rtc.c revision a28ee477e5e5e183fa0289841fd90f350a6e0415
1/*
2 *	Real Time Clock interface for Linux
3 *
4 *	Copyright (C) 1996 Paul Gortmaker
5 *
6 *	This driver allows use of the real time clock (built into
7 *	nearly all computers) from user space. It exports the /dev/rtc
8 *	interface supporting various ioctl() and also the
9 *	/proc/driver/rtc pseudo-file for status information.
10 *
11 *	The ioctls can be used to set the interrupt behaviour and
12 *	generation rate from the RTC via IRQ 8. Then the /dev/rtc
13 *	interface can be used to make use of these timer interrupts,
14 *	be they interval or alarm based.
15 *
16 *	The /dev/rtc interface will block on reads until an interrupt
17 *	has been received. If a RTC interrupt has already happened,
18 *	it will output an unsigned long and then block. The output value
19 *	contains the interrupt status in the low byte and the number of
20 *	interrupts since the last read in the remaining high bytes. The
21 *	/dev/rtc interface can also be used with the select(2) call.
22 *
23 *	This program is free software; you can redistribute it and/or
24 *	modify it under the terms of the GNU General Public License
25 *	as published by the Free Software Foundation; either version
26 *	2 of the License, or (at your option) any later version.
27 *
28 *	Based on other minimal char device drivers, like Alan's
29 *	watchdog, Ted's random, etc. etc.
30 *
31 *	1.07	Paul Gortmaker.
32 *	1.08	Miquel van Smoorenburg: disallow certain things on the
33 *		DEC Alpha as the CMOS clock is also used for other things.
34 *	1.09	Nikita Schmidt: epoch support and some Alpha cleanup.
35 *	1.09a	Pete Zaitcev: Sun SPARC
36 *	1.09b	Jeff Garzik: Modularize, init cleanup
37 *	1.09c	Jeff Garzik: SMP cleanup
38 *	1.10	Paul Barton-Davis: add support for async I/O
39 *	1.10a	Andrea Arcangeli: Alpha updates
40 *	1.10b	Andrew Morton: SMP lock fix
41 *	1.10c	Cesar Barros: SMP locking fixes and cleanup
42 *	1.10d	Paul Gortmaker: delete paranoia check in rtc_exit
43 *	1.10e	Maciej W. Rozycki: Handle DECstation's year weirdness.
44 *	1.11	Takashi Iwai: Kernel access functions
45 *			      rtc_register/rtc_unregister/rtc_control
46 *      1.11a   Daniele Bellucci: Audit create_proc_read_entry in rtc_init
47 *	1.12	Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
48 *		CONFIG_HPET_EMULATE_RTC
49 *	1.12a	Maciej W. Rozycki: Handle memory-mapped chips properly.
50 *	1.12ac	Alan Cox: Allow read access to the day of week register
51 *	1.12b	David John: Remove calls to the BKL.
52 */
53
54#define RTC_VERSION		"1.12b"
55
56/*
57 *	Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
58 *	interrupts disabled. Due to the index-port/data-port (0x70/0x71)
59 *	design of the RTC, we don't want two different things trying to
60 *	get to it at once. (e.g. the periodic 11 min sync from time.c vs.
61 *	this driver.)
62 */
63
64#include <linux/interrupt.h>
65#include <linux/module.h>
66#include <linux/kernel.h>
67#include <linux/types.h>
68#include <linux/miscdevice.h>
69#include <linux/ioport.h>
70#include <linux/fcntl.h>
71#include <linux/mc146818rtc.h>
72#include <linux/init.h>
73#include <linux/poll.h>
74#include <linux/proc_fs.h>
75#include <linux/seq_file.h>
76#include <linux/spinlock.h>
77#include <linux/sched.h>
78#include <linux/sysctl.h>
79#include <linux/wait.h>
80#include <linux/bcd.h>
81#include <linux/delay.h>
82#include <linux/uaccess.h>
83#include <linux/ratelimit.h>
84
85#include <asm/current.h>
86#include <asm/system.h>
87
88#ifdef CONFIG_X86
89#include <asm/hpet.h>
90#endif
91
92#ifdef CONFIG_SPARC32
93#include <linux/of.h>
94#include <linux/of_device.h>
95#include <asm/io.h>
96
97static unsigned long rtc_port;
98static int rtc_irq;
99#endif
100
101#ifdef	CONFIG_HPET_EMULATE_RTC
102#undef	RTC_IRQ
103#endif
104
105#ifdef RTC_IRQ
106static int rtc_has_irq = 1;
107#endif
108
109#ifndef CONFIG_HPET_EMULATE_RTC
110#define is_hpet_enabled()			0
111#define hpet_set_alarm_time(hrs, min, sec)	0
112#define hpet_set_periodic_freq(arg)		0
113#define hpet_mask_rtc_irq_bit(arg)		0
114#define hpet_set_rtc_irq_bit(arg)		0
115#define hpet_rtc_timer_init()			do { } while (0)
116#define hpet_rtc_dropped_irq()			0
117#define hpet_register_irq_handler(h)		({ 0; })
118#define hpet_unregister_irq_handler(h)		({ 0; })
119#ifdef RTC_IRQ
120static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
121{
122	return 0;
123}
124#endif
125#endif
126
127/*
128 *	We sponge a minor off of the misc major. No need slurping
129 *	up another valuable major dev number for this. If you add
130 *	an ioctl, make sure you don't conflict with SPARC's RTC
131 *	ioctls.
132 */
133
134static struct fasync_struct *rtc_async_queue;
135
136static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
137
138#ifdef RTC_IRQ
139static void rtc_dropped_irq(unsigned long data);
140
141static DEFINE_TIMER(rtc_irq_timer, rtc_dropped_irq, 0, 0);
142#endif
143
144static ssize_t rtc_read(struct file *file, char __user *buf,
145			size_t count, loff_t *ppos);
146
147static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
148static void rtc_get_rtc_time(struct rtc_time *rtc_tm);
149
150#ifdef RTC_IRQ
151static unsigned int rtc_poll(struct file *file, poll_table *wait);
152#endif
153
154static void get_rtc_alm_time(struct rtc_time *alm_tm);
155#ifdef RTC_IRQ
156static void set_rtc_irq_bit_locked(unsigned char bit);
157static void mask_rtc_irq_bit_locked(unsigned char bit);
158
159static inline void set_rtc_irq_bit(unsigned char bit)
160{
161	spin_lock_irq(&rtc_lock);
162	set_rtc_irq_bit_locked(bit);
163	spin_unlock_irq(&rtc_lock);
164}
165
166static void mask_rtc_irq_bit(unsigned char bit)
167{
168	spin_lock_irq(&rtc_lock);
169	mask_rtc_irq_bit_locked(bit);
170	spin_unlock_irq(&rtc_lock);
171}
172#endif
173
174#ifdef CONFIG_PROC_FS
175static int rtc_proc_open(struct inode *inode, struct file *file);
176#endif
177
178/*
179 *	Bits in rtc_status. (6 bits of room for future expansion)
180 */
181
182#define RTC_IS_OPEN		0x01	/* means /dev/rtc is in use	*/
183#define RTC_TIMER_ON		0x02	/* missed irq timer active	*/
184
185/*
186 * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
187 * protected by the spin lock rtc_lock. However, ioctl can still disable the
188 * timer in rtc_status and then with del_timer after the interrupt has read
189 * rtc_status but before mod_timer is called, which would then reenable the
190 * timer (but you would need to have an awful timing before you'd trip on it)
191 */
192static unsigned long rtc_status;	/* bitmapped status byte.	*/
193static unsigned long rtc_freq;		/* Current periodic IRQ rate	*/
194static unsigned long rtc_irq_data;	/* our output to the world	*/
195static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
196
197#ifdef RTC_IRQ
198/*
199 * rtc_task_lock nests inside rtc_lock.
200 */
201static DEFINE_SPINLOCK(rtc_task_lock);
202static rtc_task_t *rtc_callback;
203#endif
204
205/*
206 *	If this driver ever becomes modularised, it will be really nice
207 *	to make the epoch retain its value across module reload...
208 */
209
210static unsigned long epoch = 1900;	/* year corresponding to 0x00	*/
211
212static const unsigned char days_in_mo[] =
213{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
214
215/*
216 * Returns true if a clock update is in progress
217 */
218static inline unsigned char rtc_is_updating(void)
219{
220	unsigned long flags;
221	unsigned char uip;
222
223	spin_lock_irqsave(&rtc_lock, flags);
224	uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
225	spin_unlock_irqrestore(&rtc_lock, flags);
226	return uip;
227}
228
229#ifdef RTC_IRQ
230/*
231 *	A very tiny interrupt handler. It runs with IRQF_DISABLED set,
232 *	but there is possibility of conflicting with the set_rtc_mmss()
233 *	call (the rtc irq and the timer irq can easily run at the same
234 *	time in two different CPUs). So we need to serialize
235 *	accesses to the chip with the rtc_lock spinlock that each
236 *	architecture should implement in the timer code.
237 *	(See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
238 */
239
240static irqreturn_t rtc_interrupt(int irq, void *dev_id)
241{
242	/*
243	 *	Can be an alarm interrupt, update complete interrupt,
244	 *	or a periodic interrupt. We store the status in the
245	 *	low byte and the number of interrupts received since
246	 *	the last read in the remainder of rtc_irq_data.
247	 */
248
249	spin_lock(&rtc_lock);
250	rtc_irq_data += 0x100;
251	rtc_irq_data &= ~0xff;
252	if (is_hpet_enabled()) {
253		/*
254		 * In this case it is HPET RTC interrupt handler
255		 * calling us, with the interrupt information
256		 * passed as arg1, instead of irq.
257		 */
258		rtc_irq_data |= (unsigned long)irq & 0xF0;
259	} else {
260		rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
261	}
262
263	if (rtc_status & RTC_TIMER_ON)
264		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
265
266	spin_unlock(&rtc_lock);
267
268	/* Now do the rest of the actions */
269	spin_lock(&rtc_task_lock);
270	if (rtc_callback)
271		rtc_callback->func(rtc_callback->private_data);
272	spin_unlock(&rtc_task_lock);
273	wake_up_interruptible(&rtc_wait);
274
275	kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
276
277	return IRQ_HANDLED;
278}
279#endif
280
281/*
282 * sysctl-tuning infrastructure.
283 */
284static ctl_table rtc_table[] = {
285	{
286		.procname	= "max-user-freq",
287		.data		= &rtc_max_user_freq,
288		.maxlen		= sizeof(int),
289		.mode		= 0644,
290		.proc_handler	= proc_dointvec,
291	},
292	{ }
293};
294
295static ctl_table rtc_root[] = {
296	{
297		.procname	= "rtc",
298		.mode		= 0555,
299		.child		= rtc_table,
300	},
301	{ }
302};
303
304static ctl_table dev_root[] = {
305	{
306		.procname	= "dev",
307		.mode		= 0555,
308		.child		= rtc_root,
309	},
310	{ }
311};
312
313static struct ctl_table_header *sysctl_header;
314
315static int __init init_sysctl(void)
316{
317    sysctl_header = register_sysctl_table(dev_root);
318    return 0;
319}
320
321static void __exit cleanup_sysctl(void)
322{
323    unregister_sysctl_table(sysctl_header);
324}
325
326/*
327 *	Now all the various file operations that we export.
328 */
329
330static ssize_t rtc_read(struct file *file, char __user *buf,
331			size_t count, loff_t *ppos)
332{
333#ifndef RTC_IRQ
334	return -EIO;
335#else
336	DECLARE_WAITQUEUE(wait, current);
337	unsigned long data;
338	ssize_t retval;
339
340	if (rtc_has_irq == 0)
341		return -EIO;
342
343	/*
344	 * Historically this function used to assume that sizeof(unsigned long)
345	 * is the same in userspace and kernelspace.  This lead to problems
346	 * for configurations with multiple ABIs such a the MIPS o32 and 64
347	 * ABIs supported on the same kernel.  So now we support read of both
348	 * 4 and 8 bytes and assume that's the sizeof(unsigned long) in the
349	 * userspace ABI.
350	 */
351	if (count != sizeof(unsigned int) && count !=  sizeof(unsigned long))
352		return -EINVAL;
353
354	add_wait_queue(&rtc_wait, &wait);
355
356	do {
357		/* First make it right. Then make it fast. Putting this whole
358		 * block within the parentheses of a while would be too
359		 * confusing. And no, xchg() is not the answer. */
360
361		__set_current_state(TASK_INTERRUPTIBLE);
362
363		spin_lock_irq(&rtc_lock);
364		data = rtc_irq_data;
365		rtc_irq_data = 0;
366		spin_unlock_irq(&rtc_lock);
367
368		if (data != 0)
369			break;
370
371		if (file->f_flags & O_NONBLOCK) {
372			retval = -EAGAIN;
373			goto out;
374		}
375		if (signal_pending(current)) {
376			retval = -ERESTARTSYS;
377			goto out;
378		}
379		schedule();
380	} while (1);
381
382	if (count == sizeof(unsigned int)) {
383		retval = put_user(data,
384				  (unsigned int __user *)buf) ?: sizeof(int);
385	} else {
386		retval = put_user(data,
387				  (unsigned long __user *)buf) ?: sizeof(long);
388	}
389	if (!retval)
390		retval = count;
391 out:
392	__set_current_state(TASK_RUNNING);
393	remove_wait_queue(&rtc_wait, &wait);
394
395	return retval;
396#endif
397}
398
399static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
400{
401	struct rtc_time wtime;
402
403#ifdef RTC_IRQ
404	if (rtc_has_irq == 0) {
405		switch (cmd) {
406		case RTC_AIE_OFF:
407		case RTC_AIE_ON:
408		case RTC_PIE_OFF:
409		case RTC_PIE_ON:
410		case RTC_UIE_OFF:
411		case RTC_UIE_ON:
412		case RTC_IRQP_READ:
413		case RTC_IRQP_SET:
414			return -EINVAL;
415		};
416	}
417#endif
418
419	switch (cmd) {
420#ifdef RTC_IRQ
421	case RTC_AIE_OFF:	/* Mask alarm int. enab. bit	*/
422	{
423		mask_rtc_irq_bit(RTC_AIE);
424		return 0;
425	}
426	case RTC_AIE_ON:	/* Allow alarm interrupts.	*/
427	{
428		set_rtc_irq_bit(RTC_AIE);
429		return 0;
430	}
431	case RTC_PIE_OFF:	/* Mask periodic int. enab. bit	*/
432	{
433		/* can be called from isr via rtc_control() */
434		unsigned long flags;
435
436		spin_lock_irqsave(&rtc_lock, flags);
437		mask_rtc_irq_bit_locked(RTC_PIE);
438		if (rtc_status & RTC_TIMER_ON) {
439			rtc_status &= ~RTC_TIMER_ON;
440			del_timer(&rtc_irq_timer);
441		}
442		spin_unlock_irqrestore(&rtc_lock, flags);
443
444		return 0;
445	}
446	case RTC_PIE_ON:	/* Allow periodic ints		*/
447	{
448		/* can be called from isr via rtc_control() */
449		unsigned long flags;
450
451		/*
452		 * We don't really want Joe User enabling more
453		 * than 64Hz of interrupts on a multi-user machine.
454		 */
455		if (!kernel && (rtc_freq > rtc_max_user_freq) &&
456						(!capable(CAP_SYS_RESOURCE)))
457			return -EACCES;
458
459		spin_lock_irqsave(&rtc_lock, flags);
460		if (!(rtc_status & RTC_TIMER_ON)) {
461			mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq +
462					2*HZ/100);
463			rtc_status |= RTC_TIMER_ON;
464		}
465		set_rtc_irq_bit_locked(RTC_PIE);
466		spin_unlock_irqrestore(&rtc_lock, flags);
467
468		return 0;
469	}
470	case RTC_UIE_OFF:	/* Mask ints from RTC updates.	*/
471	{
472		mask_rtc_irq_bit(RTC_UIE);
473		return 0;
474	}
475	case RTC_UIE_ON:	/* Allow ints for RTC updates.	*/
476	{
477		set_rtc_irq_bit(RTC_UIE);
478		return 0;
479	}
480#endif
481	case RTC_ALM_READ:	/* Read the present alarm time */
482	{
483		/*
484		 * This returns a struct rtc_time. Reading >= 0xc0
485		 * means "don't care" or "match all". Only the tm_hour,
486		 * tm_min, and tm_sec values are filled in.
487		 */
488		memset(&wtime, 0, sizeof(struct rtc_time));
489		get_rtc_alm_time(&wtime);
490		break;
491	}
492	case RTC_ALM_SET:	/* Store a time into the alarm */
493	{
494		/*
495		 * This expects a struct rtc_time. Writing 0xff means
496		 * "don't care" or "match all". Only the tm_hour,
497		 * tm_min and tm_sec are used.
498		 */
499		unsigned char hrs, min, sec;
500		struct rtc_time alm_tm;
501
502		if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
503				   sizeof(struct rtc_time)))
504			return -EFAULT;
505
506		hrs = alm_tm.tm_hour;
507		min = alm_tm.tm_min;
508		sec = alm_tm.tm_sec;
509
510		spin_lock_irq(&rtc_lock);
511		if (hpet_set_alarm_time(hrs, min, sec)) {
512			/*
513			 * Fallthru and set alarm time in CMOS too,
514			 * so that we will get proper value in RTC_ALM_READ
515			 */
516		}
517		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
518							RTC_ALWAYS_BCD) {
519			if (sec < 60)
520				sec = bin2bcd(sec);
521			else
522				sec = 0xff;
523
524			if (min < 60)
525				min = bin2bcd(min);
526			else
527				min = 0xff;
528
529			if (hrs < 24)
530				hrs = bin2bcd(hrs);
531			else
532				hrs = 0xff;
533		}
534		CMOS_WRITE(hrs, RTC_HOURS_ALARM);
535		CMOS_WRITE(min, RTC_MINUTES_ALARM);
536		CMOS_WRITE(sec, RTC_SECONDS_ALARM);
537		spin_unlock_irq(&rtc_lock);
538
539		return 0;
540	}
541	case RTC_RD_TIME:	/* Read the time/date from RTC	*/
542	{
543		memset(&wtime, 0, sizeof(struct rtc_time));
544		rtc_get_rtc_time(&wtime);
545		break;
546	}
547	case RTC_SET_TIME:	/* Set the RTC */
548	{
549		struct rtc_time rtc_tm;
550		unsigned char mon, day, hrs, min, sec, leap_yr;
551		unsigned char save_control, save_freq_select;
552		unsigned int yrs;
553#ifdef CONFIG_MACH_DECSTATION
554		unsigned int real_yrs;
555#endif
556
557		if (!capable(CAP_SYS_TIME))
558			return -EACCES;
559
560		if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
561				   sizeof(struct rtc_time)))
562			return -EFAULT;
563
564		yrs = rtc_tm.tm_year + 1900;
565		mon = rtc_tm.tm_mon + 1;   /* tm_mon starts at zero */
566		day = rtc_tm.tm_mday;
567		hrs = rtc_tm.tm_hour;
568		min = rtc_tm.tm_min;
569		sec = rtc_tm.tm_sec;
570
571		if (yrs < 1970)
572			return -EINVAL;
573
574		leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
575
576		if ((mon > 12) || (day == 0))
577			return -EINVAL;
578
579		if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
580			return -EINVAL;
581
582		if ((hrs >= 24) || (min >= 60) || (sec >= 60))
583			return -EINVAL;
584
585		yrs -= epoch;
586		if (yrs > 255)		/* They are unsigned */
587			return -EINVAL;
588
589		spin_lock_irq(&rtc_lock);
590#ifdef CONFIG_MACH_DECSTATION
591		real_yrs = yrs;
592		yrs = 72;
593
594		/*
595		 * We want to keep the year set to 73 until March
596		 * for non-leap years, so that Feb, 29th is handled
597		 * correctly.
598		 */
599		if (!leap_yr && mon < 3) {
600			real_yrs--;
601			yrs = 73;
602		}
603#endif
604		/* These limits and adjustments are independent of
605		 * whether the chip is in binary mode or not.
606		 */
607		if (yrs > 169) {
608			spin_unlock_irq(&rtc_lock);
609			return -EINVAL;
610		}
611		if (yrs >= 100)
612			yrs -= 100;
613
614		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
615		    || RTC_ALWAYS_BCD) {
616			sec = bin2bcd(sec);
617			min = bin2bcd(min);
618			hrs = bin2bcd(hrs);
619			day = bin2bcd(day);
620			mon = bin2bcd(mon);
621			yrs = bin2bcd(yrs);
622		}
623
624		save_control = CMOS_READ(RTC_CONTROL);
625		CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
626		save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
627		CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
628
629#ifdef CONFIG_MACH_DECSTATION
630		CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
631#endif
632		CMOS_WRITE(yrs, RTC_YEAR);
633		CMOS_WRITE(mon, RTC_MONTH);
634		CMOS_WRITE(day, RTC_DAY_OF_MONTH);
635		CMOS_WRITE(hrs, RTC_HOURS);
636		CMOS_WRITE(min, RTC_MINUTES);
637		CMOS_WRITE(sec, RTC_SECONDS);
638
639		CMOS_WRITE(save_control, RTC_CONTROL);
640		CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
641
642		spin_unlock_irq(&rtc_lock);
643		return 0;
644	}
645#ifdef RTC_IRQ
646	case RTC_IRQP_READ:	/* Read the periodic IRQ rate.	*/
647	{
648		return put_user(rtc_freq, (unsigned long __user *)arg);
649	}
650	case RTC_IRQP_SET:	/* Set periodic IRQ rate.	*/
651	{
652		int tmp = 0;
653		unsigned char val;
654		/* can be called from isr via rtc_control() */
655		unsigned long flags;
656
657		/*
658		 * The max we can do is 8192Hz.
659		 */
660		if ((arg < 2) || (arg > 8192))
661			return -EINVAL;
662		/*
663		 * We don't really want Joe User generating more
664		 * than 64Hz of interrupts on a multi-user machine.
665		 */
666		if (!kernel && (arg > rtc_max_user_freq) &&
667					!capable(CAP_SYS_RESOURCE))
668			return -EACCES;
669
670		while (arg > (1<<tmp))
671			tmp++;
672
673		/*
674		 * Check that the input was really a power of 2.
675		 */
676		if (arg != (1<<tmp))
677			return -EINVAL;
678
679		rtc_freq = arg;
680
681		spin_lock_irqsave(&rtc_lock, flags);
682		if (hpet_set_periodic_freq(arg)) {
683			spin_unlock_irqrestore(&rtc_lock, flags);
684			return 0;
685		}
686
687		val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
688		val |= (16 - tmp);
689		CMOS_WRITE(val, RTC_FREQ_SELECT);
690		spin_unlock_irqrestore(&rtc_lock, flags);
691		return 0;
692	}
693#endif
694	case RTC_EPOCH_READ:	/* Read the epoch.	*/
695	{
696		return put_user(epoch, (unsigned long __user *)arg);
697	}
698	case RTC_EPOCH_SET:	/* Set the epoch.	*/
699	{
700		/*
701		 * There were no RTC clocks before 1900.
702		 */
703		if (arg < 1900)
704			return -EINVAL;
705
706		if (!capable(CAP_SYS_TIME))
707			return -EACCES;
708
709		epoch = arg;
710		return 0;
711	}
712	default:
713		return -ENOTTY;
714	}
715	return copy_to_user((void __user *)arg,
716			    &wtime, sizeof wtime) ? -EFAULT : 0;
717}
718
719static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
720{
721	long ret;
722	ret = rtc_do_ioctl(cmd, arg, 0);
723	return ret;
724}
725
726/*
727 *	We enforce only one user at a time here with the open/close.
728 *	Also clear the previous interrupt data on an open, and clean
729 *	up things on a close.
730 */
731static int rtc_open(struct inode *inode, struct file *file)
732{
733	spin_lock_irq(&rtc_lock);
734
735	if (rtc_status & RTC_IS_OPEN)
736		goto out_busy;
737
738	rtc_status |= RTC_IS_OPEN;
739
740	rtc_irq_data = 0;
741	spin_unlock_irq(&rtc_lock);
742	return 0;
743
744out_busy:
745	spin_unlock_irq(&rtc_lock);
746	return -EBUSY;
747}
748
749static int rtc_fasync(int fd, struct file *filp, int on)
750{
751	return fasync_helper(fd, filp, on, &rtc_async_queue);
752}
753
754static int rtc_release(struct inode *inode, struct file *file)
755{
756#ifdef RTC_IRQ
757	unsigned char tmp;
758
759	if (rtc_has_irq == 0)
760		goto no_irq;
761
762	/*
763	 * Turn off all interrupts once the device is no longer
764	 * in use, and clear the data.
765	 */
766
767	spin_lock_irq(&rtc_lock);
768	if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
769		tmp = CMOS_READ(RTC_CONTROL);
770		tmp &=  ~RTC_PIE;
771		tmp &=  ~RTC_AIE;
772		tmp &=  ~RTC_UIE;
773		CMOS_WRITE(tmp, RTC_CONTROL);
774		CMOS_READ(RTC_INTR_FLAGS);
775	}
776	if (rtc_status & RTC_TIMER_ON) {
777		rtc_status &= ~RTC_TIMER_ON;
778		del_timer(&rtc_irq_timer);
779	}
780	spin_unlock_irq(&rtc_lock);
781
782no_irq:
783#endif
784
785	spin_lock_irq(&rtc_lock);
786	rtc_irq_data = 0;
787	rtc_status &= ~RTC_IS_OPEN;
788	spin_unlock_irq(&rtc_lock);
789
790	return 0;
791}
792
793#ifdef RTC_IRQ
794static unsigned int rtc_poll(struct file *file, poll_table *wait)
795{
796	unsigned long l;
797
798	if (rtc_has_irq == 0)
799		return 0;
800
801	poll_wait(file, &rtc_wait, wait);
802
803	spin_lock_irq(&rtc_lock);
804	l = rtc_irq_data;
805	spin_unlock_irq(&rtc_lock);
806
807	if (l != 0)
808		return POLLIN | POLLRDNORM;
809	return 0;
810}
811#endif
812
813int rtc_register(rtc_task_t *task)
814{
815#ifndef RTC_IRQ
816	return -EIO;
817#else
818	if (task == NULL || task->func == NULL)
819		return -EINVAL;
820	spin_lock_irq(&rtc_lock);
821	if (rtc_status & RTC_IS_OPEN) {
822		spin_unlock_irq(&rtc_lock);
823		return -EBUSY;
824	}
825	spin_lock(&rtc_task_lock);
826	if (rtc_callback) {
827		spin_unlock(&rtc_task_lock);
828		spin_unlock_irq(&rtc_lock);
829		return -EBUSY;
830	}
831	rtc_status |= RTC_IS_OPEN;
832	rtc_callback = task;
833	spin_unlock(&rtc_task_lock);
834	spin_unlock_irq(&rtc_lock);
835	return 0;
836#endif
837}
838EXPORT_SYMBOL(rtc_register);
839
840int rtc_unregister(rtc_task_t *task)
841{
842#ifndef RTC_IRQ
843	return -EIO;
844#else
845	unsigned char tmp;
846
847	spin_lock_irq(&rtc_lock);
848	spin_lock(&rtc_task_lock);
849	if (rtc_callback != task) {
850		spin_unlock(&rtc_task_lock);
851		spin_unlock_irq(&rtc_lock);
852		return -ENXIO;
853	}
854	rtc_callback = NULL;
855
856	/* disable controls */
857	if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
858		tmp = CMOS_READ(RTC_CONTROL);
859		tmp &= ~RTC_PIE;
860		tmp &= ~RTC_AIE;
861		tmp &= ~RTC_UIE;
862		CMOS_WRITE(tmp, RTC_CONTROL);
863		CMOS_READ(RTC_INTR_FLAGS);
864	}
865	if (rtc_status & RTC_TIMER_ON) {
866		rtc_status &= ~RTC_TIMER_ON;
867		del_timer(&rtc_irq_timer);
868	}
869	rtc_status &= ~RTC_IS_OPEN;
870	spin_unlock(&rtc_task_lock);
871	spin_unlock_irq(&rtc_lock);
872	return 0;
873#endif
874}
875EXPORT_SYMBOL(rtc_unregister);
876
877int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg)
878{
879#ifndef RTC_IRQ
880	return -EIO;
881#else
882	unsigned long flags;
883	if (cmd != RTC_PIE_ON && cmd != RTC_PIE_OFF && cmd != RTC_IRQP_SET)
884		return -EINVAL;
885	spin_lock_irqsave(&rtc_task_lock, flags);
886	if (rtc_callback != task) {
887		spin_unlock_irqrestore(&rtc_task_lock, flags);
888		return -ENXIO;
889	}
890	spin_unlock_irqrestore(&rtc_task_lock, flags);
891	return rtc_do_ioctl(cmd, arg, 1);
892#endif
893}
894EXPORT_SYMBOL(rtc_control);
895
896/*
897 *	The various file operations we support.
898 */
899
900static const struct file_operations rtc_fops = {
901	.owner		= THIS_MODULE,
902	.llseek		= no_llseek,
903	.read		= rtc_read,
904#ifdef RTC_IRQ
905	.poll		= rtc_poll,
906#endif
907	.unlocked_ioctl	= rtc_ioctl,
908	.open		= rtc_open,
909	.release	= rtc_release,
910	.fasync		= rtc_fasync,
911};
912
913static struct miscdevice rtc_dev = {
914	.minor		= RTC_MINOR,
915	.name		= "rtc",
916	.fops		= &rtc_fops,
917};
918
919#ifdef CONFIG_PROC_FS
920static const struct file_operations rtc_proc_fops = {
921	.owner		= THIS_MODULE,
922	.open		= rtc_proc_open,
923	.read		= seq_read,
924	.llseek		= seq_lseek,
925	.release	= single_release,
926};
927#endif
928
929static resource_size_t rtc_size;
930
931static struct resource * __init rtc_request_region(resource_size_t size)
932{
933	struct resource *r;
934
935	if (RTC_IOMAPPED)
936		r = request_region(RTC_PORT(0), size, "rtc");
937	else
938		r = request_mem_region(RTC_PORT(0), size, "rtc");
939
940	if (r)
941		rtc_size = size;
942
943	return r;
944}
945
946static void rtc_release_region(void)
947{
948	if (RTC_IOMAPPED)
949		release_region(RTC_PORT(0), rtc_size);
950	else
951		release_mem_region(RTC_PORT(0), rtc_size);
952}
953
954static int __init rtc_init(void)
955{
956#ifdef CONFIG_PROC_FS
957	struct proc_dir_entry *ent;
958#endif
959#if defined(__alpha__) || defined(__mips__)
960	unsigned int year, ctrl;
961	char *guess = NULL;
962#endif
963#ifdef CONFIG_SPARC32
964	struct device_node *ebus_dp;
965	struct platform_device *op;
966#else
967	void *r;
968#ifdef RTC_IRQ
969	irq_handler_t rtc_int_handler_ptr;
970#endif
971#endif
972
973#ifdef CONFIG_SPARC32
974	for_each_node_by_name(ebus_dp, "ebus") {
975		struct device_node *dp;
976		for (dp = ebus_dp; dp; dp = dp->sibling) {
977			if (!strcmp(dp->name, "rtc")) {
978				op = of_find_device_by_node(dp);
979				if (op) {
980					rtc_port = op->resource[0].start;
981					rtc_irq = op->irqs[0];
982					goto found;
983				}
984			}
985		}
986	}
987	rtc_has_irq = 0;
988	printk(KERN_ERR "rtc_init: no PC rtc found\n");
989	return -EIO;
990
991found:
992	if (!rtc_irq) {
993		rtc_has_irq = 0;
994		goto no_irq;
995	}
996
997	/*
998	 * XXX Interrupt pin #7 in Espresso is shared between RTC and
999	 * PCI Slot 2 INTA# (and some INTx# in Slot 1).
1000	 */
1001	if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc",
1002			(void *)&rtc_port)) {
1003		rtc_has_irq = 0;
1004		printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
1005		return -EIO;
1006	}
1007no_irq:
1008#else
1009	r = rtc_request_region(RTC_IO_EXTENT);
1010
1011	/*
1012	 * If we've already requested a smaller range (for example, because
1013	 * PNPBIOS or ACPI told us how the device is configured), the request
1014	 * above might fail because it's too big.
1015	 *
1016	 * If so, request just the range we actually use.
1017	 */
1018	if (!r)
1019		r = rtc_request_region(RTC_IO_EXTENT_USED);
1020	if (!r) {
1021#ifdef RTC_IRQ
1022		rtc_has_irq = 0;
1023#endif
1024		printk(KERN_ERR "rtc: I/O resource %lx is not free.\n",
1025		       (long)(RTC_PORT(0)));
1026		return -EIO;
1027	}
1028
1029#ifdef RTC_IRQ
1030	if (is_hpet_enabled()) {
1031		int err;
1032
1033		rtc_int_handler_ptr = hpet_rtc_interrupt;
1034		err = hpet_register_irq_handler(rtc_interrupt);
1035		if (err != 0) {
1036			printk(KERN_WARNING "hpet_register_irq_handler failed "
1037					"in rtc_init().");
1038			return err;
1039		}
1040	} else {
1041		rtc_int_handler_ptr = rtc_interrupt;
1042	}
1043
1044	if (request_irq(RTC_IRQ, rtc_int_handler_ptr, IRQF_DISABLED,
1045			"rtc", NULL)) {
1046		/* Yeah right, seeing as irq 8 doesn't even hit the bus. */
1047		rtc_has_irq = 0;
1048		printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
1049		rtc_release_region();
1050
1051		return -EIO;
1052	}
1053	hpet_rtc_timer_init();
1054
1055#endif
1056
1057#endif /* CONFIG_SPARC32 vs. others */
1058
1059	if (misc_register(&rtc_dev)) {
1060#ifdef RTC_IRQ
1061		free_irq(RTC_IRQ, NULL);
1062		hpet_unregister_irq_handler(rtc_interrupt);
1063		rtc_has_irq = 0;
1064#endif
1065		rtc_release_region();
1066		return -ENODEV;
1067	}
1068
1069#ifdef CONFIG_PROC_FS
1070	ent = proc_create("driver/rtc", 0, NULL, &rtc_proc_fops);
1071	if (!ent)
1072		printk(KERN_WARNING "rtc: Failed to register with procfs.\n");
1073#endif
1074
1075#if defined(__alpha__) || defined(__mips__)
1076	rtc_freq = HZ;
1077
1078	/* Each operating system on an Alpha uses its own epoch.
1079	   Let's try to guess which one we are using now. */
1080
1081	if (rtc_is_updating() != 0)
1082		msleep(20);
1083
1084	spin_lock_irq(&rtc_lock);
1085	year = CMOS_READ(RTC_YEAR);
1086	ctrl = CMOS_READ(RTC_CONTROL);
1087	spin_unlock_irq(&rtc_lock);
1088
1089	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1090		year = bcd2bin(year);       /* This should never happen... */
1091
1092	if (year < 20) {
1093		epoch = 2000;
1094		guess = "SRM (post-2000)";
1095	} else if (year >= 20 && year < 48) {
1096		epoch = 1980;
1097		guess = "ARC console";
1098	} else if (year >= 48 && year < 72) {
1099		epoch = 1952;
1100		guess = "Digital UNIX";
1101#if defined(__mips__)
1102	} else if (year >= 72 && year < 74) {
1103		epoch = 2000;
1104		guess = "Digital DECstation";
1105#else
1106	} else if (year >= 70) {
1107		epoch = 1900;
1108		guess = "Standard PC (1900)";
1109#endif
1110	}
1111	if (guess)
1112		printk(KERN_INFO "rtc: %s epoch (%lu) detected\n",
1113			guess, epoch);
1114#endif
1115#ifdef RTC_IRQ
1116	if (rtc_has_irq == 0)
1117		goto no_irq2;
1118
1119	spin_lock_irq(&rtc_lock);
1120	rtc_freq = 1024;
1121	if (!hpet_set_periodic_freq(rtc_freq)) {
1122		/*
1123		 * Initialize periodic frequency to CMOS reset default,
1124		 * which is 1024Hz
1125		 */
1126		CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06),
1127			   RTC_FREQ_SELECT);
1128	}
1129	spin_unlock_irq(&rtc_lock);
1130no_irq2:
1131#endif
1132
1133	(void) init_sysctl();
1134
1135	printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
1136
1137	return 0;
1138}
1139
1140static void __exit rtc_exit(void)
1141{
1142	cleanup_sysctl();
1143	remove_proc_entry("driver/rtc", NULL);
1144	misc_deregister(&rtc_dev);
1145
1146#ifdef CONFIG_SPARC32
1147	if (rtc_has_irq)
1148		free_irq(rtc_irq, &rtc_port);
1149#else
1150	rtc_release_region();
1151#ifdef RTC_IRQ
1152	if (rtc_has_irq) {
1153		free_irq(RTC_IRQ, NULL);
1154		hpet_unregister_irq_handler(hpet_rtc_interrupt);
1155	}
1156#endif
1157#endif /* CONFIG_SPARC32 */
1158}
1159
1160module_init(rtc_init);
1161module_exit(rtc_exit);
1162
1163#ifdef RTC_IRQ
1164/*
1165 *	At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
1166 *	(usually during an IDE disk interrupt, with IRQ unmasking off)
1167 *	Since the interrupt handler doesn't get called, the IRQ status
1168 *	byte doesn't get read, and the RTC stops generating interrupts.
1169 *	A timer is set, and will call this function if/when that happens.
1170 *	To get it out of this stalled state, we just read the status.
1171 *	At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
1172 *	(You *really* shouldn't be trying to use a non-realtime system
1173 *	for something that requires a steady > 1KHz signal anyways.)
1174 */
1175
1176static void rtc_dropped_irq(unsigned long data)
1177{
1178	unsigned long freq;
1179
1180	spin_lock_irq(&rtc_lock);
1181
1182	if (hpet_rtc_dropped_irq()) {
1183		spin_unlock_irq(&rtc_lock);
1184		return;
1185	}
1186
1187	/* Just in case someone disabled the timer from behind our back... */
1188	if (rtc_status & RTC_TIMER_ON)
1189		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
1190
1191	rtc_irq_data += ((rtc_freq/HZ)<<8);
1192	rtc_irq_data &= ~0xff;
1193	rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);	/* restart */
1194
1195	freq = rtc_freq;
1196
1197	spin_unlock_irq(&rtc_lock);
1198
1199	printk_ratelimited(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
1200			   freq);
1201
1202	/* Now we have new data */
1203	wake_up_interruptible(&rtc_wait);
1204
1205	kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
1206}
1207#endif
1208
1209#ifdef CONFIG_PROC_FS
1210/*
1211 *	Info exported via "/proc/driver/rtc".
1212 */
1213
1214static int rtc_proc_show(struct seq_file *seq, void *v)
1215{
1216#define YN(bit) ((ctrl & bit) ? "yes" : "no")
1217#define NY(bit) ((ctrl & bit) ? "no" : "yes")
1218	struct rtc_time tm;
1219	unsigned char batt, ctrl;
1220	unsigned long freq;
1221
1222	spin_lock_irq(&rtc_lock);
1223	batt = CMOS_READ(RTC_VALID) & RTC_VRT;
1224	ctrl = CMOS_READ(RTC_CONTROL);
1225	freq = rtc_freq;
1226	spin_unlock_irq(&rtc_lock);
1227
1228
1229	rtc_get_rtc_time(&tm);
1230
1231	/*
1232	 * There is no way to tell if the luser has the RTC set for local
1233	 * time or for Universal Standard Time (GMT). Probably local though.
1234	 */
1235	seq_printf(seq,
1236		   "rtc_time\t: %02d:%02d:%02d\n"
1237		   "rtc_date\t: %04d-%02d-%02d\n"
1238		   "rtc_epoch\t: %04lu\n",
1239		   tm.tm_hour, tm.tm_min, tm.tm_sec,
1240		   tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);
1241
1242	get_rtc_alm_time(&tm);
1243
1244	/*
1245	 * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
1246	 * match any value for that particular field. Values that are
1247	 * greater than a valid time, but less than 0xc0 shouldn't appear.
1248	 */
1249	seq_puts(seq, "alarm\t\t: ");
1250	if (tm.tm_hour <= 24)
1251		seq_printf(seq, "%02d:", tm.tm_hour);
1252	else
1253		seq_puts(seq, "**:");
1254
1255	if (tm.tm_min <= 59)
1256		seq_printf(seq, "%02d:", tm.tm_min);
1257	else
1258		seq_puts(seq, "**:");
1259
1260	if (tm.tm_sec <= 59)
1261		seq_printf(seq, "%02d\n", tm.tm_sec);
1262	else
1263		seq_puts(seq, "**\n");
1264
1265	seq_printf(seq,
1266		   "DST_enable\t: %s\n"
1267		   "BCD\t\t: %s\n"
1268		   "24hr\t\t: %s\n"
1269		   "square_wave\t: %s\n"
1270		   "alarm_IRQ\t: %s\n"
1271		   "update_IRQ\t: %s\n"
1272		   "periodic_IRQ\t: %s\n"
1273		   "periodic_freq\t: %ld\n"
1274		   "batt_status\t: %s\n",
1275		   YN(RTC_DST_EN),
1276		   NY(RTC_DM_BINARY),
1277		   YN(RTC_24H),
1278		   YN(RTC_SQWE),
1279		   YN(RTC_AIE),
1280		   YN(RTC_UIE),
1281		   YN(RTC_PIE),
1282		   freq,
1283		   batt ? "okay" : "dead");
1284
1285	return  0;
1286#undef YN
1287#undef NY
1288}
1289
1290static int rtc_proc_open(struct inode *inode, struct file *file)
1291{
1292	return single_open(file, rtc_proc_show, NULL);
1293}
1294#endif
1295
1296static void rtc_get_rtc_time(struct rtc_time *rtc_tm)
1297{
1298	unsigned long uip_watchdog = jiffies, flags;
1299	unsigned char ctrl;
1300#ifdef CONFIG_MACH_DECSTATION
1301	unsigned int real_year;
1302#endif
1303
1304	/*
1305	 * read RTC once any update in progress is done. The update
1306	 * can take just over 2ms. We wait 20ms. There is no need to
1307	 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
1308	 * If you need to know *exactly* when a second has started, enable
1309	 * periodic update complete interrupts, (via ioctl) and then
1310	 * immediately read /dev/rtc which will block until you get the IRQ.
1311	 * Once the read clears, read the RTC time (again via ioctl). Easy.
1312	 */
1313
1314	while (rtc_is_updating() != 0 &&
1315	       time_before(jiffies, uip_watchdog + 2*HZ/100))
1316		cpu_relax();
1317
1318	/*
1319	 * Only the values that we read from the RTC are set. We leave
1320	 * tm_wday, tm_yday and tm_isdst untouched. Note that while the
1321	 * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
1322	 * only updated by the RTC when initially set to a non-zero value.
1323	 */
1324	spin_lock_irqsave(&rtc_lock, flags);
1325	rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
1326	rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
1327	rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
1328	rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
1329	rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
1330	rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
1331	/* Only set from 2.6.16 onwards */
1332	rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
1333
1334#ifdef CONFIG_MACH_DECSTATION
1335	real_year = CMOS_READ(RTC_DEC_YEAR);
1336#endif
1337	ctrl = CMOS_READ(RTC_CONTROL);
1338	spin_unlock_irqrestore(&rtc_lock, flags);
1339
1340	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1341		rtc_tm->tm_sec = bcd2bin(rtc_tm->tm_sec);
1342		rtc_tm->tm_min = bcd2bin(rtc_tm->tm_min);
1343		rtc_tm->tm_hour = bcd2bin(rtc_tm->tm_hour);
1344		rtc_tm->tm_mday = bcd2bin(rtc_tm->tm_mday);
1345		rtc_tm->tm_mon = bcd2bin(rtc_tm->tm_mon);
1346		rtc_tm->tm_year = bcd2bin(rtc_tm->tm_year);
1347		rtc_tm->tm_wday = bcd2bin(rtc_tm->tm_wday);
1348	}
1349
1350#ifdef CONFIG_MACH_DECSTATION
1351	rtc_tm->tm_year += real_year - 72;
1352#endif
1353
1354	/*
1355	 * Account for differences between how the RTC uses the values
1356	 * and how they are defined in a struct rtc_time;
1357	 */
1358	rtc_tm->tm_year += epoch - 1900;
1359	if (rtc_tm->tm_year <= 69)
1360		rtc_tm->tm_year += 100;
1361
1362	rtc_tm->tm_mon--;
1363}
1364
1365static void get_rtc_alm_time(struct rtc_time *alm_tm)
1366{
1367	unsigned char ctrl;
1368
1369	/*
1370	 * Only the values that we read from the RTC are set. That
1371	 * means only tm_hour, tm_min, and tm_sec.
1372	 */
1373	spin_lock_irq(&rtc_lock);
1374	alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
1375	alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
1376	alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
1377	ctrl = CMOS_READ(RTC_CONTROL);
1378	spin_unlock_irq(&rtc_lock);
1379
1380	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1381		alm_tm->tm_sec = bcd2bin(alm_tm->tm_sec);
1382		alm_tm->tm_min = bcd2bin(alm_tm->tm_min);
1383		alm_tm->tm_hour = bcd2bin(alm_tm->tm_hour);
1384	}
1385}
1386
1387#ifdef RTC_IRQ
1388/*
1389 * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
1390 * Rumour has it that if you frob the interrupt enable/disable
1391 * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
1392 * ensure you actually start getting interrupts. Probably for
1393 * compatibility with older/broken chipset RTC implementations.
1394 * We also clear out any old irq data after an ioctl() that
1395 * meddles with the interrupt enable/disable bits.
1396 */
1397
1398static void mask_rtc_irq_bit_locked(unsigned char bit)
1399{
1400	unsigned char val;
1401
1402	if (hpet_mask_rtc_irq_bit(bit))
1403		return;
1404	val = CMOS_READ(RTC_CONTROL);
1405	val &=  ~bit;
1406	CMOS_WRITE(val, RTC_CONTROL);
1407	CMOS_READ(RTC_INTR_FLAGS);
1408
1409	rtc_irq_data = 0;
1410}
1411
1412static void set_rtc_irq_bit_locked(unsigned char bit)
1413{
1414	unsigned char val;
1415
1416	if (hpet_set_rtc_irq_bit(bit))
1417		return;
1418	val = CMOS_READ(RTC_CONTROL);
1419	val |= bit;
1420	CMOS_WRITE(val, RTC_CONTROL);
1421	CMOS_READ(RTC_INTR_FLAGS);
1422
1423	rtc_irq_data = 0;
1424}
1425#endif
1426
1427MODULE_AUTHOR("Paul Gortmaker");
1428MODULE_LICENSE("GPL");
1429MODULE_ALIAS_MISCDEV(RTC_MINOR);
1430