rtc.c revision b7599587faea9403edf4d7f74e80b3c9ea217930
1/*
2 *	Real Time Clock interface for Linux
3 *
4 *	Copyright (C) 1996 Paul Gortmaker
5 *
6 *	This driver allows use of the real time clock (built into
7 *	nearly all computers) from user space. It exports the /dev/rtc
8 *	interface supporting various ioctl() and also the
9 *	/proc/driver/rtc pseudo-file for status information.
10 *
11 *	The ioctls can be used to set the interrupt behaviour and
12 *	generation rate from the RTC via IRQ 8. Then the /dev/rtc
13 *	interface can be used to make use of these timer interrupts,
14 *	be they interval or alarm based.
15 *
16 *	The /dev/rtc interface will block on reads until an interrupt
17 *	has been received. If a RTC interrupt has already happened,
18 *	it will output an unsigned long and then block. The output value
19 *	contains the interrupt status in the low byte and the number of
20 *	interrupts since the last read in the remaining high bytes. The
21 *	/dev/rtc interface can also be used with the select(2) call.
22 *
23 *	This program is free software; you can redistribute it and/or
24 *	modify it under the terms of the GNU General Public License
25 *	as published by the Free Software Foundation; either version
26 *	2 of the License, or (at your option) any later version.
27 *
28 *	Based on other minimal char device drivers, like Alan's
29 *	watchdog, Ted's random, etc. etc.
30 *
31 *	1.07	Paul Gortmaker.
32 *	1.08	Miquel van Smoorenburg: disallow certain things on the
33 *		DEC Alpha as the CMOS clock is also used for other things.
34 *	1.09	Nikita Schmidt: epoch support and some Alpha cleanup.
35 *	1.09a	Pete Zaitcev: Sun SPARC
36 *	1.09b	Jeff Garzik: Modularize, init cleanup
37 *	1.09c	Jeff Garzik: SMP cleanup
38 *	1.10    Paul Barton-Davis: add support for async I/O
39 *	1.10a	Andrea Arcangeli: Alpha updates
40 *	1.10b	Andrew Morton: SMP lock fix
41 *	1.10c	Cesar Barros: SMP locking fixes and cleanup
42 *	1.10d	Paul Gortmaker: delete paranoia check in rtc_exit
43 *	1.10e	Maciej W. Rozycki: Handle DECstation's year weirdness.
44 *      1.11    Takashi Iwai: Kernel access functions
45 *			      rtc_register/rtc_unregister/rtc_control
46 *      1.11a   Daniele Bellucci: Audit create_proc_read_entry in rtc_init
47 *	1.12	Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
48 *		CONFIG_HPET_EMULATE_RTC
49 *	1.12ac	Alan Cox: Allow read access to the day of week register
50 */
51
52#define RTC_VERSION		"1.12ac"
53
54#define RTC_IO_EXTENT	0x8
55
56/*
57 *	Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
58 *	interrupts disabled. Due to the index-port/data-port (0x70/0x71)
59 *	design of the RTC, we don't want two different things trying to
60 *	get to it at once. (e.g. the periodic 11 min sync from time.c vs.
61 *	this driver.)
62 */
63
64#include <linux/config.h>
65#include <linux/interrupt.h>
66#include <linux/module.h>
67#include <linux/kernel.h>
68#include <linux/types.h>
69#include <linux/miscdevice.h>
70#include <linux/ioport.h>
71#include <linux/fcntl.h>
72#include <linux/mc146818rtc.h>
73#include <linux/init.h>
74#include <linux/poll.h>
75#include <linux/proc_fs.h>
76#include <linux/seq_file.h>
77#include <linux/spinlock.h>
78#include <linux/sysctl.h>
79#include <linux/wait.h>
80#include <linux/bcd.h>
81#include <linux/delay.h>
82
83#include <asm/current.h>
84#include <asm/uaccess.h>
85#include <asm/system.h>
86
87#if defined(__i386__)
88#include <asm/hpet.h>
89#endif
90
91#ifdef __sparc__
92#include <linux/pci.h>
93#include <asm/ebus.h>
94#ifdef __sparc_v9__
95#include <asm/isa.h>
96#endif
97
98static unsigned long rtc_port;
99static int rtc_irq = PCI_IRQ_NONE;
100#endif
101
102#ifdef	CONFIG_HPET_RTC_IRQ
103#undef	RTC_IRQ
104#endif
105
106#ifdef RTC_IRQ
107static int rtc_has_irq = 1;
108#endif
109
110#ifndef CONFIG_HPET_EMULATE_RTC
111#define is_hpet_enabled()			0
112#define hpet_set_alarm_time(hrs, min, sec) 	0
113#define hpet_set_periodic_freq(arg) 		0
114#define hpet_mask_rtc_irq_bit(arg) 		0
115#define hpet_set_rtc_irq_bit(arg) 		0
116#define hpet_rtc_timer_init() 			do { } while (0)
117#define hpet_rtc_dropped_irq() 			0
118static inline irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs) {return 0;}
119#else
120extern irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs);
121#endif
122
123/*
124 *	We sponge a minor off of the misc major. No need slurping
125 *	up another valuable major dev number for this. If you add
126 *	an ioctl, make sure you don't conflict with SPARC's RTC
127 *	ioctls.
128 */
129
130static struct fasync_struct *rtc_async_queue;
131
132static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
133
134#ifdef RTC_IRQ
135static struct timer_list rtc_irq_timer;
136#endif
137
138static ssize_t rtc_read(struct file *file, char __user *buf,
139			size_t count, loff_t *ppos);
140
141static int rtc_ioctl(struct inode *inode, struct file *file,
142		     unsigned int cmd, unsigned long arg);
143
144#ifdef RTC_IRQ
145static unsigned int rtc_poll(struct file *file, poll_table *wait);
146#endif
147
148static void get_rtc_alm_time (struct rtc_time *alm_tm);
149#ifdef RTC_IRQ
150static void rtc_dropped_irq(unsigned long data);
151
152static void set_rtc_irq_bit_locked(unsigned char bit);
153static void mask_rtc_irq_bit_locked(unsigned char bit);
154
155static inline void set_rtc_irq_bit(unsigned char bit)
156{
157	spin_lock_irq(&rtc_lock);
158	set_rtc_irq_bit_locked(bit);
159	spin_unlock_irq(&rtc_lock);
160}
161
162static void mask_rtc_irq_bit(unsigned char bit)
163{
164	spin_lock_irq(&rtc_lock);
165	mask_rtc_irq_bit_locked(bit);
166	spin_unlock_irq(&rtc_lock);
167}
168#endif
169
170static int rtc_proc_open(struct inode *inode, struct file *file);
171
172/*
173 *	Bits in rtc_status. (6 bits of room for future expansion)
174 */
175
176#define RTC_IS_OPEN		0x01	/* means /dev/rtc is in use	*/
177#define RTC_TIMER_ON		0x02	/* missed irq timer active	*/
178
179/*
180 * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
181 * protected by the big kernel lock. However, ioctl can still disable the timer
182 * in rtc_status and then with del_timer after the interrupt has read
183 * rtc_status but before mod_timer is called, which would then reenable the
184 * timer (but you would need to have an awful timing before you'd trip on it)
185 */
186static unsigned long rtc_status = 0;	/* bitmapped status byte.	*/
187static unsigned long rtc_freq = 0;	/* Current periodic IRQ rate	*/
188static unsigned long rtc_irq_data = 0;	/* our output to the world	*/
189static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
190
191#ifdef RTC_IRQ
192/*
193 * rtc_task_lock nests inside rtc_lock.
194 */
195static DEFINE_SPINLOCK(rtc_task_lock);
196static rtc_task_t *rtc_callback = NULL;
197#endif
198
199/*
200 *	If this driver ever becomes modularised, it will be really nice
201 *	to make the epoch retain its value across module reload...
202 */
203
204static unsigned long epoch = 1900;	/* year corresponding to 0x00	*/
205
206static const unsigned char days_in_mo[] =
207{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
208
209/*
210 * Returns true if a clock update is in progress
211 */
212static inline unsigned char rtc_is_updating(void)
213{
214	unsigned char uip;
215
216	spin_lock_irq(&rtc_lock);
217	uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
218	spin_unlock_irq(&rtc_lock);
219	return uip;
220}
221
222#ifdef RTC_IRQ
223/*
224 *	A very tiny interrupt handler. It runs with SA_INTERRUPT set,
225 *	but there is possibility of conflicting with the set_rtc_mmss()
226 *	call (the rtc irq and the timer irq can easily run at the same
227 *	time in two different CPUs). So we need to serialize
228 *	accesses to the chip with the rtc_lock spinlock that each
229 *	architecture should implement in the timer code.
230 *	(See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
231 */
232
233irqreturn_t rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs)
234{
235	/*
236	 *	Can be an alarm interrupt, update complete interrupt,
237	 *	or a periodic interrupt. We store the status in the
238	 *	low byte and the number of interrupts received since
239	 *	the last read in the remainder of rtc_irq_data.
240	 */
241
242	spin_lock (&rtc_lock);
243	rtc_irq_data += 0x100;
244	rtc_irq_data &= ~0xff;
245	if (is_hpet_enabled()) {
246		/*
247		 * In this case it is HPET RTC interrupt handler
248		 * calling us, with the interrupt information
249		 * passed as arg1, instead of irq.
250		 */
251		rtc_irq_data |= (unsigned long)irq & 0xF0;
252	} else {
253		rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
254	}
255
256	if (rtc_status & RTC_TIMER_ON)
257		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
258
259	spin_unlock (&rtc_lock);
260
261	/* Now do the rest of the actions */
262	spin_lock(&rtc_task_lock);
263	if (rtc_callback)
264		rtc_callback->func(rtc_callback->private_data);
265	spin_unlock(&rtc_task_lock);
266	wake_up_interruptible(&rtc_wait);
267
268	kill_fasync (&rtc_async_queue, SIGIO, POLL_IN);
269
270	return IRQ_HANDLED;
271}
272#endif
273
274/*
275 * sysctl-tuning infrastructure.
276 */
277static ctl_table rtc_table[] = {
278	{
279		.ctl_name	= 1,
280		.procname	= "max-user-freq",
281		.data		= &rtc_max_user_freq,
282		.maxlen		= sizeof(int),
283		.mode		= 0644,
284		.proc_handler	= &proc_dointvec,
285	},
286	{ .ctl_name = 0 }
287};
288
289static ctl_table rtc_root[] = {
290	{
291		.ctl_name	= 1,
292		.procname	= "rtc",
293		.maxlen		= 0,
294		.mode		= 0555,
295		.child		= rtc_table,
296	},
297	{ .ctl_name = 0 }
298};
299
300static ctl_table dev_root[] = {
301	{
302		.ctl_name	= CTL_DEV,
303		.procname	= "dev",
304		.maxlen		= 0,
305		.mode		= 0555,
306		.child		= rtc_root,
307	},
308	{ .ctl_name = 0 }
309};
310
311static struct ctl_table_header *sysctl_header;
312
313static int __init init_sysctl(void)
314{
315    sysctl_header = register_sysctl_table(dev_root, 0);
316    return 0;
317}
318
319static void __exit cleanup_sysctl(void)
320{
321    unregister_sysctl_table(sysctl_header);
322}
323
324/*
325 *	Now all the various file operations that we export.
326 */
327
328static ssize_t rtc_read(struct file *file, char __user *buf,
329			size_t count, loff_t *ppos)
330{
331#ifndef RTC_IRQ
332	return -EIO;
333#else
334	DECLARE_WAITQUEUE(wait, current);
335	unsigned long data;
336	ssize_t retval;
337
338	if (rtc_has_irq == 0)
339		return -EIO;
340
341	if (count < sizeof(unsigned))
342		return -EINVAL;
343
344	add_wait_queue(&rtc_wait, &wait);
345
346	do {
347		/* First make it right. Then make it fast. Putting this whole
348		 * block within the parentheses of a while would be too
349		 * confusing. And no, xchg() is not the answer. */
350
351		__set_current_state(TASK_INTERRUPTIBLE);
352
353		spin_lock_irq (&rtc_lock);
354		data = rtc_irq_data;
355		rtc_irq_data = 0;
356		spin_unlock_irq (&rtc_lock);
357
358		if (data != 0)
359			break;
360
361		if (file->f_flags & O_NONBLOCK) {
362			retval = -EAGAIN;
363			goto out;
364		}
365		if (signal_pending(current)) {
366			retval = -ERESTARTSYS;
367			goto out;
368		}
369		schedule();
370	} while (1);
371
372	if (count < sizeof(unsigned long))
373		retval = put_user(data, (unsigned int __user *)buf) ?: sizeof(int);
374	else
375		retval = put_user(data, (unsigned long __user *)buf) ?: sizeof(long);
376 out:
377	current->state = TASK_RUNNING;
378	remove_wait_queue(&rtc_wait, &wait);
379
380	return retval;
381#endif
382}
383
384static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
385{
386	struct rtc_time wtime;
387
388#ifdef RTC_IRQ
389	if (rtc_has_irq == 0) {
390		switch (cmd) {
391		case RTC_AIE_OFF:
392		case RTC_AIE_ON:
393		case RTC_PIE_OFF:
394		case RTC_PIE_ON:
395		case RTC_UIE_OFF:
396		case RTC_UIE_ON:
397		case RTC_IRQP_READ:
398		case RTC_IRQP_SET:
399			return -EINVAL;
400		};
401	}
402#endif
403
404	switch (cmd) {
405#ifdef RTC_IRQ
406	case RTC_AIE_OFF:	/* Mask alarm int. enab. bit	*/
407	{
408		mask_rtc_irq_bit(RTC_AIE);
409		return 0;
410	}
411	case RTC_AIE_ON:	/* Allow alarm interrupts.	*/
412	{
413		set_rtc_irq_bit(RTC_AIE);
414		return 0;
415	}
416	case RTC_PIE_OFF:	/* Mask periodic int. enab. bit	*/
417	{
418		unsigned long flags; /* can be called from isr via rtc_control() */
419		spin_lock_irqsave (&rtc_lock, flags);
420		mask_rtc_irq_bit_locked(RTC_PIE);
421		if (rtc_status & RTC_TIMER_ON) {
422			rtc_status &= ~RTC_TIMER_ON;
423			del_timer(&rtc_irq_timer);
424		}
425		spin_unlock_irqrestore (&rtc_lock, flags);
426		return 0;
427	}
428	case RTC_PIE_ON:	/* Allow periodic ints		*/
429	{
430		unsigned long flags; /* can be called from isr via rtc_control() */
431		/*
432		 * We don't really want Joe User enabling more
433		 * than 64Hz of interrupts on a multi-user machine.
434		 */
435		if (!kernel && (rtc_freq > rtc_max_user_freq) &&
436			(!capable(CAP_SYS_RESOURCE)))
437			return -EACCES;
438
439		spin_lock_irqsave (&rtc_lock, flags);
440		if (!(rtc_status & RTC_TIMER_ON)) {
441			rtc_irq_timer.expires = jiffies + HZ/rtc_freq + 2*HZ/100;
442			add_timer(&rtc_irq_timer);
443			rtc_status |= RTC_TIMER_ON;
444		}
445		set_rtc_irq_bit_locked(RTC_PIE);
446		spin_unlock_irqrestore (&rtc_lock, flags);
447		return 0;
448	}
449	case RTC_UIE_OFF:	/* Mask ints from RTC updates.	*/
450	{
451		mask_rtc_irq_bit(RTC_UIE);
452		return 0;
453	}
454	case RTC_UIE_ON:	/* Allow ints for RTC updates.	*/
455	{
456		set_rtc_irq_bit(RTC_UIE);
457		return 0;
458	}
459#endif
460	case RTC_ALM_READ:	/* Read the present alarm time */
461	{
462		/*
463		 * This returns a struct rtc_time. Reading >= 0xc0
464		 * means "don't care" or "match all". Only the tm_hour,
465		 * tm_min, and tm_sec values are filled in.
466		 */
467		memset(&wtime, 0, sizeof(struct rtc_time));
468		get_rtc_alm_time(&wtime);
469		break;
470	}
471	case RTC_ALM_SET:	/* Store a time into the alarm */
472	{
473		/*
474		 * This expects a struct rtc_time. Writing 0xff means
475		 * "don't care" or "match all". Only the tm_hour,
476		 * tm_min and tm_sec are used.
477		 */
478		unsigned char hrs, min, sec;
479		struct rtc_time alm_tm;
480
481		if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
482				   sizeof(struct rtc_time)))
483			return -EFAULT;
484
485		hrs = alm_tm.tm_hour;
486		min = alm_tm.tm_min;
487		sec = alm_tm.tm_sec;
488
489		spin_lock_irq(&rtc_lock);
490		if (hpet_set_alarm_time(hrs, min, sec)) {
491			/*
492			 * Fallthru and set alarm time in CMOS too,
493			 * so that we will get proper value in RTC_ALM_READ
494			 */
495		}
496		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
497		    RTC_ALWAYS_BCD)
498		{
499			if (sec < 60) BIN_TO_BCD(sec);
500			else sec = 0xff;
501
502			if (min < 60) BIN_TO_BCD(min);
503			else min = 0xff;
504
505			if (hrs < 24) BIN_TO_BCD(hrs);
506			else hrs = 0xff;
507		}
508		CMOS_WRITE(hrs, RTC_HOURS_ALARM);
509		CMOS_WRITE(min, RTC_MINUTES_ALARM);
510		CMOS_WRITE(sec, RTC_SECONDS_ALARM);
511		spin_unlock_irq(&rtc_lock);
512
513		return 0;
514	}
515	case RTC_RD_TIME:	/* Read the time/date from RTC	*/
516	{
517		memset(&wtime, 0, sizeof(struct rtc_time));
518		rtc_get_rtc_time(&wtime);
519		break;
520	}
521	case RTC_SET_TIME:	/* Set the RTC */
522	{
523		struct rtc_time rtc_tm;
524		unsigned char mon, day, hrs, min, sec, leap_yr;
525		unsigned char save_control, save_freq_select;
526		unsigned int yrs;
527#ifdef CONFIG_MACH_DECSTATION
528		unsigned int real_yrs;
529#endif
530
531		if (!capable(CAP_SYS_TIME))
532			return -EACCES;
533
534		if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
535				   sizeof(struct rtc_time)))
536			return -EFAULT;
537
538		yrs = rtc_tm.tm_year + 1900;
539		mon = rtc_tm.tm_mon + 1;   /* tm_mon starts at zero */
540		day = rtc_tm.tm_mday;
541		hrs = rtc_tm.tm_hour;
542		min = rtc_tm.tm_min;
543		sec = rtc_tm.tm_sec;
544
545		if (yrs < 1970)
546			return -EINVAL;
547
548		leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
549
550		if ((mon > 12) || (day == 0))
551			return -EINVAL;
552
553		if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
554			return -EINVAL;
555
556		if ((hrs >= 24) || (min >= 60) || (sec >= 60))
557			return -EINVAL;
558
559		if ((yrs -= epoch) > 255)    /* They are unsigned */
560			return -EINVAL;
561
562		spin_lock_irq(&rtc_lock);
563#ifdef CONFIG_MACH_DECSTATION
564		real_yrs = yrs;
565		yrs = 72;
566
567		/*
568		 * We want to keep the year set to 73 until March
569		 * for non-leap years, so that Feb, 29th is handled
570		 * correctly.
571		 */
572		if (!leap_yr && mon < 3) {
573			real_yrs--;
574			yrs = 73;
575		}
576#endif
577		/* These limits and adjustments are independent of
578		 * whether the chip is in binary mode or not.
579		 */
580		if (yrs > 169) {
581			spin_unlock_irq(&rtc_lock);
582			return -EINVAL;
583		}
584		if (yrs >= 100)
585			yrs -= 100;
586
587		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
588		    || RTC_ALWAYS_BCD) {
589			BIN_TO_BCD(sec);
590			BIN_TO_BCD(min);
591			BIN_TO_BCD(hrs);
592			BIN_TO_BCD(day);
593			BIN_TO_BCD(mon);
594			BIN_TO_BCD(yrs);
595		}
596
597		save_control = CMOS_READ(RTC_CONTROL);
598		CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
599		save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
600		CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
601
602#ifdef CONFIG_MACH_DECSTATION
603		CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
604#endif
605		CMOS_WRITE(yrs, RTC_YEAR);
606		CMOS_WRITE(mon, RTC_MONTH);
607		CMOS_WRITE(day, RTC_DAY_OF_MONTH);
608		CMOS_WRITE(hrs, RTC_HOURS);
609		CMOS_WRITE(min, RTC_MINUTES);
610		CMOS_WRITE(sec, RTC_SECONDS);
611
612		CMOS_WRITE(save_control, RTC_CONTROL);
613		CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
614
615		spin_unlock_irq(&rtc_lock);
616		return 0;
617	}
618#ifdef RTC_IRQ
619	case RTC_IRQP_READ:	/* Read the periodic IRQ rate.	*/
620	{
621		return put_user(rtc_freq, (unsigned long __user *)arg);
622	}
623	case RTC_IRQP_SET:	/* Set periodic IRQ rate.	*/
624	{
625		int tmp = 0;
626		unsigned char val;
627		unsigned long flags; /* can be called from isr via rtc_control() */
628
629		/*
630		 * The max we can do is 8192Hz.
631		 */
632		if ((arg < 2) || (arg > 8192))
633			return -EINVAL;
634		/*
635		 * We don't really want Joe User generating more
636		 * than 64Hz of interrupts on a multi-user machine.
637		 */
638		if (!kernel && (arg > rtc_max_user_freq) && (!capable(CAP_SYS_RESOURCE)))
639			return -EACCES;
640
641		while (arg > (1<<tmp))
642			tmp++;
643
644		/*
645		 * Check that the input was really a power of 2.
646		 */
647		if (arg != (1<<tmp))
648			return -EINVAL;
649
650		spin_lock_irqsave(&rtc_lock, flags);
651		if (hpet_set_periodic_freq(arg)) {
652			spin_unlock_irqrestore(&rtc_lock, flags);
653			return 0;
654		}
655		rtc_freq = arg;
656
657		val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
658		val |= (16 - tmp);
659		CMOS_WRITE(val, RTC_FREQ_SELECT);
660		spin_unlock_irqrestore(&rtc_lock, flags);
661		return 0;
662	}
663#endif
664	case RTC_EPOCH_READ:	/* Read the epoch.	*/
665	{
666		return put_user (epoch, (unsigned long __user *)arg);
667	}
668	case RTC_EPOCH_SET:	/* Set the epoch.	*/
669	{
670		/*
671		 * There were no RTC clocks before 1900.
672		 */
673		if (arg < 1900)
674			return -EINVAL;
675
676		if (!capable(CAP_SYS_TIME))
677			return -EACCES;
678
679		epoch = arg;
680		return 0;
681	}
682	default:
683		return -ENOTTY;
684	}
685	return copy_to_user((void __user *)arg, &wtime, sizeof wtime) ? -EFAULT : 0;
686}
687
688static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
689		     unsigned long arg)
690{
691	return rtc_do_ioctl(cmd, arg, 0);
692}
693
694/*
695 *	We enforce only one user at a time here with the open/close.
696 *	Also clear the previous interrupt data on an open, and clean
697 *	up things on a close.
698 */
699
700/* We use rtc_lock to protect against concurrent opens. So the BKL is not
701 * needed here. Or anywhere else in this driver. */
702static int rtc_open(struct inode *inode, struct file *file)
703{
704	spin_lock_irq (&rtc_lock);
705
706	if(rtc_status & RTC_IS_OPEN)
707		goto out_busy;
708
709	rtc_status |= RTC_IS_OPEN;
710
711	rtc_irq_data = 0;
712	spin_unlock_irq (&rtc_lock);
713	return 0;
714
715out_busy:
716	spin_unlock_irq (&rtc_lock);
717	return -EBUSY;
718}
719
720static int rtc_fasync (int fd, struct file *filp, int on)
721
722{
723	return fasync_helper (fd, filp, on, &rtc_async_queue);
724}
725
726static int rtc_release(struct inode *inode, struct file *file)
727{
728#ifdef RTC_IRQ
729	unsigned char tmp;
730
731	if (rtc_has_irq == 0)
732		goto no_irq;
733
734	/*
735	 * Turn off all interrupts once the device is no longer
736	 * in use, and clear the data.
737	 */
738
739	spin_lock_irq(&rtc_lock);
740	if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
741		tmp = CMOS_READ(RTC_CONTROL);
742		tmp &=  ~RTC_PIE;
743		tmp &=  ~RTC_AIE;
744		tmp &=  ~RTC_UIE;
745		CMOS_WRITE(tmp, RTC_CONTROL);
746		CMOS_READ(RTC_INTR_FLAGS);
747	}
748	if (rtc_status & RTC_TIMER_ON) {
749		rtc_status &= ~RTC_TIMER_ON;
750		del_timer(&rtc_irq_timer);
751	}
752	spin_unlock_irq(&rtc_lock);
753
754	if (file->f_flags & FASYNC) {
755		rtc_fasync (-1, file, 0);
756	}
757no_irq:
758#endif
759
760	spin_lock_irq (&rtc_lock);
761	rtc_irq_data = 0;
762	rtc_status &= ~RTC_IS_OPEN;
763	spin_unlock_irq (&rtc_lock);
764	return 0;
765}
766
767#ifdef RTC_IRQ
768/* Called without the kernel lock - fine */
769static unsigned int rtc_poll(struct file *file, poll_table *wait)
770{
771	unsigned long l;
772
773	if (rtc_has_irq == 0)
774		return 0;
775
776	poll_wait(file, &rtc_wait, wait);
777
778	spin_lock_irq (&rtc_lock);
779	l = rtc_irq_data;
780	spin_unlock_irq (&rtc_lock);
781
782	if (l != 0)
783		return POLLIN | POLLRDNORM;
784	return 0;
785}
786#endif
787
788/*
789 * exported stuffs
790 */
791
792EXPORT_SYMBOL(rtc_register);
793EXPORT_SYMBOL(rtc_unregister);
794EXPORT_SYMBOL(rtc_control);
795
796int rtc_register(rtc_task_t *task)
797{
798#ifndef RTC_IRQ
799	return -EIO;
800#else
801	if (task == NULL || task->func == NULL)
802		return -EINVAL;
803	spin_lock_irq(&rtc_lock);
804	if (rtc_status & RTC_IS_OPEN) {
805		spin_unlock_irq(&rtc_lock);
806		return -EBUSY;
807	}
808	spin_lock(&rtc_task_lock);
809	if (rtc_callback) {
810		spin_unlock(&rtc_task_lock);
811		spin_unlock_irq(&rtc_lock);
812		return -EBUSY;
813	}
814	rtc_status |= RTC_IS_OPEN;
815	rtc_callback = task;
816	spin_unlock(&rtc_task_lock);
817	spin_unlock_irq(&rtc_lock);
818	return 0;
819#endif
820}
821
822int rtc_unregister(rtc_task_t *task)
823{
824#ifndef RTC_IRQ
825	return -EIO;
826#else
827	unsigned char tmp;
828
829	spin_lock_irq(&rtc_lock);
830	spin_lock(&rtc_task_lock);
831	if (rtc_callback != task) {
832		spin_unlock(&rtc_task_lock);
833		spin_unlock_irq(&rtc_lock);
834		return -ENXIO;
835	}
836	rtc_callback = NULL;
837
838	/* disable controls */
839	if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
840		tmp = CMOS_READ(RTC_CONTROL);
841		tmp &= ~RTC_PIE;
842		tmp &= ~RTC_AIE;
843		tmp &= ~RTC_UIE;
844		CMOS_WRITE(tmp, RTC_CONTROL);
845		CMOS_READ(RTC_INTR_FLAGS);
846	}
847	if (rtc_status & RTC_TIMER_ON) {
848		rtc_status &= ~RTC_TIMER_ON;
849		del_timer(&rtc_irq_timer);
850	}
851	rtc_status &= ~RTC_IS_OPEN;
852	spin_unlock(&rtc_task_lock);
853	spin_unlock_irq(&rtc_lock);
854	return 0;
855#endif
856}
857
858int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg)
859{
860#ifndef RTC_IRQ
861	return -EIO;
862#else
863	unsigned long flags;
864	if (cmd != RTC_PIE_ON && cmd != RTC_PIE_OFF && cmd != RTC_IRQP_SET)
865		return -EINVAL;
866	spin_lock_irqsave(&rtc_task_lock, flags);
867	if (rtc_callback != task) {
868		spin_unlock_irqrestore(&rtc_task_lock, flags);
869		return -ENXIO;
870	}
871	spin_unlock_irqrestore(&rtc_task_lock, flags);
872	return rtc_do_ioctl(cmd, arg, 1);
873#endif
874}
875
876
877/*
878 *	The various file operations we support.
879 */
880
881static struct file_operations rtc_fops = {
882	.owner		= THIS_MODULE,
883	.llseek		= no_llseek,
884	.read		= rtc_read,
885#ifdef RTC_IRQ
886	.poll		= rtc_poll,
887#endif
888	.ioctl		= rtc_ioctl,
889	.open		= rtc_open,
890	.release	= rtc_release,
891	.fasync		= rtc_fasync,
892};
893
894static struct miscdevice rtc_dev = {
895	.minor		= RTC_MINOR,
896	.name		= "rtc",
897	.fops		= &rtc_fops,
898};
899
900static struct file_operations rtc_proc_fops = {
901	.owner = THIS_MODULE,
902	.open = rtc_proc_open,
903	.read  = seq_read,
904	.llseek = seq_lseek,
905	.release = single_release,
906};
907
908#if defined(RTC_IRQ) && !defined(__sparc__)
909static irqreturn_t (*rtc_int_handler_ptr)(int irq, void *dev_id, struct pt_regs *regs);
910#endif
911
912static int __init rtc_init(void)
913{
914	struct proc_dir_entry *ent;
915#if defined(__alpha__) || defined(__mips__)
916	unsigned int year, ctrl;
917	char *guess = NULL;
918#endif
919#ifdef __sparc__
920	struct linux_ebus *ebus;
921	struct linux_ebus_device *edev;
922#ifdef __sparc_v9__
923	struct sparc_isa_bridge *isa_br;
924	struct sparc_isa_device *isa_dev;
925#endif
926#endif
927
928#ifdef __sparc__
929	for_each_ebus(ebus) {
930		for_each_ebusdev(edev, ebus) {
931			if(strcmp(edev->prom_name, "rtc") == 0) {
932				rtc_port = edev->resource[0].start;
933				rtc_irq = edev->irqs[0];
934				goto found;
935			}
936		}
937	}
938#ifdef __sparc_v9__
939	for_each_isa(isa_br) {
940		for_each_isadev(isa_dev, isa_br) {
941			if (strcmp(isa_dev->prom_name, "rtc") == 0) {
942				rtc_port = isa_dev->resource.start;
943				rtc_irq = isa_dev->irq;
944				goto found;
945			}
946		}
947	}
948#endif
949	printk(KERN_ERR "rtc_init: no PC rtc found\n");
950	return -EIO;
951
952found:
953	if (rtc_irq == PCI_IRQ_NONE) {
954		rtc_has_irq = 0;
955		goto no_irq;
956	}
957
958	/*
959	 * XXX Interrupt pin #7 in Espresso is shared between RTC and
960	 * PCI Slot 2 INTA# (and some INTx# in Slot 1).
961	 */
962	if (request_irq(rtc_irq, rtc_interrupt, SA_SHIRQ, "rtc", (void *)&rtc_port)) {
963		/*
964		 * Standard way for sparc to print irq's is to use
965		 * __irq_itoa(). I think for EBus it's ok to use %d.
966		 */
967		printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
968		return -EIO;
969	}
970no_irq:
971#else
972	if (!request_region(RTC_PORT(0), RTC_IO_EXTENT, "rtc")) {
973		printk(KERN_ERR "rtc: I/O port %d is not free.\n", RTC_PORT (0));
974		return -EIO;
975	}
976
977#ifdef RTC_IRQ
978	if (is_hpet_enabled()) {
979		rtc_int_handler_ptr = hpet_rtc_interrupt;
980	} else {
981		rtc_int_handler_ptr = rtc_interrupt;
982	}
983
984	if(request_irq(RTC_IRQ, rtc_int_handler_ptr, SA_INTERRUPT, "rtc", NULL)) {
985		/* Yeah right, seeing as irq 8 doesn't even hit the bus. */
986		printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
987		release_region(RTC_PORT(0), RTC_IO_EXTENT);
988		return -EIO;
989	}
990	hpet_rtc_timer_init();
991
992#endif
993
994#endif /* __sparc__ vs. others */
995
996	if (misc_register(&rtc_dev)) {
997#ifdef RTC_IRQ
998		free_irq(RTC_IRQ, NULL);
999#endif
1000		release_region(RTC_PORT(0), RTC_IO_EXTENT);
1001		return -ENODEV;
1002	}
1003
1004	ent = create_proc_entry("driver/rtc", 0, NULL);
1005	if (!ent) {
1006#ifdef RTC_IRQ
1007		free_irq(RTC_IRQ, NULL);
1008#endif
1009		release_region(RTC_PORT(0), RTC_IO_EXTENT);
1010		misc_deregister(&rtc_dev);
1011		return -ENOMEM;
1012	}
1013	ent->proc_fops = &rtc_proc_fops;
1014
1015#if defined(__alpha__) || defined(__mips__)
1016	rtc_freq = HZ;
1017
1018	/* Each operating system on an Alpha uses its own epoch.
1019	   Let's try to guess which one we are using now. */
1020
1021	if (rtc_is_updating() != 0)
1022		msleep(20);
1023
1024	spin_lock_irq(&rtc_lock);
1025	year = CMOS_READ(RTC_YEAR);
1026	ctrl = CMOS_READ(RTC_CONTROL);
1027	spin_unlock_irq(&rtc_lock);
1028
1029	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1030		BCD_TO_BIN(year);       /* This should never happen... */
1031
1032	if (year < 20) {
1033		epoch = 2000;
1034		guess = "SRM (post-2000)";
1035	} else if (year >= 20 && year < 48) {
1036		epoch = 1980;
1037		guess = "ARC console";
1038	} else if (year >= 48 && year < 72) {
1039		epoch = 1952;
1040		guess = "Digital UNIX";
1041#if defined(__mips__)
1042	} else if (year >= 72 && year < 74) {
1043		epoch = 2000;
1044		guess = "Digital DECstation";
1045#else
1046	} else if (year >= 70) {
1047		epoch = 1900;
1048		guess = "Standard PC (1900)";
1049#endif
1050	}
1051	if (guess)
1052		printk(KERN_INFO "rtc: %s epoch (%lu) detected\n", guess, epoch);
1053#endif
1054#ifdef RTC_IRQ
1055	if (rtc_has_irq == 0)
1056		goto no_irq2;
1057
1058	init_timer(&rtc_irq_timer);
1059	rtc_irq_timer.function = rtc_dropped_irq;
1060	spin_lock_irq(&rtc_lock);
1061	rtc_freq = 1024;
1062	if (!hpet_set_periodic_freq(rtc_freq)) {
1063		/* Initialize periodic freq. to CMOS reset default, which is 1024Hz */
1064		CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06), RTC_FREQ_SELECT);
1065	}
1066	spin_unlock_irq(&rtc_lock);
1067no_irq2:
1068#endif
1069
1070	(void) init_sysctl();
1071
1072	printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
1073
1074	return 0;
1075}
1076
1077static void __exit rtc_exit (void)
1078{
1079	cleanup_sysctl();
1080	remove_proc_entry ("driver/rtc", NULL);
1081	misc_deregister(&rtc_dev);
1082
1083#ifdef __sparc__
1084	if (rtc_has_irq)
1085		free_irq (rtc_irq, &rtc_port);
1086#else
1087	release_region (RTC_PORT (0), RTC_IO_EXTENT);
1088#ifdef RTC_IRQ
1089	if (rtc_has_irq)
1090		free_irq (RTC_IRQ, NULL);
1091#endif
1092#endif /* __sparc__ */
1093}
1094
1095module_init(rtc_init);
1096module_exit(rtc_exit);
1097
1098#ifdef RTC_IRQ
1099/*
1100 * 	At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
1101 *	(usually during an IDE disk interrupt, with IRQ unmasking off)
1102 *	Since the interrupt handler doesn't get called, the IRQ status
1103 *	byte doesn't get read, and the RTC stops generating interrupts.
1104 *	A timer is set, and will call this function if/when that happens.
1105 *	To get it out of this stalled state, we just read the status.
1106 *	At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
1107 *	(You *really* shouldn't be trying to use a non-realtime system
1108 *	for something that requires a steady > 1KHz signal anyways.)
1109 */
1110
1111static void rtc_dropped_irq(unsigned long data)
1112{
1113	unsigned long freq;
1114
1115	spin_lock_irq (&rtc_lock);
1116
1117	if (hpet_rtc_dropped_irq()) {
1118		spin_unlock_irq(&rtc_lock);
1119		return;
1120	}
1121
1122	/* Just in case someone disabled the timer from behind our back... */
1123	if (rtc_status & RTC_TIMER_ON)
1124		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
1125
1126	rtc_irq_data += ((rtc_freq/HZ)<<8);
1127	rtc_irq_data &= ~0xff;
1128	rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);	/* restart */
1129
1130	freq = rtc_freq;
1131
1132	spin_unlock_irq(&rtc_lock);
1133
1134	printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n", freq);
1135
1136	/* Now we have new data */
1137	wake_up_interruptible(&rtc_wait);
1138
1139	kill_fasync (&rtc_async_queue, SIGIO, POLL_IN);
1140}
1141#endif
1142
1143/*
1144 *	Info exported via "/proc/driver/rtc".
1145 */
1146
1147static int rtc_proc_show(struct seq_file *seq, void *v)
1148{
1149#define YN(bit) ((ctrl & bit) ? "yes" : "no")
1150#define NY(bit) ((ctrl & bit) ? "no" : "yes")
1151	struct rtc_time tm;
1152	unsigned char batt, ctrl;
1153	unsigned long freq;
1154
1155	spin_lock_irq(&rtc_lock);
1156	batt = CMOS_READ(RTC_VALID) & RTC_VRT;
1157	ctrl = CMOS_READ(RTC_CONTROL);
1158	freq = rtc_freq;
1159	spin_unlock_irq(&rtc_lock);
1160
1161
1162	rtc_get_rtc_time(&tm);
1163
1164	/*
1165	 * There is no way to tell if the luser has the RTC set for local
1166	 * time or for Universal Standard Time (GMT). Probably local though.
1167	 */
1168	seq_printf(seq,
1169		   "rtc_time\t: %02d:%02d:%02d\n"
1170		   "rtc_date\t: %04d-%02d-%02d\n"
1171		   "rtc_epoch\t: %04lu\n",
1172		   tm.tm_hour, tm.tm_min, tm.tm_sec,
1173		   tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);
1174
1175	get_rtc_alm_time(&tm);
1176
1177	/*
1178	 * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
1179	 * match any value for that particular field. Values that are
1180	 * greater than a valid time, but less than 0xc0 shouldn't appear.
1181	 */
1182	seq_puts(seq, "alarm\t\t: ");
1183	if (tm.tm_hour <= 24)
1184		seq_printf(seq, "%02d:", tm.tm_hour);
1185	else
1186		seq_puts(seq, "**:");
1187
1188	if (tm.tm_min <= 59)
1189		seq_printf(seq, "%02d:", tm.tm_min);
1190	else
1191		seq_puts(seq, "**:");
1192
1193	if (tm.tm_sec <= 59)
1194		seq_printf(seq, "%02d\n", tm.tm_sec);
1195	else
1196		seq_puts(seq, "**\n");
1197
1198	seq_printf(seq,
1199		   "DST_enable\t: %s\n"
1200		   "BCD\t\t: %s\n"
1201		   "24hr\t\t: %s\n"
1202		   "square_wave\t: %s\n"
1203		   "alarm_IRQ\t: %s\n"
1204		   "update_IRQ\t: %s\n"
1205		   "periodic_IRQ\t: %s\n"
1206		   "periodic_freq\t: %ld\n"
1207		   "batt_status\t: %s\n",
1208		   YN(RTC_DST_EN),
1209		   NY(RTC_DM_BINARY),
1210		   YN(RTC_24H),
1211		   YN(RTC_SQWE),
1212		   YN(RTC_AIE),
1213		   YN(RTC_UIE),
1214		   YN(RTC_PIE),
1215		   freq,
1216		   batt ? "okay" : "dead");
1217
1218	return  0;
1219#undef YN
1220#undef NY
1221}
1222
1223static int rtc_proc_open(struct inode *inode, struct file *file)
1224{
1225	return single_open(file, rtc_proc_show, NULL);
1226}
1227
1228void rtc_get_rtc_time(struct rtc_time *rtc_tm)
1229{
1230	unsigned long uip_watchdog = jiffies;
1231	unsigned char ctrl;
1232#ifdef CONFIG_MACH_DECSTATION
1233	unsigned int real_year;
1234#endif
1235
1236	/*
1237	 * read RTC once any update in progress is done. The update
1238	 * can take just over 2ms. We wait 20ms. There is no need to
1239	 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
1240	 * If you need to know *exactly* when a second has started, enable
1241	 * periodic update complete interrupts, (via ioctl) and then
1242	 * immediately read /dev/rtc which will block until you get the IRQ.
1243	 * Once the read clears, read the RTC time (again via ioctl). Easy.
1244	 */
1245
1246	while (rtc_is_updating() != 0 && jiffies - uip_watchdog < 2*HZ/100) {
1247		barrier();
1248		cpu_relax();
1249	}
1250
1251	/*
1252	 * Only the values that we read from the RTC are set. We leave
1253	 * tm_wday, tm_yday and tm_isdst untouched. Note that while the
1254	 * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
1255	 * only updated by the RTC when initially set to a non-zero value.
1256	 */
1257	spin_lock_irq(&rtc_lock);
1258	rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
1259	rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
1260	rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
1261	rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
1262	rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
1263	rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
1264	/* Only set from 2.6.16 onwards */
1265	rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
1266
1267#ifdef CONFIG_MACH_DECSTATION
1268	real_year = CMOS_READ(RTC_DEC_YEAR);
1269#endif
1270	ctrl = CMOS_READ(RTC_CONTROL);
1271	spin_unlock_irq(&rtc_lock);
1272
1273	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1274	{
1275		BCD_TO_BIN(rtc_tm->tm_sec);
1276		BCD_TO_BIN(rtc_tm->tm_min);
1277		BCD_TO_BIN(rtc_tm->tm_hour);
1278		BCD_TO_BIN(rtc_tm->tm_mday);
1279		BCD_TO_BIN(rtc_tm->tm_mon);
1280		BCD_TO_BIN(rtc_tm->tm_year);
1281		BCD_TO_BIN(rtc_tm->tm_wday);
1282	}
1283
1284#ifdef CONFIG_MACH_DECSTATION
1285	rtc_tm->tm_year += real_year - 72;
1286#endif
1287
1288	/*
1289	 * Account for differences between how the RTC uses the values
1290	 * and how they are defined in a struct rtc_time;
1291	 */
1292	if ((rtc_tm->tm_year += (epoch - 1900)) <= 69)
1293		rtc_tm->tm_year += 100;
1294
1295	rtc_tm->tm_mon--;
1296}
1297
1298static void get_rtc_alm_time(struct rtc_time *alm_tm)
1299{
1300	unsigned char ctrl;
1301
1302	/*
1303	 * Only the values that we read from the RTC are set. That
1304	 * means only tm_hour, tm_min, and tm_sec.
1305	 */
1306	spin_lock_irq(&rtc_lock);
1307	alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
1308	alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
1309	alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
1310	ctrl = CMOS_READ(RTC_CONTROL);
1311	spin_unlock_irq(&rtc_lock);
1312
1313	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1314	{
1315		BCD_TO_BIN(alm_tm->tm_sec);
1316		BCD_TO_BIN(alm_tm->tm_min);
1317		BCD_TO_BIN(alm_tm->tm_hour);
1318	}
1319}
1320
1321#ifdef RTC_IRQ
1322/*
1323 * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
1324 * Rumour has it that if you frob the interrupt enable/disable
1325 * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
1326 * ensure you actually start getting interrupts. Probably for
1327 * compatibility with older/broken chipset RTC implementations.
1328 * We also clear out any old irq data after an ioctl() that
1329 * meddles with the interrupt enable/disable bits.
1330 */
1331
1332static void mask_rtc_irq_bit_locked(unsigned char bit)
1333{
1334	unsigned char val;
1335
1336	if (hpet_mask_rtc_irq_bit(bit))
1337		return;
1338	val = CMOS_READ(RTC_CONTROL);
1339	val &=  ~bit;
1340	CMOS_WRITE(val, RTC_CONTROL);
1341	CMOS_READ(RTC_INTR_FLAGS);
1342
1343	rtc_irq_data = 0;
1344}
1345
1346static void set_rtc_irq_bit_locked(unsigned char bit)
1347{
1348	unsigned char val;
1349
1350	if (hpet_set_rtc_irq_bit(bit))
1351		return;
1352	val = CMOS_READ(RTC_CONTROL);
1353	val |= bit;
1354	CMOS_WRITE(val, RTC_CONTROL);
1355	CMOS_READ(RTC_INTR_FLAGS);
1356
1357	rtc_irq_data = 0;
1358}
1359#endif
1360
1361MODULE_AUTHOR("Paul Gortmaker");
1362MODULE_LICENSE("GPL");
1363MODULE_ALIAS_MISCDEV(RTC_MINOR);
1364