926}
927
928static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
929							const char *name)
930{
931	if (use_threaded_interrupts)
932		return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
933					nvme_irq_check, nvme_irq,
934					IRQF_DISABLED | IRQF_SHARED,
935					name, nvmeq);
936	return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
937				IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
938}
939
940static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
941					int qid, int cq_size, int vector)
942{
943	int result;
944	struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
945
946	if (!nvmeq)
947		return ERR_PTR(-ENOMEM);
948
949	result = adapter_alloc_cq(dev, qid, nvmeq);
950	if (result < 0)
951		goto free_nvmeq;
952
953	result = adapter_alloc_sq(dev, qid, nvmeq);
954	if (result < 0)
955		goto release_cq;
956
957	result = queue_request_irq(dev, nvmeq, "nvme");
958	if (result < 0)
959		goto release_sq;
960
961	return nvmeq;
962
963 release_sq:
964	adapter_delete_sq(dev, qid);
965 release_cq:
966	adapter_delete_cq(dev, qid);
967 free_nvmeq:
968	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
969				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
970	dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
971					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
972	kfree(nvmeq);
973	return ERR_PTR(result);
974}
975
976static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
977{
978	int result;
979	u32 aqa;
980	u64 cap;
981	unsigned long timeout;
982	struct nvme_queue *nvmeq;
983
984	dev->dbs = ((void __iomem *)dev->bar) + 4096;
985
986	nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
987	if (!nvmeq)
988		return -ENOMEM;
989
990	aqa = nvmeq->q_depth - 1;
991	aqa |= aqa << 16;
992
993	dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
994	dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
995	dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
996	dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
997
998	writel(0, &dev->bar->cc);
999	writel(aqa, &dev->bar->aqa);
1000	writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1001	writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1002	writel(dev->ctrl_config, &dev->bar->cc);
1003
1004	cap = readq(&dev->bar->cap);
1005	timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1006	dev->db_stride = NVME_CAP_STRIDE(cap);
1007
1008	while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
1009		msleep(100);
1010		if (fatal_signal_pending(current))
1011			return -EINTR;
1012		if (time_after(jiffies, timeout)) {
1013			dev_err(&dev->pci_dev->dev,
1014				"Device not ready; aborting initialisation\n");
1015			return -ENODEV;
1016		}
1017	}
1018
1019	result = queue_request_irq(dev, nvmeq, "nvme admin");
1020	dev->queues[0] = nvmeq;
1021	return result;
1022}
1023
1024static struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1025				unsigned long addr, unsigned length)
1026{
1027	int i, err, count, nents, offset;
1028	struct scatterlist *sg;
1029	struct page **pages;
1030	struct nvme_iod *iod;
1031
1032	if (addr & 3)
1033		return ERR_PTR(-EINVAL);
1034	if (!length)
1035		return ERR_PTR(-EINVAL);
1036
1037	offset = offset_in_page(addr);
1038	count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1039	pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1040
1041	err = get_user_pages_fast(addr, count, 1, pages);
1042	if (err < count) {
1043		count = err;
1044		err = -EFAULT;
1045		goto put_pages;
1046	}
1047
1048	iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1049	sg = iod->sg;
1050	sg_init_table(sg, count);
1051	for (i = 0; i < count; i++) {
1052		sg_set_page(&sg[i], pages[i],
1053				min_t(int, length, PAGE_SIZE - offset), offset);
1054		length -= (PAGE_SIZE - offset);
1055		offset = 0;
1056	}
1057	sg_mark_end(&sg[i - 1]);
1058	iod->nents = count;
1059
1060	err = -ENOMEM;
1061	nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1062				write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1063	if (!nents)
1064		goto free_iod;
1065
1066	kfree(pages);
1067	return iod;
1068
1069 free_iod:
1070	kfree(iod);
1071 put_pages:
1072	for (i = 0; i < count; i++)
1073		put_page(pages[i]);
1074	kfree(pages);
1075	return ERR_PTR(err);
1076}
1077
1078static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1079			struct nvme_iod *iod)
1080{
1081	int i;
1082
1083	dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1084				write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1085
1086	for (i = 0; i < iod->nents; i++)
1087		put_page(sg_page(&iod->sg[i]));
1088}
1089
1090static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1091{
1092	struct nvme_dev *dev = ns->dev;
1093	struct nvme_queue *nvmeq;
1094	struct nvme_user_io io;
1095	struct nvme_command c;
1096	unsigned length;
1097	int status;
1098	struct nvme_iod *iod;
1099
1100	if (copy_from_user(&io, uio, sizeof(io)))
1101		return -EFAULT;
1102	length = (io.nblocks + 1) << ns->lba_shift;
1103
1104	switch (io.opcode) {
1105	case nvme_cmd_write:
1106	case nvme_cmd_read:
1107	case nvme_cmd_compare:
1108		iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1109		break;
1110	default:
1111		return -EINVAL;
1112	}
1113
1114	if (IS_ERR(iod))
1115		return PTR_ERR(iod);
1116
1117	memset(&c, 0, sizeof(c));
1118	c.rw.opcode = io.opcode;
1119	c.rw.flags = io.flags;
1120	c.rw.nsid = cpu_to_le32(ns->ns_id);
1121	c.rw.slba = cpu_to_le64(io.slba);
1122	c.rw.length = cpu_to_le16(io.nblocks);
1123	c.rw.control = cpu_to_le16(io.control);
1124	c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
1125	c.rw.reftag = io.reftag;
1126	c.rw.apptag = io.apptag;
1127	c.rw.appmask = io.appmask;
1128	/* XXX: metadata */
1129	length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
1130
1131	nvmeq = get_nvmeq(dev);
1132	/*
1133	 * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1134	 * disabled.  We may be preempted at any point, and be rescheduled
1135	 * to a different CPU.  That will cause cacheline bouncing, but no
1136	 * additional races since q_lock already protects against other CPUs.
1137	 */
1138	put_nvmeq(nvmeq);
1139	if (length != (io.nblocks + 1) << ns->lba_shift)
1140		status = -ENOMEM;
1141	else
1142		status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
1143
1144	nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1145	nvme_free_iod(dev, iod);
1146	return status;
1147}
1148
1149static int nvme_user_admin_cmd(struct nvme_ns *ns,
1150					struct nvme_admin_cmd __user *ucmd)
1151{
1152	struct nvme_dev *dev = ns->dev;
1153	struct nvme_admin_cmd cmd;
1154	struct nvme_command c;
1155	int status, length;
1156	struct nvme_iod *iod;
1157
1158	if (!capable(CAP_SYS_ADMIN))
1159		return -EACCES;
1160	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1161		return -EFAULT;
1162
1163	memset(&c, 0, sizeof(c));
1164	c.common.opcode = cmd.opcode;
1165	c.common.flags = cmd.flags;
1166	c.common.nsid = cpu_to_le32(cmd.nsid);
1167	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1168	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1169	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1170	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1171	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1172	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1173	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1174	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1175
1176	length = cmd.data_len;
1177	if (cmd.data_len) {
1178		iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1179								length);
1180		if (IS_ERR(iod))
1181			return PTR_ERR(iod);
1182		length = nvme_setup_prps(dev, &c.common, iod, length,
1183								GFP_KERNEL);
1184	}
1185
1186	if (length != cmd.data_len)
1187		status = -ENOMEM;
1188	else
1189		status = nvme_submit_admin_cmd(dev, &c, NULL);
1190
1191	if (cmd.data_len) {
1192		nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1193		nvme_free_iod(dev, iod);
1194	}
1195	return status;
1196}
1197
1198static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1199							unsigned long arg)
1200{
1201	struct nvme_ns *ns = bdev->bd_disk->private_data;
1202
1203	switch (cmd) {
1204	case NVME_IOCTL_ID:
1205		return ns->ns_id;
1206	case NVME_IOCTL_ADMIN_CMD:
1207		return nvme_user_admin_cmd(ns, (void __user *)arg);
1208	case NVME_IOCTL_SUBMIT_IO:
1209		return nvme_submit_io(ns, (void __user *)arg);
1210	default:
1211		return -ENOTTY;
1212	}
1213}
1214
1215static const struct block_device_operations nvme_fops = {
1216	.owner		= THIS_MODULE,
1217	.ioctl		= nvme_ioctl,
1218	.compat_ioctl	= nvme_ioctl,
1219};
1220
1221static void nvme_timeout_ios(struct nvme_queue *nvmeq)
1222{
1223	int depth = nvmeq->q_depth - 1;
1224	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1225	unsigned long now = jiffies;
1226	int cmdid;
1227
1228	for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
1229		void *ctx;
1230		nvme_completion_fn fn;
1231		static struct nvme_completion cqe = { .status = cpu_to_le16(NVME_SC_ABORT_REQ) << 1, };
1232
1233		if (!time_after(now, info[cmdid].timeout))
1234			continue;
1235		dev_warn(nvmeq->q_dmadev, "Timing out I/O %d\n", cmdid);
1236		ctx = cancel_cmdid(nvmeq, cmdid, &fn);
1237		fn(nvmeq->dev, ctx, &cqe);
1238	}
1239}
1240
1241static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1242{
1243	while (bio_list_peek(&nvmeq->sq_cong)) {
1244		struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1245		struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1246		if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1247			bio_list_add_head(&nvmeq->sq_cong, bio);
1248			break;
1249		}
1250		if (bio_list_empty(&nvmeq->sq_cong))
1251			remove_wait_queue(&nvmeq->sq_full,
1252							&nvmeq->sq_cong_wait);
1253	}
1254}
1255
1256static int nvme_kthread(void *data)
1257{
1258	struct nvme_dev *dev;
1259
1260	while (!kthread_should_stop()) {
1261		__set_current_state(TASK_RUNNING);
1262		spin_lock(&dev_list_lock);
1263		list_for_each_entry(dev, &dev_list, node) {
1264			int i;
1265			for (i = 0; i < dev->queue_count; i++) {
1266				struct nvme_queue *nvmeq = dev->queues[i];
1267				if (!nvmeq)
1268					continue;
1269				spin_lock_irq(&nvmeq->q_lock);
1270				if (nvme_process_cq(nvmeq))
1271					printk("process_cq did something\n");
1272				nvme_timeout_ios(nvmeq);
1273				nvme_resubmit_bios(nvmeq);
1274				spin_unlock_irq(&nvmeq->q_lock);
1275			}
1276		}
1277		spin_unlock(&dev_list_lock);
1278		set_current_state(TASK_INTERRUPTIBLE);
1279		schedule_timeout(HZ);
1280	}
1281	return 0;
1282}
1283
1284static DEFINE_IDA(nvme_index_ida);
1285
1286static int nvme_get_ns_idx(void)
1287{
1288	int index, error;
1289
1290	do {
1291		if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
1292			return -1;
1293
1294		spin_lock(&dev_list_lock);
1295		error = ida_get_new(&nvme_index_ida, &index);
1296		spin_unlock(&dev_list_lock);
1297	} while (error == -EAGAIN);
1298
1299	if (error)
1300		index = -1;
1301	return index;
1302}
1303
1304static void nvme_put_ns_idx(int index)
1305{
1306	spin_lock(&dev_list_lock);
1307	ida_remove(&nvme_index_ida, index);
1308	spin_unlock(&dev_list_lock);
1309}
1310
1311static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
1312			struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1313{
1314	struct nvme_ns *ns;
1315	struct gendisk *disk;
1316	int lbaf;
1317
1318	if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1319		return NULL;
1320
1321	ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1322	if (!ns)
1323		return NULL;
1324	ns->queue = blk_alloc_queue(GFP_KERNEL);
1325	if (!ns->queue)
1326		goto out_free_ns;
1327	ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
1328	queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1329	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1330/*	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue); */
1331	blk_queue_make_request(ns->queue, nvme_make_request);
1332	ns->dev = dev;
1333	ns->queue->queuedata = ns;
1334
1335	disk = alloc_disk(NVME_MINORS);
1336	if (!disk)
1337		goto out_free_queue;
1338	ns->ns_id = nsid;
1339	ns->disk = disk;
1340	lbaf = id->flbas & 0xf;
1341	ns->lba_shift = id->lbaf[lbaf].ds;
1342
1343	disk->major = nvme_major;
1344	disk->minors = NVME_MINORS;
1345	disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
1346	disk->fops = &nvme_fops;
1347	disk->private_data = ns;
1348	disk->queue = ns->queue;
1349	disk->driverfs_dev = &dev->pci_dev->dev;
1350	sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1351	set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1352
1353	return ns;
1354
1355 out_free_queue:
1356	blk_cleanup_queue(ns->queue);
1357 out_free_ns:
1358	kfree(ns);
1359	return NULL;
1360}
1361
1362static void nvme_ns_free(struct nvme_ns *ns)
1363{
1364	int index = ns->disk->first_minor / NVME_MINORS;
1365	put_disk(ns->disk);
1366	nvme_put_ns_idx(index);
1367	blk_cleanup_queue(ns->queue);
1368	kfree(ns);
1369}
1370
1371static int set_queue_count(struct nvme_dev *dev, int count)
1372{
1373	int status;
1374	u32 result;
1375	u32 q_count = (count - 1) | ((count - 1) << 16);
1376
1377	status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
1378								&result);
1379	if (status)
1380		return -EIO;
1381	return min(result & 0xffff, result >> 16) + 1;
1382}
1383
1384static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1385{
1386	int result, cpu, i, nr_io_queues, db_bar_size;
1387
1388	nr_io_queues = num_online_cpus();
1389	result = set_queue_count(dev, nr_io_queues);
1390	if (result < 0)
1391		return result;
1392	if (result < nr_io_queues)
1393		nr_io_queues = result;
1394
1395	/* Deregister the admin queue's interrupt */
1396	free_irq(dev->entry[0].vector, dev->queues[0]);
1397
1398	db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
1399	if (db_bar_size > 8192) {
1400		iounmap(dev->bar);
1401		dev->bar = ioremap(pci_resource_start(dev->pci_dev, 0),
1402								db_bar_size);
1403		dev->dbs = ((void __iomem *)dev->bar) + 4096;
1404		dev->queues[0]->q_db = dev->dbs;
1405	}
1406
1407	for (i = 0; i < nr_io_queues; i++)
1408		dev->entry[i].entry = i;
1409	for (;;) {
1410		result = pci_enable_msix(dev->pci_dev, dev->entry,
1411								nr_io_queues);
1412		if (result == 0) {
1413			break;
1414		} else if (result > 0) {
1415			nr_io_queues = result;
1416			continue;
1417		} else {
1418			nr_io_queues = 1;
1419			break;
1420		}
1421	}
1422
1423	result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1424	/* XXX: handle failure here */
1425
1426	cpu = cpumask_first(cpu_online_mask);
1427	for (i = 0; i < nr_io_queues; i++) {
1428		irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1429		cpu = cpumask_next(cpu, cpu_online_mask);
1430	}
1431
1432	for (i = 0; i < nr_io_queues; i++) {
1433		dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1434							NVME_Q_DEPTH, i);
1435		if (IS_ERR(dev->queues[i + 1]))
1436			return PTR_ERR(dev->queues[i + 1]);
1437		dev->queue_count++;
1438	}
1439
1440	for (; i < num_possible_cpus(); i++) {
1441		int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1442		dev->queues[i + 1] = dev->queues[target + 1];
1443	}
1444
1445	return 0;
1446}
1447
1448static void nvme_free_queues(struct nvme_dev *dev)
1449{
1450	int i;
1451
1452	for (i = dev->queue_count - 1; i >= 0; i--)
1453		nvme_free_queue(dev, i);
1454}
1455
1456static int __devinit nvme_dev_add(struct nvme_dev *dev)
1457{
1458	int res, nn, i;
1459	struct nvme_ns *ns, *next;
1460	struct nvme_id_ctrl *ctrl;
1461	struct nvme_id_ns *id_ns;
1462	void *mem;
1463	dma_addr_t dma_addr;
1464
1465	res = nvme_setup_io_queues(dev);
1466	if (res)
1467		return res;
1468
1469	mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1470								GFP_KERNEL);
1471
1472	res = nvme_identify(dev, 0, 1, dma_addr);
1473	if (res) {
1474		res = -EIO;
1475		goto out_free;
1476	}
1477
1478	ctrl = mem;
1479	nn = le32_to_cpup(&ctrl->nn);
1480	memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1481	memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1482	memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1483
1484	id_ns = mem;
1485	for (i = 1; i <= nn; i++) {
1486		res = nvme_identify(dev, i, 0, dma_addr);
1487		if (res)
1488			continue;
1489
1490		if (id_ns->ncap == 0)
1491			continue;
1492
1493		res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
1494							dma_addr + 4096);
1495		if (res)
1496			continue;
1497
1498		ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
1499		if (ns)
1500			list_add_tail(&ns->list, &dev->namespaces);
1501	}
1502	list_for_each_entry(ns, &dev->namespaces, list)
1503		add_disk(ns->disk);
1504
1505	goto out;
1506
1507 out_free:
1508	list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1509		list_del(&ns->list);
1510		nvme_ns_free(ns);
1511	}
1512
1513 out:
1514	dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
1515	return res;
1516}
1517
1518static int nvme_dev_remove(struct nvme_dev *dev)
1519{
1520	struct nvme_ns *ns, *next;
1521
1522	spin_lock(&dev_list_lock);
1523	list_del(&dev->node);
1524	spin_unlock(&dev_list_lock);
1525
1526	/* TODO: wait all I/O finished or cancel them */
1527
1528	list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1529		list_del(&ns->list);
1530		del_gendisk(ns->disk);
1531		nvme_ns_free(ns);
1532	}
1533
1534	nvme_free_queues(dev);
1535
1536	return 0;
1537}
1538
1539static int nvme_setup_prp_pools(struct nvme_dev *dev)
1540{
1541	struct device *dmadev = &dev->pci_dev->dev;
1542	dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1543						PAGE_SIZE, PAGE_SIZE, 0);
1544	if (!dev->prp_page_pool)
1545		return -ENOMEM;
1546
1547	/* Optimisation for I/Os between 4k and 128k */
1548	dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1549						256, 256, 0);
1550	if (!dev->prp_small_pool) {
1551		dma_pool_destroy(dev->prp_page_pool);
1552		return -ENOMEM;
1553	}
1554	return 0;
1555}
1556
1557static void nvme_release_prp_pools(struct nvme_dev *dev)
1558{
1559	dma_pool_destroy(dev->prp_page_pool);
1560	dma_pool_destroy(dev->prp_small_pool);
1561}
1562
1563/* XXX: Use an ida or something to let remove / add work correctly */
1564static void nvme_set_instance(struct nvme_dev *dev)
1565{
1566	static int instance;
1567	dev->instance = instance++;
1568}
1569
1570static void nvme_release_instance(struct nvme_dev *dev)
1571{
1572}
1573
1574static int __devinit nvme_probe(struct pci_dev *pdev,
1575						const struct pci_device_id *id)
1576{
1577	int bars, result = -ENOMEM;
1578	struct nvme_dev *dev;
1579
1580	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1581	if (!dev)
1582		return -ENOMEM;
1583	dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1584								GFP_KERNEL);
1585	if (!dev->entry)
1586		goto free;
1587	dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1588								GFP_KERNEL);
1589	if (!dev->queues)
1590		goto free;
1591
1592	if (pci_enable_device_mem(pdev))
1593		goto free;
1594	pci_set_master(pdev);
1595	bars = pci_select_bars(pdev, IORESOURCE_MEM);
1596	if (pci_request_selected_regions(pdev, bars, "nvme"))
1597		goto disable;
1598
1599	INIT_LIST_HEAD(&dev->namespaces);
1600	dev->pci_dev = pdev;
1601	pci_set_drvdata(pdev, dev);
1602	dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1603	dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1604	nvme_set_instance(dev);
1605	dev->entry[0].vector = pdev->irq;
1606
1607	result = nvme_setup_prp_pools(dev);
1608	if (result)
1609		goto disable_msix;
1610
1611	dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1612	if (!dev->bar) {
1613		result = -ENOMEM;
1614		goto disable_msix;
1615	}
1616
1617	result = nvme_configure_admin_queue(dev);
1618	if (result)
1619		goto unmap;
1620	dev->queue_count++;
1621
1622	spin_lock(&dev_list_lock);
1623	list_add(&dev->node, &dev_list);
1624	spin_unlock(&dev_list_lock);
1625
1626	result = nvme_dev_add(dev);
1627	if (result)
1628		goto delete;
1629
1630	return 0;
1631
1632 delete:
1633	spin_lock(&dev_list_lock);
1634	list_del(&dev->node);
1635	spin_unlock(&dev_list_lock);
1636
1637	nvme_free_queues(dev);
1638 unmap:
1639	iounmap(dev->bar);
1640 disable_msix:
1641	pci_disable_msix(pdev);
1642	nvme_release_instance(dev);
1643	nvme_release_prp_pools(dev);
1644 disable:
1645	pci_disable_device(pdev);
1646	pci_release_regions(pdev);
1647 free:
1648	kfree(dev->queues);
1649	kfree(dev->entry);
1650	kfree(dev);
1651	return result;
1652}
1653
1654static void __devexit nvme_remove(struct pci_dev *pdev)
1655{
1656	struct nvme_dev *dev = pci_get_drvdata(pdev);
1657	nvme_dev_remove(dev);
1658	pci_disable_msix(pdev);
1659	iounmap(dev->bar);
1660	nvme_release_instance(dev);
1661	nvme_release_prp_pools(dev);
1662	pci_disable_device(pdev);
1663	pci_release_regions(pdev);
1664	kfree(dev->queues);
1665	kfree(dev->entry);
1666	kfree(dev);
1667}
1668
1669/* These functions are yet to be implemented */
1670#define nvme_error_detected NULL
1671#define nvme_dump_registers NULL
1672#define nvme_link_reset NULL
1673#define nvme_slot_reset NULL
1674#define nvme_error_resume NULL
1675#define nvme_suspend NULL
1676#define nvme_resume NULL
1677
1678static struct pci_error_handlers nvme_err_handler = {
1679	.error_detected	= nvme_error_detected,
1680	.mmio_enabled	= nvme_dump_registers,
1681	.link_reset	= nvme_link_reset,
1682	.slot_reset	= nvme_slot_reset,
1683	.resume		= nvme_error_resume,
1684};
1685
1686/* Move to pci_ids.h later */
1687#define PCI_CLASS_STORAGE_EXPRESS	0x010802
1688
1689static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1690	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1691	{ 0, }
1692};
1693MODULE_DEVICE_TABLE(pci, nvme_id_table);
1694
1695static struct pci_driver nvme_driver = {
1696	.name		= "nvme",
1697	.id_table	= nvme_id_table,
1698	.probe		= nvme_probe,
1699	.remove		= __devexit_p(nvme_remove),
1700	.suspend	= nvme_suspend,
1701	.resume		= nvme_resume,
1702	.err_handler	= &nvme_err_handler,
1703};
1704
1705static int __init nvme_init(void)
1706{
1707	int result = -EBUSY;
1708
1709	nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1710	if (IS_ERR(nvme_thread))
1711		return PTR_ERR(nvme_thread);
1712
1713	nvme_major = register_blkdev(nvme_major, "nvme");
1714	if (nvme_major <= 0)
1715		goto kill_kthread;
1716
1717	result = pci_register_driver(&nvme_driver);
1718	if (result)
1719		goto unregister_blkdev;
1720	return 0;
1721
1722 unregister_blkdev:
1723	unregister_blkdev(nvme_major, "nvme");
1724 kill_kthread:
1725	kthread_stop(nvme_thread);
1726	return result;
1727}
1728
1729static void __exit nvme_exit(void)
1730{
1731	pci_unregister_driver(&nvme_driver);
1732	unregister_blkdev(nvme_major, "nvme");
1733	kthread_stop(nvme_thread);
1734}
1735
1736MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1737MODULE_LICENSE("GPL");
1738MODULE_VERSION("0.8");
1739module_init(nvme_init);
1740module_exit(nvme_exit);
1741