1/*
2 *	Real Time Clock interface for Linux
3 *
4 *	Copyright (C) 1996 Paul Gortmaker
5 *
6 *	This driver allows use of the real time clock (built into
7 *	nearly all computers) from user space. It exports the /dev/rtc
8 *	interface supporting various ioctl() and also the
9 *	/proc/driver/rtc pseudo-file for status information.
10 *
11 *	The ioctls can be used to set the interrupt behaviour and
12 *	generation rate from the RTC via IRQ 8. Then the /dev/rtc
13 *	interface can be used to make use of these timer interrupts,
14 *	be they interval or alarm based.
15 *
16 *	The /dev/rtc interface will block on reads until an interrupt
17 *	has been received. If a RTC interrupt has already happened,
18 *	it will output an unsigned long and then block. The output value
19 *	contains the interrupt status in the low byte and the number of
20 *	interrupts since the last read in the remaining high bytes. The
21 *	/dev/rtc interface can also be used with the select(2) call.
22 *
23 *	This program is free software; you can redistribute it and/or
24 *	modify it under the terms of the GNU General Public License
25 *	as published by the Free Software Foundation; either version
26 *	2 of the License, or (at your option) any later version.
27 *
28 *	Based on other minimal char device drivers, like Alan's
29 *	watchdog, Ted's random, etc. etc.
30 *
31 *	1.07	Paul Gortmaker.
32 *	1.08	Miquel van Smoorenburg: disallow certain things on the
33 *		DEC Alpha as the CMOS clock is also used for other things.
34 *	1.09	Nikita Schmidt: epoch support and some Alpha cleanup.
35 *	1.09a	Pete Zaitcev: Sun SPARC
36 *	1.09b	Jeff Garzik: Modularize, init cleanup
37 *	1.09c	Jeff Garzik: SMP cleanup
38 *	1.10	Paul Barton-Davis: add support for async I/O
39 *	1.10a	Andrea Arcangeli: Alpha updates
40 *	1.10b	Andrew Morton: SMP lock fix
41 *	1.10c	Cesar Barros: SMP locking fixes and cleanup
42 *	1.10d	Paul Gortmaker: delete paranoia check in rtc_exit
43 *	1.10e	Maciej W. Rozycki: Handle DECstation's year weirdness.
44 *	1.11	Takashi Iwai: Kernel access functions
45 *			      rtc_register/rtc_unregister/rtc_control
46 *      1.11a   Daniele Bellucci: Audit create_proc_read_entry in rtc_init
47 *	1.12	Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
48 *		CONFIG_HPET_EMULATE_RTC
49 *	1.12a	Maciej W. Rozycki: Handle memory-mapped chips properly.
50 *	1.12ac	Alan Cox: Allow read access to the day of week register
51 *	1.12b	David John: Remove calls to the BKL.
52 */
53
54#define RTC_VERSION		"1.12b"
55
56/*
57 *	Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
58 *	interrupts disabled. Due to the index-port/data-port (0x70/0x71)
59 *	design of the RTC, we don't want two different things trying to
60 *	get to it at once. (e.g. the periodic 11 min sync from
61 *      kernel/time/ntp.c vs. this driver.)
62 */
63
64#include <linux/interrupt.h>
65#include <linux/module.h>
66#include <linux/kernel.h>
67#include <linux/types.h>
68#include <linux/miscdevice.h>
69#include <linux/ioport.h>
70#include <linux/fcntl.h>
71#include <linux/mc146818rtc.h>
72#include <linux/init.h>
73#include <linux/poll.h>
74#include <linux/proc_fs.h>
75#include <linux/seq_file.h>
76#include <linux/spinlock.h>
77#include <linux/sched.h>
78#include <linux/sysctl.h>
79#include <linux/wait.h>
80#include <linux/bcd.h>
81#include <linux/delay.h>
82#include <linux/uaccess.h>
83#include <linux/ratelimit.h>
84
85#include <asm/current.h>
86
87#ifdef CONFIG_X86
88#include <asm/hpet.h>
89#endif
90
91#ifdef CONFIG_SPARC32
92#include <linux/of.h>
93#include <linux/of_device.h>
94#include <asm/io.h>
95
96static unsigned long rtc_port;
97static int rtc_irq;
98#endif
99
100#ifdef	CONFIG_HPET_EMULATE_RTC
101#undef	RTC_IRQ
102#endif
103
104#ifdef RTC_IRQ
105static int rtc_has_irq = 1;
106#endif
107
108#ifndef CONFIG_HPET_EMULATE_RTC
109#define is_hpet_enabled()			0
110#define hpet_set_alarm_time(hrs, min, sec)	0
111#define hpet_set_periodic_freq(arg)		0
112#define hpet_mask_rtc_irq_bit(arg)		0
113#define hpet_set_rtc_irq_bit(arg)		0
114#define hpet_rtc_timer_init()			do { } while (0)
115#define hpet_rtc_dropped_irq()			0
116#define hpet_register_irq_handler(h)		({ 0; })
117#define hpet_unregister_irq_handler(h)		({ 0; })
118#ifdef RTC_IRQ
119static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
120{
121	return 0;
122}
123#endif
124#endif
125
126/*
127 *	We sponge a minor off of the misc major. No need slurping
128 *	up another valuable major dev number for this. If you add
129 *	an ioctl, make sure you don't conflict with SPARC's RTC
130 *	ioctls.
131 */
132
133static struct fasync_struct *rtc_async_queue;
134
135static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
136
137#ifdef RTC_IRQ
138static void rtc_dropped_irq(unsigned long data);
139
140static DEFINE_TIMER(rtc_irq_timer, rtc_dropped_irq, 0, 0);
141#endif
142
143static ssize_t rtc_read(struct file *file, char __user *buf,
144			size_t count, loff_t *ppos);
145
146static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147static void rtc_get_rtc_time(struct rtc_time *rtc_tm);
148
149#ifdef RTC_IRQ
150static unsigned int rtc_poll(struct file *file, poll_table *wait);
151#endif
152
153static void get_rtc_alm_time(struct rtc_time *alm_tm);
154#ifdef RTC_IRQ
155static void set_rtc_irq_bit_locked(unsigned char bit);
156static void mask_rtc_irq_bit_locked(unsigned char bit);
157
158static inline void set_rtc_irq_bit(unsigned char bit)
159{
160	spin_lock_irq(&rtc_lock);
161	set_rtc_irq_bit_locked(bit);
162	spin_unlock_irq(&rtc_lock);
163}
164
165static void mask_rtc_irq_bit(unsigned char bit)
166{
167	spin_lock_irq(&rtc_lock);
168	mask_rtc_irq_bit_locked(bit);
169	spin_unlock_irq(&rtc_lock);
170}
171#endif
172
173#ifdef CONFIG_PROC_FS
174static int rtc_proc_open(struct inode *inode, struct file *file);
175#endif
176
177/*
178 *	Bits in rtc_status. (6 bits of room for future expansion)
179 */
180
181#define RTC_IS_OPEN		0x01	/* means /dev/rtc is in use	*/
182#define RTC_TIMER_ON		0x02	/* missed irq timer active	*/
183
184/*
185 * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
186 * protected by the spin lock rtc_lock. However, ioctl can still disable the
187 * timer in rtc_status and then with del_timer after the interrupt has read
188 * rtc_status but before mod_timer is called, which would then reenable the
189 * timer (but you would need to have an awful timing before you'd trip on it)
190 */
191static unsigned long rtc_status;	/* bitmapped status byte.	*/
192static unsigned long rtc_freq;		/* Current periodic IRQ rate	*/
193static unsigned long rtc_irq_data;	/* our output to the world	*/
194static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
195
196#ifdef RTC_IRQ
197/*
198 * rtc_task_lock nests inside rtc_lock.
199 */
200static DEFINE_SPINLOCK(rtc_task_lock);
201static rtc_task_t *rtc_callback;
202#endif
203
204/*
205 *	If this driver ever becomes modularised, it will be really nice
206 *	to make the epoch retain its value across module reload...
207 */
208
209static unsigned long epoch = 1900;	/* year corresponding to 0x00	*/
210
211static const unsigned char days_in_mo[] =
212{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
213
214/*
215 * Returns true if a clock update is in progress
216 */
217static inline unsigned char rtc_is_updating(void)
218{
219	unsigned long flags;
220	unsigned char uip;
221
222	spin_lock_irqsave(&rtc_lock, flags);
223	uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
224	spin_unlock_irqrestore(&rtc_lock, flags);
225	return uip;
226}
227
228#ifdef RTC_IRQ
229/*
230 *	A very tiny interrupt handler. It runs with IRQF_DISABLED set,
231 *	but there is possibility of conflicting with the set_rtc_mmss()
232 *	call (the rtc irq and the timer irq can easily run at the same
233 *	time in two different CPUs). So we need to serialize
234 *	accesses to the chip with the rtc_lock spinlock that each
235 *	architecture should implement in the timer code.
236 *	(See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
237 */
238
239static irqreturn_t rtc_interrupt(int irq, void *dev_id)
240{
241	/*
242	 *	Can be an alarm interrupt, update complete interrupt,
243	 *	or a periodic interrupt. We store the status in the
244	 *	low byte and the number of interrupts received since
245	 *	the last read in the remainder of rtc_irq_data.
246	 */
247
248	spin_lock(&rtc_lock);
249	rtc_irq_data += 0x100;
250	rtc_irq_data &= ~0xff;
251	if (is_hpet_enabled()) {
252		/*
253		 * In this case it is HPET RTC interrupt handler
254		 * calling us, with the interrupt information
255		 * passed as arg1, instead of irq.
256		 */
257		rtc_irq_data |= (unsigned long)irq & 0xF0;
258	} else {
259		rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
260	}
261
262	if (rtc_status & RTC_TIMER_ON)
263		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
264
265	spin_unlock(&rtc_lock);
266
267	/* Now do the rest of the actions */
268	spin_lock(&rtc_task_lock);
269	if (rtc_callback)
270		rtc_callback->func(rtc_callback->private_data);
271	spin_unlock(&rtc_task_lock);
272	wake_up_interruptible(&rtc_wait);
273
274	kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
275
276	return IRQ_HANDLED;
277}
278#endif
279
280/*
281 * sysctl-tuning infrastructure.
282 */
283static ctl_table rtc_table[] = {
284	{
285		.procname	= "max-user-freq",
286		.data		= &rtc_max_user_freq,
287		.maxlen		= sizeof(int),
288		.mode		= 0644,
289		.proc_handler	= proc_dointvec,
290	},
291	{ }
292};
293
294static ctl_table rtc_root[] = {
295	{
296		.procname	= "rtc",
297		.mode		= 0555,
298		.child		= rtc_table,
299	},
300	{ }
301};
302
303static ctl_table dev_root[] = {
304	{
305		.procname	= "dev",
306		.mode		= 0555,
307		.child		= rtc_root,
308	},
309	{ }
310};
311
312static struct ctl_table_header *sysctl_header;
313
314static int __init init_sysctl(void)
315{
316    sysctl_header = register_sysctl_table(dev_root);
317    return 0;
318}
319
320static void __exit cleanup_sysctl(void)
321{
322    unregister_sysctl_table(sysctl_header);
323}
324
325/*
326 *	Now all the various file operations that we export.
327 */
328
329static ssize_t rtc_read(struct file *file, char __user *buf,
330			size_t count, loff_t *ppos)
331{
332#ifndef RTC_IRQ
333	return -EIO;
334#else
335	DECLARE_WAITQUEUE(wait, current);
336	unsigned long data;
337	ssize_t retval;
338
339	if (rtc_has_irq == 0)
340		return -EIO;
341
342	/*
343	 * Historically this function used to assume that sizeof(unsigned long)
344	 * is the same in userspace and kernelspace.  This lead to problems
345	 * for configurations with multiple ABIs such a the MIPS o32 and 64
346	 * ABIs supported on the same kernel.  So now we support read of both
347	 * 4 and 8 bytes and assume that's the sizeof(unsigned long) in the
348	 * userspace ABI.
349	 */
350	if (count != sizeof(unsigned int) && count !=  sizeof(unsigned long))
351		return -EINVAL;
352
353	add_wait_queue(&rtc_wait, &wait);
354
355	do {
356		/* First make it right. Then make it fast. Putting this whole
357		 * block within the parentheses of a while would be too
358		 * confusing. And no, xchg() is not the answer. */
359
360		__set_current_state(TASK_INTERRUPTIBLE);
361
362		spin_lock_irq(&rtc_lock);
363		data = rtc_irq_data;
364		rtc_irq_data = 0;
365		spin_unlock_irq(&rtc_lock);
366
367		if (data != 0)
368			break;
369
370		if (file->f_flags & O_NONBLOCK) {
371			retval = -EAGAIN;
372			goto out;
373		}
374		if (signal_pending(current)) {
375			retval = -ERESTARTSYS;
376			goto out;
377		}
378		schedule();
379	} while (1);
380
381	if (count == sizeof(unsigned int)) {
382		retval = put_user(data,
383				  (unsigned int __user *)buf) ?: sizeof(int);
384	} else {
385		retval = put_user(data,
386				  (unsigned long __user *)buf) ?: sizeof(long);
387	}
388	if (!retval)
389		retval = count;
390 out:
391	__set_current_state(TASK_RUNNING);
392	remove_wait_queue(&rtc_wait, &wait);
393
394	return retval;
395#endif
396}
397
398static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
399{
400	struct rtc_time wtime;
401
402#ifdef RTC_IRQ
403	if (rtc_has_irq == 0) {
404		switch (cmd) {
405		case RTC_AIE_OFF:
406		case RTC_AIE_ON:
407		case RTC_PIE_OFF:
408		case RTC_PIE_ON:
409		case RTC_UIE_OFF:
410		case RTC_UIE_ON:
411		case RTC_IRQP_READ:
412		case RTC_IRQP_SET:
413			return -EINVAL;
414		};
415	}
416#endif
417
418	switch (cmd) {
419#ifdef RTC_IRQ
420	case RTC_AIE_OFF:	/* Mask alarm int. enab. bit	*/
421	{
422		mask_rtc_irq_bit(RTC_AIE);
423		return 0;
424	}
425	case RTC_AIE_ON:	/* Allow alarm interrupts.	*/
426	{
427		set_rtc_irq_bit(RTC_AIE);
428		return 0;
429	}
430	case RTC_PIE_OFF:	/* Mask periodic int. enab. bit	*/
431	{
432		/* can be called from isr via rtc_control() */
433		unsigned long flags;
434
435		spin_lock_irqsave(&rtc_lock, flags);
436		mask_rtc_irq_bit_locked(RTC_PIE);
437		if (rtc_status & RTC_TIMER_ON) {
438			rtc_status &= ~RTC_TIMER_ON;
439			del_timer(&rtc_irq_timer);
440		}
441		spin_unlock_irqrestore(&rtc_lock, flags);
442
443		return 0;
444	}
445	case RTC_PIE_ON:	/* Allow periodic ints		*/
446	{
447		/* can be called from isr via rtc_control() */
448		unsigned long flags;
449
450		/*
451		 * We don't really want Joe User enabling more
452		 * than 64Hz of interrupts on a multi-user machine.
453		 */
454		if (!kernel && (rtc_freq > rtc_max_user_freq) &&
455						(!capable(CAP_SYS_RESOURCE)))
456			return -EACCES;
457
458		spin_lock_irqsave(&rtc_lock, flags);
459		if (!(rtc_status & RTC_TIMER_ON)) {
460			mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq +
461					2*HZ/100);
462			rtc_status |= RTC_TIMER_ON;
463		}
464		set_rtc_irq_bit_locked(RTC_PIE);
465		spin_unlock_irqrestore(&rtc_lock, flags);
466
467		return 0;
468	}
469	case RTC_UIE_OFF:	/* Mask ints from RTC updates.	*/
470	{
471		mask_rtc_irq_bit(RTC_UIE);
472		return 0;
473	}
474	case RTC_UIE_ON:	/* Allow ints for RTC updates.	*/
475	{
476		set_rtc_irq_bit(RTC_UIE);
477		return 0;
478	}
479#endif
480	case RTC_ALM_READ:	/* Read the present alarm time */
481	{
482		/*
483		 * This returns a struct rtc_time. Reading >= 0xc0
484		 * means "don't care" or "match all". Only the tm_hour,
485		 * tm_min, and tm_sec values are filled in.
486		 */
487		memset(&wtime, 0, sizeof(struct rtc_time));
488		get_rtc_alm_time(&wtime);
489		break;
490	}
491	case RTC_ALM_SET:	/* Store a time into the alarm */
492	{
493		/*
494		 * This expects a struct rtc_time. Writing 0xff means
495		 * "don't care" or "match all". Only the tm_hour,
496		 * tm_min and tm_sec are used.
497		 */
498		unsigned char hrs, min, sec;
499		struct rtc_time alm_tm;
500
501		if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
502				   sizeof(struct rtc_time)))
503			return -EFAULT;
504
505		hrs = alm_tm.tm_hour;
506		min = alm_tm.tm_min;
507		sec = alm_tm.tm_sec;
508
509		spin_lock_irq(&rtc_lock);
510		if (hpet_set_alarm_time(hrs, min, sec)) {
511			/*
512			 * Fallthru and set alarm time in CMOS too,
513			 * so that we will get proper value in RTC_ALM_READ
514			 */
515		}
516		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
517							RTC_ALWAYS_BCD) {
518			if (sec < 60)
519				sec = bin2bcd(sec);
520			else
521				sec = 0xff;
522
523			if (min < 60)
524				min = bin2bcd(min);
525			else
526				min = 0xff;
527
528			if (hrs < 24)
529				hrs = bin2bcd(hrs);
530			else
531				hrs = 0xff;
532		}
533		CMOS_WRITE(hrs, RTC_HOURS_ALARM);
534		CMOS_WRITE(min, RTC_MINUTES_ALARM);
535		CMOS_WRITE(sec, RTC_SECONDS_ALARM);
536		spin_unlock_irq(&rtc_lock);
537
538		return 0;
539	}
540	case RTC_RD_TIME:	/* Read the time/date from RTC	*/
541	{
542		memset(&wtime, 0, sizeof(struct rtc_time));
543		rtc_get_rtc_time(&wtime);
544		break;
545	}
546	case RTC_SET_TIME:	/* Set the RTC */
547	{
548		struct rtc_time rtc_tm;
549		unsigned char mon, day, hrs, min, sec, leap_yr;
550		unsigned char save_control, save_freq_select;
551		unsigned int yrs;
552#ifdef CONFIG_MACH_DECSTATION
553		unsigned int real_yrs;
554#endif
555
556		if (!capable(CAP_SYS_TIME))
557			return -EACCES;
558
559		if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
560				   sizeof(struct rtc_time)))
561			return -EFAULT;
562
563		yrs = rtc_tm.tm_year + 1900;
564		mon = rtc_tm.tm_mon + 1;   /* tm_mon starts at zero */
565		day = rtc_tm.tm_mday;
566		hrs = rtc_tm.tm_hour;
567		min = rtc_tm.tm_min;
568		sec = rtc_tm.tm_sec;
569
570		if (yrs < 1970)
571			return -EINVAL;
572
573		leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
574
575		if ((mon > 12) || (day == 0))
576			return -EINVAL;
577
578		if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
579			return -EINVAL;
580
581		if ((hrs >= 24) || (min >= 60) || (sec >= 60))
582			return -EINVAL;
583
584		yrs -= epoch;
585		if (yrs > 255)		/* They are unsigned */
586			return -EINVAL;
587
588		spin_lock_irq(&rtc_lock);
589#ifdef CONFIG_MACH_DECSTATION
590		real_yrs = yrs;
591		yrs = 72;
592
593		/*
594		 * We want to keep the year set to 73 until March
595		 * for non-leap years, so that Feb, 29th is handled
596		 * correctly.
597		 */
598		if (!leap_yr && mon < 3) {
599			real_yrs--;
600			yrs = 73;
601		}
602#endif
603		/* These limits and adjustments are independent of
604		 * whether the chip is in binary mode or not.
605		 */
606		if (yrs > 169) {
607			spin_unlock_irq(&rtc_lock);
608			return -EINVAL;
609		}
610		if (yrs >= 100)
611			yrs -= 100;
612
613		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
614		    || RTC_ALWAYS_BCD) {
615			sec = bin2bcd(sec);
616			min = bin2bcd(min);
617			hrs = bin2bcd(hrs);
618			day = bin2bcd(day);
619			mon = bin2bcd(mon);
620			yrs = bin2bcd(yrs);
621		}
622
623		save_control = CMOS_READ(RTC_CONTROL);
624		CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
625		save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
626		CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
627
628#ifdef CONFIG_MACH_DECSTATION
629		CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
630#endif
631		CMOS_WRITE(yrs, RTC_YEAR);
632		CMOS_WRITE(mon, RTC_MONTH);
633		CMOS_WRITE(day, RTC_DAY_OF_MONTH);
634		CMOS_WRITE(hrs, RTC_HOURS);
635		CMOS_WRITE(min, RTC_MINUTES);
636		CMOS_WRITE(sec, RTC_SECONDS);
637
638		CMOS_WRITE(save_control, RTC_CONTROL);
639		CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
640
641		spin_unlock_irq(&rtc_lock);
642		return 0;
643	}
644#ifdef RTC_IRQ
645	case RTC_IRQP_READ:	/* Read the periodic IRQ rate.	*/
646	{
647		return put_user(rtc_freq, (unsigned long __user *)arg);
648	}
649	case RTC_IRQP_SET:	/* Set periodic IRQ rate.	*/
650	{
651		int tmp = 0;
652		unsigned char val;
653		/* can be called from isr via rtc_control() */
654		unsigned long flags;
655
656		/*
657		 * The max we can do is 8192Hz.
658		 */
659		if ((arg < 2) || (arg > 8192))
660			return -EINVAL;
661		/*
662		 * We don't really want Joe User generating more
663		 * than 64Hz of interrupts on a multi-user machine.
664		 */
665		if (!kernel && (arg > rtc_max_user_freq) &&
666					!capable(CAP_SYS_RESOURCE))
667			return -EACCES;
668
669		while (arg > (1<<tmp))
670			tmp++;
671
672		/*
673		 * Check that the input was really a power of 2.
674		 */
675		if (arg != (1<<tmp))
676			return -EINVAL;
677
678		rtc_freq = arg;
679
680		spin_lock_irqsave(&rtc_lock, flags);
681		if (hpet_set_periodic_freq(arg)) {
682			spin_unlock_irqrestore(&rtc_lock, flags);
683			return 0;
684		}
685
686		val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
687		val |= (16 - tmp);
688		CMOS_WRITE(val, RTC_FREQ_SELECT);
689		spin_unlock_irqrestore(&rtc_lock, flags);
690		return 0;
691	}
692#endif
693	case RTC_EPOCH_READ:	/* Read the epoch.	*/
694	{
695		return put_user(epoch, (unsigned long __user *)arg);
696	}
697	case RTC_EPOCH_SET:	/* Set the epoch.	*/
698	{
699		/*
700		 * There were no RTC clocks before 1900.
701		 */
702		if (arg < 1900)
703			return -EINVAL;
704
705		if (!capable(CAP_SYS_TIME))
706			return -EACCES;
707
708		epoch = arg;
709		return 0;
710	}
711	default:
712		return -ENOTTY;
713	}
714	return copy_to_user((void __user *)arg,
715			    &wtime, sizeof wtime) ? -EFAULT : 0;
716}
717
718static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
719{
720	long ret;
721	ret = rtc_do_ioctl(cmd, arg, 0);
722	return ret;
723}
724
725/*
726 *	We enforce only one user at a time here with the open/close.
727 *	Also clear the previous interrupt data on an open, and clean
728 *	up things on a close.
729 */
730static int rtc_open(struct inode *inode, struct file *file)
731{
732	spin_lock_irq(&rtc_lock);
733
734	if (rtc_status & RTC_IS_OPEN)
735		goto out_busy;
736
737	rtc_status |= RTC_IS_OPEN;
738
739	rtc_irq_data = 0;
740	spin_unlock_irq(&rtc_lock);
741	return 0;
742
743out_busy:
744	spin_unlock_irq(&rtc_lock);
745	return -EBUSY;
746}
747
748static int rtc_fasync(int fd, struct file *filp, int on)
749{
750	return fasync_helper(fd, filp, on, &rtc_async_queue);
751}
752
753static int rtc_release(struct inode *inode, struct file *file)
754{
755#ifdef RTC_IRQ
756	unsigned char tmp;
757
758	if (rtc_has_irq == 0)
759		goto no_irq;
760
761	/*
762	 * Turn off all interrupts once the device is no longer
763	 * in use, and clear the data.
764	 */
765
766	spin_lock_irq(&rtc_lock);
767	if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
768		tmp = CMOS_READ(RTC_CONTROL);
769		tmp &=  ~RTC_PIE;
770		tmp &=  ~RTC_AIE;
771		tmp &=  ~RTC_UIE;
772		CMOS_WRITE(tmp, RTC_CONTROL);
773		CMOS_READ(RTC_INTR_FLAGS);
774	}
775	if (rtc_status & RTC_TIMER_ON) {
776		rtc_status &= ~RTC_TIMER_ON;
777		del_timer(&rtc_irq_timer);
778	}
779	spin_unlock_irq(&rtc_lock);
780
781no_irq:
782#endif
783
784	spin_lock_irq(&rtc_lock);
785	rtc_irq_data = 0;
786	rtc_status &= ~RTC_IS_OPEN;
787	spin_unlock_irq(&rtc_lock);
788
789	return 0;
790}
791
792#ifdef RTC_IRQ
793static unsigned int rtc_poll(struct file *file, poll_table *wait)
794{
795	unsigned long l;
796
797	if (rtc_has_irq == 0)
798		return 0;
799
800	poll_wait(file, &rtc_wait, wait);
801
802	spin_lock_irq(&rtc_lock);
803	l = rtc_irq_data;
804	spin_unlock_irq(&rtc_lock);
805
806	if (l != 0)
807		return POLLIN | POLLRDNORM;
808	return 0;
809}
810#endif
811
812int rtc_register(rtc_task_t *task)
813{
814#ifndef RTC_IRQ
815	return -EIO;
816#else
817	if (task == NULL || task->func == NULL)
818		return -EINVAL;
819	spin_lock_irq(&rtc_lock);
820	if (rtc_status & RTC_IS_OPEN) {
821		spin_unlock_irq(&rtc_lock);
822		return -EBUSY;
823	}
824	spin_lock(&rtc_task_lock);
825	if (rtc_callback) {
826		spin_unlock(&rtc_task_lock);
827		spin_unlock_irq(&rtc_lock);
828		return -EBUSY;
829	}
830	rtc_status |= RTC_IS_OPEN;
831	rtc_callback = task;
832	spin_unlock(&rtc_task_lock);
833	spin_unlock_irq(&rtc_lock);
834	return 0;
835#endif
836}
837EXPORT_SYMBOL(rtc_register);
838
839int rtc_unregister(rtc_task_t *task)
840{
841#ifndef RTC_IRQ
842	return -EIO;
843#else
844	unsigned char tmp;
845
846	spin_lock_irq(&rtc_lock);
847	spin_lock(&rtc_task_lock);
848	if (rtc_callback != task) {
849		spin_unlock(&rtc_task_lock);
850		spin_unlock_irq(&rtc_lock);
851		return -ENXIO;
852	}
853	rtc_callback = NULL;
854
855	/* disable controls */
856	if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
857		tmp = CMOS_READ(RTC_CONTROL);
858		tmp &= ~RTC_PIE;
859		tmp &= ~RTC_AIE;
860		tmp &= ~RTC_UIE;
861		CMOS_WRITE(tmp, RTC_CONTROL);
862		CMOS_READ(RTC_INTR_FLAGS);
863	}
864	if (rtc_status & RTC_TIMER_ON) {
865		rtc_status &= ~RTC_TIMER_ON;
866		del_timer(&rtc_irq_timer);
867	}
868	rtc_status &= ~RTC_IS_OPEN;
869	spin_unlock(&rtc_task_lock);
870	spin_unlock_irq(&rtc_lock);
871	return 0;
872#endif
873}
874EXPORT_SYMBOL(rtc_unregister);
875
876int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg)
877{
878#ifndef RTC_IRQ
879	return -EIO;
880#else
881	unsigned long flags;
882	if (cmd != RTC_PIE_ON && cmd != RTC_PIE_OFF && cmd != RTC_IRQP_SET)
883		return -EINVAL;
884	spin_lock_irqsave(&rtc_task_lock, flags);
885	if (rtc_callback != task) {
886		spin_unlock_irqrestore(&rtc_task_lock, flags);
887		return -ENXIO;
888	}
889	spin_unlock_irqrestore(&rtc_task_lock, flags);
890	return rtc_do_ioctl(cmd, arg, 1);
891#endif
892}
893EXPORT_SYMBOL(rtc_control);
894
895/*
896 *	The various file operations we support.
897 */
898
899static const struct file_operations rtc_fops = {
900	.owner		= THIS_MODULE,
901	.llseek		= no_llseek,
902	.read		= rtc_read,
903#ifdef RTC_IRQ
904	.poll		= rtc_poll,
905#endif
906	.unlocked_ioctl	= rtc_ioctl,
907	.open		= rtc_open,
908	.release	= rtc_release,
909	.fasync		= rtc_fasync,
910};
911
912static struct miscdevice rtc_dev = {
913	.minor		= RTC_MINOR,
914	.name		= "rtc",
915	.fops		= &rtc_fops,
916};
917
918#ifdef CONFIG_PROC_FS
919static const struct file_operations rtc_proc_fops = {
920	.owner		= THIS_MODULE,
921	.open		= rtc_proc_open,
922	.read		= seq_read,
923	.llseek		= seq_lseek,
924	.release	= single_release,
925};
926#endif
927
928static resource_size_t rtc_size;
929
930static struct resource * __init rtc_request_region(resource_size_t size)
931{
932	struct resource *r;
933
934	if (RTC_IOMAPPED)
935		r = request_region(RTC_PORT(0), size, "rtc");
936	else
937		r = request_mem_region(RTC_PORT(0), size, "rtc");
938
939	if (r)
940		rtc_size = size;
941
942	return r;
943}
944
945static void rtc_release_region(void)
946{
947	if (RTC_IOMAPPED)
948		release_region(RTC_PORT(0), rtc_size);
949	else
950		release_mem_region(RTC_PORT(0), rtc_size);
951}
952
953static int __init rtc_init(void)
954{
955#ifdef CONFIG_PROC_FS
956	struct proc_dir_entry *ent;
957#endif
958#if defined(__alpha__) || defined(__mips__)
959	unsigned int year, ctrl;
960	char *guess = NULL;
961#endif
962#ifdef CONFIG_SPARC32
963	struct device_node *ebus_dp;
964	struct platform_device *op;
965#else
966	void *r;
967#ifdef RTC_IRQ
968	irq_handler_t rtc_int_handler_ptr;
969#endif
970#endif
971
972#ifdef CONFIG_SPARC32
973	for_each_node_by_name(ebus_dp, "ebus") {
974		struct device_node *dp;
975		for (dp = ebus_dp; dp; dp = dp->sibling) {
976			if (!strcmp(dp->name, "rtc")) {
977				op = of_find_device_by_node(dp);
978				if (op) {
979					rtc_port = op->resource[0].start;
980					rtc_irq = op->irqs[0];
981					goto found;
982				}
983			}
984		}
985	}
986	rtc_has_irq = 0;
987	printk(KERN_ERR "rtc_init: no PC rtc found\n");
988	return -EIO;
989
990found:
991	if (!rtc_irq) {
992		rtc_has_irq = 0;
993		goto no_irq;
994	}
995
996	/*
997	 * XXX Interrupt pin #7 in Espresso is shared between RTC and
998	 * PCI Slot 2 INTA# (and some INTx# in Slot 1).
999	 */
1000	if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc",
1001			(void *)&rtc_port)) {
1002		rtc_has_irq = 0;
1003		printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
1004		return -EIO;
1005	}
1006no_irq:
1007#else
1008	r = rtc_request_region(RTC_IO_EXTENT);
1009
1010	/*
1011	 * If we've already requested a smaller range (for example, because
1012	 * PNPBIOS or ACPI told us how the device is configured), the request
1013	 * above might fail because it's too big.
1014	 *
1015	 * If so, request just the range we actually use.
1016	 */
1017	if (!r)
1018		r = rtc_request_region(RTC_IO_EXTENT_USED);
1019	if (!r) {
1020#ifdef RTC_IRQ
1021		rtc_has_irq = 0;
1022#endif
1023		printk(KERN_ERR "rtc: I/O resource %lx is not free.\n",
1024		       (long)(RTC_PORT(0)));
1025		return -EIO;
1026	}
1027
1028#ifdef RTC_IRQ
1029	if (is_hpet_enabled()) {
1030		int err;
1031
1032		rtc_int_handler_ptr = hpet_rtc_interrupt;
1033		err = hpet_register_irq_handler(rtc_interrupt);
1034		if (err != 0) {
1035			printk(KERN_WARNING "hpet_register_irq_handler failed "
1036					"in rtc_init().");
1037			return err;
1038		}
1039	} else {
1040		rtc_int_handler_ptr = rtc_interrupt;
1041	}
1042
1043	if (request_irq(RTC_IRQ, rtc_int_handler_ptr, IRQF_DISABLED,
1044			"rtc", NULL)) {
1045		/* Yeah right, seeing as irq 8 doesn't even hit the bus. */
1046		rtc_has_irq = 0;
1047		printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
1048		rtc_release_region();
1049
1050		return -EIO;
1051	}
1052	hpet_rtc_timer_init();
1053
1054#endif
1055
1056#endif /* CONFIG_SPARC32 vs. others */
1057
1058	if (misc_register(&rtc_dev)) {
1059#ifdef RTC_IRQ
1060		free_irq(RTC_IRQ, NULL);
1061		hpet_unregister_irq_handler(rtc_interrupt);
1062		rtc_has_irq = 0;
1063#endif
1064		rtc_release_region();
1065		return -ENODEV;
1066	}
1067
1068#ifdef CONFIG_PROC_FS
1069	ent = proc_create("driver/rtc", 0, NULL, &rtc_proc_fops);
1070	if (!ent)
1071		printk(KERN_WARNING "rtc: Failed to register with procfs.\n");
1072#endif
1073
1074#if defined(__alpha__) || defined(__mips__)
1075	rtc_freq = HZ;
1076
1077	/* Each operating system on an Alpha uses its own epoch.
1078	   Let's try to guess which one we are using now. */
1079
1080	if (rtc_is_updating() != 0)
1081		msleep(20);
1082
1083	spin_lock_irq(&rtc_lock);
1084	year = CMOS_READ(RTC_YEAR);
1085	ctrl = CMOS_READ(RTC_CONTROL);
1086	spin_unlock_irq(&rtc_lock);
1087
1088	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1089		year = bcd2bin(year);       /* This should never happen... */
1090
1091	if (year < 20) {
1092		epoch = 2000;
1093		guess = "SRM (post-2000)";
1094	} else if (year >= 20 && year < 48) {
1095		epoch = 1980;
1096		guess = "ARC console";
1097	} else if (year >= 48 && year < 72) {
1098		epoch = 1952;
1099		guess = "Digital UNIX";
1100#if defined(__mips__)
1101	} else if (year >= 72 && year < 74) {
1102		epoch = 2000;
1103		guess = "Digital DECstation";
1104#else
1105	} else if (year >= 70) {
1106		epoch = 1900;
1107		guess = "Standard PC (1900)";
1108#endif
1109	}
1110	if (guess)
1111		printk(KERN_INFO "rtc: %s epoch (%lu) detected\n",
1112			guess, epoch);
1113#endif
1114#ifdef RTC_IRQ
1115	if (rtc_has_irq == 0)
1116		goto no_irq2;
1117
1118	spin_lock_irq(&rtc_lock);
1119	rtc_freq = 1024;
1120	if (!hpet_set_periodic_freq(rtc_freq)) {
1121		/*
1122		 * Initialize periodic frequency to CMOS reset default,
1123		 * which is 1024Hz
1124		 */
1125		CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06),
1126			   RTC_FREQ_SELECT);
1127	}
1128	spin_unlock_irq(&rtc_lock);
1129no_irq2:
1130#endif
1131
1132	(void) init_sysctl();
1133
1134	printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
1135
1136	return 0;
1137}
1138
1139static void __exit rtc_exit(void)
1140{
1141	cleanup_sysctl();
1142	remove_proc_entry("driver/rtc", NULL);
1143	misc_deregister(&rtc_dev);
1144
1145#ifdef CONFIG_SPARC32
1146	if (rtc_has_irq)
1147		free_irq(rtc_irq, &rtc_port);
1148#else
1149	rtc_release_region();
1150#ifdef RTC_IRQ
1151	if (rtc_has_irq) {
1152		free_irq(RTC_IRQ, NULL);
1153		hpet_unregister_irq_handler(hpet_rtc_interrupt);
1154	}
1155#endif
1156#endif /* CONFIG_SPARC32 */
1157}
1158
1159module_init(rtc_init);
1160module_exit(rtc_exit);
1161
1162#ifdef RTC_IRQ
1163/*
1164 *	At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
1165 *	(usually during an IDE disk interrupt, with IRQ unmasking off)
1166 *	Since the interrupt handler doesn't get called, the IRQ status
1167 *	byte doesn't get read, and the RTC stops generating interrupts.
1168 *	A timer is set, and will call this function if/when that happens.
1169 *	To get it out of this stalled state, we just read the status.
1170 *	At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
1171 *	(You *really* shouldn't be trying to use a non-realtime system
1172 *	for something that requires a steady > 1KHz signal anyways.)
1173 */
1174
1175static void rtc_dropped_irq(unsigned long data)
1176{
1177	unsigned long freq;
1178
1179	spin_lock_irq(&rtc_lock);
1180
1181	if (hpet_rtc_dropped_irq()) {
1182		spin_unlock_irq(&rtc_lock);
1183		return;
1184	}
1185
1186	/* Just in case someone disabled the timer from behind our back... */
1187	if (rtc_status & RTC_TIMER_ON)
1188		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
1189
1190	rtc_irq_data += ((rtc_freq/HZ)<<8);
1191	rtc_irq_data &= ~0xff;
1192	rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);	/* restart */
1193
1194	freq = rtc_freq;
1195
1196	spin_unlock_irq(&rtc_lock);
1197
1198	printk_ratelimited(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
1199			   freq);
1200
1201	/* Now we have new data */
1202	wake_up_interruptible(&rtc_wait);
1203
1204	kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
1205}
1206#endif
1207
1208#ifdef CONFIG_PROC_FS
1209/*
1210 *	Info exported via "/proc/driver/rtc".
1211 */
1212
1213static int rtc_proc_show(struct seq_file *seq, void *v)
1214{
1215#define YN(bit) ((ctrl & bit) ? "yes" : "no")
1216#define NY(bit) ((ctrl & bit) ? "no" : "yes")
1217	struct rtc_time tm;
1218	unsigned char batt, ctrl;
1219	unsigned long freq;
1220
1221	spin_lock_irq(&rtc_lock);
1222	batt = CMOS_READ(RTC_VALID) & RTC_VRT;
1223	ctrl = CMOS_READ(RTC_CONTROL);
1224	freq = rtc_freq;
1225	spin_unlock_irq(&rtc_lock);
1226
1227
1228	rtc_get_rtc_time(&tm);
1229
1230	/*
1231	 * There is no way to tell if the luser has the RTC set for local
1232	 * time or for Universal Standard Time (GMT). Probably local though.
1233	 */
1234	seq_printf(seq,
1235		   "rtc_time\t: %02d:%02d:%02d\n"
1236		   "rtc_date\t: %04d-%02d-%02d\n"
1237		   "rtc_epoch\t: %04lu\n",
1238		   tm.tm_hour, tm.tm_min, tm.tm_sec,
1239		   tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);
1240
1241	get_rtc_alm_time(&tm);
1242
1243	/*
1244	 * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
1245	 * match any value for that particular field. Values that are
1246	 * greater than a valid time, but less than 0xc0 shouldn't appear.
1247	 */
1248	seq_puts(seq, "alarm\t\t: ");
1249	if (tm.tm_hour <= 24)
1250		seq_printf(seq, "%02d:", tm.tm_hour);
1251	else
1252		seq_puts(seq, "**:");
1253
1254	if (tm.tm_min <= 59)
1255		seq_printf(seq, "%02d:", tm.tm_min);
1256	else
1257		seq_puts(seq, "**:");
1258
1259	if (tm.tm_sec <= 59)
1260		seq_printf(seq, "%02d\n", tm.tm_sec);
1261	else
1262		seq_puts(seq, "**\n");
1263
1264	seq_printf(seq,
1265		   "DST_enable\t: %s\n"
1266		   "BCD\t\t: %s\n"
1267		   "24hr\t\t: %s\n"
1268		   "square_wave\t: %s\n"
1269		   "alarm_IRQ\t: %s\n"
1270		   "update_IRQ\t: %s\n"
1271		   "periodic_IRQ\t: %s\n"
1272		   "periodic_freq\t: %ld\n"
1273		   "batt_status\t: %s\n",
1274		   YN(RTC_DST_EN),
1275		   NY(RTC_DM_BINARY),
1276		   YN(RTC_24H),
1277		   YN(RTC_SQWE),
1278		   YN(RTC_AIE),
1279		   YN(RTC_UIE),
1280		   YN(RTC_PIE),
1281		   freq,
1282		   batt ? "okay" : "dead");
1283
1284	return  0;
1285#undef YN
1286#undef NY
1287}
1288
1289static int rtc_proc_open(struct inode *inode, struct file *file)
1290{
1291	return single_open(file, rtc_proc_show, NULL);
1292}
1293#endif
1294
1295static void rtc_get_rtc_time(struct rtc_time *rtc_tm)
1296{
1297	unsigned long uip_watchdog = jiffies, flags;
1298	unsigned char ctrl;
1299#ifdef CONFIG_MACH_DECSTATION
1300	unsigned int real_year;
1301#endif
1302
1303	/*
1304	 * read RTC once any update in progress is done. The update
1305	 * can take just over 2ms. We wait 20ms. There is no need to
1306	 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
1307	 * If you need to know *exactly* when a second has started, enable
1308	 * periodic update complete interrupts, (via ioctl) and then
1309	 * immediately read /dev/rtc which will block until you get the IRQ.
1310	 * Once the read clears, read the RTC time (again via ioctl). Easy.
1311	 */
1312
1313	while (rtc_is_updating() != 0 &&
1314	       time_before(jiffies, uip_watchdog + 2*HZ/100))
1315		cpu_relax();
1316
1317	/*
1318	 * Only the values that we read from the RTC are set. We leave
1319	 * tm_wday, tm_yday and tm_isdst untouched. Note that while the
1320	 * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
1321	 * only updated by the RTC when initially set to a non-zero value.
1322	 */
1323	spin_lock_irqsave(&rtc_lock, flags);
1324	rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
1325	rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
1326	rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
1327	rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
1328	rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
1329	rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
1330	/* Only set from 2.6.16 onwards */
1331	rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
1332
1333#ifdef CONFIG_MACH_DECSTATION
1334	real_year = CMOS_READ(RTC_DEC_YEAR);
1335#endif
1336	ctrl = CMOS_READ(RTC_CONTROL);
1337	spin_unlock_irqrestore(&rtc_lock, flags);
1338
1339	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1340		rtc_tm->tm_sec = bcd2bin(rtc_tm->tm_sec);
1341		rtc_tm->tm_min = bcd2bin(rtc_tm->tm_min);
1342		rtc_tm->tm_hour = bcd2bin(rtc_tm->tm_hour);
1343		rtc_tm->tm_mday = bcd2bin(rtc_tm->tm_mday);
1344		rtc_tm->tm_mon = bcd2bin(rtc_tm->tm_mon);
1345		rtc_tm->tm_year = bcd2bin(rtc_tm->tm_year);
1346		rtc_tm->tm_wday = bcd2bin(rtc_tm->tm_wday);
1347	}
1348
1349#ifdef CONFIG_MACH_DECSTATION
1350	rtc_tm->tm_year += real_year - 72;
1351#endif
1352
1353	/*
1354	 * Account for differences between how the RTC uses the values
1355	 * and how they are defined in a struct rtc_time;
1356	 */
1357	rtc_tm->tm_year += epoch - 1900;
1358	if (rtc_tm->tm_year <= 69)
1359		rtc_tm->tm_year += 100;
1360
1361	rtc_tm->tm_mon--;
1362}
1363
1364static void get_rtc_alm_time(struct rtc_time *alm_tm)
1365{
1366	unsigned char ctrl;
1367
1368	/*
1369	 * Only the values that we read from the RTC are set. That
1370	 * means only tm_hour, tm_min, and tm_sec.
1371	 */
1372	spin_lock_irq(&rtc_lock);
1373	alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
1374	alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
1375	alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
1376	ctrl = CMOS_READ(RTC_CONTROL);
1377	spin_unlock_irq(&rtc_lock);
1378
1379	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1380		alm_tm->tm_sec = bcd2bin(alm_tm->tm_sec);
1381		alm_tm->tm_min = bcd2bin(alm_tm->tm_min);
1382		alm_tm->tm_hour = bcd2bin(alm_tm->tm_hour);
1383	}
1384}
1385
1386#ifdef RTC_IRQ
1387/*
1388 * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
1389 * Rumour has it that if you frob the interrupt enable/disable
1390 * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
1391 * ensure you actually start getting interrupts. Probably for
1392 * compatibility with older/broken chipset RTC implementations.
1393 * We also clear out any old irq data after an ioctl() that
1394 * meddles with the interrupt enable/disable bits.
1395 */
1396
1397static void mask_rtc_irq_bit_locked(unsigned char bit)
1398{
1399	unsigned char val;
1400
1401	if (hpet_mask_rtc_irq_bit(bit))
1402		return;
1403	val = CMOS_READ(RTC_CONTROL);
1404	val &=  ~bit;
1405	CMOS_WRITE(val, RTC_CONTROL);
1406	CMOS_READ(RTC_INTR_FLAGS);
1407
1408	rtc_irq_data = 0;
1409}
1410
1411static void set_rtc_irq_bit_locked(unsigned char bit)
1412{
1413	unsigned char val;
1414
1415	if (hpet_set_rtc_irq_bit(bit))
1416		return;
1417	val = CMOS_READ(RTC_CONTROL);
1418	val |= bit;
1419	CMOS_WRITE(val, RTC_CONTROL);
1420	CMOS_READ(RTC_INTR_FLAGS);
1421
1422	rtc_irq_data = 0;
1423}
1424#endif
1425
1426MODULE_AUTHOR("Paul Gortmaker");
1427MODULE_LICENSE("GPL");
1428MODULE_ALIAS_MISCDEV(RTC_MINOR);
1429