rtc.c revision 0f74964627e0ece4ac8da0e2cd01906ec322b4fe
1/*
2 *	Real Time Clock interface for Linux
3 *
4 *	Copyright (C) 1996 Paul Gortmaker
5 *
6 *	This driver allows use of the real time clock (built into
7 *	nearly all computers) from user space. It exports the /dev/rtc
8 *	interface supporting various ioctl() and also the
9 *	/proc/driver/rtc pseudo-file for status information.
10 *
11 *	The ioctls can be used to set the interrupt behaviour and
12 *	generation rate from the RTC via IRQ 8. Then the /dev/rtc
13 *	interface can be used to make use of these timer interrupts,
14 *	be they interval or alarm based.
15 *
16 *	The /dev/rtc interface will block on reads until an interrupt
17 *	has been received. If a RTC interrupt has already happened,
18 *	it will output an unsigned long and then block. The output value
19 *	contains the interrupt status in the low byte and the number of
20 *	interrupts since the last read in the remaining high bytes. The
21 *	/dev/rtc interface can also be used with the select(2) call.
22 *
23 *	This program is free software; you can redistribute it and/or
24 *	modify it under the terms of the GNU General Public License
25 *	as published by the Free Software Foundation; either version
26 *	2 of the License, or (at your option) any later version.
27 *
28 *	Based on other minimal char device drivers, like Alan's
29 *	watchdog, Ted's random, etc. etc.
30 *
31 *	1.07	Paul Gortmaker.
32 *	1.08	Miquel van Smoorenburg: disallow certain things on the
33 *		DEC Alpha as the CMOS clock is also used for other things.
34 *	1.09	Nikita Schmidt: epoch support and some Alpha cleanup.
35 *	1.09a	Pete Zaitcev: Sun SPARC
36 *	1.09b	Jeff Garzik: Modularize, init cleanup
37 *	1.09c	Jeff Garzik: SMP cleanup
38 *	1.10    Paul Barton-Davis: add support for async I/O
39 *	1.10a	Andrea Arcangeli: Alpha updates
40 *	1.10b	Andrew Morton: SMP lock fix
41 *	1.10c	Cesar Barros: SMP locking fixes and cleanup
42 *	1.10d	Paul Gortmaker: delete paranoia check in rtc_exit
43 *	1.10e	Maciej W. Rozycki: Handle DECstation's year weirdness.
44 *      1.11    Takashi Iwai: Kernel access functions
45 *			      rtc_register/rtc_unregister/rtc_control
46 *      1.11a   Daniele Bellucci: Audit create_proc_read_entry in rtc_init
47 *	1.12	Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
48 *		CONFIG_HPET_EMULATE_RTC
49 *	1.12a	Maciej W. Rozycki: Handle memory-mapped chips properly.
50 *	1.12ac	Alan Cox: Allow read access to the day of week register
51 */
52
53#define RTC_VERSION		"1.12ac"
54
55/*
56 *	Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
57 *	interrupts disabled. Due to the index-port/data-port (0x70/0x71)
58 *	design of the RTC, we don't want two different things trying to
59 *	get to it at once. (e.g. the periodic 11 min sync from time.c vs.
60 *	this driver.)
61 */
62
63#include <linux/interrupt.h>
64#include <linux/module.h>
65#include <linux/kernel.h>
66#include <linux/types.h>
67#include <linux/miscdevice.h>
68#include <linux/ioport.h>
69#include <linux/fcntl.h>
70#include <linux/mc146818rtc.h>
71#include <linux/init.h>
72#include <linux/poll.h>
73#include <linux/proc_fs.h>
74#include <linux/seq_file.h>
75#include <linux/spinlock.h>
76#include <linux/sysctl.h>
77#include <linux/wait.h>
78#include <linux/bcd.h>
79#include <linux/delay.h>
80
81#include <asm/current.h>
82#include <asm/uaccess.h>
83#include <asm/system.h>
84
85#if defined(__i386__)
86#include <asm/hpet.h>
87#endif
88
89#ifdef __sparc__
90#include <linux/pci.h>
91#include <asm/ebus.h>
92#ifdef __sparc_v9__
93#include <asm/isa.h>
94#endif
95
96static unsigned long rtc_port;
97static int rtc_irq = PCI_IRQ_NONE;
98#endif
99
100#ifdef	CONFIG_HPET_RTC_IRQ
101#undef	RTC_IRQ
102#endif
103
104#ifdef RTC_IRQ
105static int rtc_has_irq = 1;
106#endif
107
108#ifndef CONFIG_HPET_EMULATE_RTC
109#define is_hpet_enabled()			0
110#define hpet_set_alarm_time(hrs, min, sec) 	0
111#define hpet_set_periodic_freq(arg) 		0
112#define hpet_mask_rtc_irq_bit(arg) 		0
113#define hpet_set_rtc_irq_bit(arg) 		0
114#define hpet_rtc_timer_init() 			do { } while (0)
115#define hpet_rtc_dropped_irq() 			0
116static inline irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs) {return 0;}
117#else
118extern irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs);
119#endif
120
121/*
122 *	We sponge a minor off of the misc major. No need slurping
123 *	up another valuable major dev number for this. If you add
124 *	an ioctl, make sure you don't conflict with SPARC's RTC
125 *	ioctls.
126 */
127
128static struct fasync_struct *rtc_async_queue;
129
130static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
131
132#ifdef RTC_IRQ
133static struct timer_list rtc_irq_timer;
134#endif
135
136static ssize_t rtc_read(struct file *file, char __user *buf,
137			size_t count, loff_t *ppos);
138
139static int rtc_ioctl(struct inode *inode, struct file *file,
140		     unsigned int cmd, unsigned long arg);
141
142#ifdef RTC_IRQ
143static unsigned int rtc_poll(struct file *file, poll_table *wait);
144#endif
145
146static void get_rtc_alm_time (struct rtc_time *alm_tm);
147#ifdef RTC_IRQ
148static void rtc_dropped_irq(unsigned long data);
149
150static void set_rtc_irq_bit_locked(unsigned char bit);
151static void mask_rtc_irq_bit_locked(unsigned char bit);
152
153static inline void set_rtc_irq_bit(unsigned char bit)
154{
155	spin_lock_irq(&rtc_lock);
156	set_rtc_irq_bit_locked(bit);
157	spin_unlock_irq(&rtc_lock);
158}
159
160static void mask_rtc_irq_bit(unsigned char bit)
161{
162	spin_lock_irq(&rtc_lock);
163	mask_rtc_irq_bit_locked(bit);
164	spin_unlock_irq(&rtc_lock);
165}
166#endif
167
168static int rtc_proc_open(struct inode *inode, struct file *file);
169
170/*
171 *	Bits in rtc_status. (6 bits of room for future expansion)
172 */
173
174#define RTC_IS_OPEN		0x01	/* means /dev/rtc is in use	*/
175#define RTC_TIMER_ON		0x02	/* missed irq timer active	*/
176
177/*
178 * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
179 * protected by the big kernel lock. However, ioctl can still disable the timer
180 * in rtc_status and then with del_timer after the interrupt has read
181 * rtc_status but before mod_timer is called, which would then reenable the
182 * timer (but you would need to have an awful timing before you'd trip on it)
183 */
184static unsigned long rtc_status = 0;	/* bitmapped status byte.	*/
185static unsigned long rtc_freq = 0;	/* Current periodic IRQ rate	*/
186static unsigned long rtc_irq_data = 0;	/* our output to the world	*/
187static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
188
189#ifdef RTC_IRQ
190/*
191 * rtc_task_lock nests inside rtc_lock.
192 */
193static DEFINE_SPINLOCK(rtc_task_lock);
194static rtc_task_t *rtc_callback = NULL;
195#endif
196
197/*
198 *	If this driver ever becomes modularised, it will be really nice
199 *	to make the epoch retain its value across module reload...
200 */
201
202static unsigned long epoch = 1900;	/* year corresponding to 0x00	*/
203
204static const unsigned char days_in_mo[] =
205{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
206
207/*
208 * Returns true if a clock update is in progress
209 */
210static inline unsigned char rtc_is_updating(void)
211{
212	unsigned char uip;
213
214	spin_lock_irq(&rtc_lock);
215	uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
216	spin_unlock_irq(&rtc_lock);
217	return uip;
218}
219
220#ifdef RTC_IRQ
221/*
222 *	A very tiny interrupt handler. It runs with IRQF_DISABLED set,
223 *	but there is possibility of conflicting with the set_rtc_mmss()
224 *	call (the rtc irq and the timer irq can easily run at the same
225 *	time in two different CPUs). So we need to serialize
226 *	accesses to the chip with the rtc_lock spinlock that each
227 *	architecture should implement in the timer code.
228 *	(See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
229 */
230
231irqreturn_t rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs)
232{
233	/*
234	 *	Can be an alarm interrupt, update complete interrupt,
235	 *	or a periodic interrupt. We store the status in the
236	 *	low byte and the number of interrupts received since
237	 *	the last read in the remainder of rtc_irq_data.
238	 */
239
240	spin_lock (&rtc_lock);
241	rtc_irq_data += 0x100;
242	rtc_irq_data &= ~0xff;
243	if (is_hpet_enabled()) {
244		/*
245		 * In this case it is HPET RTC interrupt handler
246		 * calling us, with the interrupt information
247		 * passed as arg1, instead of irq.
248		 */
249		rtc_irq_data |= (unsigned long)irq & 0xF0;
250	} else {
251		rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
252	}
253
254	if (rtc_status & RTC_TIMER_ON)
255		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
256
257	spin_unlock (&rtc_lock);
258
259	/* Now do the rest of the actions */
260	spin_lock(&rtc_task_lock);
261	if (rtc_callback)
262		rtc_callback->func(rtc_callback->private_data);
263	spin_unlock(&rtc_task_lock);
264	wake_up_interruptible(&rtc_wait);
265
266	kill_fasync (&rtc_async_queue, SIGIO, POLL_IN);
267
268	return IRQ_HANDLED;
269}
270#endif
271
272/*
273 * sysctl-tuning infrastructure.
274 */
275static ctl_table rtc_table[] = {
276	{
277		.ctl_name	= 1,
278		.procname	= "max-user-freq",
279		.data		= &rtc_max_user_freq,
280		.maxlen		= sizeof(int),
281		.mode		= 0644,
282		.proc_handler	= &proc_dointvec,
283	},
284	{ .ctl_name = 0 }
285};
286
287static ctl_table rtc_root[] = {
288	{
289		.ctl_name	= 1,
290		.procname	= "rtc",
291		.maxlen		= 0,
292		.mode		= 0555,
293		.child		= rtc_table,
294	},
295	{ .ctl_name = 0 }
296};
297
298static ctl_table dev_root[] = {
299	{
300		.ctl_name	= CTL_DEV,
301		.procname	= "dev",
302		.maxlen		= 0,
303		.mode		= 0555,
304		.child		= rtc_root,
305	},
306	{ .ctl_name = 0 }
307};
308
309static struct ctl_table_header *sysctl_header;
310
311static int __init init_sysctl(void)
312{
313    sysctl_header = register_sysctl_table(dev_root, 0);
314    return 0;
315}
316
317static void __exit cleanup_sysctl(void)
318{
319    unregister_sysctl_table(sysctl_header);
320}
321
322/*
323 *	Now all the various file operations that we export.
324 */
325
326static ssize_t rtc_read(struct file *file, char __user *buf,
327			size_t count, loff_t *ppos)
328{
329#ifndef RTC_IRQ
330	return -EIO;
331#else
332	DECLARE_WAITQUEUE(wait, current);
333	unsigned long data;
334	ssize_t retval;
335
336	if (rtc_has_irq == 0)
337		return -EIO;
338
339	/*
340	 * Historically this function used to assume that sizeof(unsigned long)
341	 * is the same in userspace and kernelspace.  This lead to problems
342	 * for configurations with multiple ABIs such a the MIPS o32 and 64
343	 * ABIs supported on the same kernel.  So now we support read of both
344	 * 4 and 8 bytes and assume that's the sizeof(unsigned long) in the
345	 * userspace ABI.
346	 */
347	if (count != sizeof(unsigned int) && count !=  sizeof(unsigned long))
348		return -EINVAL;
349
350	add_wait_queue(&rtc_wait, &wait);
351
352	do {
353		/* First make it right. Then make it fast. Putting this whole
354		 * block within the parentheses of a while would be too
355		 * confusing. And no, xchg() is not the answer. */
356
357		__set_current_state(TASK_INTERRUPTIBLE);
358
359		spin_lock_irq (&rtc_lock);
360		data = rtc_irq_data;
361		rtc_irq_data = 0;
362		spin_unlock_irq (&rtc_lock);
363
364		if (data != 0)
365			break;
366
367		if (file->f_flags & O_NONBLOCK) {
368			retval = -EAGAIN;
369			goto out;
370		}
371		if (signal_pending(current)) {
372			retval = -ERESTARTSYS;
373			goto out;
374		}
375		schedule();
376	} while (1);
377
378	if (count == sizeof(unsigned int))
379		retval = put_user(data, (unsigned int __user *)buf) ?: sizeof(int);
380	else
381		retval = put_user(data, (unsigned long __user *)buf) ?: sizeof(long);
382	if (!retval)
383		retval = count;
384 out:
385	current->state = TASK_RUNNING;
386	remove_wait_queue(&rtc_wait, &wait);
387
388	return retval;
389#endif
390}
391
392static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
393{
394	struct rtc_time wtime;
395
396#ifdef RTC_IRQ
397	if (rtc_has_irq == 0) {
398		switch (cmd) {
399		case RTC_AIE_OFF:
400		case RTC_AIE_ON:
401		case RTC_PIE_OFF:
402		case RTC_PIE_ON:
403		case RTC_UIE_OFF:
404		case RTC_UIE_ON:
405		case RTC_IRQP_READ:
406		case RTC_IRQP_SET:
407			return -EINVAL;
408		};
409	}
410#endif
411
412	switch (cmd) {
413#ifdef RTC_IRQ
414	case RTC_AIE_OFF:	/* Mask alarm int. enab. bit	*/
415	{
416		mask_rtc_irq_bit(RTC_AIE);
417		return 0;
418	}
419	case RTC_AIE_ON:	/* Allow alarm interrupts.	*/
420	{
421		set_rtc_irq_bit(RTC_AIE);
422		return 0;
423	}
424	case RTC_PIE_OFF:	/* Mask periodic int. enab. bit	*/
425	{
426		unsigned long flags; /* can be called from isr via rtc_control() */
427		spin_lock_irqsave (&rtc_lock, flags);
428		mask_rtc_irq_bit_locked(RTC_PIE);
429		if (rtc_status & RTC_TIMER_ON) {
430			rtc_status &= ~RTC_TIMER_ON;
431			del_timer(&rtc_irq_timer);
432		}
433		spin_unlock_irqrestore (&rtc_lock, flags);
434		return 0;
435	}
436	case RTC_PIE_ON:	/* Allow periodic ints		*/
437	{
438		unsigned long flags; /* can be called from isr via rtc_control() */
439		/*
440		 * We don't really want Joe User enabling more
441		 * than 64Hz of interrupts on a multi-user machine.
442		 */
443		if (!kernel && (rtc_freq > rtc_max_user_freq) &&
444			(!capable(CAP_SYS_RESOURCE)))
445			return -EACCES;
446
447		spin_lock_irqsave (&rtc_lock, flags);
448		if (!(rtc_status & RTC_TIMER_ON)) {
449			rtc_irq_timer.expires = jiffies + HZ/rtc_freq + 2*HZ/100;
450			add_timer(&rtc_irq_timer);
451			rtc_status |= RTC_TIMER_ON;
452		}
453		set_rtc_irq_bit_locked(RTC_PIE);
454		spin_unlock_irqrestore (&rtc_lock, flags);
455		return 0;
456	}
457	case RTC_UIE_OFF:	/* Mask ints from RTC updates.	*/
458	{
459		mask_rtc_irq_bit(RTC_UIE);
460		return 0;
461	}
462	case RTC_UIE_ON:	/* Allow ints for RTC updates.	*/
463	{
464		set_rtc_irq_bit(RTC_UIE);
465		return 0;
466	}
467#endif
468	case RTC_ALM_READ:	/* Read the present alarm time */
469	{
470		/*
471		 * This returns a struct rtc_time. Reading >= 0xc0
472		 * means "don't care" or "match all". Only the tm_hour,
473		 * tm_min, and tm_sec values are filled in.
474		 */
475		memset(&wtime, 0, sizeof(struct rtc_time));
476		get_rtc_alm_time(&wtime);
477		break;
478	}
479	case RTC_ALM_SET:	/* Store a time into the alarm */
480	{
481		/*
482		 * This expects a struct rtc_time. Writing 0xff means
483		 * "don't care" or "match all". Only the tm_hour,
484		 * tm_min and tm_sec are used.
485		 */
486		unsigned char hrs, min, sec;
487		struct rtc_time alm_tm;
488
489		if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
490				   sizeof(struct rtc_time)))
491			return -EFAULT;
492
493		hrs = alm_tm.tm_hour;
494		min = alm_tm.tm_min;
495		sec = alm_tm.tm_sec;
496
497		spin_lock_irq(&rtc_lock);
498		if (hpet_set_alarm_time(hrs, min, sec)) {
499			/*
500			 * Fallthru and set alarm time in CMOS too,
501			 * so that we will get proper value in RTC_ALM_READ
502			 */
503		}
504		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
505		    RTC_ALWAYS_BCD)
506		{
507			if (sec < 60) BIN_TO_BCD(sec);
508			else sec = 0xff;
509
510			if (min < 60) BIN_TO_BCD(min);
511			else min = 0xff;
512
513			if (hrs < 24) BIN_TO_BCD(hrs);
514			else hrs = 0xff;
515		}
516		CMOS_WRITE(hrs, RTC_HOURS_ALARM);
517		CMOS_WRITE(min, RTC_MINUTES_ALARM);
518		CMOS_WRITE(sec, RTC_SECONDS_ALARM);
519		spin_unlock_irq(&rtc_lock);
520
521		return 0;
522	}
523	case RTC_RD_TIME:	/* Read the time/date from RTC	*/
524	{
525		memset(&wtime, 0, sizeof(struct rtc_time));
526		rtc_get_rtc_time(&wtime);
527		break;
528	}
529	case RTC_SET_TIME:	/* Set the RTC */
530	{
531		struct rtc_time rtc_tm;
532		unsigned char mon, day, hrs, min, sec, leap_yr;
533		unsigned char save_control, save_freq_select;
534		unsigned int yrs;
535#ifdef CONFIG_MACH_DECSTATION
536		unsigned int real_yrs;
537#endif
538
539		if (!capable(CAP_SYS_TIME))
540			return -EACCES;
541
542		if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
543				   sizeof(struct rtc_time)))
544			return -EFAULT;
545
546		yrs = rtc_tm.tm_year + 1900;
547		mon = rtc_tm.tm_mon + 1;   /* tm_mon starts at zero */
548		day = rtc_tm.tm_mday;
549		hrs = rtc_tm.tm_hour;
550		min = rtc_tm.tm_min;
551		sec = rtc_tm.tm_sec;
552
553		if (yrs < 1970)
554			return -EINVAL;
555
556		leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
557
558		if ((mon > 12) || (day == 0))
559			return -EINVAL;
560
561		if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
562			return -EINVAL;
563
564		if ((hrs >= 24) || (min >= 60) || (sec >= 60))
565			return -EINVAL;
566
567		if ((yrs -= epoch) > 255)    /* They are unsigned */
568			return -EINVAL;
569
570		spin_lock_irq(&rtc_lock);
571#ifdef CONFIG_MACH_DECSTATION
572		real_yrs = yrs;
573		yrs = 72;
574
575		/*
576		 * We want to keep the year set to 73 until March
577		 * for non-leap years, so that Feb, 29th is handled
578		 * correctly.
579		 */
580		if (!leap_yr && mon < 3) {
581			real_yrs--;
582			yrs = 73;
583		}
584#endif
585		/* These limits and adjustments are independent of
586		 * whether the chip is in binary mode or not.
587		 */
588		if (yrs > 169) {
589			spin_unlock_irq(&rtc_lock);
590			return -EINVAL;
591		}
592		if (yrs >= 100)
593			yrs -= 100;
594
595		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
596		    || RTC_ALWAYS_BCD) {
597			BIN_TO_BCD(sec);
598			BIN_TO_BCD(min);
599			BIN_TO_BCD(hrs);
600			BIN_TO_BCD(day);
601			BIN_TO_BCD(mon);
602			BIN_TO_BCD(yrs);
603		}
604
605		save_control = CMOS_READ(RTC_CONTROL);
606		CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
607		save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
608		CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
609
610#ifdef CONFIG_MACH_DECSTATION
611		CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
612#endif
613		CMOS_WRITE(yrs, RTC_YEAR);
614		CMOS_WRITE(mon, RTC_MONTH);
615		CMOS_WRITE(day, RTC_DAY_OF_MONTH);
616		CMOS_WRITE(hrs, RTC_HOURS);
617		CMOS_WRITE(min, RTC_MINUTES);
618		CMOS_WRITE(sec, RTC_SECONDS);
619
620		CMOS_WRITE(save_control, RTC_CONTROL);
621		CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
622
623		spin_unlock_irq(&rtc_lock);
624		return 0;
625	}
626#ifdef RTC_IRQ
627	case RTC_IRQP_READ:	/* Read the periodic IRQ rate.	*/
628	{
629		return put_user(rtc_freq, (unsigned long __user *)arg);
630	}
631	case RTC_IRQP_SET:	/* Set periodic IRQ rate.	*/
632	{
633		int tmp = 0;
634		unsigned char val;
635		unsigned long flags; /* can be called from isr via rtc_control() */
636
637		/*
638		 * The max we can do is 8192Hz.
639		 */
640		if ((arg < 2) || (arg > 8192))
641			return -EINVAL;
642		/*
643		 * We don't really want Joe User generating more
644		 * than 64Hz of interrupts on a multi-user machine.
645		 */
646		if (!kernel && (arg > rtc_max_user_freq) && (!capable(CAP_SYS_RESOURCE)))
647			return -EACCES;
648
649		while (arg > (1<<tmp))
650			tmp++;
651
652		/*
653		 * Check that the input was really a power of 2.
654		 */
655		if (arg != (1<<tmp))
656			return -EINVAL;
657
658		spin_lock_irqsave(&rtc_lock, flags);
659		if (hpet_set_periodic_freq(arg)) {
660			spin_unlock_irqrestore(&rtc_lock, flags);
661			return 0;
662		}
663		rtc_freq = arg;
664
665		val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
666		val |= (16 - tmp);
667		CMOS_WRITE(val, RTC_FREQ_SELECT);
668		spin_unlock_irqrestore(&rtc_lock, flags);
669		return 0;
670	}
671#endif
672	case RTC_EPOCH_READ:	/* Read the epoch.	*/
673	{
674		return put_user (epoch, (unsigned long __user *)arg);
675	}
676	case RTC_EPOCH_SET:	/* Set the epoch.	*/
677	{
678		/*
679		 * There were no RTC clocks before 1900.
680		 */
681		if (arg < 1900)
682			return -EINVAL;
683
684		if (!capable(CAP_SYS_TIME))
685			return -EACCES;
686
687		epoch = arg;
688		return 0;
689	}
690	default:
691		return -ENOTTY;
692	}
693	return copy_to_user((void __user *)arg, &wtime, sizeof wtime) ? -EFAULT : 0;
694}
695
696static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
697		     unsigned long arg)
698{
699	return rtc_do_ioctl(cmd, arg, 0);
700}
701
702/*
703 *	We enforce only one user at a time here with the open/close.
704 *	Also clear the previous interrupt data on an open, and clean
705 *	up things on a close.
706 */
707
708/* We use rtc_lock to protect against concurrent opens. So the BKL is not
709 * needed here. Or anywhere else in this driver. */
710static int rtc_open(struct inode *inode, struct file *file)
711{
712	spin_lock_irq (&rtc_lock);
713
714	if(rtc_status & RTC_IS_OPEN)
715		goto out_busy;
716
717	rtc_status |= RTC_IS_OPEN;
718
719	rtc_irq_data = 0;
720	spin_unlock_irq (&rtc_lock);
721	return 0;
722
723out_busy:
724	spin_unlock_irq (&rtc_lock);
725	return -EBUSY;
726}
727
728static int rtc_fasync (int fd, struct file *filp, int on)
729
730{
731	return fasync_helper (fd, filp, on, &rtc_async_queue);
732}
733
734static int rtc_release(struct inode *inode, struct file *file)
735{
736#ifdef RTC_IRQ
737	unsigned char tmp;
738
739	if (rtc_has_irq == 0)
740		goto no_irq;
741
742	/*
743	 * Turn off all interrupts once the device is no longer
744	 * in use, and clear the data.
745	 */
746
747	spin_lock_irq(&rtc_lock);
748	if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
749		tmp = CMOS_READ(RTC_CONTROL);
750		tmp &=  ~RTC_PIE;
751		tmp &=  ~RTC_AIE;
752		tmp &=  ~RTC_UIE;
753		CMOS_WRITE(tmp, RTC_CONTROL);
754		CMOS_READ(RTC_INTR_FLAGS);
755	}
756	if (rtc_status & RTC_TIMER_ON) {
757		rtc_status &= ~RTC_TIMER_ON;
758		del_timer(&rtc_irq_timer);
759	}
760	spin_unlock_irq(&rtc_lock);
761
762	if (file->f_flags & FASYNC) {
763		rtc_fasync (-1, file, 0);
764	}
765no_irq:
766#endif
767
768	spin_lock_irq (&rtc_lock);
769	rtc_irq_data = 0;
770	rtc_status &= ~RTC_IS_OPEN;
771	spin_unlock_irq (&rtc_lock);
772	return 0;
773}
774
775#ifdef RTC_IRQ
776/* Called without the kernel lock - fine */
777static unsigned int rtc_poll(struct file *file, poll_table *wait)
778{
779	unsigned long l;
780
781	if (rtc_has_irq == 0)
782		return 0;
783
784	poll_wait(file, &rtc_wait, wait);
785
786	spin_lock_irq (&rtc_lock);
787	l = rtc_irq_data;
788	spin_unlock_irq (&rtc_lock);
789
790	if (l != 0)
791		return POLLIN | POLLRDNORM;
792	return 0;
793}
794#endif
795
796/*
797 * exported stuffs
798 */
799
800EXPORT_SYMBOL(rtc_register);
801EXPORT_SYMBOL(rtc_unregister);
802EXPORT_SYMBOL(rtc_control);
803
804int rtc_register(rtc_task_t *task)
805{
806#ifndef RTC_IRQ
807	return -EIO;
808#else
809	if (task == NULL || task->func == NULL)
810		return -EINVAL;
811	spin_lock_irq(&rtc_lock);
812	if (rtc_status & RTC_IS_OPEN) {
813		spin_unlock_irq(&rtc_lock);
814		return -EBUSY;
815	}
816	spin_lock(&rtc_task_lock);
817	if (rtc_callback) {
818		spin_unlock(&rtc_task_lock);
819		spin_unlock_irq(&rtc_lock);
820		return -EBUSY;
821	}
822	rtc_status |= RTC_IS_OPEN;
823	rtc_callback = task;
824	spin_unlock(&rtc_task_lock);
825	spin_unlock_irq(&rtc_lock);
826	return 0;
827#endif
828}
829
830int rtc_unregister(rtc_task_t *task)
831{
832#ifndef RTC_IRQ
833	return -EIO;
834#else
835	unsigned char tmp;
836
837	spin_lock_irq(&rtc_lock);
838	spin_lock(&rtc_task_lock);
839	if (rtc_callback != task) {
840		spin_unlock(&rtc_task_lock);
841		spin_unlock_irq(&rtc_lock);
842		return -ENXIO;
843	}
844	rtc_callback = NULL;
845
846	/* disable controls */
847	if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
848		tmp = CMOS_READ(RTC_CONTROL);
849		tmp &= ~RTC_PIE;
850		tmp &= ~RTC_AIE;
851		tmp &= ~RTC_UIE;
852		CMOS_WRITE(tmp, RTC_CONTROL);
853		CMOS_READ(RTC_INTR_FLAGS);
854	}
855	if (rtc_status & RTC_TIMER_ON) {
856		rtc_status &= ~RTC_TIMER_ON;
857		del_timer(&rtc_irq_timer);
858	}
859	rtc_status &= ~RTC_IS_OPEN;
860	spin_unlock(&rtc_task_lock);
861	spin_unlock_irq(&rtc_lock);
862	return 0;
863#endif
864}
865
866int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg)
867{
868#ifndef RTC_IRQ
869	return -EIO;
870#else
871	unsigned long flags;
872	if (cmd != RTC_PIE_ON && cmd != RTC_PIE_OFF && cmd != RTC_IRQP_SET)
873		return -EINVAL;
874	spin_lock_irqsave(&rtc_task_lock, flags);
875	if (rtc_callback != task) {
876		spin_unlock_irqrestore(&rtc_task_lock, flags);
877		return -ENXIO;
878	}
879	spin_unlock_irqrestore(&rtc_task_lock, flags);
880	return rtc_do_ioctl(cmd, arg, 1);
881#endif
882}
883
884
885/*
886 *	The various file operations we support.
887 */
888
889static const struct file_operations rtc_fops = {
890	.owner		= THIS_MODULE,
891	.llseek		= no_llseek,
892	.read		= rtc_read,
893#ifdef RTC_IRQ
894	.poll		= rtc_poll,
895#endif
896	.ioctl		= rtc_ioctl,
897	.open		= rtc_open,
898	.release	= rtc_release,
899	.fasync		= rtc_fasync,
900};
901
902static struct miscdevice rtc_dev = {
903	.minor		= RTC_MINOR,
904	.name		= "rtc",
905	.fops		= &rtc_fops,
906};
907
908static const struct file_operations rtc_proc_fops = {
909	.owner = THIS_MODULE,
910	.open = rtc_proc_open,
911	.read  = seq_read,
912	.llseek = seq_lseek,
913	.release = single_release,
914};
915
916#if defined(RTC_IRQ) && !defined(__sparc__)
917static irqreturn_t (*rtc_int_handler_ptr)(int irq, void *dev_id, struct pt_regs *regs);
918#endif
919
920static int __init rtc_init(void)
921{
922	struct proc_dir_entry *ent;
923#if defined(__alpha__) || defined(__mips__)
924	unsigned int year, ctrl;
925	char *guess = NULL;
926#endif
927#ifdef __sparc__
928	struct linux_ebus *ebus;
929	struct linux_ebus_device *edev;
930#ifdef __sparc_v9__
931	struct sparc_isa_bridge *isa_br;
932	struct sparc_isa_device *isa_dev;
933#endif
934#endif
935#ifndef __sparc__
936	void *r;
937#endif
938
939#ifdef __sparc__
940	for_each_ebus(ebus) {
941		for_each_ebusdev(edev, ebus) {
942			if(strcmp(edev->prom_node->name, "rtc") == 0) {
943				rtc_port = edev->resource[0].start;
944				rtc_irq = edev->irqs[0];
945				goto found;
946			}
947		}
948	}
949#ifdef __sparc_v9__
950	for_each_isa(isa_br) {
951		for_each_isadev(isa_dev, isa_br) {
952			if (strcmp(isa_dev->prom_node->name, "rtc") == 0) {
953				rtc_port = isa_dev->resource.start;
954				rtc_irq = isa_dev->irq;
955				goto found;
956			}
957		}
958	}
959#endif
960	printk(KERN_ERR "rtc_init: no PC rtc found\n");
961	return -EIO;
962
963found:
964	if (rtc_irq == PCI_IRQ_NONE) {
965		rtc_has_irq = 0;
966		goto no_irq;
967	}
968
969	/*
970	 * XXX Interrupt pin #7 in Espresso is shared between RTC and
971	 * PCI Slot 2 INTA# (and some INTx# in Slot 1).
972	 */
973	if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc", (void *)&rtc_port)) {
974		printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
975		return -EIO;
976	}
977no_irq:
978#else
979	if (RTC_IOMAPPED)
980		r = request_region(RTC_PORT(0), RTC_IO_EXTENT, "rtc");
981	else
982		r = request_mem_region(RTC_PORT(0), RTC_IO_EXTENT, "rtc");
983	if (!r) {
984		printk(KERN_ERR "rtc: I/O resource %lx is not free.\n",
985		       (long)(RTC_PORT(0)));
986		return -EIO;
987	}
988
989#ifdef RTC_IRQ
990	if (is_hpet_enabled()) {
991		rtc_int_handler_ptr = hpet_rtc_interrupt;
992	} else {
993		rtc_int_handler_ptr = rtc_interrupt;
994	}
995
996	if(request_irq(RTC_IRQ, rtc_int_handler_ptr, IRQF_DISABLED, "rtc", NULL)) {
997		/* Yeah right, seeing as irq 8 doesn't even hit the bus. */
998		printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
999		if (RTC_IOMAPPED)
1000			release_region(RTC_PORT(0), RTC_IO_EXTENT);
1001		else
1002			release_mem_region(RTC_PORT(0), RTC_IO_EXTENT);
1003		return -EIO;
1004	}
1005	hpet_rtc_timer_init();
1006
1007#endif
1008
1009#endif /* __sparc__ vs. others */
1010
1011	if (misc_register(&rtc_dev)) {
1012#ifdef RTC_IRQ
1013		free_irq(RTC_IRQ, NULL);
1014#endif
1015		release_region(RTC_PORT(0), RTC_IO_EXTENT);
1016		return -ENODEV;
1017	}
1018
1019	ent = create_proc_entry("driver/rtc", 0, NULL);
1020	if (!ent) {
1021#ifdef RTC_IRQ
1022		free_irq(RTC_IRQ, NULL);
1023#endif
1024		release_region(RTC_PORT(0), RTC_IO_EXTENT);
1025		misc_deregister(&rtc_dev);
1026		return -ENOMEM;
1027	}
1028	ent->proc_fops = &rtc_proc_fops;
1029
1030#if defined(__alpha__) || defined(__mips__)
1031	rtc_freq = HZ;
1032
1033	/* Each operating system on an Alpha uses its own epoch.
1034	   Let's try to guess which one we are using now. */
1035
1036	if (rtc_is_updating() != 0)
1037		msleep(20);
1038
1039	spin_lock_irq(&rtc_lock);
1040	year = CMOS_READ(RTC_YEAR);
1041	ctrl = CMOS_READ(RTC_CONTROL);
1042	spin_unlock_irq(&rtc_lock);
1043
1044	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1045		BCD_TO_BIN(year);       /* This should never happen... */
1046
1047	if (year < 20) {
1048		epoch = 2000;
1049		guess = "SRM (post-2000)";
1050	} else if (year >= 20 && year < 48) {
1051		epoch = 1980;
1052		guess = "ARC console";
1053	} else if (year >= 48 && year < 72) {
1054		epoch = 1952;
1055		guess = "Digital UNIX";
1056#if defined(__mips__)
1057	} else if (year >= 72 && year < 74) {
1058		epoch = 2000;
1059		guess = "Digital DECstation";
1060#else
1061	} else if (year >= 70) {
1062		epoch = 1900;
1063		guess = "Standard PC (1900)";
1064#endif
1065	}
1066	if (guess)
1067		printk(KERN_INFO "rtc: %s epoch (%lu) detected\n", guess, epoch);
1068#endif
1069#ifdef RTC_IRQ
1070	if (rtc_has_irq == 0)
1071		goto no_irq2;
1072
1073	init_timer(&rtc_irq_timer);
1074	rtc_irq_timer.function = rtc_dropped_irq;
1075	spin_lock_irq(&rtc_lock);
1076	rtc_freq = 1024;
1077	if (!hpet_set_periodic_freq(rtc_freq)) {
1078		/* Initialize periodic freq. to CMOS reset default, which is 1024Hz */
1079		CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06), RTC_FREQ_SELECT);
1080	}
1081	spin_unlock_irq(&rtc_lock);
1082no_irq2:
1083#endif
1084
1085	(void) init_sysctl();
1086
1087	printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
1088
1089	return 0;
1090}
1091
1092static void __exit rtc_exit (void)
1093{
1094	cleanup_sysctl();
1095	remove_proc_entry ("driver/rtc", NULL);
1096	misc_deregister(&rtc_dev);
1097
1098#ifdef __sparc__
1099	if (rtc_has_irq)
1100		free_irq (rtc_irq, &rtc_port);
1101#else
1102	if (RTC_IOMAPPED)
1103		release_region(RTC_PORT(0), RTC_IO_EXTENT);
1104	else
1105		release_mem_region(RTC_PORT(0), RTC_IO_EXTENT);
1106#ifdef RTC_IRQ
1107	if (rtc_has_irq)
1108		free_irq (RTC_IRQ, NULL);
1109#endif
1110#endif /* __sparc__ */
1111}
1112
1113module_init(rtc_init);
1114module_exit(rtc_exit);
1115
1116#ifdef RTC_IRQ
1117/*
1118 * 	At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
1119 *	(usually during an IDE disk interrupt, with IRQ unmasking off)
1120 *	Since the interrupt handler doesn't get called, the IRQ status
1121 *	byte doesn't get read, and the RTC stops generating interrupts.
1122 *	A timer is set, and will call this function if/when that happens.
1123 *	To get it out of this stalled state, we just read the status.
1124 *	At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
1125 *	(You *really* shouldn't be trying to use a non-realtime system
1126 *	for something that requires a steady > 1KHz signal anyways.)
1127 */
1128
1129static void rtc_dropped_irq(unsigned long data)
1130{
1131	unsigned long freq;
1132
1133	spin_lock_irq (&rtc_lock);
1134
1135	if (hpet_rtc_dropped_irq()) {
1136		spin_unlock_irq(&rtc_lock);
1137		return;
1138	}
1139
1140	/* Just in case someone disabled the timer from behind our back... */
1141	if (rtc_status & RTC_TIMER_ON)
1142		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
1143
1144	rtc_irq_data += ((rtc_freq/HZ)<<8);
1145	rtc_irq_data &= ~0xff;
1146	rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);	/* restart */
1147
1148	freq = rtc_freq;
1149
1150	spin_unlock_irq(&rtc_lock);
1151
1152	printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n", freq);
1153
1154	/* Now we have new data */
1155	wake_up_interruptible(&rtc_wait);
1156
1157	kill_fasync (&rtc_async_queue, SIGIO, POLL_IN);
1158}
1159#endif
1160
1161/*
1162 *	Info exported via "/proc/driver/rtc".
1163 */
1164
1165static int rtc_proc_show(struct seq_file *seq, void *v)
1166{
1167#define YN(bit) ((ctrl & bit) ? "yes" : "no")
1168#define NY(bit) ((ctrl & bit) ? "no" : "yes")
1169	struct rtc_time tm;
1170	unsigned char batt, ctrl;
1171	unsigned long freq;
1172
1173	spin_lock_irq(&rtc_lock);
1174	batt = CMOS_READ(RTC_VALID) & RTC_VRT;
1175	ctrl = CMOS_READ(RTC_CONTROL);
1176	freq = rtc_freq;
1177	spin_unlock_irq(&rtc_lock);
1178
1179
1180	rtc_get_rtc_time(&tm);
1181
1182	/*
1183	 * There is no way to tell if the luser has the RTC set for local
1184	 * time or for Universal Standard Time (GMT). Probably local though.
1185	 */
1186	seq_printf(seq,
1187		   "rtc_time\t: %02d:%02d:%02d\n"
1188		   "rtc_date\t: %04d-%02d-%02d\n"
1189		   "rtc_epoch\t: %04lu\n",
1190		   tm.tm_hour, tm.tm_min, tm.tm_sec,
1191		   tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);
1192
1193	get_rtc_alm_time(&tm);
1194
1195	/*
1196	 * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
1197	 * match any value for that particular field. Values that are
1198	 * greater than a valid time, but less than 0xc0 shouldn't appear.
1199	 */
1200	seq_puts(seq, "alarm\t\t: ");
1201	if (tm.tm_hour <= 24)
1202		seq_printf(seq, "%02d:", tm.tm_hour);
1203	else
1204		seq_puts(seq, "**:");
1205
1206	if (tm.tm_min <= 59)
1207		seq_printf(seq, "%02d:", tm.tm_min);
1208	else
1209		seq_puts(seq, "**:");
1210
1211	if (tm.tm_sec <= 59)
1212		seq_printf(seq, "%02d\n", tm.tm_sec);
1213	else
1214		seq_puts(seq, "**\n");
1215
1216	seq_printf(seq,
1217		   "DST_enable\t: %s\n"
1218		   "BCD\t\t: %s\n"
1219		   "24hr\t\t: %s\n"
1220		   "square_wave\t: %s\n"
1221		   "alarm_IRQ\t: %s\n"
1222		   "update_IRQ\t: %s\n"
1223		   "periodic_IRQ\t: %s\n"
1224		   "periodic_freq\t: %ld\n"
1225		   "batt_status\t: %s\n",
1226		   YN(RTC_DST_EN),
1227		   NY(RTC_DM_BINARY),
1228		   YN(RTC_24H),
1229		   YN(RTC_SQWE),
1230		   YN(RTC_AIE),
1231		   YN(RTC_UIE),
1232		   YN(RTC_PIE),
1233		   freq,
1234		   batt ? "okay" : "dead");
1235
1236	return  0;
1237#undef YN
1238#undef NY
1239}
1240
1241static int rtc_proc_open(struct inode *inode, struct file *file)
1242{
1243	return single_open(file, rtc_proc_show, NULL);
1244}
1245
1246void rtc_get_rtc_time(struct rtc_time *rtc_tm)
1247{
1248	unsigned long uip_watchdog = jiffies, flags;
1249	unsigned char ctrl;
1250#ifdef CONFIG_MACH_DECSTATION
1251	unsigned int real_year;
1252#endif
1253
1254	/*
1255	 * read RTC once any update in progress is done. The update
1256	 * can take just over 2ms. We wait 20ms. There is no need to
1257	 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
1258	 * If you need to know *exactly* when a second has started, enable
1259	 * periodic update complete interrupts, (via ioctl) and then
1260	 * immediately read /dev/rtc which will block until you get the IRQ.
1261	 * Once the read clears, read the RTC time (again via ioctl). Easy.
1262	 */
1263
1264	while (rtc_is_updating() != 0 && jiffies - uip_watchdog < 2*HZ/100) {
1265		barrier();
1266		cpu_relax();
1267	}
1268
1269	/*
1270	 * Only the values that we read from the RTC are set. We leave
1271	 * tm_wday, tm_yday and tm_isdst untouched. Note that while the
1272	 * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
1273	 * only updated by the RTC when initially set to a non-zero value.
1274	 */
1275	spin_lock_irqsave(&rtc_lock, flags);
1276	rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
1277	rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
1278	rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
1279	rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
1280	rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
1281	rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
1282	/* Only set from 2.6.16 onwards */
1283	rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
1284
1285#ifdef CONFIG_MACH_DECSTATION
1286	real_year = CMOS_READ(RTC_DEC_YEAR);
1287#endif
1288	ctrl = CMOS_READ(RTC_CONTROL);
1289	spin_unlock_irqrestore(&rtc_lock, flags);
1290
1291	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1292	{
1293		BCD_TO_BIN(rtc_tm->tm_sec);
1294		BCD_TO_BIN(rtc_tm->tm_min);
1295		BCD_TO_BIN(rtc_tm->tm_hour);
1296		BCD_TO_BIN(rtc_tm->tm_mday);
1297		BCD_TO_BIN(rtc_tm->tm_mon);
1298		BCD_TO_BIN(rtc_tm->tm_year);
1299		BCD_TO_BIN(rtc_tm->tm_wday);
1300	}
1301
1302#ifdef CONFIG_MACH_DECSTATION
1303	rtc_tm->tm_year += real_year - 72;
1304#endif
1305
1306	/*
1307	 * Account for differences between how the RTC uses the values
1308	 * and how they are defined in a struct rtc_time;
1309	 */
1310	if ((rtc_tm->tm_year += (epoch - 1900)) <= 69)
1311		rtc_tm->tm_year += 100;
1312
1313	rtc_tm->tm_mon--;
1314}
1315
1316static void get_rtc_alm_time(struct rtc_time *alm_tm)
1317{
1318	unsigned char ctrl;
1319
1320	/*
1321	 * Only the values that we read from the RTC are set. That
1322	 * means only tm_hour, tm_min, and tm_sec.
1323	 */
1324	spin_lock_irq(&rtc_lock);
1325	alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
1326	alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
1327	alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
1328	ctrl = CMOS_READ(RTC_CONTROL);
1329	spin_unlock_irq(&rtc_lock);
1330
1331	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1332	{
1333		BCD_TO_BIN(alm_tm->tm_sec);
1334		BCD_TO_BIN(alm_tm->tm_min);
1335		BCD_TO_BIN(alm_tm->tm_hour);
1336	}
1337}
1338
1339#ifdef RTC_IRQ
1340/*
1341 * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
1342 * Rumour has it that if you frob the interrupt enable/disable
1343 * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
1344 * ensure you actually start getting interrupts. Probably for
1345 * compatibility with older/broken chipset RTC implementations.
1346 * We also clear out any old irq data after an ioctl() that
1347 * meddles with the interrupt enable/disable bits.
1348 */
1349
1350static void mask_rtc_irq_bit_locked(unsigned char bit)
1351{
1352	unsigned char val;
1353
1354	if (hpet_mask_rtc_irq_bit(bit))
1355		return;
1356	val = CMOS_READ(RTC_CONTROL);
1357	val &=  ~bit;
1358	CMOS_WRITE(val, RTC_CONTROL);
1359	CMOS_READ(RTC_INTR_FLAGS);
1360
1361	rtc_irq_data = 0;
1362}
1363
1364static void set_rtc_irq_bit_locked(unsigned char bit)
1365{
1366	unsigned char val;
1367
1368	if (hpet_set_rtc_irq_bit(bit))
1369		return;
1370	val = CMOS_READ(RTC_CONTROL);
1371	val |= bit;
1372	CMOS_WRITE(val, RTC_CONTROL);
1373	CMOS_READ(RTC_INTR_FLAGS);
1374
1375	rtc_irq_data = 0;
1376}
1377#endif
1378
1379MODULE_AUTHOR("Paul Gortmaker");
1380MODULE_LICENSE("GPL");
1381MODULE_ALIAS_MISCDEV(RTC_MINOR);
1382