1/*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5 *
6 * May be copied or modified under the terms of the GNU General Public
7 * License.  See linux/COPYING for more information.
8 *
9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10 * DVD-RAM devices.
11 *
12 * Theory of operation:
13 *
14 * At the lowest level, there is the standard driver for the CD/DVD device,
15 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16 * but it doesn't know anything about the special restrictions that apply to
17 * packet writing. One restriction is that write requests must be aligned to
18 * packet boundaries on the physical media, and the size of a write request
19 * must be equal to the packet size. Another restriction is that a
20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21 * command, if the previous command was a write.
22 *
23 * The purpose of the packet writing driver is to hide these restrictions from
24 * higher layers, such as file systems, and present a block device that can be
25 * randomly read and written using 2kB-sized blocks.
26 *
27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
28 * Its data is defined by the struct packet_iosched and includes two bio
29 * queues with pending read and write requests. These queues are processed
30 * by the pkt_iosched_process_queue() function. The write requests in this
31 * queue are already properly aligned and sized. This layer is responsible for
32 * issuing the flush cache commands and scheduling the I/O in a good order.
33 *
34 * The next layer transforms unaligned write requests to aligned writes. This
35 * transformation requires reading missing pieces of data from the underlying
36 * block device, assembling the pieces to full packets and queuing them to the
37 * packet I/O scheduler.
38 *
39 * At the top layer there is a custom make_request_fn function that forwards
40 * read requests directly to the iosched queue and puts write requests in the
41 * unaligned write queue. A kernel thread performs the necessary read
42 * gathering to convert the unaligned writes to aligned writes and then feeds
43 * them to the packet I/O scheduler.
44 *
45 *************************************************************************/
46
47#include <linux/pktcdvd.h>
48#include <linux/module.h>
49#include <linux/types.h>
50#include <linux/kernel.h>
51#include <linux/compat.h>
52#include <linux/kthread.h>
53#include <linux/errno.h>
54#include <linux/spinlock.h>
55#include <linux/file.h>
56#include <linux/proc_fs.h>
57#include <linux/seq_file.h>
58#include <linux/miscdevice.h>
59#include <linux/freezer.h>
60#include <linux/mutex.h>
61#include <linux/slab.h>
62#include <scsi/scsi_cmnd.h>
63#include <scsi/scsi_ioctl.h>
64#include <scsi/scsi.h>
65#include <linux/debugfs.h>
66#include <linux/device.h>
67
68#include <asm/uaccess.h>
69
70#define DRIVER_NAME	"pktcdvd"
71
72#if PACKET_DEBUG
73#define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
74#else
75#define DPRINTK(fmt, args...)
76#endif
77
78#if PACKET_DEBUG > 1
79#define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
80#else
81#define VPRINTK(fmt, args...)
82#endif
83
84#define MAX_SPEED 0xffff
85
86#define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
87
88static DEFINE_MUTEX(pktcdvd_mutex);
89static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
90static struct proc_dir_entry *pkt_proc;
91static int pktdev_major;
92static int write_congestion_on  = PKT_WRITE_CONGESTION_ON;
93static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
94static struct mutex ctl_mutex;	/* Serialize open/close/setup/teardown */
95static mempool_t *psd_pool;
96
97static struct class	*class_pktcdvd = NULL;    /* /sys/class/pktcdvd */
98static struct dentry	*pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
99
100/* forward declaration */
101static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
102static int pkt_remove_dev(dev_t pkt_dev);
103static int pkt_seq_show(struct seq_file *m, void *p);
104
105
106
107/*
108 * create and register a pktcdvd kernel object.
109 */
110static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
111					const char* name,
112					struct kobject* parent,
113					struct kobj_type* ktype)
114{
115	struct pktcdvd_kobj *p;
116	int error;
117
118	p = kzalloc(sizeof(*p), GFP_KERNEL);
119	if (!p)
120		return NULL;
121	p->pd = pd;
122	error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
123	if (error) {
124		kobject_put(&p->kobj);
125		return NULL;
126	}
127	kobject_uevent(&p->kobj, KOBJ_ADD);
128	return p;
129}
130/*
131 * remove a pktcdvd kernel object.
132 */
133static void pkt_kobj_remove(struct pktcdvd_kobj *p)
134{
135	if (p)
136		kobject_put(&p->kobj);
137}
138/*
139 * default release function for pktcdvd kernel objects.
140 */
141static void pkt_kobj_release(struct kobject *kobj)
142{
143	kfree(to_pktcdvdkobj(kobj));
144}
145
146
147/**********************************************************
148 *
149 * sysfs interface for pktcdvd
150 * by (C) 2006  Thomas Maier <balagi@justmail.de>
151 *
152 **********************************************************/
153
154#define DEF_ATTR(_obj,_name,_mode) \
155	static struct attribute _obj = { .name = _name, .mode = _mode }
156
157/**********************************************************
158  /sys/class/pktcdvd/pktcdvd[0-7]/
159                     stat/reset
160                     stat/packets_started
161                     stat/packets_finished
162                     stat/kb_written
163                     stat/kb_read
164                     stat/kb_read_gather
165                     write_queue/size
166                     write_queue/congestion_off
167                     write_queue/congestion_on
168 **********************************************************/
169
170DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
171DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
172DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
173DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
174DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
175DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
176
177static struct attribute *kobj_pkt_attrs_stat[] = {
178	&kobj_pkt_attr_st1,
179	&kobj_pkt_attr_st2,
180	&kobj_pkt_attr_st3,
181	&kobj_pkt_attr_st4,
182	&kobj_pkt_attr_st5,
183	&kobj_pkt_attr_st6,
184	NULL
185};
186
187DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
188DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
189DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on",  0644);
190
191static struct attribute *kobj_pkt_attrs_wqueue[] = {
192	&kobj_pkt_attr_wq1,
193	&kobj_pkt_attr_wq2,
194	&kobj_pkt_attr_wq3,
195	NULL
196};
197
198static ssize_t kobj_pkt_show(struct kobject *kobj,
199			struct attribute *attr, char *data)
200{
201	struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
202	int n = 0;
203	int v;
204	if (strcmp(attr->name, "packets_started") == 0) {
205		n = sprintf(data, "%lu\n", pd->stats.pkt_started);
206
207	} else if (strcmp(attr->name, "packets_finished") == 0) {
208		n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
209
210	} else if (strcmp(attr->name, "kb_written") == 0) {
211		n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
212
213	} else if (strcmp(attr->name, "kb_read") == 0) {
214		n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
215
216	} else if (strcmp(attr->name, "kb_read_gather") == 0) {
217		n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
218
219	} else if (strcmp(attr->name, "size") == 0) {
220		spin_lock(&pd->lock);
221		v = pd->bio_queue_size;
222		spin_unlock(&pd->lock);
223		n = sprintf(data, "%d\n", v);
224
225	} else if (strcmp(attr->name, "congestion_off") == 0) {
226		spin_lock(&pd->lock);
227		v = pd->write_congestion_off;
228		spin_unlock(&pd->lock);
229		n = sprintf(data, "%d\n", v);
230
231	} else if (strcmp(attr->name, "congestion_on") == 0) {
232		spin_lock(&pd->lock);
233		v = pd->write_congestion_on;
234		spin_unlock(&pd->lock);
235		n = sprintf(data, "%d\n", v);
236	}
237	return n;
238}
239
240static void init_write_congestion_marks(int* lo, int* hi)
241{
242	if (*hi > 0) {
243		*hi = max(*hi, 500);
244		*hi = min(*hi, 1000000);
245		if (*lo <= 0)
246			*lo = *hi - 100;
247		else {
248			*lo = min(*lo, *hi - 100);
249			*lo = max(*lo, 100);
250		}
251	} else {
252		*hi = -1;
253		*lo = -1;
254	}
255}
256
257static ssize_t kobj_pkt_store(struct kobject *kobj,
258			struct attribute *attr,
259			const char *data, size_t len)
260{
261	struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
262	int val;
263
264	if (strcmp(attr->name, "reset") == 0 && len > 0) {
265		pd->stats.pkt_started = 0;
266		pd->stats.pkt_ended = 0;
267		pd->stats.secs_w = 0;
268		pd->stats.secs_rg = 0;
269		pd->stats.secs_r = 0;
270
271	} else if (strcmp(attr->name, "congestion_off") == 0
272		   && sscanf(data, "%d", &val) == 1) {
273		spin_lock(&pd->lock);
274		pd->write_congestion_off = val;
275		init_write_congestion_marks(&pd->write_congestion_off,
276					&pd->write_congestion_on);
277		spin_unlock(&pd->lock);
278
279	} else if (strcmp(attr->name, "congestion_on") == 0
280		   && sscanf(data, "%d", &val) == 1) {
281		spin_lock(&pd->lock);
282		pd->write_congestion_on = val;
283		init_write_congestion_marks(&pd->write_congestion_off,
284					&pd->write_congestion_on);
285		spin_unlock(&pd->lock);
286	}
287	return len;
288}
289
290static const struct sysfs_ops kobj_pkt_ops = {
291	.show = kobj_pkt_show,
292	.store = kobj_pkt_store
293};
294static struct kobj_type kobj_pkt_type_stat = {
295	.release = pkt_kobj_release,
296	.sysfs_ops = &kobj_pkt_ops,
297	.default_attrs = kobj_pkt_attrs_stat
298};
299static struct kobj_type kobj_pkt_type_wqueue = {
300	.release = pkt_kobj_release,
301	.sysfs_ops = &kobj_pkt_ops,
302	.default_attrs = kobj_pkt_attrs_wqueue
303};
304
305static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
306{
307	if (class_pktcdvd) {
308		pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
309					"%s", pd->name);
310		if (IS_ERR(pd->dev))
311			pd->dev = NULL;
312	}
313	if (pd->dev) {
314		pd->kobj_stat = pkt_kobj_create(pd, "stat",
315					&pd->dev->kobj,
316					&kobj_pkt_type_stat);
317		pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
318					&pd->dev->kobj,
319					&kobj_pkt_type_wqueue);
320	}
321}
322
323static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
324{
325	pkt_kobj_remove(pd->kobj_stat);
326	pkt_kobj_remove(pd->kobj_wqueue);
327	if (class_pktcdvd)
328		device_unregister(pd->dev);
329}
330
331
332/********************************************************************
333  /sys/class/pktcdvd/
334                     add            map block device
335                     remove         unmap packet dev
336                     device_map     show mappings
337 *******************************************************************/
338
339static void class_pktcdvd_release(struct class *cls)
340{
341	kfree(cls);
342}
343static ssize_t class_pktcdvd_show_map(struct class *c,
344					struct class_attribute *attr,
345					char *data)
346{
347	int n = 0;
348	int idx;
349	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
350	for (idx = 0; idx < MAX_WRITERS; idx++) {
351		struct pktcdvd_device *pd = pkt_devs[idx];
352		if (!pd)
353			continue;
354		n += sprintf(data+n, "%s %u:%u %u:%u\n",
355			pd->name,
356			MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
357			MAJOR(pd->bdev->bd_dev),
358			MINOR(pd->bdev->bd_dev));
359	}
360	mutex_unlock(&ctl_mutex);
361	return n;
362}
363
364static ssize_t class_pktcdvd_store_add(struct class *c,
365					struct class_attribute *attr,
366					const char *buf,
367					size_t count)
368{
369	unsigned int major, minor;
370
371	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
372		/* pkt_setup_dev() expects caller to hold reference to self */
373		if (!try_module_get(THIS_MODULE))
374			return -ENODEV;
375
376		pkt_setup_dev(MKDEV(major, minor), NULL);
377
378		module_put(THIS_MODULE);
379
380		return count;
381	}
382
383	return -EINVAL;
384}
385
386static ssize_t class_pktcdvd_store_remove(struct class *c,
387					  struct class_attribute *attr,
388					  const char *buf,
389					size_t count)
390{
391	unsigned int major, minor;
392	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
393		pkt_remove_dev(MKDEV(major, minor));
394		return count;
395	}
396	return -EINVAL;
397}
398
399static struct class_attribute class_pktcdvd_attrs[] = {
400 __ATTR(add,            0200, NULL, class_pktcdvd_store_add),
401 __ATTR(remove,         0200, NULL, class_pktcdvd_store_remove),
402 __ATTR(device_map,     0444, class_pktcdvd_show_map, NULL),
403 __ATTR_NULL
404};
405
406
407static int pkt_sysfs_init(void)
408{
409	int ret = 0;
410
411	/*
412	 * create control files in sysfs
413	 * /sys/class/pktcdvd/...
414	 */
415	class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
416	if (!class_pktcdvd)
417		return -ENOMEM;
418	class_pktcdvd->name = DRIVER_NAME;
419	class_pktcdvd->owner = THIS_MODULE;
420	class_pktcdvd->class_release = class_pktcdvd_release;
421	class_pktcdvd->class_attrs = class_pktcdvd_attrs;
422	ret = class_register(class_pktcdvd);
423	if (ret) {
424		kfree(class_pktcdvd);
425		class_pktcdvd = NULL;
426		printk(DRIVER_NAME": failed to create class pktcdvd\n");
427		return ret;
428	}
429	return 0;
430}
431
432static void pkt_sysfs_cleanup(void)
433{
434	if (class_pktcdvd)
435		class_destroy(class_pktcdvd);
436	class_pktcdvd = NULL;
437}
438
439/********************************************************************
440  entries in debugfs
441
442  /sys/kernel/debug/pktcdvd[0-7]/
443			info
444
445 *******************************************************************/
446
447static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
448{
449	return pkt_seq_show(m, p);
450}
451
452static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
453{
454	return single_open(file, pkt_debugfs_seq_show, inode->i_private);
455}
456
457static const struct file_operations debug_fops = {
458	.open		= pkt_debugfs_fops_open,
459	.read		= seq_read,
460	.llseek		= seq_lseek,
461	.release	= single_release,
462	.owner		= THIS_MODULE,
463};
464
465static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
466{
467	if (!pkt_debugfs_root)
468		return;
469	pd->dfs_f_info = NULL;
470	pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
471	if (IS_ERR(pd->dfs_d_root)) {
472		pd->dfs_d_root = NULL;
473		return;
474	}
475	pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
476				pd->dfs_d_root, pd, &debug_fops);
477	if (IS_ERR(pd->dfs_f_info)) {
478		pd->dfs_f_info = NULL;
479		return;
480	}
481}
482
483static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
484{
485	if (!pkt_debugfs_root)
486		return;
487	if (pd->dfs_f_info)
488		debugfs_remove(pd->dfs_f_info);
489	pd->dfs_f_info = NULL;
490	if (pd->dfs_d_root)
491		debugfs_remove(pd->dfs_d_root);
492	pd->dfs_d_root = NULL;
493}
494
495static void pkt_debugfs_init(void)
496{
497	pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
498	if (IS_ERR(pkt_debugfs_root)) {
499		pkt_debugfs_root = NULL;
500		return;
501	}
502}
503
504static void pkt_debugfs_cleanup(void)
505{
506	if (!pkt_debugfs_root)
507		return;
508	debugfs_remove(pkt_debugfs_root);
509	pkt_debugfs_root = NULL;
510}
511
512/* ----------------------------------------------------------*/
513
514
515static void pkt_bio_finished(struct pktcdvd_device *pd)
516{
517	BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
518	if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
519		VPRINTK(DRIVER_NAME": queue empty\n");
520		atomic_set(&pd->iosched.attention, 1);
521		wake_up(&pd->wqueue);
522	}
523}
524
525static void pkt_bio_destructor(struct bio *bio)
526{
527	kfree(bio->bi_io_vec);
528	kfree(bio);
529}
530
531static struct bio *pkt_bio_alloc(int nr_iovecs)
532{
533	struct bio_vec *bvl = NULL;
534	struct bio *bio;
535
536	bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
537	if (!bio)
538		goto no_bio;
539	bio_init(bio);
540
541	bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
542	if (!bvl)
543		goto no_bvl;
544
545	bio->bi_max_vecs = nr_iovecs;
546	bio->bi_io_vec = bvl;
547	bio->bi_destructor = pkt_bio_destructor;
548
549	return bio;
550
551 no_bvl:
552	kfree(bio);
553 no_bio:
554	return NULL;
555}
556
557/*
558 * Allocate a packet_data struct
559 */
560static struct packet_data *pkt_alloc_packet_data(int frames)
561{
562	int i;
563	struct packet_data *pkt;
564
565	pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
566	if (!pkt)
567		goto no_pkt;
568
569	pkt->frames = frames;
570	pkt->w_bio = pkt_bio_alloc(frames);
571	if (!pkt->w_bio)
572		goto no_bio;
573
574	for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
575		pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
576		if (!pkt->pages[i])
577			goto no_page;
578	}
579
580	spin_lock_init(&pkt->lock);
581	bio_list_init(&pkt->orig_bios);
582
583	for (i = 0; i < frames; i++) {
584		struct bio *bio = pkt_bio_alloc(1);
585		if (!bio)
586			goto no_rd_bio;
587		pkt->r_bios[i] = bio;
588	}
589
590	return pkt;
591
592no_rd_bio:
593	for (i = 0; i < frames; i++) {
594		struct bio *bio = pkt->r_bios[i];
595		if (bio)
596			bio_put(bio);
597	}
598
599no_page:
600	for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
601		if (pkt->pages[i])
602			__free_page(pkt->pages[i]);
603	bio_put(pkt->w_bio);
604no_bio:
605	kfree(pkt);
606no_pkt:
607	return NULL;
608}
609
610/*
611 * Free a packet_data struct
612 */
613static void pkt_free_packet_data(struct packet_data *pkt)
614{
615	int i;
616
617	for (i = 0; i < pkt->frames; i++) {
618		struct bio *bio = pkt->r_bios[i];
619		if (bio)
620			bio_put(bio);
621	}
622	for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
623		__free_page(pkt->pages[i]);
624	bio_put(pkt->w_bio);
625	kfree(pkt);
626}
627
628static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
629{
630	struct packet_data *pkt, *next;
631
632	BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
633
634	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
635		pkt_free_packet_data(pkt);
636	}
637	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
638}
639
640static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
641{
642	struct packet_data *pkt;
643
644	BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
645
646	while (nr_packets > 0) {
647		pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
648		if (!pkt) {
649			pkt_shrink_pktlist(pd);
650			return 0;
651		}
652		pkt->id = nr_packets;
653		pkt->pd = pd;
654		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
655		nr_packets--;
656	}
657	return 1;
658}
659
660static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
661{
662	struct rb_node *n = rb_next(&node->rb_node);
663	if (!n)
664		return NULL;
665	return rb_entry(n, struct pkt_rb_node, rb_node);
666}
667
668static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
669{
670	rb_erase(&node->rb_node, &pd->bio_queue);
671	mempool_free(node, pd->rb_pool);
672	pd->bio_queue_size--;
673	BUG_ON(pd->bio_queue_size < 0);
674}
675
676/*
677 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
678 */
679static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
680{
681	struct rb_node *n = pd->bio_queue.rb_node;
682	struct rb_node *next;
683	struct pkt_rb_node *tmp;
684
685	if (!n) {
686		BUG_ON(pd->bio_queue_size > 0);
687		return NULL;
688	}
689
690	for (;;) {
691		tmp = rb_entry(n, struct pkt_rb_node, rb_node);
692		if (s <= tmp->bio->bi_sector)
693			next = n->rb_left;
694		else
695			next = n->rb_right;
696		if (!next)
697			break;
698		n = next;
699	}
700
701	if (s > tmp->bio->bi_sector) {
702		tmp = pkt_rbtree_next(tmp);
703		if (!tmp)
704			return NULL;
705	}
706	BUG_ON(s > tmp->bio->bi_sector);
707	return tmp;
708}
709
710/*
711 * Insert a node into the pd->bio_queue rb tree.
712 */
713static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
714{
715	struct rb_node **p = &pd->bio_queue.rb_node;
716	struct rb_node *parent = NULL;
717	sector_t s = node->bio->bi_sector;
718	struct pkt_rb_node *tmp;
719
720	while (*p) {
721		parent = *p;
722		tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
723		if (s < tmp->bio->bi_sector)
724			p = &(*p)->rb_left;
725		else
726			p = &(*p)->rb_right;
727	}
728	rb_link_node(&node->rb_node, parent, p);
729	rb_insert_color(&node->rb_node, &pd->bio_queue);
730	pd->bio_queue_size++;
731}
732
733/*
734 * Send a packet_command to the underlying block device and
735 * wait for completion.
736 */
737static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
738{
739	struct request_queue *q = bdev_get_queue(pd->bdev);
740	struct request *rq;
741	int ret = 0;
742
743	rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
744			     WRITE : READ, __GFP_WAIT);
745
746	if (cgc->buflen) {
747		if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
748			goto out;
749	}
750
751	rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
752	memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
753
754	rq->timeout = 60*HZ;
755	rq->cmd_type = REQ_TYPE_BLOCK_PC;
756	if (cgc->quiet)
757		rq->cmd_flags |= REQ_QUIET;
758
759	blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
760	if (rq->errors)
761		ret = -EIO;
762out:
763	blk_put_request(rq);
764	return ret;
765}
766
767/*
768 * A generic sense dump / resolve mechanism should be implemented across
769 * all ATAPI + SCSI devices.
770 */
771static void pkt_dump_sense(struct packet_command *cgc)
772{
773	static char *info[9] = { "No sense", "Recovered error", "Not ready",
774				 "Medium error", "Hardware error", "Illegal request",
775				 "Unit attention", "Data protect", "Blank check" };
776	int i;
777	struct request_sense *sense = cgc->sense;
778
779	printk(DRIVER_NAME":");
780	for (i = 0; i < CDROM_PACKET_SIZE; i++)
781		printk(" %02x", cgc->cmd[i]);
782	printk(" - ");
783
784	if (sense == NULL) {
785		printk("no sense\n");
786		return;
787	}
788
789	printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
790
791	if (sense->sense_key > 8) {
792		printk(" (INVALID)\n");
793		return;
794	}
795
796	printk(" (%s)\n", info[sense->sense_key]);
797}
798
799/*
800 * flush the drive cache to media
801 */
802static int pkt_flush_cache(struct pktcdvd_device *pd)
803{
804	struct packet_command cgc;
805
806	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
807	cgc.cmd[0] = GPCMD_FLUSH_CACHE;
808	cgc.quiet = 1;
809
810	/*
811	 * the IMMED bit -- we default to not setting it, although that
812	 * would allow a much faster close, this is safer
813	 */
814#if 0
815	cgc.cmd[1] = 1 << 1;
816#endif
817	return pkt_generic_packet(pd, &cgc);
818}
819
820/*
821 * speed is given as the normal factor, e.g. 4 for 4x
822 */
823static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
824				unsigned write_speed, unsigned read_speed)
825{
826	struct packet_command cgc;
827	struct request_sense sense;
828	int ret;
829
830	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
831	cgc.sense = &sense;
832	cgc.cmd[0] = GPCMD_SET_SPEED;
833	cgc.cmd[2] = (read_speed >> 8) & 0xff;
834	cgc.cmd[3] = read_speed & 0xff;
835	cgc.cmd[4] = (write_speed >> 8) & 0xff;
836	cgc.cmd[5] = write_speed & 0xff;
837
838	if ((ret = pkt_generic_packet(pd, &cgc)))
839		pkt_dump_sense(&cgc);
840
841	return ret;
842}
843
844/*
845 * Queue a bio for processing by the low-level CD device. Must be called
846 * from process context.
847 */
848static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
849{
850	spin_lock(&pd->iosched.lock);
851	if (bio_data_dir(bio) == READ)
852		bio_list_add(&pd->iosched.read_queue, bio);
853	else
854		bio_list_add(&pd->iosched.write_queue, bio);
855	spin_unlock(&pd->iosched.lock);
856
857	atomic_set(&pd->iosched.attention, 1);
858	wake_up(&pd->wqueue);
859}
860
861/*
862 * Process the queued read/write requests. This function handles special
863 * requirements for CDRW drives:
864 * - A cache flush command must be inserted before a read request if the
865 *   previous request was a write.
866 * - Switching between reading and writing is slow, so don't do it more often
867 *   than necessary.
868 * - Optimize for throughput at the expense of latency. This means that streaming
869 *   writes will never be interrupted by a read, but if the drive has to seek
870 *   before the next write, switch to reading instead if there are any pending
871 *   read requests.
872 * - Set the read speed according to current usage pattern. When only reading
873 *   from the device, it's best to use the highest possible read speed, but
874 *   when switching often between reading and writing, it's better to have the
875 *   same read and write speeds.
876 */
877static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
878{
879
880	if (atomic_read(&pd->iosched.attention) == 0)
881		return;
882	atomic_set(&pd->iosched.attention, 0);
883
884	for (;;) {
885		struct bio *bio;
886		int reads_queued, writes_queued;
887
888		spin_lock(&pd->iosched.lock);
889		reads_queued = !bio_list_empty(&pd->iosched.read_queue);
890		writes_queued = !bio_list_empty(&pd->iosched.write_queue);
891		spin_unlock(&pd->iosched.lock);
892
893		if (!reads_queued && !writes_queued)
894			break;
895
896		if (pd->iosched.writing) {
897			int need_write_seek = 1;
898			spin_lock(&pd->iosched.lock);
899			bio = bio_list_peek(&pd->iosched.write_queue);
900			spin_unlock(&pd->iosched.lock);
901			if (bio && (bio->bi_sector == pd->iosched.last_write))
902				need_write_seek = 0;
903			if (need_write_seek && reads_queued) {
904				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
905					VPRINTK(DRIVER_NAME": write, waiting\n");
906					break;
907				}
908				pkt_flush_cache(pd);
909				pd->iosched.writing = 0;
910			}
911		} else {
912			if (!reads_queued && writes_queued) {
913				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
914					VPRINTK(DRIVER_NAME": read, waiting\n");
915					break;
916				}
917				pd->iosched.writing = 1;
918			}
919		}
920
921		spin_lock(&pd->iosched.lock);
922		if (pd->iosched.writing)
923			bio = bio_list_pop(&pd->iosched.write_queue);
924		else
925			bio = bio_list_pop(&pd->iosched.read_queue);
926		spin_unlock(&pd->iosched.lock);
927
928		if (!bio)
929			continue;
930
931		if (bio_data_dir(bio) == READ)
932			pd->iosched.successive_reads += bio->bi_size >> 10;
933		else {
934			pd->iosched.successive_reads = 0;
935			pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
936		}
937		if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
938			if (pd->read_speed == pd->write_speed) {
939				pd->read_speed = MAX_SPEED;
940				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
941			}
942		} else {
943			if (pd->read_speed != pd->write_speed) {
944				pd->read_speed = pd->write_speed;
945				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
946			}
947		}
948
949		atomic_inc(&pd->cdrw.pending_bios);
950		generic_make_request(bio);
951	}
952}
953
954/*
955 * Special care is needed if the underlying block device has a small
956 * max_phys_segments value.
957 */
958static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
959{
960	if ((pd->settings.size << 9) / CD_FRAMESIZE
961	    <= queue_max_segments(q)) {
962		/*
963		 * The cdrom device can handle one segment/frame
964		 */
965		clear_bit(PACKET_MERGE_SEGS, &pd->flags);
966		return 0;
967	} else if ((pd->settings.size << 9) / PAGE_SIZE
968		   <= queue_max_segments(q)) {
969		/*
970		 * We can handle this case at the expense of some extra memory
971		 * copies during write operations
972		 */
973		set_bit(PACKET_MERGE_SEGS, &pd->flags);
974		return 0;
975	} else {
976		printk(DRIVER_NAME": cdrom max_phys_segments too small\n");
977		return -EIO;
978	}
979}
980
981/*
982 * Copy CD_FRAMESIZE bytes from src_bio into a destination page
983 */
984static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
985{
986	unsigned int copy_size = CD_FRAMESIZE;
987
988	while (copy_size > 0) {
989		struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
990		void *vfrom = kmap_atomic(src_bvl->bv_page) +
991			src_bvl->bv_offset + offs;
992		void *vto = page_address(dst_page) + dst_offs;
993		int len = min_t(int, copy_size, src_bvl->bv_len - offs);
994
995		BUG_ON(len < 0);
996		memcpy(vto, vfrom, len);
997		kunmap_atomic(vfrom);
998
999		seg++;
1000		offs = 0;
1001		dst_offs += len;
1002		copy_size -= len;
1003	}
1004}
1005
1006/*
1007 * Copy all data for this packet to pkt->pages[], so that
1008 * a) The number of required segments for the write bio is minimized, which
1009 *    is necessary for some scsi controllers.
1010 * b) The data can be used as cache to avoid read requests if we receive a
1011 *    new write request for the same zone.
1012 */
1013static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
1014{
1015	int f, p, offs;
1016
1017	/* Copy all data to pkt->pages[] */
1018	p = 0;
1019	offs = 0;
1020	for (f = 0; f < pkt->frames; f++) {
1021		if (bvec[f].bv_page != pkt->pages[p]) {
1022			void *vfrom = kmap_atomic(bvec[f].bv_page) + bvec[f].bv_offset;
1023			void *vto = page_address(pkt->pages[p]) + offs;
1024			memcpy(vto, vfrom, CD_FRAMESIZE);
1025			kunmap_atomic(vfrom);
1026			bvec[f].bv_page = pkt->pages[p];
1027			bvec[f].bv_offset = offs;
1028		} else {
1029			BUG_ON(bvec[f].bv_offset != offs);
1030		}
1031		offs += CD_FRAMESIZE;
1032		if (offs >= PAGE_SIZE) {
1033			offs = 0;
1034			p++;
1035		}
1036	}
1037}
1038
1039static void pkt_end_io_read(struct bio *bio, int err)
1040{
1041	struct packet_data *pkt = bio->bi_private;
1042	struct pktcdvd_device *pd = pkt->pd;
1043	BUG_ON(!pd);
1044
1045	VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
1046		(unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
1047
1048	if (err)
1049		atomic_inc(&pkt->io_errors);
1050	if (atomic_dec_and_test(&pkt->io_wait)) {
1051		atomic_inc(&pkt->run_sm);
1052		wake_up(&pd->wqueue);
1053	}
1054	pkt_bio_finished(pd);
1055}
1056
1057static void pkt_end_io_packet_write(struct bio *bio, int err)
1058{
1059	struct packet_data *pkt = bio->bi_private;
1060	struct pktcdvd_device *pd = pkt->pd;
1061	BUG_ON(!pd);
1062
1063	VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
1064
1065	pd->stats.pkt_ended++;
1066
1067	pkt_bio_finished(pd);
1068	atomic_dec(&pkt->io_wait);
1069	atomic_inc(&pkt->run_sm);
1070	wake_up(&pd->wqueue);
1071}
1072
1073/*
1074 * Schedule reads for the holes in a packet
1075 */
1076static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1077{
1078	int frames_read = 0;
1079	struct bio *bio;
1080	int f;
1081	char written[PACKET_MAX_SIZE];
1082
1083	BUG_ON(bio_list_empty(&pkt->orig_bios));
1084
1085	atomic_set(&pkt->io_wait, 0);
1086	atomic_set(&pkt->io_errors, 0);
1087
1088	/*
1089	 * Figure out which frames we need to read before we can write.
1090	 */
1091	memset(written, 0, sizeof(written));
1092	spin_lock(&pkt->lock);
1093	bio_list_for_each(bio, &pkt->orig_bios) {
1094		int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1095		int num_frames = bio->bi_size / CD_FRAMESIZE;
1096		pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1097		BUG_ON(first_frame < 0);
1098		BUG_ON(first_frame + num_frames > pkt->frames);
1099		for (f = first_frame; f < first_frame + num_frames; f++)
1100			written[f] = 1;
1101	}
1102	spin_unlock(&pkt->lock);
1103
1104	if (pkt->cache_valid) {
1105		VPRINTK("pkt_gather_data: zone %llx cached\n",
1106			(unsigned long long)pkt->sector);
1107		goto out_account;
1108	}
1109
1110	/*
1111	 * Schedule reads for missing parts of the packet.
1112	 */
1113	for (f = 0; f < pkt->frames; f++) {
1114		struct bio_vec *vec;
1115
1116		int p, offset;
1117		if (written[f])
1118			continue;
1119		bio = pkt->r_bios[f];
1120		vec = bio->bi_io_vec;
1121		bio_init(bio);
1122		bio->bi_max_vecs = 1;
1123		bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1124		bio->bi_bdev = pd->bdev;
1125		bio->bi_end_io = pkt_end_io_read;
1126		bio->bi_private = pkt;
1127		bio->bi_io_vec = vec;
1128		bio->bi_destructor = pkt_bio_destructor;
1129
1130		p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1131		offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1132		VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
1133			f, pkt->pages[p], offset);
1134		if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1135			BUG();
1136
1137		atomic_inc(&pkt->io_wait);
1138		bio->bi_rw = READ;
1139		pkt_queue_bio(pd, bio);
1140		frames_read++;
1141	}
1142
1143out_account:
1144	VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
1145		frames_read, (unsigned long long)pkt->sector);
1146	pd->stats.pkt_started++;
1147	pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1148}
1149
1150/*
1151 * Find a packet matching zone, or the least recently used packet if
1152 * there is no match.
1153 */
1154static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1155{
1156	struct packet_data *pkt;
1157
1158	list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1159		if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1160			list_del_init(&pkt->list);
1161			if (pkt->sector != zone)
1162				pkt->cache_valid = 0;
1163			return pkt;
1164		}
1165	}
1166	BUG();
1167	return NULL;
1168}
1169
1170static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1171{
1172	if (pkt->cache_valid) {
1173		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1174	} else {
1175		list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1176	}
1177}
1178
1179/*
1180 * recover a failed write, query for relocation if possible
1181 *
1182 * returns 1 if recovery is possible, or 0 if not
1183 *
1184 */
1185static int pkt_start_recovery(struct packet_data *pkt)
1186{
1187	/*
1188	 * FIXME. We need help from the file system to implement
1189	 * recovery handling.
1190	 */
1191	return 0;
1192#if 0
1193	struct request *rq = pkt->rq;
1194	struct pktcdvd_device *pd = rq->rq_disk->private_data;
1195	struct block_device *pkt_bdev;
1196	struct super_block *sb = NULL;
1197	unsigned long old_block, new_block;
1198	sector_t new_sector;
1199
1200	pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1201	if (pkt_bdev) {
1202		sb = get_super(pkt_bdev);
1203		bdput(pkt_bdev);
1204	}
1205
1206	if (!sb)
1207		return 0;
1208
1209	if (!sb->s_op->relocate_blocks)
1210		goto out;
1211
1212	old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1213	if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1214		goto out;
1215
1216	new_sector = new_block * (CD_FRAMESIZE >> 9);
1217	pkt->sector = new_sector;
1218
1219	pkt->bio->bi_sector = new_sector;
1220	pkt->bio->bi_next = NULL;
1221	pkt->bio->bi_flags = 1 << BIO_UPTODATE;
1222	pkt->bio->bi_idx = 0;
1223
1224	BUG_ON(pkt->bio->bi_rw != REQ_WRITE);
1225	BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
1226	BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
1227	BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
1228	BUG_ON(pkt->bio->bi_private != pkt);
1229
1230	drop_super(sb);
1231	return 1;
1232
1233out:
1234	drop_super(sb);
1235	return 0;
1236#endif
1237}
1238
1239static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1240{
1241#if PACKET_DEBUG > 1
1242	static const char *state_name[] = {
1243		"IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1244	};
1245	enum packet_data_state old_state = pkt->state;
1246	VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
1247		state_name[old_state], state_name[state]);
1248#endif
1249	pkt->state = state;
1250}
1251
1252/*
1253 * Scan the work queue to see if we can start a new packet.
1254 * returns non-zero if any work was done.
1255 */
1256static int pkt_handle_queue(struct pktcdvd_device *pd)
1257{
1258	struct packet_data *pkt, *p;
1259	struct bio *bio = NULL;
1260	sector_t zone = 0; /* Suppress gcc warning */
1261	struct pkt_rb_node *node, *first_node;
1262	struct rb_node *n;
1263	int wakeup;
1264
1265	VPRINTK("handle_queue\n");
1266
1267	atomic_set(&pd->scan_queue, 0);
1268
1269	if (list_empty(&pd->cdrw.pkt_free_list)) {
1270		VPRINTK("handle_queue: no pkt\n");
1271		return 0;
1272	}
1273
1274	/*
1275	 * Try to find a zone we are not already working on.
1276	 */
1277	spin_lock(&pd->lock);
1278	first_node = pkt_rbtree_find(pd, pd->current_sector);
1279	if (!first_node) {
1280		n = rb_first(&pd->bio_queue);
1281		if (n)
1282			first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1283	}
1284	node = first_node;
1285	while (node) {
1286		bio = node->bio;
1287		zone = ZONE(bio->bi_sector, pd);
1288		list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1289			if (p->sector == zone) {
1290				bio = NULL;
1291				goto try_next_bio;
1292			}
1293		}
1294		break;
1295try_next_bio:
1296		node = pkt_rbtree_next(node);
1297		if (!node) {
1298			n = rb_first(&pd->bio_queue);
1299			if (n)
1300				node = rb_entry(n, struct pkt_rb_node, rb_node);
1301		}
1302		if (node == first_node)
1303			node = NULL;
1304	}
1305	spin_unlock(&pd->lock);
1306	if (!bio) {
1307		VPRINTK("handle_queue: no bio\n");
1308		return 0;
1309	}
1310
1311	pkt = pkt_get_packet_data(pd, zone);
1312
1313	pd->current_sector = zone + pd->settings.size;
1314	pkt->sector = zone;
1315	BUG_ON(pkt->frames != pd->settings.size >> 2);
1316	pkt->write_size = 0;
1317
1318	/*
1319	 * Scan work queue for bios in the same zone and link them
1320	 * to this packet.
1321	 */
1322	spin_lock(&pd->lock);
1323	VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
1324	while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1325		bio = node->bio;
1326		VPRINTK("pkt_handle_queue: found zone=%llx\n",
1327			(unsigned long long)ZONE(bio->bi_sector, pd));
1328		if (ZONE(bio->bi_sector, pd) != zone)
1329			break;
1330		pkt_rbtree_erase(pd, node);
1331		spin_lock(&pkt->lock);
1332		bio_list_add(&pkt->orig_bios, bio);
1333		pkt->write_size += bio->bi_size / CD_FRAMESIZE;
1334		spin_unlock(&pkt->lock);
1335	}
1336	/* check write congestion marks, and if bio_queue_size is
1337	   below, wake up any waiters */
1338	wakeup = (pd->write_congestion_on > 0
1339	 		&& pd->bio_queue_size <= pd->write_congestion_off);
1340	spin_unlock(&pd->lock);
1341	if (wakeup) {
1342		clear_bdi_congested(&pd->disk->queue->backing_dev_info,
1343					BLK_RW_ASYNC);
1344	}
1345
1346	pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1347	pkt_set_state(pkt, PACKET_WAITING_STATE);
1348	atomic_set(&pkt->run_sm, 1);
1349
1350	spin_lock(&pd->cdrw.active_list_lock);
1351	list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1352	spin_unlock(&pd->cdrw.active_list_lock);
1353
1354	return 1;
1355}
1356
1357/*
1358 * Assemble a bio to write one packet and queue the bio for processing
1359 * by the underlying block device.
1360 */
1361static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1362{
1363	struct bio *bio;
1364	int f;
1365	int frames_write;
1366	struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1367
1368	for (f = 0; f < pkt->frames; f++) {
1369		bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1370		bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1371	}
1372
1373	/*
1374	 * Fill-in bvec with data from orig_bios.
1375	 */
1376	frames_write = 0;
1377	spin_lock(&pkt->lock);
1378	bio_list_for_each(bio, &pkt->orig_bios) {
1379		int segment = bio->bi_idx;
1380		int src_offs = 0;
1381		int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1382		int num_frames = bio->bi_size / CD_FRAMESIZE;
1383		BUG_ON(first_frame < 0);
1384		BUG_ON(first_frame + num_frames > pkt->frames);
1385		for (f = first_frame; f < first_frame + num_frames; f++) {
1386			struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1387
1388			while (src_offs >= src_bvl->bv_len) {
1389				src_offs -= src_bvl->bv_len;
1390				segment++;
1391				BUG_ON(segment >= bio->bi_vcnt);
1392				src_bvl = bio_iovec_idx(bio, segment);
1393			}
1394
1395			if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
1396				bvec[f].bv_page = src_bvl->bv_page;
1397				bvec[f].bv_offset = src_bvl->bv_offset + src_offs;
1398			} else {
1399				pkt_copy_bio_data(bio, segment, src_offs,
1400						  bvec[f].bv_page, bvec[f].bv_offset);
1401			}
1402			src_offs += CD_FRAMESIZE;
1403			frames_write++;
1404		}
1405	}
1406	pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1407	spin_unlock(&pkt->lock);
1408
1409	VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1410		frames_write, (unsigned long long)pkt->sector);
1411	BUG_ON(frames_write != pkt->write_size);
1412
1413	if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1414		pkt_make_local_copy(pkt, bvec);
1415		pkt->cache_valid = 1;
1416	} else {
1417		pkt->cache_valid = 0;
1418	}
1419
1420	/* Start the write request */
1421	bio_init(pkt->w_bio);
1422	pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
1423	pkt->w_bio->bi_sector = pkt->sector;
1424	pkt->w_bio->bi_bdev = pd->bdev;
1425	pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1426	pkt->w_bio->bi_private = pkt;
1427	pkt->w_bio->bi_io_vec = bvec;
1428	pkt->w_bio->bi_destructor = pkt_bio_destructor;
1429	for (f = 0; f < pkt->frames; f++)
1430		if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1431			BUG();
1432	VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt);
1433
1434	atomic_set(&pkt->io_wait, 1);
1435	pkt->w_bio->bi_rw = WRITE;
1436	pkt_queue_bio(pd, pkt->w_bio);
1437}
1438
1439static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1440{
1441	struct bio *bio;
1442
1443	if (!uptodate)
1444		pkt->cache_valid = 0;
1445
1446	/* Finish all bios corresponding to this packet */
1447	while ((bio = bio_list_pop(&pkt->orig_bios)))
1448		bio_endio(bio, uptodate ? 0 : -EIO);
1449}
1450
1451static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1452{
1453	int uptodate;
1454
1455	VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1456
1457	for (;;) {
1458		switch (pkt->state) {
1459		case PACKET_WAITING_STATE:
1460			if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1461				return;
1462
1463			pkt->sleep_time = 0;
1464			pkt_gather_data(pd, pkt);
1465			pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1466			break;
1467
1468		case PACKET_READ_WAIT_STATE:
1469			if (atomic_read(&pkt->io_wait) > 0)
1470				return;
1471
1472			if (atomic_read(&pkt->io_errors) > 0) {
1473				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1474			} else {
1475				pkt_start_write(pd, pkt);
1476			}
1477			break;
1478
1479		case PACKET_WRITE_WAIT_STATE:
1480			if (atomic_read(&pkt->io_wait) > 0)
1481				return;
1482
1483			if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1484				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1485			} else {
1486				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1487			}
1488			break;
1489
1490		case PACKET_RECOVERY_STATE:
1491			if (pkt_start_recovery(pkt)) {
1492				pkt_start_write(pd, pkt);
1493			} else {
1494				VPRINTK("No recovery possible\n");
1495				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1496			}
1497			break;
1498
1499		case PACKET_FINISHED_STATE:
1500			uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1501			pkt_finish_packet(pkt, uptodate);
1502			return;
1503
1504		default:
1505			BUG();
1506			break;
1507		}
1508	}
1509}
1510
1511static void pkt_handle_packets(struct pktcdvd_device *pd)
1512{
1513	struct packet_data *pkt, *next;
1514
1515	VPRINTK("pkt_handle_packets\n");
1516
1517	/*
1518	 * Run state machine for active packets
1519	 */
1520	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1521		if (atomic_read(&pkt->run_sm) > 0) {
1522			atomic_set(&pkt->run_sm, 0);
1523			pkt_run_state_machine(pd, pkt);
1524		}
1525	}
1526
1527	/*
1528	 * Move no longer active packets to the free list
1529	 */
1530	spin_lock(&pd->cdrw.active_list_lock);
1531	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1532		if (pkt->state == PACKET_FINISHED_STATE) {
1533			list_del(&pkt->list);
1534			pkt_put_packet_data(pd, pkt);
1535			pkt_set_state(pkt, PACKET_IDLE_STATE);
1536			atomic_set(&pd->scan_queue, 1);
1537		}
1538	}
1539	spin_unlock(&pd->cdrw.active_list_lock);
1540}
1541
1542static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1543{
1544	struct packet_data *pkt;
1545	int i;
1546
1547	for (i = 0; i < PACKET_NUM_STATES; i++)
1548		states[i] = 0;
1549
1550	spin_lock(&pd->cdrw.active_list_lock);
1551	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1552		states[pkt->state]++;
1553	}
1554	spin_unlock(&pd->cdrw.active_list_lock);
1555}
1556
1557/*
1558 * kcdrwd is woken up when writes have been queued for one of our
1559 * registered devices
1560 */
1561static int kcdrwd(void *foobar)
1562{
1563	struct pktcdvd_device *pd = foobar;
1564	struct packet_data *pkt;
1565	long min_sleep_time, residue;
1566
1567	set_user_nice(current, -20);
1568	set_freezable();
1569
1570	for (;;) {
1571		DECLARE_WAITQUEUE(wait, current);
1572
1573		/*
1574		 * Wait until there is something to do
1575		 */
1576		add_wait_queue(&pd->wqueue, &wait);
1577		for (;;) {
1578			set_current_state(TASK_INTERRUPTIBLE);
1579
1580			/* Check if we need to run pkt_handle_queue */
1581			if (atomic_read(&pd->scan_queue) > 0)
1582				goto work_to_do;
1583
1584			/* Check if we need to run the state machine for some packet */
1585			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1586				if (atomic_read(&pkt->run_sm) > 0)
1587					goto work_to_do;
1588			}
1589
1590			/* Check if we need to process the iosched queues */
1591			if (atomic_read(&pd->iosched.attention) != 0)
1592				goto work_to_do;
1593
1594			/* Otherwise, go to sleep */
1595			if (PACKET_DEBUG > 1) {
1596				int states[PACKET_NUM_STATES];
1597				pkt_count_states(pd, states);
1598				VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1599					states[0], states[1], states[2], states[3],
1600					states[4], states[5]);
1601			}
1602
1603			min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1604			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1605				if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1606					min_sleep_time = pkt->sleep_time;
1607			}
1608
1609			VPRINTK("kcdrwd: sleeping\n");
1610			residue = schedule_timeout(min_sleep_time);
1611			VPRINTK("kcdrwd: wake up\n");
1612
1613			/* make swsusp happy with our thread */
1614			try_to_freeze();
1615
1616			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1617				if (!pkt->sleep_time)
1618					continue;
1619				pkt->sleep_time -= min_sleep_time - residue;
1620				if (pkt->sleep_time <= 0) {
1621					pkt->sleep_time = 0;
1622					atomic_inc(&pkt->run_sm);
1623				}
1624			}
1625
1626			if (kthread_should_stop())
1627				break;
1628		}
1629work_to_do:
1630		set_current_state(TASK_RUNNING);
1631		remove_wait_queue(&pd->wqueue, &wait);
1632
1633		if (kthread_should_stop())
1634			break;
1635
1636		/*
1637		 * if pkt_handle_queue returns true, we can queue
1638		 * another request.
1639		 */
1640		while (pkt_handle_queue(pd))
1641			;
1642
1643		/*
1644		 * Handle packet state machine
1645		 */
1646		pkt_handle_packets(pd);
1647
1648		/*
1649		 * Handle iosched queues
1650		 */
1651		pkt_iosched_process_queue(pd);
1652	}
1653
1654	return 0;
1655}
1656
1657static void pkt_print_settings(struct pktcdvd_device *pd)
1658{
1659	printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1660	printk("%u blocks, ", pd->settings.size >> 2);
1661	printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1662}
1663
1664static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1665{
1666	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1667
1668	cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1669	cgc->cmd[2] = page_code | (page_control << 6);
1670	cgc->cmd[7] = cgc->buflen >> 8;
1671	cgc->cmd[8] = cgc->buflen & 0xff;
1672	cgc->data_direction = CGC_DATA_READ;
1673	return pkt_generic_packet(pd, cgc);
1674}
1675
1676static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1677{
1678	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1679	memset(cgc->buffer, 0, 2);
1680	cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1681	cgc->cmd[1] = 0x10;		/* PF */
1682	cgc->cmd[7] = cgc->buflen >> 8;
1683	cgc->cmd[8] = cgc->buflen & 0xff;
1684	cgc->data_direction = CGC_DATA_WRITE;
1685	return pkt_generic_packet(pd, cgc);
1686}
1687
1688static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1689{
1690	struct packet_command cgc;
1691	int ret;
1692
1693	/* set up command and get the disc info */
1694	init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1695	cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1696	cgc.cmd[8] = cgc.buflen = 2;
1697	cgc.quiet = 1;
1698
1699	if ((ret = pkt_generic_packet(pd, &cgc)))
1700		return ret;
1701
1702	/* not all drives have the same disc_info length, so requeue
1703	 * packet with the length the drive tells us it can supply
1704	 */
1705	cgc.buflen = be16_to_cpu(di->disc_information_length) +
1706		     sizeof(di->disc_information_length);
1707
1708	if (cgc.buflen > sizeof(disc_information))
1709		cgc.buflen = sizeof(disc_information);
1710
1711	cgc.cmd[8] = cgc.buflen;
1712	return pkt_generic_packet(pd, &cgc);
1713}
1714
1715static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1716{
1717	struct packet_command cgc;
1718	int ret;
1719
1720	init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1721	cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1722	cgc.cmd[1] = type & 3;
1723	cgc.cmd[4] = (track & 0xff00) >> 8;
1724	cgc.cmd[5] = track & 0xff;
1725	cgc.cmd[8] = 8;
1726	cgc.quiet = 1;
1727
1728	if ((ret = pkt_generic_packet(pd, &cgc)))
1729		return ret;
1730
1731	cgc.buflen = be16_to_cpu(ti->track_information_length) +
1732		     sizeof(ti->track_information_length);
1733
1734	if (cgc.buflen > sizeof(track_information))
1735		cgc.buflen = sizeof(track_information);
1736
1737	cgc.cmd[8] = cgc.buflen;
1738	return pkt_generic_packet(pd, &cgc);
1739}
1740
1741static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1742						long *last_written)
1743{
1744	disc_information di;
1745	track_information ti;
1746	__u32 last_track;
1747	int ret = -1;
1748
1749	if ((ret = pkt_get_disc_info(pd, &di)))
1750		return ret;
1751
1752	last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1753	if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1754		return ret;
1755
1756	/* if this track is blank, try the previous. */
1757	if (ti.blank) {
1758		last_track--;
1759		if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1760			return ret;
1761	}
1762
1763	/* if last recorded field is valid, return it. */
1764	if (ti.lra_v) {
1765		*last_written = be32_to_cpu(ti.last_rec_address);
1766	} else {
1767		/* make it up instead */
1768		*last_written = be32_to_cpu(ti.track_start) +
1769				be32_to_cpu(ti.track_size);
1770		if (ti.free_blocks)
1771			*last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1772	}
1773	return 0;
1774}
1775
1776/*
1777 * write mode select package based on pd->settings
1778 */
1779static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1780{
1781	struct packet_command cgc;
1782	struct request_sense sense;
1783	write_param_page *wp;
1784	char buffer[128];
1785	int ret, size;
1786
1787	/* doesn't apply to DVD+RW or DVD-RAM */
1788	if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1789		return 0;
1790
1791	memset(buffer, 0, sizeof(buffer));
1792	init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1793	cgc.sense = &sense;
1794	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1795		pkt_dump_sense(&cgc);
1796		return ret;
1797	}
1798
1799	size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1800	pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1801	if (size > sizeof(buffer))
1802		size = sizeof(buffer);
1803
1804	/*
1805	 * now get it all
1806	 */
1807	init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1808	cgc.sense = &sense;
1809	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1810		pkt_dump_sense(&cgc);
1811		return ret;
1812	}
1813
1814	/*
1815	 * write page is offset header + block descriptor length
1816	 */
1817	wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1818
1819	wp->fp = pd->settings.fp;
1820	wp->track_mode = pd->settings.track_mode;
1821	wp->write_type = pd->settings.write_type;
1822	wp->data_block_type = pd->settings.block_mode;
1823
1824	wp->multi_session = 0;
1825
1826#ifdef PACKET_USE_LS
1827	wp->link_size = 7;
1828	wp->ls_v = 1;
1829#endif
1830
1831	if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1832		wp->session_format = 0;
1833		wp->subhdr2 = 0x20;
1834	} else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1835		wp->session_format = 0x20;
1836		wp->subhdr2 = 8;
1837#if 0
1838		wp->mcn[0] = 0x80;
1839		memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1840#endif
1841	} else {
1842		/*
1843		 * paranoia
1844		 */
1845		printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type);
1846		return 1;
1847	}
1848	wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1849
1850	cgc.buflen = cgc.cmd[8] = size;
1851	if ((ret = pkt_mode_select(pd, &cgc))) {
1852		pkt_dump_sense(&cgc);
1853		return ret;
1854	}
1855
1856	pkt_print_settings(pd);
1857	return 0;
1858}
1859
1860/*
1861 * 1 -- we can write to this track, 0 -- we can't
1862 */
1863static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1864{
1865	switch (pd->mmc3_profile) {
1866		case 0x1a: /* DVD+RW */
1867		case 0x12: /* DVD-RAM */
1868			/* The track is always writable on DVD+RW/DVD-RAM */
1869			return 1;
1870		default:
1871			break;
1872	}
1873
1874	if (!ti->packet || !ti->fp)
1875		return 0;
1876
1877	/*
1878	 * "good" settings as per Mt Fuji.
1879	 */
1880	if (ti->rt == 0 && ti->blank == 0)
1881		return 1;
1882
1883	if (ti->rt == 0 && ti->blank == 1)
1884		return 1;
1885
1886	if (ti->rt == 1 && ti->blank == 0)
1887		return 1;
1888
1889	printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1890	return 0;
1891}
1892
1893/*
1894 * 1 -- we can write to this disc, 0 -- we can't
1895 */
1896static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1897{
1898	switch (pd->mmc3_profile) {
1899		case 0x0a: /* CD-RW */
1900		case 0xffff: /* MMC3 not supported */
1901			break;
1902		case 0x1a: /* DVD+RW */
1903		case 0x13: /* DVD-RW */
1904		case 0x12: /* DVD-RAM */
1905			return 1;
1906		default:
1907			VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile);
1908			return 0;
1909	}
1910
1911	/*
1912	 * for disc type 0xff we should probably reserve a new track.
1913	 * but i'm not sure, should we leave this to user apps? probably.
1914	 */
1915	if (di->disc_type == 0xff) {
1916		printk(DRIVER_NAME": Unknown disc. No track?\n");
1917		return 0;
1918	}
1919
1920	if (di->disc_type != 0x20 && di->disc_type != 0) {
1921		printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type);
1922		return 0;
1923	}
1924
1925	if (di->erasable == 0) {
1926		printk(DRIVER_NAME": Disc not erasable\n");
1927		return 0;
1928	}
1929
1930	if (di->border_status == PACKET_SESSION_RESERVED) {
1931		printk(DRIVER_NAME": Can't write to last track (reserved)\n");
1932		return 0;
1933	}
1934
1935	return 1;
1936}
1937
1938static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1939{
1940	struct packet_command cgc;
1941	unsigned char buf[12];
1942	disc_information di;
1943	track_information ti;
1944	int ret, track;
1945
1946	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1947	cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1948	cgc.cmd[8] = 8;
1949	ret = pkt_generic_packet(pd, &cgc);
1950	pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1951
1952	memset(&di, 0, sizeof(disc_information));
1953	memset(&ti, 0, sizeof(track_information));
1954
1955	if ((ret = pkt_get_disc_info(pd, &di))) {
1956		printk("failed get_disc\n");
1957		return ret;
1958	}
1959
1960	if (!pkt_writable_disc(pd, &di))
1961		return -EROFS;
1962
1963	pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1964
1965	track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1966	if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1967		printk(DRIVER_NAME": failed get_track\n");
1968		return ret;
1969	}
1970
1971	if (!pkt_writable_track(pd, &ti)) {
1972		printk(DRIVER_NAME": can't write to this track\n");
1973		return -EROFS;
1974	}
1975
1976	/*
1977	 * we keep packet size in 512 byte units, makes it easier to
1978	 * deal with request calculations.
1979	 */
1980	pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1981	if (pd->settings.size == 0) {
1982		printk(DRIVER_NAME": detected zero packet size!\n");
1983		return -ENXIO;
1984	}
1985	if (pd->settings.size > PACKET_MAX_SECTORS) {
1986		printk(DRIVER_NAME": packet size is too big\n");
1987		return -EROFS;
1988	}
1989	pd->settings.fp = ti.fp;
1990	pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1991
1992	if (ti.nwa_v) {
1993		pd->nwa = be32_to_cpu(ti.next_writable);
1994		set_bit(PACKET_NWA_VALID, &pd->flags);
1995	}
1996
1997	/*
1998	 * in theory we could use lra on -RW media as well and just zero
1999	 * blocks that haven't been written yet, but in practice that
2000	 * is just a no-go. we'll use that for -R, naturally.
2001	 */
2002	if (ti.lra_v) {
2003		pd->lra = be32_to_cpu(ti.last_rec_address);
2004		set_bit(PACKET_LRA_VALID, &pd->flags);
2005	} else {
2006		pd->lra = 0xffffffff;
2007		set_bit(PACKET_LRA_VALID, &pd->flags);
2008	}
2009
2010	/*
2011	 * fine for now
2012	 */
2013	pd->settings.link_loss = 7;
2014	pd->settings.write_type = 0;	/* packet */
2015	pd->settings.track_mode = ti.track_mode;
2016
2017	/*
2018	 * mode1 or mode2 disc
2019	 */
2020	switch (ti.data_mode) {
2021		case PACKET_MODE1:
2022			pd->settings.block_mode = PACKET_BLOCK_MODE1;
2023			break;
2024		case PACKET_MODE2:
2025			pd->settings.block_mode = PACKET_BLOCK_MODE2;
2026			break;
2027		default:
2028			printk(DRIVER_NAME": unknown data mode\n");
2029			return -EROFS;
2030	}
2031	return 0;
2032}
2033
2034/*
2035 * enable/disable write caching on drive
2036 */
2037static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
2038						int set)
2039{
2040	struct packet_command cgc;
2041	struct request_sense sense;
2042	unsigned char buf[64];
2043	int ret;
2044
2045	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
2046	cgc.sense = &sense;
2047	cgc.buflen = pd->mode_offset + 12;
2048
2049	/*
2050	 * caching mode page might not be there, so quiet this command
2051	 */
2052	cgc.quiet = 1;
2053
2054	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
2055		return ret;
2056
2057	buf[pd->mode_offset + 10] |= (!!set << 2);
2058
2059	cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
2060	ret = pkt_mode_select(pd, &cgc);
2061	if (ret) {
2062		printk(DRIVER_NAME": write caching control failed\n");
2063		pkt_dump_sense(&cgc);
2064	} else if (!ret && set)
2065		printk(DRIVER_NAME": enabled write caching on %s\n", pd->name);
2066	return ret;
2067}
2068
2069static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
2070{
2071	struct packet_command cgc;
2072
2073	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2074	cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
2075	cgc.cmd[4] = lockflag ? 1 : 0;
2076	return pkt_generic_packet(pd, &cgc);
2077}
2078
2079/*
2080 * Returns drive maximum write speed
2081 */
2082static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
2083						unsigned *write_speed)
2084{
2085	struct packet_command cgc;
2086	struct request_sense sense;
2087	unsigned char buf[256+18];
2088	unsigned char *cap_buf;
2089	int ret, offset;
2090
2091	cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
2092	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
2093	cgc.sense = &sense;
2094
2095	ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2096	if (ret) {
2097		cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
2098			     sizeof(struct mode_page_header);
2099		ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2100		if (ret) {
2101			pkt_dump_sense(&cgc);
2102			return ret;
2103		}
2104	}
2105
2106	offset = 20;			    /* Obsoleted field, used by older drives */
2107	if (cap_buf[1] >= 28)
2108		offset = 28;		    /* Current write speed selected */
2109	if (cap_buf[1] >= 30) {
2110		/* If the drive reports at least one "Logical Unit Write
2111		 * Speed Performance Descriptor Block", use the information
2112		 * in the first block. (contains the highest speed)
2113		 */
2114		int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2115		if (num_spdb > 0)
2116			offset = 34;
2117	}
2118
2119	*write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2120	return 0;
2121}
2122
2123/* These tables from cdrecord - I don't have orange book */
2124/* standard speed CD-RW (1-4x) */
2125static char clv_to_speed[16] = {
2126	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2127	   0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2128};
2129/* high speed CD-RW (-10x) */
2130static char hs_clv_to_speed[16] = {
2131	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2132	   0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2133};
2134/* ultra high speed CD-RW */
2135static char us_clv_to_speed[16] = {
2136	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2137	   0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2138};
2139
2140/*
2141 * reads the maximum media speed from ATIP
2142 */
2143static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2144						unsigned *speed)
2145{
2146	struct packet_command cgc;
2147	struct request_sense sense;
2148	unsigned char buf[64];
2149	unsigned int size, st, sp;
2150	int ret;
2151
2152	init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2153	cgc.sense = &sense;
2154	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2155	cgc.cmd[1] = 2;
2156	cgc.cmd[2] = 4; /* READ ATIP */
2157	cgc.cmd[8] = 2;
2158	ret = pkt_generic_packet(pd, &cgc);
2159	if (ret) {
2160		pkt_dump_sense(&cgc);
2161		return ret;
2162	}
2163	size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2164	if (size > sizeof(buf))
2165		size = sizeof(buf);
2166
2167	init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2168	cgc.sense = &sense;
2169	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2170	cgc.cmd[1] = 2;
2171	cgc.cmd[2] = 4;
2172	cgc.cmd[8] = size;
2173	ret = pkt_generic_packet(pd, &cgc);
2174	if (ret) {
2175		pkt_dump_sense(&cgc);
2176		return ret;
2177	}
2178
2179	if (!(buf[6] & 0x40)) {
2180		printk(DRIVER_NAME": Disc type is not CD-RW\n");
2181		return 1;
2182	}
2183	if (!(buf[6] & 0x4)) {
2184		printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n");
2185		return 1;
2186	}
2187
2188	st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2189
2190	sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2191
2192	/* Info from cdrecord */
2193	switch (st) {
2194		case 0: /* standard speed */
2195			*speed = clv_to_speed[sp];
2196			break;
2197		case 1: /* high speed */
2198			*speed = hs_clv_to_speed[sp];
2199			break;
2200		case 2: /* ultra high speed */
2201			*speed = us_clv_to_speed[sp];
2202			break;
2203		default:
2204			printk(DRIVER_NAME": Unknown disc sub-type %d\n",st);
2205			return 1;
2206	}
2207	if (*speed) {
2208		printk(DRIVER_NAME": Max. media speed: %d\n",*speed);
2209		return 0;
2210	} else {
2211		printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st);
2212		return 1;
2213	}
2214}
2215
2216static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2217{
2218	struct packet_command cgc;
2219	struct request_sense sense;
2220	int ret;
2221
2222	VPRINTK(DRIVER_NAME": Performing OPC\n");
2223
2224	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2225	cgc.sense = &sense;
2226	cgc.timeout = 60*HZ;
2227	cgc.cmd[0] = GPCMD_SEND_OPC;
2228	cgc.cmd[1] = 1;
2229	if ((ret = pkt_generic_packet(pd, &cgc)))
2230		pkt_dump_sense(&cgc);
2231	return ret;
2232}
2233
2234static int pkt_open_write(struct pktcdvd_device *pd)
2235{
2236	int ret;
2237	unsigned int write_speed, media_write_speed, read_speed;
2238
2239	if ((ret = pkt_probe_settings(pd))) {
2240		VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name);
2241		return ret;
2242	}
2243
2244	if ((ret = pkt_set_write_settings(pd))) {
2245		DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name);
2246		return -EIO;
2247	}
2248
2249	pkt_write_caching(pd, USE_WCACHING);
2250
2251	if ((ret = pkt_get_max_speed(pd, &write_speed)))
2252		write_speed = 16 * 177;
2253	switch (pd->mmc3_profile) {
2254		case 0x13: /* DVD-RW */
2255		case 0x1a: /* DVD+RW */
2256		case 0x12: /* DVD-RAM */
2257			DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed);
2258			break;
2259		default:
2260			if ((ret = pkt_media_speed(pd, &media_write_speed)))
2261				media_write_speed = 16;
2262			write_speed = min(write_speed, media_write_speed * 177);
2263			DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176);
2264			break;
2265	}
2266	read_speed = write_speed;
2267
2268	if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2269		DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name);
2270		return -EIO;
2271	}
2272	pd->write_speed = write_speed;
2273	pd->read_speed = read_speed;
2274
2275	if ((ret = pkt_perform_opc(pd))) {
2276		DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name);
2277	}
2278
2279	return 0;
2280}
2281
2282/*
2283 * called at open time.
2284 */
2285static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2286{
2287	int ret;
2288	long lba;
2289	struct request_queue *q;
2290
2291	/*
2292	 * We need to re-open the cdrom device without O_NONBLOCK to be able
2293	 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2294	 * so bdget() can't fail.
2295	 */
2296	bdget(pd->bdev->bd_dev);
2297	if ((ret = blkdev_get(pd->bdev, FMODE_READ | FMODE_EXCL, pd)))
2298		goto out;
2299
2300	if ((ret = pkt_get_last_written(pd, &lba))) {
2301		printk(DRIVER_NAME": pkt_get_last_written failed\n");
2302		goto out_putdev;
2303	}
2304
2305	set_capacity(pd->disk, lba << 2);
2306	set_capacity(pd->bdev->bd_disk, lba << 2);
2307	bd_set_size(pd->bdev, (loff_t)lba << 11);
2308
2309	q = bdev_get_queue(pd->bdev);
2310	if (write) {
2311		if ((ret = pkt_open_write(pd)))
2312			goto out_putdev;
2313		/*
2314		 * Some CDRW drives can not handle writes larger than one packet,
2315		 * even if the size is a multiple of the packet size.
2316		 */
2317		spin_lock_irq(q->queue_lock);
2318		blk_queue_max_hw_sectors(q, pd->settings.size);
2319		spin_unlock_irq(q->queue_lock);
2320		set_bit(PACKET_WRITABLE, &pd->flags);
2321	} else {
2322		pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2323		clear_bit(PACKET_WRITABLE, &pd->flags);
2324	}
2325
2326	if ((ret = pkt_set_segment_merging(pd, q)))
2327		goto out_putdev;
2328
2329	if (write) {
2330		if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2331			printk(DRIVER_NAME": not enough memory for buffers\n");
2332			ret = -ENOMEM;
2333			goto out_putdev;
2334		}
2335		printk(DRIVER_NAME": %lukB available on disc\n", lba << 1);
2336	}
2337
2338	return 0;
2339
2340out_putdev:
2341	blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2342out:
2343	return ret;
2344}
2345
2346/*
2347 * called when the device is closed. makes sure that the device flushes
2348 * the internal cache before we close.
2349 */
2350static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2351{
2352	if (flush && pkt_flush_cache(pd))
2353		DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name);
2354
2355	pkt_lock_door(pd, 0);
2356
2357	pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2358	blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2359
2360	pkt_shrink_pktlist(pd);
2361}
2362
2363static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2364{
2365	if (dev_minor >= MAX_WRITERS)
2366		return NULL;
2367	return pkt_devs[dev_minor];
2368}
2369
2370static int pkt_open(struct block_device *bdev, fmode_t mode)
2371{
2372	struct pktcdvd_device *pd = NULL;
2373	int ret;
2374
2375	VPRINTK(DRIVER_NAME": entering open\n");
2376
2377	mutex_lock(&pktcdvd_mutex);
2378	mutex_lock(&ctl_mutex);
2379	pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2380	if (!pd) {
2381		ret = -ENODEV;
2382		goto out;
2383	}
2384	BUG_ON(pd->refcnt < 0);
2385
2386	pd->refcnt++;
2387	if (pd->refcnt > 1) {
2388		if ((mode & FMODE_WRITE) &&
2389		    !test_bit(PACKET_WRITABLE, &pd->flags)) {
2390			ret = -EBUSY;
2391			goto out_dec;
2392		}
2393	} else {
2394		ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2395		if (ret)
2396			goto out_dec;
2397		/*
2398		 * needed here as well, since ext2 (among others) may change
2399		 * the blocksize at mount time
2400		 */
2401		set_blocksize(bdev, CD_FRAMESIZE);
2402	}
2403
2404	mutex_unlock(&ctl_mutex);
2405	mutex_unlock(&pktcdvd_mutex);
2406	return 0;
2407
2408out_dec:
2409	pd->refcnt--;
2410out:
2411	VPRINTK(DRIVER_NAME": failed open (%d)\n", ret);
2412	mutex_unlock(&ctl_mutex);
2413	mutex_unlock(&pktcdvd_mutex);
2414	return ret;
2415}
2416
2417static int pkt_close(struct gendisk *disk, fmode_t mode)
2418{
2419	struct pktcdvd_device *pd = disk->private_data;
2420	int ret = 0;
2421
2422	mutex_lock(&pktcdvd_mutex);
2423	mutex_lock(&ctl_mutex);
2424	pd->refcnt--;
2425	BUG_ON(pd->refcnt < 0);
2426	if (pd->refcnt == 0) {
2427		int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2428		pkt_release_dev(pd, flush);
2429	}
2430	mutex_unlock(&ctl_mutex);
2431	mutex_unlock(&pktcdvd_mutex);
2432	return ret;
2433}
2434
2435
2436static void pkt_end_io_read_cloned(struct bio *bio, int err)
2437{
2438	struct packet_stacked_data *psd = bio->bi_private;
2439	struct pktcdvd_device *pd = psd->pd;
2440
2441	bio_put(bio);
2442	bio_endio(psd->bio, err);
2443	mempool_free(psd, psd_pool);
2444	pkt_bio_finished(pd);
2445}
2446
2447static void pkt_make_request(struct request_queue *q, struct bio *bio)
2448{
2449	struct pktcdvd_device *pd;
2450	char b[BDEVNAME_SIZE];
2451	sector_t zone;
2452	struct packet_data *pkt;
2453	int was_empty, blocked_bio;
2454	struct pkt_rb_node *node;
2455
2456	pd = q->queuedata;
2457	if (!pd) {
2458		printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2459		goto end_io;
2460	}
2461
2462	/*
2463	 * Clone READ bios so we can have our own bi_end_io callback.
2464	 */
2465	if (bio_data_dir(bio) == READ) {
2466		struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2467		struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2468
2469		psd->pd = pd;
2470		psd->bio = bio;
2471		cloned_bio->bi_bdev = pd->bdev;
2472		cloned_bio->bi_private = psd;
2473		cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2474		pd->stats.secs_r += bio->bi_size >> 9;
2475		pkt_queue_bio(pd, cloned_bio);
2476		return;
2477	}
2478
2479	if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2480		printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n",
2481			pd->name, (unsigned long long)bio->bi_sector);
2482		goto end_io;
2483	}
2484
2485	if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2486		printk(DRIVER_NAME": wrong bio size\n");
2487		goto end_io;
2488	}
2489
2490	blk_queue_bounce(q, &bio);
2491
2492	zone = ZONE(bio->bi_sector, pd);
2493	VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2494		(unsigned long long)bio->bi_sector,
2495		(unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2496
2497	/* Check if we have to split the bio */
2498	{
2499		struct bio_pair *bp;
2500		sector_t last_zone;
2501		int first_sectors;
2502
2503		last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2504		if (last_zone != zone) {
2505			BUG_ON(last_zone != zone + pd->settings.size);
2506			first_sectors = last_zone - bio->bi_sector;
2507			bp = bio_split(bio, first_sectors);
2508			BUG_ON(!bp);
2509			pkt_make_request(q, &bp->bio1);
2510			pkt_make_request(q, &bp->bio2);
2511			bio_pair_release(bp);
2512			return;
2513		}
2514	}
2515
2516	/*
2517	 * If we find a matching packet in state WAITING or READ_WAIT, we can
2518	 * just append this bio to that packet.
2519	 */
2520	spin_lock(&pd->cdrw.active_list_lock);
2521	blocked_bio = 0;
2522	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2523		if (pkt->sector == zone) {
2524			spin_lock(&pkt->lock);
2525			if ((pkt->state == PACKET_WAITING_STATE) ||
2526			    (pkt->state == PACKET_READ_WAIT_STATE)) {
2527				bio_list_add(&pkt->orig_bios, bio);
2528				pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2529				if ((pkt->write_size >= pkt->frames) &&
2530				    (pkt->state == PACKET_WAITING_STATE)) {
2531					atomic_inc(&pkt->run_sm);
2532					wake_up(&pd->wqueue);
2533				}
2534				spin_unlock(&pkt->lock);
2535				spin_unlock(&pd->cdrw.active_list_lock);
2536				return;
2537			} else {
2538				blocked_bio = 1;
2539			}
2540			spin_unlock(&pkt->lock);
2541		}
2542	}
2543	spin_unlock(&pd->cdrw.active_list_lock);
2544
2545 	/*
2546	 * Test if there is enough room left in the bio work queue
2547	 * (queue size >= congestion on mark).
2548	 * If not, wait till the work queue size is below the congestion off mark.
2549	 */
2550	spin_lock(&pd->lock);
2551	if (pd->write_congestion_on > 0
2552	    && pd->bio_queue_size >= pd->write_congestion_on) {
2553		set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC);
2554		do {
2555			spin_unlock(&pd->lock);
2556			congestion_wait(BLK_RW_ASYNC, HZ);
2557			spin_lock(&pd->lock);
2558		} while(pd->bio_queue_size > pd->write_congestion_off);
2559	}
2560	spin_unlock(&pd->lock);
2561
2562	/*
2563	 * No matching packet found. Store the bio in the work queue.
2564	 */
2565	node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2566	node->bio = bio;
2567	spin_lock(&pd->lock);
2568	BUG_ON(pd->bio_queue_size < 0);
2569	was_empty = (pd->bio_queue_size == 0);
2570	pkt_rbtree_insert(pd, node);
2571	spin_unlock(&pd->lock);
2572
2573	/*
2574	 * Wake up the worker thread.
2575	 */
2576	atomic_set(&pd->scan_queue, 1);
2577	if (was_empty) {
2578		/* This wake_up is required for correct operation */
2579		wake_up(&pd->wqueue);
2580	} else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2581		/*
2582		 * This wake up is not required for correct operation,
2583		 * but improves performance in some cases.
2584		 */
2585		wake_up(&pd->wqueue);
2586	}
2587	return;
2588end_io:
2589	bio_io_error(bio);
2590}
2591
2592
2593
2594static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2595			  struct bio_vec *bvec)
2596{
2597	struct pktcdvd_device *pd = q->queuedata;
2598	sector_t zone = ZONE(bmd->bi_sector, pd);
2599	int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size;
2600	int remaining = (pd->settings.size << 9) - used;
2601	int remaining2;
2602
2603	/*
2604	 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2605	 * boundary, pkt_make_request() will split the bio.
2606	 */
2607	remaining2 = PAGE_SIZE - bmd->bi_size;
2608	remaining = max(remaining, remaining2);
2609
2610	BUG_ON(remaining < 0);
2611	return remaining;
2612}
2613
2614static void pkt_init_queue(struct pktcdvd_device *pd)
2615{
2616	struct request_queue *q = pd->disk->queue;
2617
2618	blk_queue_make_request(q, pkt_make_request);
2619	blk_queue_logical_block_size(q, CD_FRAMESIZE);
2620	blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2621	blk_queue_merge_bvec(q, pkt_merge_bvec);
2622	q->queuedata = pd;
2623}
2624
2625static int pkt_seq_show(struct seq_file *m, void *p)
2626{
2627	struct pktcdvd_device *pd = m->private;
2628	char *msg;
2629	char bdev_buf[BDEVNAME_SIZE];
2630	int states[PACKET_NUM_STATES];
2631
2632	seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2633		   bdevname(pd->bdev, bdev_buf));
2634
2635	seq_printf(m, "\nSettings:\n");
2636	seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2637
2638	if (pd->settings.write_type == 0)
2639		msg = "Packet";
2640	else
2641		msg = "Unknown";
2642	seq_printf(m, "\twrite type:\t\t%s\n", msg);
2643
2644	seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2645	seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2646
2647	seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2648
2649	if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2650		msg = "Mode 1";
2651	else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2652		msg = "Mode 2";
2653	else
2654		msg = "Unknown";
2655	seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2656
2657	seq_printf(m, "\nStatistics:\n");
2658	seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2659	seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2660	seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2661	seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2662	seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2663
2664	seq_printf(m, "\nMisc:\n");
2665	seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2666	seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2667	seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2668	seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2669	seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2670	seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2671
2672	seq_printf(m, "\nQueue state:\n");
2673	seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2674	seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2675	seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2676
2677	pkt_count_states(pd, states);
2678	seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2679		   states[0], states[1], states[2], states[3], states[4], states[5]);
2680
2681	seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2682			pd->write_congestion_off,
2683			pd->write_congestion_on);
2684	return 0;
2685}
2686
2687static int pkt_seq_open(struct inode *inode, struct file *file)
2688{
2689	return single_open(file, pkt_seq_show, PDE(inode)->data);
2690}
2691
2692static const struct file_operations pkt_proc_fops = {
2693	.open	= pkt_seq_open,
2694	.read	= seq_read,
2695	.llseek	= seq_lseek,
2696	.release = single_release
2697};
2698
2699static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2700{
2701	int i;
2702	int ret = 0;
2703	char b[BDEVNAME_SIZE];
2704	struct block_device *bdev;
2705
2706	if (pd->pkt_dev == dev) {
2707		printk(DRIVER_NAME": Recursive setup not allowed\n");
2708		return -EBUSY;
2709	}
2710	for (i = 0; i < MAX_WRITERS; i++) {
2711		struct pktcdvd_device *pd2 = pkt_devs[i];
2712		if (!pd2)
2713			continue;
2714		if (pd2->bdev->bd_dev == dev) {
2715			printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b));
2716			return -EBUSY;
2717		}
2718		if (pd2->pkt_dev == dev) {
2719			printk(DRIVER_NAME": Can't chain pktcdvd devices\n");
2720			return -EBUSY;
2721		}
2722	}
2723
2724	bdev = bdget(dev);
2725	if (!bdev)
2726		return -ENOMEM;
2727	ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY, NULL);
2728	if (ret)
2729		return ret;
2730
2731	/* This is safe, since we have a reference from open(). */
2732	__module_get(THIS_MODULE);
2733
2734	pd->bdev = bdev;
2735	set_blocksize(bdev, CD_FRAMESIZE);
2736
2737	pkt_init_queue(pd);
2738
2739	atomic_set(&pd->cdrw.pending_bios, 0);
2740	pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2741	if (IS_ERR(pd->cdrw.thread)) {
2742		printk(DRIVER_NAME": can't start kernel thread\n");
2743		ret = -ENOMEM;
2744		goto out_mem;
2745	}
2746
2747	proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
2748	DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2749	return 0;
2750
2751out_mem:
2752	blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2753	/* This is safe: open() is still holding a reference. */
2754	module_put(THIS_MODULE);
2755	return ret;
2756}
2757
2758static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2759{
2760	struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2761	int ret;
2762
2763	VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd,
2764		MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2765
2766	mutex_lock(&pktcdvd_mutex);
2767	switch (cmd) {
2768	case CDROMEJECT:
2769		/*
2770		 * The door gets locked when the device is opened, so we
2771		 * have to unlock it or else the eject command fails.
2772		 */
2773		if (pd->refcnt == 1)
2774			pkt_lock_door(pd, 0);
2775		/* fallthru */
2776	/*
2777	 * forward selected CDROM ioctls to CD-ROM, for UDF
2778	 */
2779	case CDROMMULTISESSION:
2780	case CDROMREADTOCENTRY:
2781	case CDROM_LAST_WRITTEN:
2782	case CDROM_SEND_PACKET:
2783	case SCSI_IOCTL_SEND_COMMAND:
2784		ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg);
2785		break;
2786
2787	default:
2788		VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd);
2789		ret = -ENOTTY;
2790	}
2791	mutex_unlock(&pktcdvd_mutex);
2792
2793	return ret;
2794}
2795
2796static unsigned int pkt_check_events(struct gendisk *disk,
2797				     unsigned int clearing)
2798{
2799	struct pktcdvd_device *pd = disk->private_data;
2800	struct gendisk *attached_disk;
2801
2802	if (!pd)
2803		return 0;
2804	if (!pd->bdev)
2805		return 0;
2806	attached_disk = pd->bdev->bd_disk;
2807	if (!attached_disk || !attached_disk->fops->check_events)
2808		return 0;
2809	return attached_disk->fops->check_events(attached_disk, clearing);
2810}
2811
2812static const struct block_device_operations pktcdvd_ops = {
2813	.owner =		THIS_MODULE,
2814	.open =			pkt_open,
2815	.release =		pkt_close,
2816	.ioctl =		pkt_ioctl,
2817	.check_events =		pkt_check_events,
2818};
2819
2820static char *pktcdvd_devnode(struct gendisk *gd, umode_t *mode)
2821{
2822	return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name);
2823}
2824
2825/*
2826 * Set up mapping from pktcdvd device to CD-ROM device.
2827 */
2828static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2829{
2830	int idx;
2831	int ret = -ENOMEM;
2832	struct pktcdvd_device *pd;
2833	struct gendisk *disk;
2834
2835	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2836
2837	for (idx = 0; idx < MAX_WRITERS; idx++)
2838		if (!pkt_devs[idx])
2839			break;
2840	if (idx == MAX_WRITERS) {
2841		printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS);
2842		ret = -EBUSY;
2843		goto out_mutex;
2844	}
2845
2846	pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2847	if (!pd)
2848		goto out_mutex;
2849
2850	pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2851						  sizeof(struct pkt_rb_node));
2852	if (!pd->rb_pool)
2853		goto out_mem;
2854
2855	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2856	INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2857	spin_lock_init(&pd->cdrw.active_list_lock);
2858
2859	spin_lock_init(&pd->lock);
2860	spin_lock_init(&pd->iosched.lock);
2861	bio_list_init(&pd->iosched.read_queue);
2862	bio_list_init(&pd->iosched.write_queue);
2863	sprintf(pd->name, DRIVER_NAME"%d", idx);
2864	init_waitqueue_head(&pd->wqueue);
2865	pd->bio_queue = RB_ROOT;
2866
2867	pd->write_congestion_on  = write_congestion_on;
2868	pd->write_congestion_off = write_congestion_off;
2869
2870	disk = alloc_disk(1);
2871	if (!disk)
2872		goto out_mem;
2873	pd->disk = disk;
2874	disk->major = pktdev_major;
2875	disk->first_minor = idx;
2876	disk->fops = &pktcdvd_ops;
2877	disk->flags = GENHD_FL_REMOVABLE;
2878	strcpy(disk->disk_name, pd->name);
2879	disk->devnode = pktcdvd_devnode;
2880	disk->private_data = pd;
2881	disk->queue = blk_alloc_queue(GFP_KERNEL);
2882	if (!disk->queue)
2883		goto out_mem2;
2884
2885	pd->pkt_dev = MKDEV(pktdev_major, idx);
2886	ret = pkt_new_dev(pd, dev);
2887	if (ret)
2888		goto out_new_dev;
2889
2890	/* inherit events of the host device */
2891	disk->events = pd->bdev->bd_disk->events;
2892	disk->async_events = pd->bdev->bd_disk->async_events;
2893
2894	add_disk(disk);
2895
2896	pkt_sysfs_dev_new(pd);
2897	pkt_debugfs_dev_new(pd);
2898
2899	pkt_devs[idx] = pd;
2900	if (pkt_dev)
2901		*pkt_dev = pd->pkt_dev;
2902
2903	mutex_unlock(&ctl_mutex);
2904	return 0;
2905
2906out_new_dev:
2907	blk_cleanup_queue(disk->queue);
2908out_mem2:
2909	put_disk(disk);
2910out_mem:
2911	if (pd->rb_pool)
2912		mempool_destroy(pd->rb_pool);
2913	kfree(pd);
2914out_mutex:
2915	mutex_unlock(&ctl_mutex);
2916	printk(DRIVER_NAME": setup of pktcdvd device failed\n");
2917	return ret;
2918}
2919
2920/*
2921 * Tear down mapping from pktcdvd device to CD-ROM device.
2922 */
2923static int pkt_remove_dev(dev_t pkt_dev)
2924{
2925	struct pktcdvd_device *pd;
2926	int idx;
2927	int ret = 0;
2928
2929	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2930
2931	for (idx = 0; idx < MAX_WRITERS; idx++) {
2932		pd = pkt_devs[idx];
2933		if (pd && (pd->pkt_dev == pkt_dev))
2934			break;
2935	}
2936	if (idx == MAX_WRITERS) {
2937		DPRINTK(DRIVER_NAME": dev not setup\n");
2938		ret = -ENXIO;
2939		goto out;
2940	}
2941
2942	if (pd->refcnt > 0) {
2943		ret = -EBUSY;
2944		goto out;
2945	}
2946	if (!IS_ERR(pd->cdrw.thread))
2947		kthread_stop(pd->cdrw.thread);
2948
2949	pkt_devs[idx] = NULL;
2950
2951	pkt_debugfs_dev_remove(pd);
2952	pkt_sysfs_dev_remove(pd);
2953
2954	blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2955
2956	remove_proc_entry(pd->name, pkt_proc);
2957	DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name);
2958
2959	del_gendisk(pd->disk);
2960	blk_cleanup_queue(pd->disk->queue);
2961	put_disk(pd->disk);
2962
2963	mempool_destroy(pd->rb_pool);
2964	kfree(pd);
2965
2966	/* This is safe: open() is still holding a reference. */
2967	module_put(THIS_MODULE);
2968
2969out:
2970	mutex_unlock(&ctl_mutex);
2971	return ret;
2972}
2973
2974static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2975{
2976	struct pktcdvd_device *pd;
2977
2978	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2979
2980	pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2981	if (pd) {
2982		ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2983		ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2984	} else {
2985		ctrl_cmd->dev = 0;
2986		ctrl_cmd->pkt_dev = 0;
2987	}
2988	ctrl_cmd->num_devices = MAX_WRITERS;
2989
2990	mutex_unlock(&ctl_mutex);
2991}
2992
2993static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2994{
2995	void __user *argp = (void __user *)arg;
2996	struct pkt_ctrl_command ctrl_cmd;
2997	int ret = 0;
2998	dev_t pkt_dev = 0;
2999
3000	if (cmd != PACKET_CTRL_CMD)
3001		return -ENOTTY;
3002
3003	if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
3004		return -EFAULT;
3005
3006	switch (ctrl_cmd.command) {
3007	case PKT_CTRL_CMD_SETUP:
3008		if (!capable(CAP_SYS_ADMIN))
3009			return -EPERM;
3010		ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
3011		ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
3012		break;
3013	case PKT_CTRL_CMD_TEARDOWN:
3014		if (!capable(CAP_SYS_ADMIN))
3015			return -EPERM;
3016		ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
3017		break;
3018	case PKT_CTRL_CMD_STATUS:
3019		pkt_get_status(&ctrl_cmd);
3020		break;
3021	default:
3022		return -ENOTTY;
3023	}
3024
3025	if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
3026		return -EFAULT;
3027	return ret;
3028}
3029
3030#ifdef CONFIG_COMPAT
3031static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3032{
3033	return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
3034}
3035#endif
3036
3037static const struct file_operations pkt_ctl_fops = {
3038	.open		= nonseekable_open,
3039	.unlocked_ioctl	= pkt_ctl_ioctl,
3040#ifdef CONFIG_COMPAT
3041	.compat_ioctl	= pkt_ctl_compat_ioctl,
3042#endif
3043	.owner		= THIS_MODULE,
3044	.llseek		= no_llseek,
3045};
3046
3047static struct miscdevice pkt_misc = {
3048	.minor 		= MISC_DYNAMIC_MINOR,
3049	.name  		= DRIVER_NAME,
3050	.nodename	= "pktcdvd/control",
3051	.fops  		= &pkt_ctl_fops
3052};
3053
3054static int __init pkt_init(void)
3055{
3056	int ret;
3057
3058	mutex_init(&ctl_mutex);
3059
3060	psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
3061					sizeof(struct packet_stacked_data));
3062	if (!psd_pool)
3063		return -ENOMEM;
3064
3065	ret = register_blkdev(pktdev_major, DRIVER_NAME);
3066	if (ret < 0) {
3067		printk(DRIVER_NAME": Unable to register block device\n");
3068		goto out2;
3069	}
3070	if (!pktdev_major)
3071		pktdev_major = ret;
3072
3073	ret = pkt_sysfs_init();
3074	if (ret)
3075		goto out;
3076
3077	pkt_debugfs_init();
3078
3079	ret = misc_register(&pkt_misc);
3080	if (ret) {
3081		printk(DRIVER_NAME": Unable to register misc device\n");
3082		goto out_misc;
3083	}
3084
3085	pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
3086
3087	return 0;
3088
3089out_misc:
3090	pkt_debugfs_cleanup();
3091	pkt_sysfs_cleanup();
3092out:
3093	unregister_blkdev(pktdev_major, DRIVER_NAME);
3094out2:
3095	mempool_destroy(psd_pool);
3096	return ret;
3097}
3098
3099static void __exit pkt_exit(void)
3100{
3101	remove_proc_entry("driver/"DRIVER_NAME, NULL);
3102	misc_deregister(&pkt_misc);
3103
3104	pkt_debugfs_cleanup();
3105	pkt_sysfs_cleanup();
3106
3107	unregister_blkdev(pktdev_major, DRIVER_NAME);
3108	mempool_destroy(psd_pool);
3109}
3110
3111MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3112MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3113MODULE_LICENSE("GPL");
3114
3115module_init(pkt_init);
3116module_exit(pkt_exit);
3117