rtc.c revision 358333a0cb4a6d279806e38d0368b79066dbe5e7
1/*
2 *	Real Time Clock interface for Linux
3 *
4 *	Copyright (C) 1996 Paul Gortmaker
5 *
6 *	This driver allows use of the real time clock (built into
7 *	nearly all computers) from user space. It exports the /dev/rtc
8 *	interface supporting various ioctl() and also the
9 *	/proc/driver/rtc pseudo-file for status information.
10 *
11 *	The ioctls can be used to set the interrupt behaviour and
12 *	generation rate from the RTC via IRQ 8. Then the /dev/rtc
13 *	interface can be used to make use of these timer interrupts,
14 *	be they interval or alarm based.
15 *
16 *	The /dev/rtc interface will block on reads until an interrupt
17 *	has been received. If a RTC interrupt has already happened,
18 *	it will output an unsigned long and then block. The output value
19 *	contains the interrupt status in the low byte and the number of
20 *	interrupts since the last read in the remaining high bytes. The
21 *	/dev/rtc interface can also be used with the select(2) call.
22 *
23 *	This program is free software; you can redistribute it and/or
24 *	modify it under the terms of the GNU General Public License
25 *	as published by the Free Software Foundation; either version
26 *	2 of the License, or (at your option) any later version.
27 *
28 *	Based on other minimal char device drivers, like Alan's
29 *	watchdog, Ted's random, etc. etc.
30 *
31 *	1.07	Paul Gortmaker.
32 *	1.08	Miquel van Smoorenburg: disallow certain things on the
33 *		DEC Alpha as the CMOS clock is also used for other things.
34 *	1.09	Nikita Schmidt: epoch support and some Alpha cleanup.
35 *	1.09a	Pete Zaitcev: Sun SPARC
36 *	1.09b	Jeff Garzik: Modularize, init cleanup
37 *	1.09c	Jeff Garzik: SMP cleanup
38 *	1.10    Paul Barton-Davis: add support for async I/O
39 *	1.10a	Andrea Arcangeli: Alpha updates
40 *	1.10b	Andrew Morton: SMP lock fix
41 *	1.10c	Cesar Barros: SMP locking fixes and cleanup
42 *	1.10d	Paul Gortmaker: delete paranoia check in rtc_exit
43 *	1.10e	Maciej W. Rozycki: Handle DECstation's year weirdness.
44 *      1.11    Takashi Iwai: Kernel access functions
45 *			      rtc_register/rtc_unregister/rtc_control
46 *      1.11a   Daniele Bellucci: Audit create_proc_read_entry in rtc_init
47 *	1.12	Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
48 *		CONFIG_HPET_EMULATE_RTC
49 *	1.12a	Maciej W. Rozycki: Handle memory-mapped chips properly.
50 *	1.12ac	Alan Cox: Allow read access to the day of week register
51 */
52
53#define RTC_VERSION		"1.12ac"
54
55/*
56 *	Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
57 *	interrupts disabled. Due to the index-port/data-port (0x70/0x71)
58 *	design of the RTC, we don't want two different things trying to
59 *	get to it at once. (e.g. the periodic 11 min sync from time.c vs.
60 *	this driver.)
61 */
62
63#include <linux/interrupt.h>
64#include <linux/module.h>
65#include <linux/kernel.h>
66#include <linux/types.h>
67#include <linux/miscdevice.h>
68#include <linux/ioport.h>
69#include <linux/fcntl.h>
70#include <linux/mc146818rtc.h>
71#include <linux/init.h>
72#include <linux/poll.h>
73#include <linux/proc_fs.h>
74#include <linux/seq_file.h>
75#include <linux/spinlock.h>
76#include <linux/sysctl.h>
77#include <linux/wait.h>
78#include <linux/bcd.h>
79#include <linux/delay.h>
80
81#include <asm/current.h>
82#include <asm/uaccess.h>
83#include <asm/system.h>
84
85#if defined(__i386__)
86#include <asm/hpet.h>
87#endif
88
89#ifdef __sparc__
90#include <linux/pci.h>
91#include <asm/ebus.h>
92#ifdef __sparc_v9__
93#include <asm/isa.h>
94#endif
95
96static unsigned long rtc_port;
97static int rtc_irq = PCI_IRQ_NONE;
98#endif
99
100#ifdef	CONFIG_HPET_RTC_IRQ
101#undef	RTC_IRQ
102#endif
103
104#ifdef RTC_IRQ
105static int rtc_has_irq = 1;
106#endif
107
108#ifndef CONFIG_HPET_EMULATE_RTC
109#define is_hpet_enabled()			0
110#define hpet_set_alarm_time(hrs, min, sec) 	0
111#define hpet_set_periodic_freq(arg) 		0
112#define hpet_mask_rtc_irq_bit(arg) 		0
113#define hpet_set_rtc_irq_bit(arg) 		0
114#define hpet_rtc_timer_init() 			do { } while (0)
115#define hpet_rtc_dropped_irq() 			0
116static inline irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs) {return 0;}
117#else
118extern irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs);
119#endif
120
121/*
122 *	We sponge a minor off of the misc major. No need slurping
123 *	up another valuable major dev number for this. If you add
124 *	an ioctl, make sure you don't conflict with SPARC's RTC
125 *	ioctls.
126 */
127
128static struct fasync_struct *rtc_async_queue;
129
130static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
131
132#ifdef RTC_IRQ
133static struct timer_list rtc_irq_timer;
134#endif
135
136static ssize_t rtc_read(struct file *file, char __user *buf,
137			size_t count, loff_t *ppos);
138
139static int rtc_ioctl(struct inode *inode, struct file *file,
140		     unsigned int cmd, unsigned long arg);
141
142#ifdef RTC_IRQ
143static unsigned int rtc_poll(struct file *file, poll_table *wait);
144#endif
145
146static void get_rtc_alm_time (struct rtc_time *alm_tm);
147#ifdef RTC_IRQ
148static void rtc_dropped_irq(unsigned long data);
149
150static void set_rtc_irq_bit_locked(unsigned char bit);
151static void mask_rtc_irq_bit_locked(unsigned char bit);
152
153static inline void set_rtc_irq_bit(unsigned char bit)
154{
155	spin_lock_irq(&rtc_lock);
156	set_rtc_irq_bit_locked(bit);
157	spin_unlock_irq(&rtc_lock);
158}
159
160static void mask_rtc_irq_bit(unsigned char bit)
161{
162	spin_lock_irq(&rtc_lock);
163	mask_rtc_irq_bit_locked(bit);
164	spin_unlock_irq(&rtc_lock);
165}
166#endif
167
168static int rtc_proc_open(struct inode *inode, struct file *file);
169
170/*
171 *	Bits in rtc_status. (6 bits of room for future expansion)
172 */
173
174#define RTC_IS_OPEN		0x01	/* means /dev/rtc is in use	*/
175#define RTC_TIMER_ON		0x02	/* missed irq timer active	*/
176
177/*
178 * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
179 * protected by the big kernel lock. However, ioctl can still disable the timer
180 * in rtc_status and then with del_timer after the interrupt has read
181 * rtc_status but before mod_timer is called, which would then reenable the
182 * timer (but you would need to have an awful timing before you'd trip on it)
183 */
184static unsigned long rtc_status = 0;	/* bitmapped status byte.	*/
185static unsigned long rtc_freq = 0;	/* Current periodic IRQ rate	*/
186static unsigned long rtc_irq_data = 0;	/* our output to the world	*/
187static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
188
189#ifdef RTC_IRQ
190/*
191 * rtc_task_lock nests inside rtc_lock.
192 */
193static DEFINE_SPINLOCK(rtc_task_lock);
194static rtc_task_t *rtc_callback = NULL;
195#endif
196
197/*
198 *	If this driver ever becomes modularised, it will be really nice
199 *	to make the epoch retain its value across module reload...
200 */
201
202static unsigned long epoch = 1900;	/* year corresponding to 0x00	*/
203
204static const unsigned char days_in_mo[] =
205{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
206
207/*
208 * Returns true if a clock update is in progress
209 */
210static inline unsigned char rtc_is_updating(void)
211{
212	unsigned long flags;
213	unsigned char uip;
214
215	spin_lock_irqsave(&rtc_lock, flags);
216	uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
217	spin_unlock_irqrestore(&rtc_lock, flags);
218	return uip;
219}
220
221#ifdef RTC_IRQ
222/*
223 *	A very tiny interrupt handler. It runs with IRQF_DISABLED set,
224 *	but there is possibility of conflicting with the set_rtc_mmss()
225 *	call (the rtc irq and the timer irq can easily run at the same
226 *	time in two different CPUs). So we need to serialize
227 *	accesses to the chip with the rtc_lock spinlock that each
228 *	architecture should implement in the timer code.
229 *	(See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
230 */
231
232irqreturn_t rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs)
233{
234	/*
235	 *	Can be an alarm interrupt, update complete interrupt,
236	 *	or a periodic interrupt. We store the status in the
237	 *	low byte and the number of interrupts received since
238	 *	the last read in the remainder of rtc_irq_data.
239	 */
240
241	spin_lock (&rtc_lock);
242	rtc_irq_data += 0x100;
243	rtc_irq_data &= ~0xff;
244	if (is_hpet_enabled()) {
245		/*
246		 * In this case it is HPET RTC interrupt handler
247		 * calling us, with the interrupt information
248		 * passed as arg1, instead of irq.
249		 */
250		rtc_irq_data |= (unsigned long)irq & 0xF0;
251	} else {
252		rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
253	}
254
255	if (rtc_status & RTC_TIMER_ON)
256		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
257
258	spin_unlock (&rtc_lock);
259
260	/* Now do the rest of the actions */
261	spin_lock(&rtc_task_lock);
262	if (rtc_callback)
263		rtc_callback->func(rtc_callback->private_data);
264	spin_unlock(&rtc_task_lock);
265	wake_up_interruptible(&rtc_wait);
266
267	kill_fasync (&rtc_async_queue, SIGIO, POLL_IN);
268
269	return IRQ_HANDLED;
270}
271#endif
272
273/*
274 * sysctl-tuning infrastructure.
275 */
276static ctl_table rtc_table[] = {
277	{
278		.ctl_name	= 1,
279		.procname	= "max-user-freq",
280		.data		= &rtc_max_user_freq,
281		.maxlen		= sizeof(int),
282		.mode		= 0644,
283		.proc_handler	= &proc_dointvec,
284	},
285	{ .ctl_name = 0 }
286};
287
288static ctl_table rtc_root[] = {
289	{
290		.ctl_name	= 1,
291		.procname	= "rtc",
292		.maxlen		= 0,
293		.mode		= 0555,
294		.child		= rtc_table,
295	},
296	{ .ctl_name = 0 }
297};
298
299static ctl_table dev_root[] = {
300	{
301		.ctl_name	= CTL_DEV,
302		.procname	= "dev",
303		.maxlen		= 0,
304		.mode		= 0555,
305		.child		= rtc_root,
306	},
307	{ .ctl_name = 0 }
308};
309
310static struct ctl_table_header *sysctl_header;
311
312static int __init init_sysctl(void)
313{
314    sysctl_header = register_sysctl_table(dev_root, 0);
315    return 0;
316}
317
318static void __exit cleanup_sysctl(void)
319{
320    unregister_sysctl_table(sysctl_header);
321}
322
323/*
324 *	Now all the various file operations that we export.
325 */
326
327static ssize_t rtc_read(struct file *file, char __user *buf,
328			size_t count, loff_t *ppos)
329{
330#ifndef RTC_IRQ
331	return -EIO;
332#else
333	DECLARE_WAITQUEUE(wait, current);
334	unsigned long data;
335	ssize_t retval;
336
337	if (rtc_has_irq == 0)
338		return -EIO;
339
340	/*
341	 * Historically this function used to assume that sizeof(unsigned long)
342	 * is the same in userspace and kernelspace.  This lead to problems
343	 * for configurations with multiple ABIs such a the MIPS o32 and 64
344	 * ABIs supported on the same kernel.  So now we support read of both
345	 * 4 and 8 bytes and assume that's the sizeof(unsigned long) in the
346	 * userspace ABI.
347	 */
348	if (count != sizeof(unsigned int) && count !=  sizeof(unsigned long))
349		return -EINVAL;
350
351	add_wait_queue(&rtc_wait, &wait);
352
353	do {
354		/* First make it right. Then make it fast. Putting this whole
355		 * block within the parentheses of a while would be too
356		 * confusing. And no, xchg() is not the answer. */
357
358		__set_current_state(TASK_INTERRUPTIBLE);
359
360		spin_lock_irq (&rtc_lock);
361		data = rtc_irq_data;
362		rtc_irq_data = 0;
363		spin_unlock_irq (&rtc_lock);
364
365		if (data != 0)
366			break;
367
368		if (file->f_flags & O_NONBLOCK) {
369			retval = -EAGAIN;
370			goto out;
371		}
372		if (signal_pending(current)) {
373			retval = -ERESTARTSYS;
374			goto out;
375		}
376		schedule();
377	} while (1);
378
379	if (count == sizeof(unsigned int))
380		retval = put_user(data, (unsigned int __user *)buf) ?: sizeof(int);
381	else
382		retval = put_user(data, (unsigned long __user *)buf) ?: sizeof(long);
383	if (!retval)
384		retval = count;
385 out:
386	current->state = TASK_RUNNING;
387	remove_wait_queue(&rtc_wait, &wait);
388
389	return retval;
390#endif
391}
392
393static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
394{
395	struct rtc_time wtime;
396
397#ifdef RTC_IRQ
398	if (rtc_has_irq == 0) {
399		switch (cmd) {
400		case RTC_AIE_OFF:
401		case RTC_AIE_ON:
402		case RTC_PIE_OFF:
403		case RTC_PIE_ON:
404		case RTC_UIE_OFF:
405		case RTC_UIE_ON:
406		case RTC_IRQP_READ:
407		case RTC_IRQP_SET:
408			return -EINVAL;
409		};
410	}
411#endif
412
413	switch (cmd) {
414#ifdef RTC_IRQ
415	case RTC_AIE_OFF:	/* Mask alarm int. enab. bit	*/
416	{
417		mask_rtc_irq_bit(RTC_AIE);
418		return 0;
419	}
420	case RTC_AIE_ON:	/* Allow alarm interrupts.	*/
421	{
422		set_rtc_irq_bit(RTC_AIE);
423		return 0;
424	}
425	case RTC_PIE_OFF:	/* Mask periodic int. enab. bit	*/
426	{
427		unsigned long flags; /* can be called from isr via rtc_control() */
428		spin_lock_irqsave (&rtc_lock, flags);
429		mask_rtc_irq_bit_locked(RTC_PIE);
430		if (rtc_status & RTC_TIMER_ON) {
431			rtc_status &= ~RTC_TIMER_ON;
432			del_timer(&rtc_irq_timer);
433		}
434		spin_unlock_irqrestore (&rtc_lock, flags);
435		return 0;
436	}
437	case RTC_PIE_ON:	/* Allow periodic ints		*/
438	{
439		unsigned long flags; /* can be called from isr via rtc_control() */
440		/*
441		 * We don't really want Joe User enabling more
442		 * than 64Hz of interrupts on a multi-user machine.
443		 */
444		if (!kernel && (rtc_freq > rtc_max_user_freq) &&
445			(!capable(CAP_SYS_RESOURCE)))
446			return -EACCES;
447
448		spin_lock_irqsave (&rtc_lock, flags);
449		if (!(rtc_status & RTC_TIMER_ON)) {
450			rtc_irq_timer.expires = jiffies + HZ/rtc_freq + 2*HZ/100;
451			add_timer(&rtc_irq_timer);
452			rtc_status |= RTC_TIMER_ON;
453		}
454		set_rtc_irq_bit_locked(RTC_PIE);
455		spin_unlock_irqrestore (&rtc_lock, flags);
456		return 0;
457	}
458	case RTC_UIE_OFF:	/* Mask ints from RTC updates.	*/
459	{
460		mask_rtc_irq_bit(RTC_UIE);
461		return 0;
462	}
463	case RTC_UIE_ON:	/* Allow ints for RTC updates.	*/
464	{
465		set_rtc_irq_bit(RTC_UIE);
466		return 0;
467	}
468#endif
469	case RTC_ALM_READ:	/* Read the present alarm time */
470	{
471		/*
472		 * This returns a struct rtc_time. Reading >= 0xc0
473		 * means "don't care" or "match all". Only the tm_hour,
474		 * tm_min, and tm_sec values are filled in.
475		 */
476		memset(&wtime, 0, sizeof(struct rtc_time));
477		get_rtc_alm_time(&wtime);
478		break;
479	}
480	case RTC_ALM_SET:	/* Store a time into the alarm */
481	{
482		/*
483		 * This expects a struct rtc_time. Writing 0xff means
484		 * "don't care" or "match all". Only the tm_hour,
485		 * tm_min and tm_sec are used.
486		 */
487		unsigned char hrs, min, sec;
488		struct rtc_time alm_tm;
489
490		if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
491				   sizeof(struct rtc_time)))
492			return -EFAULT;
493
494		hrs = alm_tm.tm_hour;
495		min = alm_tm.tm_min;
496		sec = alm_tm.tm_sec;
497
498		spin_lock_irq(&rtc_lock);
499		if (hpet_set_alarm_time(hrs, min, sec)) {
500			/*
501			 * Fallthru and set alarm time in CMOS too,
502			 * so that we will get proper value in RTC_ALM_READ
503			 */
504		}
505		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
506		    RTC_ALWAYS_BCD)
507		{
508			if (sec < 60) BIN_TO_BCD(sec);
509			else sec = 0xff;
510
511			if (min < 60) BIN_TO_BCD(min);
512			else min = 0xff;
513
514			if (hrs < 24) BIN_TO_BCD(hrs);
515			else hrs = 0xff;
516		}
517		CMOS_WRITE(hrs, RTC_HOURS_ALARM);
518		CMOS_WRITE(min, RTC_MINUTES_ALARM);
519		CMOS_WRITE(sec, RTC_SECONDS_ALARM);
520		spin_unlock_irq(&rtc_lock);
521
522		return 0;
523	}
524	case RTC_RD_TIME:	/* Read the time/date from RTC	*/
525	{
526		memset(&wtime, 0, sizeof(struct rtc_time));
527		rtc_get_rtc_time(&wtime);
528		break;
529	}
530	case RTC_SET_TIME:	/* Set the RTC */
531	{
532		struct rtc_time rtc_tm;
533		unsigned char mon, day, hrs, min, sec, leap_yr;
534		unsigned char save_control, save_freq_select;
535		unsigned int yrs;
536#ifdef CONFIG_MACH_DECSTATION
537		unsigned int real_yrs;
538#endif
539
540		if (!capable(CAP_SYS_TIME))
541			return -EACCES;
542
543		if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
544				   sizeof(struct rtc_time)))
545			return -EFAULT;
546
547		yrs = rtc_tm.tm_year + 1900;
548		mon = rtc_tm.tm_mon + 1;   /* tm_mon starts at zero */
549		day = rtc_tm.tm_mday;
550		hrs = rtc_tm.tm_hour;
551		min = rtc_tm.tm_min;
552		sec = rtc_tm.tm_sec;
553
554		if (yrs < 1970)
555			return -EINVAL;
556
557		leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
558
559		if ((mon > 12) || (day == 0))
560			return -EINVAL;
561
562		if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
563			return -EINVAL;
564
565		if ((hrs >= 24) || (min >= 60) || (sec >= 60))
566			return -EINVAL;
567
568		if ((yrs -= epoch) > 255)    /* They are unsigned */
569			return -EINVAL;
570
571		spin_lock_irq(&rtc_lock);
572#ifdef CONFIG_MACH_DECSTATION
573		real_yrs = yrs;
574		yrs = 72;
575
576		/*
577		 * We want to keep the year set to 73 until March
578		 * for non-leap years, so that Feb, 29th is handled
579		 * correctly.
580		 */
581		if (!leap_yr && mon < 3) {
582			real_yrs--;
583			yrs = 73;
584		}
585#endif
586		/* These limits and adjustments are independent of
587		 * whether the chip is in binary mode or not.
588		 */
589		if (yrs > 169) {
590			spin_unlock_irq(&rtc_lock);
591			return -EINVAL;
592		}
593		if (yrs >= 100)
594			yrs -= 100;
595
596		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
597		    || RTC_ALWAYS_BCD) {
598			BIN_TO_BCD(sec);
599			BIN_TO_BCD(min);
600			BIN_TO_BCD(hrs);
601			BIN_TO_BCD(day);
602			BIN_TO_BCD(mon);
603			BIN_TO_BCD(yrs);
604		}
605
606		save_control = CMOS_READ(RTC_CONTROL);
607		CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
608		save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
609		CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
610
611#ifdef CONFIG_MACH_DECSTATION
612		CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
613#endif
614		CMOS_WRITE(yrs, RTC_YEAR);
615		CMOS_WRITE(mon, RTC_MONTH);
616		CMOS_WRITE(day, RTC_DAY_OF_MONTH);
617		CMOS_WRITE(hrs, RTC_HOURS);
618		CMOS_WRITE(min, RTC_MINUTES);
619		CMOS_WRITE(sec, RTC_SECONDS);
620
621		CMOS_WRITE(save_control, RTC_CONTROL);
622		CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
623
624		spin_unlock_irq(&rtc_lock);
625		return 0;
626	}
627#ifdef RTC_IRQ
628	case RTC_IRQP_READ:	/* Read the periodic IRQ rate.	*/
629	{
630		return put_user(rtc_freq, (unsigned long __user *)arg);
631	}
632	case RTC_IRQP_SET:	/* Set periodic IRQ rate.	*/
633	{
634		int tmp = 0;
635		unsigned char val;
636		unsigned long flags; /* can be called from isr via rtc_control() */
637
638		/*
639		 * The max we can do is 8192Hz.
640		 */
641		if ((arg < 2) || (arg > 8192))
642			return -EINVAL;
643		/*
644		 * We don't really want Joe User generating more
645		 * than 64Hz of interrupts on a multi-user machine.
646		 */
647		if (!kernel && (arg > rtc_max_user_freq) && (!capable(CAP_SYS_RESOURCE)))
648			return -EACCES;
649
650		while (arg > (1<<tmp))
651			tmp++;
652
653		/*
654		 * Check that the input was really a power of 2.
655		 */
656		if (arg != (1<<tmp))
657			return -EINVAL;
658
659		spin_lock_irqsave(&rtc_lock, flags);
660		if (hpet_set_periodic_freq(arg)) {
661			spin_unlock_irqrestore(&rtc_lock, flags);
662			return 0;
663		}
664		rtc_freq = arg;
665
666		val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
667		val |= (16 - tmp);
668		CMOS_WRITE(val, RTC_FREQ_SELECT);
669		spin_unlock_irqrestore(&rtc_lock, flags);
670		return 0;
671	}
672#endif
673	case RTC_EPOCH_READ:	/* Read the epoch.	*/
674	{
675		return put_user (epoch, (unsigned long __user *)arg);
676	}
677	case RTC_EPOCH_SET:	/* Set the epoch.	*/
678	{
679		/*
680		 * There were no RTC clocks before 1900.
681		 */
682		if (arg < 1900)
683			return -EINVAL;
684
685		if (!capable(CAP_SYS_TIME))
686			return -EACCES;
687
688		epoch = arg;
689		return 0;
690	}
691	default:
692		return -ENOTTY;
693	}
694	return copy_to_user((void __user *)arg, &wtime, sizeof wtime) ? -EFAULT : 0;
695}
696
697static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
698		     unsigned long arg)
699{
700	return rtc_do_ioctl(cmd, arg, 0);
701}
702
703/*
704 *	We enforce only one user at a time here with the open/close.
705 *	Also clear the previous interrupt data on an open, and clean
706 *	up things on a close.
707 */
708
709/* We use rtc_lock to protect against concurrent opens. So the BKL is not
710 * needed here. Or anywhere else in this driver. */
711static int rtc_open(struct inode *inode, struct file *file)
712{
713	spin_lock_irq (&rtc_lock);
714
715	if(rtc_status & RTC_IS_OPEN)
716		goto out_busy;
717
718	rtc_status |= RTC_IS_OPEN;
719
720	rtc_irq_data = 0;
721	spin_unlock_irq (&rtc_lock);
722	return 0;
723
724out_busy:
725	spin_unlock_irq (&rtc_lock);
726	return -EBUSY;
727}
728
729static int rtc_fasync (int fd, struct file *filp, int on)
730
731{
732	return fasync_helper (fd, filp, on, &rtc_async_queue);
733}
734
735static int rtc_release(struct inode *inode, struct file *file)
736{
737#ifdef RTC_IRQ
738	unsigned char tmp;
739
740	if (rtc_has_irq == 0)
741		goto no_irq;
742
743	/*
744	 * Turn off all interrupts once the device is no longer
745	 * in use, and clear the data.
746	 */
747
748	spin_lock_irq(&rtc_lock);
749	if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
750		tmp = CMOS_READ(RTC_CONTROL);
751		tmp &=  ~RTC_PIE;
752		tmp &=  ~RTC_AIE;
753		tmp &=  ~RTC_UIE;
754		CMOS_WRITE(tmp, RTC_CONTROL);
755		CMOS_READ(RTC_INTR_FLAGS);
756	}
757	if (rtc_status & RTC_TIMER_ON) {
758		rtc_status &= ~RTC_TIMER_ON;
759		del_timer(&rtc_irq_timer);
760	}
761	spin_unlock_irq(&rtc_lock);
762
763	if (file->f_flags & FASYNC) {
764		rtc_fasync (-1, file, 0);
765	}
766no_irq:
767#endif
768
769	spin_lock_irq (&rtc_lock);
770	rtc_irq_data = 0;
771	rtc_status &= ~RTC_IS_OPEN;
772	spin_unlock_irq (&rtc_lock);
773	return 0;
774}
775
776#ifdef RTC_IRQ
777/* Called without the kernel lock - fine */
778static unsigned int rtc_poll(struct file *file, poll_table *wait)
779{
780	unsigned long l;
781
782	if (rtc_has_irq == 0)
783		return 0;
784
785	poll_wait(file, &rtc_wait, wait);
786
787	spin_lock_irq (&rtc_lock);
788	l = rtc_irq_data;
789	spin_unlock_irq (&rtc_lock);
790
791	if (l != 0)
792		return POLLIN | POLLRDNORM;
793	return 0;
794}
795#endif
796
797/*
798 * exported stuffs
799 */
800
801EXPORT_SYMBOL(rtc_register);
802EXPORT_SYMBOL(rtc_unregister);
803EXPORT_SYMBOL(rtc_control);
804
805int rtc_register(rtc_task_t *task)
806{
807#ifndef RTC_IRQ
808	return -EIO;
809#else
810	if (task == NULL || task->func == NULL)
811		return -EINVAL;
812	spin_lock_irq(&rtc_lock);
813	if (rtc_status & RTC_IS_OPEN) {
814		spin_unlock_irq(&rtc_lock);
815		return -EBUSY;
816	}
817	spin_lock(&rtc_task_lock);
818	if (rtc_callback) {
819		spin_unlock(&rtc_task_lock);
820		spin_unlock_irq(&rtc_lock);
821		return -EBUSY;
822	}
823	rtc_status |= RTC_IS_OPEN;
824	rtc_callback = task;
825	spin_unlock(&rtc_task_lock);
826	spin_unlock_irq(&rtc_lock);
827	return 0;
828#endif
829}
830
831int rtc_unregister(rtc_task_t *task)
832{
833#ifndef RTC_IRQ
834	return -EIO;
835#else
836	unsigned char tmp;
837
838	spin_lock_irq(&rtc_lock);
839	spin_lock(&rtc_task_lock);
840	if (rtc_callback != task) {
841		spin_unlock(&rtc_task_lock);
842		spin_unlock_irq(&rtc_lock);
843		return -ENXIO;
844	}
845	rtc_callback = NULL;
846
847	/* disable controls */
848	if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
849		tmp = CMOS_READ(RTC_CONTROL);
850		tmp &= ~RTC_PIE;
851		tmp &= ~RTC_AIE;
852		tmp &= ~RTC_UIE;
853		CMOS_WRITE(tmp, RTC_CONTROL);
854		CMOS_READ(RTC_INTR_FLAGS);
855	}
856	if (rtc_status & RTC_TIMER_ON) {
857		rtc_status &= ~RTC_TIMER_ON;
858		del_timer(&rtc_irq_timer);
859	}
860	rtc_status &= ~RTC_IS_OPEN;
861	spin_unlock(&rtc_task_lock);
862	spin_unlock_irq(&rtc_lock);
863	return 0;
864#endif
865}
866
867int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg)
868{
869#ifndef RTC_IRQ
870	return -EIO;
871#else
872	unsigned long flags;
873	if (cmd != RTC_PIE_ON && cmd != RTC_PIE_OFF && cmd != RTC_IRQP_SET)
874		return -EINVAL;
875	spin_lock_irqsave(&rtc_task_lock, flags);
876	if (rtc_callback != task) {
877		spin_unlock_irqrestore(&rtc_task_lock, flags);
878		return -ENXIO;
879	}
880	spin_unlock_irqrestore(&rtc_task_lock, flags);
881	return rtc_do_ioctl(cmd, arg, 1);
882#endif
883}
884
885
886/*
887 *	The various file operations we support.
888 */
889
890static const struct file_operations rtc_fops = {
891	.owner		= THIS_MODULE,
892	.llseek		= no_llseek,
893	.read		= rtc_read,
894#ifdef RTC_IRQ
895	.poll		= rtc_poll,
896#endif
897	.ioctl		= rtc_ioctl,
898	.open		= rtc_open,
899	.release	= rtc_release,
900	.fasync		= rtc_fasync,
901};
902
903static struct miscdevice rtc_dev = {
904	.minor		= RTC_MINOR,
905	.name		= "rtc",
906	.fops		= &rtc_fops,
907};
908
909static const struct file_operations rtc_proc_fops = {
910	.owner = THIS_MODULE,
911	.open = rtc_proc_open,
912	.read  = seq_read,
913	.llseek = seq_lseek,
914	.release = single_release,
915};
916
917#if defined(RTC_IRQ) && !defined(__sparc__)
918static irqreturn_t (*rtc_int_handler_ptr)(int irq, void *dev_id, struct pt_regs *regs);
919#endif
920
921static int __init rtc_init(void)
922{
923	struct proc_dir_entry *ent;
924#if defined(__alpha__) || defined(__mips__)
925	unsigned int year, ctrl;
926	char *guess = NULL;
927#endif
928#ifdef __sparc__
929	struct linux_ebus *ebus;
930	struct linux_ebus_device *edev;
931#ifdef __sparc_v9__
932	struct sparc_isa_bridge *isa_br;
933	struct sparc_isa_device *isa_dev;
934#endif
935#endif
936#ifndef __sparc__
937	void *r;
938#endif
939
940#ifdef __sparc__
941	for_each_ebus(ebus) {
942		for_each_ebusdev(edev, ebus) {
943			if(strcmp(edev->prom_node->name, "rtc") == 0) {
944				rtc_port = edev->resource[0].start;
945				rtc_irq = edev->irqs[0];
946				goto found;
947			}
948		}
949	}
950#ifdef __sparc_v9__
951	for_each_isa(isa_br) {
952		for_each_isadev(isa_dev, isa_br) {
953			if (strcmp(isa_dev->prom_node->name, "rtc") == 0) {
954				rtc_port = isa_dev->resource.start;
955				rtc_irq = isa_dev->irq;
956				goto found;
957			}
958		}
959	}
960#endif
961	printk(KERN_ERR "rtc_init: no PC rtc found\n");
962	return -EIO;
963
964found:
965	if (rtc_irq == PCI_IRQ_NONE) {
966		rtc_has_irq = 0;
967		goto no_irq;
968	}
969
970	/*
971	 * XXX Interrupt pin #7 in Espresso is shared between RTC and
972	 * PCI Slot 2 INTA# (and some INTx# in Slot 1).
973	 */
974	if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc", (void *)&rtc_port)) {
975		printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
976		return -EIO;
977	}
978no_irq:
979#else
980	if (RTC_IOMAPPED)
981		r = request_region(RTC_PORT(0), RTC_IO_EXTENT, "rtc");
982	else
983		r = request_mem_region(RTC_PORT(0), RTC_IO_EXTENT, "rtc");
984	if (!r) {
985		printk(KERN_ERR "rtc: I/O resource %lx is not free.\n",
986		       (long)(RTC_PORT(0)));
987		return -EIO;
988	}
989
990#ifdef RTC_IRQ
991	if (is_hpet_enabled()) {
992		rtc_int_handler_ptr = hpet_rtc_interrupt;
993	} else {
994		rtc_int_handler_ptr = rtc_interrupt;
995	}
996
997	if(request_irq(RTC_IRQ, rtc_int_handler_ptr, IRQF_DISABLED, "rtc", NULL)) {
998		/* Yeah right, seeing as irq 8 doesn't even hit the bus. */
999		printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
1000		if (RTC_IOMAPPED)
1001			release_region(RTC_PORT(0), RTC_IO_EXTENT);
1002		else
1003			release_mem_region(RTC_PORT(0), RTC_IO_EXTENT);
1004		return -EIO;
1005	}
1006	hpet_rtc_timer_init();
1007
1008#endif
1009
1010#endif /* __sparc__ vs. others */
1011
1012	if (misc_register(&rtc_dev)) {
1013#ifdef RTC_IRQ
1014		free_irq(RTC_IRQ, NULL);
1015#endif
1016		release_region(RTC_PORT(0), RTC_IO_EXTENT);
1017		return -ENODEV;
1018	}
1019
1020	ent = create_proc_entry("driver/rtc", 0, NULL);
1021	if (!ent) {
1022#ifdef RTC_IRQ
1023		free_irq(RTC_IRQ, NULL);
1024#endif
1025		release_region(RTC_PORT(0), RTC_IO_EXTENT);
1026		misc_deregister(&rtc_dev);
1027		return -ENOMEM;
1028	}
1029	ent->proc_fops = &rtc_proc_fops;
1030
1031#if defined(__alpha__) || defined(__mips__)
1032	rtc_freq = HZ;
1033
1034	/* Each operating system on an Alpha uses its own epoch.
1035	   Let's try to guess which one we are using now. */
1036
1037	if (rtc_is_updating() != 0)
1038		msleep(20);
1039
1040	spin_lock_irq(&rtc_lock);
1041	year = CMOS_READ(RTC_YEAR);
1042	ctrl = CMOS_READ(RTC_CONTROL);
1043	spin_unlock_irq(&rtc_lock);
1044
1045	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1046		BCD_TO_BIN(year);       /* This should never happen... */
1047
1048	if (year < 20) {
1049		epoch = 2000;
1050		guess = "SRM (post-2000)";
1051	} else if (year >= 20 && year < 48) {
1052		epoch = 1980;
1053		guess = "ARC console";
1054	} else if (year >= 48 && year < 72) {
1055		epoch = 1952;
1056		guess = "Digital UNIX";
1057#if defined(__mips__)
1058	} else if (year >= 72 && year < 74) {
1059		epoch = 2000;
1060		guess = "Digital DECstation";
1061#else
1062	} else if (year >= 70) {
1063		epoch = 1900;
1064		guess = "Standard PC (1900)";
1065#endif
1066	}
1067	if (guess)
1068		printk(KERN_INFO "rtc: %s epoch (%lu) detected\n", guess, epoch);
1069#endif
1070#ifdef RTC_IRQ
1071	if (rtc_has_irq == 0)
1072		goto no_irq2;
1073
1074	init_timer(&rtc_irq_timer);
1075	rtc_irq_timer.function = rtc_dropped_irq;
1076	spin_lock_irq(&rtc_lock);
1077	rtc_freq = 1024;
1078	if (!hpet_set_periodic_freq(rtc_freq)) {
1079		/* Initialize periodic freq. to CMOS reset default, which is 1024Hz */
1080		CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06), RTC_FREQ_SELECT);
1081	}
1082	spin_unlock_irq(&rtc_lock);
1083no_irq2:
1084#endif
1085
1086	(void) init_sysctl();
1087
1088	printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
1089
1090	return 0;
1091}
1092
1093static void __exit rtc_exit (void)
1094{
1095	cleanup_sysctl();
1096	remove_proc_entry ("driver/rtc", NULL);
1097	misc_deregister(&rtc_dev);
1098
1099#ifdef __sparc__
1100	if (rtc_has_irq)
1101		free_irq (rtc_irq, &rtc_port);
1102#else
1103	if (RTC_IOMAPPED)
1104		release_region(RTC_PORT(0), RTC_IO_EXTENT);
1105	else
1106		release_mem_region(RTC_PORT(0), RTC_IO_EXTENT);
1107#ifdef RTC_IRQ
1108	if (rtc_has_irq)
1109		free_irq (RTC_IRQ, NULL);
1110#endif
1111#endif /* __sparc__ */
1112}
1113
1114module_init(rtc_init);
1115module_exit(rtc_exit);
1116
1117#ifdef RTC_IRQ
1118/*
1119 * 	At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
1120 *	(usually during an IDE disk interrupt, with IRQ unmasking off)
1121 *	Since the interrupt handler doesn't get called, the IRQ status
1122 *	byte doesn't get read, and the RTC stops generating interrupts.
1123 *	A timer is set, and will call this function if/when that happens.
1124 *	To get it out of this stalled state, we just read the status.
1125 *	At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
1126 *	(You *really* shouldn't be trying to use a non-realtime system
1127 *	for something that requires a steady > 1KHz signal anyways.)
1128 */
1129
1130static void rtc_dropped_irq(unsigned long data)
1131{
1132	unsigned long freq;
1133
1134	spin_lock_irq (&rtc_lock);
1135
1136	if (hpet_rtc_dropped_irq()) {
1137		spin_unlock_irq(&rtc_lock);
1138		return;
1139	}
1140
1141	/* Just in case someone disabled the timer from behind our back... */
1142	if (rtc_status & RTC_TIMER_ON)
1143		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
1144
1145	rtc_irq_data += ((rtc_freq/HZ)<<8);
1146	rtc_irq_data &= ~0xff;
1147	rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);	/* restart */
1148
1149	freq = rtc_freq;
1150
1151	spin_unlock_irq(&rtc_lock);
1152
1153	printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n", freq);
1154
1155	/* Now we have new data */
1156	wake_up_interruptible(&rtc_wait);
1157
1158	kill_fasync (&rtc_async_queue, SIGIO, POLL_IN);
1159}
1160#endif
1161
1162/*
1163 *	Info exported via "/proc/driver/rtc".
1164 */
1165
1166static int rtc_proc_show(struct seq_file *seq, void *v)
1167{
1168#define YN(bit) ((ctrl & bit) ? "yes" : "no")
1169#define NY(bit) ((ctrl & bit) ? "no" : "yes")
1170	struct rtc_time tm;
1171	unsigned char batt, ctrl;
1172	unsigned long freq;
1173
1174	spin_lock_irq(&rtc_lock);
1175	batt = CMOS_READ(RTC_VALID) & RTC_VRT;
1176	ctrl = CMOS_READ(RTC_CONTROL);
1177	freq = rtc_freq;
1178	spin_unlock_irq(&rtc_lock);
1179
1180
1181	rtc_get_rtc_time(&tm);
1182
1183	/*
1184	 * There is no way to tell if the luser has the RTC set for local
1185	 * time or for Universal Standard Time (GMT). Probably local though.
1186	 */
1187	seq_printf(seq,
1188		   "rtc_time\t: %02d:%02d:%02d\n"
1189		   "rtc_date\t: %04d-%02d-%02d\n"
1190		   "rtc_epoch\t: %04lu\n",
1191		   tm.tm_hour, tm.tm_min, tm.tm_sec,
1192		   tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);
1193
1194	get_rtc_alm_time(&tm);
1195
1196	/*
1197	 * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
1198	 * match any value for that particular field. Values that are
1199	 * greater than a valid time, but less than 0xc0 shouldn't appear.
1200	 */
1201	seq_puts(seq, "alarm\t\t: ");
1202	if (tm.tm_hour <= 24)
1203		seq_printf(seq, "%02d:", tm.tm_hour);
1204	else
1205		seq_puts(seq, "**:");
1206
1207	if (tm.tm_min <= 59)
1208		seq_printf(seq, "%02d:", tm.tm_min);
1209	else
1210		seq_puts(seq, "**:");
1211
1212	if (tm.tm_sec <= 59)
1213		seq_printf(seq, "%02d\n", tm.tm_sec);
1214	else
1215		seq_puts(seq, "**\n");
1216
1217	seq_printf(seq,
1218		   "DST_enable\t: %s\n"
1219		   "BCD\t\t: %s\n"
1220		   "24hr\t\t: %s\n"
1221		   "square_wave\t: %s\n"
1222		   "alarm_IRQ\t: %s\n"
1223		   "update_IRQ\t: %s\n"
1224		   "periodic_IRQ\t: %s\n"
1225		   "periodic_freq\t: %ld\n"
1226		   "batt_status\t: %s\n",
1227		   YN(RTC_DST_EN),
1228		   NY(RTC_DM_BINARY),
1229		   YN(RTC_24H),
1230		   YN(RTC_SQWE),
1231		   YN(RTC_AIE),
1232		   YN(RTC_UIE),
1233		   YN(RTC_PIE),
1234		   freq,
1235		   batt ? "okay" : "dead");
1236
1237	return  0;
1238#undef YN
1239#undef NY
1240}
1241
1242static int rtc_proc_open(struct inode *inode, struct file *file)
1243{
1244	return single_open(file, rtc_proc_show, NULL);
1245}
1246
1247void rtc_get_rtc_time(struct rtc_time *rtc_tm)
1248{
1249	unsigned long uip_watchdog = jiffies, flags;
1250	unsigned char ctrl;
1251#ifdef CONFIG_MACH_DECSTATION
1252	unsigned int real_year;
1253#endif
1254
1255	/*
1256	 * read RTC once any update in progress is done. The update
1257	 * can take just over 2ms. We wait 20ms. There is no need to
1258	 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
1259	 * If you need to know *exactly* when a second has started, enable
1260	 * periodic update complete interrupts, (via ioctl) and then
1261	 * immediately read /dev/rtc which will block until you get the IRQ.
1262	 * Once the read clears, read the RTC time (again via ioctl). Easy.
1263	 */
1264
1265	while (rtc_is_updating() != 0 && jiffies - uip_watchdog < 2*HZ/100)
1266		cpu_relax();
1267
1268	/*
1269	 * Only the values that we read from the RTC are set. We leave
1270	 * tm_wday, tm_yday and tm_isdst untouched. Note that while the
1271	 * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
1272	 * only updated by the RTC when initially set to a non-zero value.
1273	 */
1274	spin_lock_irqsave(&rtc_lock, flags);
1275	rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
1276	rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
1277	rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
1278	rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
1279	rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
1280	rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
1281	/* Only set from 2.6.16 onwards */
1282	rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
1283
1284#ifdef CONFIG_MACH_DECSTATION
1285	real_year = CMOS_READ(RTC_DEC_YEAR);
1286#endif
1287	ctrl = CMOS_READ(RTC_CONTROL);
1288	spin_unlock_irqrestore(&rtc_lock, flags);
1289
1290	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1291	{
1292		BCD_TO_BIN(rtc_tm->tm_sec);
1293		BCD_TO_BIN(rtc_tm->tm_min);
1294		BCD_TO_BIN(rtc_tm->tm_hour);
1295		BCD_TO_BIN(rtc_tm->tm_mday);
1296		BCD_TO_BIN(rtc_tm->tm_mon);
1297		BCD_TO_BIN(rtc_tm->tm_year);
1298		BCD_TO_BIN(rtc_tm->tm_wday);
1299	}
1300
1301#ifdef CONFIG_MACH_DECSTATION
1302	rtc_tm->tm_year += real_year - 72;
1303#endif
1304
1305	/*
1306	 * Account for differences between how the RTC uses the values
1307	 * and how they are defined in a struct rtc_time;
1308	 */
1309	if ((rtc_tm->tm_year += (epoch - 1900)) <= 69)
1310		rtc_tm->tm_year += 100;
1311
1312	rtc_tm->tm_mon--;
1313}
1314
1315static void get_rtc_alm_time(struct rtc_time *alm_tm)
1316{
1317	unsigned char ctrl;
1318
1319	/*
1320	 * Only the values that we read from the RTC are set. That
1321	 * means only tm_hour, tm_min, and tm_sec.
1322	 */
1323	spin_lock_irq(&rtc_lock);
1324	alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
1325	alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
1326	alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
1327	ctrl = CMOS_READ(RTC_CONTROL);
1328	spin_unlock_irq(&rtc_lock);
1329
1330	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1331	{
1332		BCD_TO_BIN(alm_tm->tm_sec);
1333		BCD_TO_BIN(alm_tm->tm_min);
1334		BCD_TO_BIN(alm_tm->tm_hour);
1335	}
1336}
1337
1338#ifdef RTC_IRQ
1339/*
1340 * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
1341 * Rumour has it that if you frob the interrupt enable/disable
1342 * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
1343 * ensure you actually start getting interrupts. Probably for
1344 * compatibility with older/broken chipset RTC implementations.
1345 * We also clear out any old irq data after an ioctl() that
1346 * meddles with the interrupt enable/disable bits.
1347 */
1348
1349static void mask_rtc_irq_bit_locked(unsigned char bit)
1350{
1351	unsigned char val;
1352
1353	if (hpet_mask_rtc_irq_bit(bit))
1354		return;
1355	val = CMOS_READ(RTC_CONTROL);
1356	val &=  ~bit;
1357	CMOS_WRITE(val, RTC_CONTROL);
1358	CMOS_READ(RTC_INTR_FLAGS);
1359
1360	rtc_irq_data = 0;
1361}
1362
1363static void set_rtc_irq_bit_locked(unsigned char bit)
1364{
1365	unsigned char val;
1366
1367	if (hpet_set_rtc_irq_bit(bit))
1368		return;
1369	val = CMOS_READ(RTC_CONTROL);
1370	val |= bit;
1371	CMOS_WRITE(val, RTC_CONTROL);
1372	CMOS_READ(RTC_INTR_FLAGS);
1373
1374	rtc_irq_data = 0;
1375}
1376#endif
1377
1378MODULE_AUTHOR("Paul Gortmaker");
1379MODULE_LICENSE("GPL");
1380MODULE_ALIAS_MISCDEV(RTC_MINOR);
1381