1/*
2 * drivers/crypto/tegra-aes.c
3 *
4 * Driver for NVIDIA Tegra AES hardware engine residing inside the
5 * Bit Stream Engine for Video (BSEV) hardware block.
6 *
7 * The programming sequence for this engine is with the help
8 * of commands which travel via a command queue residing between the
9 * CPU and the BSEV block. The BSEV engine has an internal RAM (VRAM)
10 * where the final input plaintext, keys and the IV have to be copied
11 * before starting the encrypt/decrypt operation.
12 *
13 * Copyright (c) 2010, NVIDIA Corporation.
14 *
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
19 *
20 * This program is distributed in the hope that it will be useful, but WITHOUT
21 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
22 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
23 * more details.
24 *
25 * You should have received a copy of the GNU General Public License along
26 * with this program; if not, write to the Free Software Foundation, Inc.,
27 * 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
28 */
29
30#include <linux/module.h>
31#include <linux/init.h>
32#include <linux/errno.h>
33#include <linux/kernel.h>
34#include <linux/clk.h>
35#include <linux/platform_device.h>
36#include <linux/scatterlist.h>
37#include <linux/dma-mapping.h>
38#include <linux/io.h>
39#include <linux/mutex.h>
40#include <linux/interrupt.h>
41#include <linux/completion.h>
42#include <linux/workqueue.h>
43
44#include <mach/clk.h>
45
46#include <crypto/scatterwalk.h>
47#include <crypto/aes.h>
48#include <crypto/internal/rng.h>
49
50#include "tegra-aes.h"
51
52#define FLAGS_MODE_MASK			0x00FF
53#define FLAGS_ENCRYPT			BIT(0)
54#define FLAGS_CBC			BIT(1)
55#define FLAGS_GIV			BIT(2)
56#define FLAGS_RNG			BIT(3)
57#define FLAGS_OFB			BIT(4)
58#define FLAGS_NEW_KEY			BIT(5)
59#define FLAGS_NEW_IV			BIT(6)
60#define FLAGS_INIT			BIT(7)
61#define FLAGS_FAST			BIT(8)
62#define FLAGS_BUSY			9
63
64/*
65 * Defines AES engine Max process bytes size in one go, which takes 1 msec.
66 * AES engine spends about 176 cycles/16-bytes or 11 cycles/byte
67 * The duration CPU can use the BSE to 1 msec, then the number of available
68 * cycles of AVP/BSE is 216K. In this duration, AES can process 216/11 ~= 19KB
69 * Based on this AES_HW_DMA_BUFFER_SIZE_BYTES is configured to 16KB.
70 */
71#define AES_HW_DMA_BUFFER_SIZE_BYTES 0x4000
72
73/*
74 * The key table length is 64 bytes
75 * (This includes first upto 32 bytes key + 16 bytes original initial vector
76 * and 16 bytes updated initial vector)
77 */
78#define AES_HW_KEY_TABLE_LENGTH_BYTES 64
79
80/*
81 * The memory being used is divides as follows:
82 * 1. Key - 32 bytes
83 * 2. Original IV - 16 bytes
84 * 3. Updated IV - 16 bytes
85 * 4. Key schedule - 256 bytes
86 *
87 * 1+2+3 constitute the hw key table.
88 */
89#define AES_HW_IV_SIZE 16
90#define AES_HW_KEYSCHEDULE_LEN 256
91#define AES_IVKEY_SIZE (AES_HW_KEY_TABLE_LENGTH_BYTES + AES_HW_KEYSCHEDULE_LEN)
92
93/* Define commands required for AES operation */
94enum {
95	CMD_BLKSTARTENGINE = 0x0E,
96	CMD_DMASETUP = 0x10,
97	CMD_DMACOMPLETE = 0x11,
98	CMD_SETTABLE = 0x15,
99	CMD_MEMDMAVD = 0x22,
100};
101
102/* Define sub-commands */
103enum {
104	SUBCMD_VRAM_SEL = 0x1,
105	SUBCMD_CRYPTO_TABLE_SEL = 0x3,
106	SUBCMD_KEY_TABLE_SEL = 0x8,
107};
108
109/* memdma_vd command */
110#define MEMDMA_DIR_DTOVRAM		0 /* sdram -> vram */
111#define MEMDMA_DIR_VTODRAM		1 /* vram -> sdram */
112#define MEMDMA_DIR_SHIFT		25
113#define MEMDMA_NUM_WORDS_SHIFT		12
114
115/* command queue bit shifts */
116enum {
117	CMDQ_KEYTABLEADDR_SHIFT = 0,
118	CMDQ_KEYTABLEID_SHIFT = 17,
119	CMDQ_VRAMSEL_SHIFT = 23,
120	CMDQ_TABLESEL_SHIFT = 24,
121	CMDQ_OPCODE_SHIFT = 26,
122};
123
124/*
125 * The secure key slot contains a unique secure key generated
126 * and loaded by the bootloader. This slot is marked as non-accessible
127 * to the kernel.
128 */
129#define SSK_SLOT_NUM		4
130
131#define AES_NR_KEYSLOTS		8
132#define TEGRA_AES_QUEUE_LENGTH	50
133#define DEFAULT_RNG_BLK_SZ	16
134
135/* The command queue depth */
136#define AES_HW_MAX_ICQ_LENGTH	5
137
138struct tegra_aes_slot {
139	struct list_head node;
140	int slot_num;
141};
142
143static struct tegra_aes_slot ssk = {
144	.slot_num = SSK_SLOT_NUM,
145};
146
147struct tegra_aes_reqctx {
148	unsigned long mode;
149};
150
151struct tegra_aes_dev {
152	struct device *dev;
153	void __iomem *io_base;
154	dma_addr_t ivkey_phys_base;
155	void __iomem *ivkey_base;
156	struct clk *aes_clk;
157	struct tegra_aes_ctx *ctx;
158	int irq;
159	unsigned long flags;
160	struct completion op_complete;
161	u32 *buf_in;
162	dma_addr_t dma_buf_in;
163	u32 *buf_out;
164	dma_addr_t dma_buf_out;
165	u8 *iv;
166	u8 dt[DEFAULT_RNG_BLK_SZ];
167	int ivlen;
168	u64 ctr;
169	spinlock_t lock;
170	struct crypto_queue queue;
171	struct tegra_aes_slot *slots;
172	struct ablkcipher_request *req;
173	size_t total;
174	struct scatterlist *in_sg;
175	size_t in_offset;
176	struct scatterlist *out_sg;
177	size_t out_offset;
178};
179
180static struct tegra_aes_dev *aes_dev;
181
182struct tegra_aes_ctx {
183	struct tegra_aes_dev *dd;
184	unsigned long flags;
185	struct tegra_aes_slot *slot;
186	u8 key[AES_MAX_KEY_SIZE];
187	size_t keylen;
188};
189
190static struct tegra_aes_ctx rng_ctx = {
191	.flags = FLAGS_NEW_KEY,
192	.keylen = AES_KEYSIZE_128,
193};
194
195/* keep registered devices data here */
196static struct list_head dev_list;
197static DEFINE_SPINLOCK(list_lock);
198static DEFINE_MUTEX(aes_lock);
199
200static void aes_workqueue_handler(struct work_struct *work);
201static DECLARE_WORK(aes_work, aes_workqueue_handler);
202static struct workqueue_struct *aes_wq;
203
204extern unsigned long long tegra_chip_uid(void);
205
206static inline u32 aes_readl(struct tegra_aes_dev *dd, u32 offset)
207{
208	return readl(dd->io_base + offset);
209}
210
211static inline void aes_writel(struct tegra_aes_dev *dd, u32 val, u32 offset)
212{
213	writel(val, dd->io_base + offset);
214}
215
216static int aes_start_crypt(struct tegra_aes_dev *dd, u32 in_addr, u32 out_addr,
217	int nblocks, int mode, bool upd_iv)
218{
219	u32 cmdq[AES_HW_MAX_ICQ_LENGTH];
220	int i, eng_busy, icq_empty, ret;
221	u32 value;
222
223	/* reset all the interrupt bits */
224	aes_writel(dd, 0xFFFFFFFF, TEGRA_AES_INTR_STATUS);
225
226	/* enable error, dma xfer complete interrupts */
227	aes_writel(dd, 0x33, TEGRA_AES_INT_ENB);
228
229	cmdq[0] = CMD_DMASETUP << CMDQ_OPCODE_SHIFT;
230	cmdq[1] = in_addr;
231	cmdq[2] = CMD_BLKSTARTENGINE << CMDQ_OPCODE_SHIFT | (nblocks-1);
232	cmdq[3] = CMD_DMACOMPLETE << CMDQ_OPCODE_SHIFT;
233
234	value = aes_readl(dd, TEGRA_AES_CMDQUE_CONTROL);
235	/* access SDRAM through AHB */
236	value &= ~TEGRA_AES_CMDQ_CTRL_SRC_STM_SEL_FIELD;
237	value &= ~TEGRA_AES_CMDQ_CTRL_DST_STM_SEL_FIELD;
238	value |= TEGRA_AES_CMDQ_CTRL_SRC_STM_SEL_FIELD |
239		 TEGRA_AES_CMDQ_CTRL_DST_STM_SEL_FIELD |
240		 TEGRA_AES_CMDQ_CTRL_ICMDQEN_FIELD;
241	aes_writel(dd, value, TEGRA_AES_CMDQUE_CONTROL);
242	dev_dbg(dd->dev, "cmd_q_ctrl=0x%x", value);
243
244	value = (0x1 << TEGRA_AES_SECURE_INPUT_ALG_SEL_SHIFT) |
245		((dd->ctx->keylen * 8) <<
246			TEGRA_AES_SECURE_INPUT_KEY_LEN_SHIFT) |
247		((u32)upd_iv << TEGRA_AES_SECURE_IV_SELECT_SHIFT);
248
249	if (mode & FLAGS_CBC) {
250		value |= ((((mode & FLAGS_ENCRYPT) ? 2 : 3)
251				<< TEGRA_AES_SECURE_XOR_POS_SHIFT) |
252			(((mode & FLAGS_ENCRYPT) ? 2 : 3)
253				<< TEGRA_AES_SECURE_VCTRAM_SEL_SHIFT) |
254			((mode & FLAGS_ENCRYPT) ? 1 : 0)
255				<< TEGRA_AES_SECURE_CORE_SEL_SHIFT);
256	} else if (mode & FLAGS_OFB) {
257		value |= ((TEGRA_AES_SECURE_XOR_POS_FIELD) |
258			(2 << TEGRA_AES_SECURE_INPUT_SEL_SHIFT) |
259			(TEGRA_AES_SECURE_CORE_SEL_FIELD));
260	} else if (mode & FLAGS_RNG) {
261		value |= (((mode & FLAGS_ENCRYPT) ? 1 : 0)
262				<< TEGRA_AES_SECURE_CORE_SEL_SHIFT |
263			  TEGRA_AES_SECURE_RNG_ENB_FIELD);
264	} else {
265		value |= (((mode & FLAGS_ENCRYPT) ? 1 : 0)
266				<< TEGRA_AES_SECURE_CORE_SEL_SHIFT);
267	}
268
269	dev_dbg(dd->dev, "secure_in_sel=0x%x", value);
270	aes_writel(dd, value, TEGRA_AES_SECURE_INPUT_SELECT);
271
272	aes_writel(dd, out_addr, TEGRA_AES_SECURE_DEST_ADDR);
273	INIT_COMPLETION(dd->op_complete);
274
275	for (i = 0; i < AES_HW_MAX_ICQ_LENGTH - 1; i++) {
276		do {
277			value = aes_readl(dd, TEGRA_AES_INTR_STATUS);
278			eng_busy = value & TEGRA_AES_ENGINE_BUSY_FIELD;
279			icq_empty = value & TEGRA_AES_ICQ_EMPTY_FIELD;
280		} while (eng_busy & (!icq_empty));
281		aes_writel(dd, cmdq[i], TEGRA_AES_ICMDQUE_WR);
282	}
283
284	ret = wait_for_completion_timeout(&dd->op_complete,
285					  msecs_to_jiffies(150));
286	if (ret == 0) {
287		dev_err(dd->dev, "timed out (0x%x)\n",
288			aes_readl(dd, TEGRA_AES_INTR_STATUS));
289		return -ETIMEDOUT;
290	}
291
292	aes_writel(dd, cmdq[AES_HW_MAX_ICQ_LENGTH - 1], TEGRA_AES_ICMDQUE_WR);
293	return 0;
294}
295
296static void aes_release_key_slot(struct tegra_aes_slot *slot)
297{
298	if (slot->slot_num == SSK_SLOT_NUM)
299		return;
300
301	spin_lock(&list_lock);
302	list_add_tail(&slot->node, &dev_list);
303	slot = NULL;
304	spin_unlock(&list_lock);
305}
306
307static struct tegra_aes_slot *aes_find_key_slot(void)
308{
309	struct tegra_aes_slot *slot = NULL;
310	struct list_head *new_head;
311	int empty;
312
313	spin_lock(&list_lock);
314	empty = list_empty(&dev_list);
315	if (!empty) {
316		slot = list_entry(&dev_list, struct tegra_aes_slot, node);
317		new_head = dev_list.next;
318		list_del(&dev_list);
319		dev_list.next = new_head->next;
320		dev_list.prev = NULL;
321	}
322	spin_unlock(&list_lock);
323
324	return slot;
325}
326
327static int aes_set_key(struct tegra_aes_dev *dd)
328{
329	u32 value, cmdq[2];
330	struct tegra_aes_ctx *ctx = dd->ctx;
331	int eng_busy, icq_empty, dma_busy;
332	bool use_ssk = false;
333
334	/* use ssk? */
335	if (!dd->ctx->slot) {
336		dev_dbg(dd->dev, "using ssk");
337		dd->ctx->slot = &ssk;
338		use_ssk = true;
339	}
340
341	/* enable key schedule generation in hardware */
342	value = aes_readl(dd, TEGRA_AES_SECURE_CONFIG_EXT);
343	value &= ~TEGRA_AES_SECURE_KEY_SCH_DIS_FIELD;
344	aes_writel(dd, value, TEGRA_AES_SECURE_CONFIG_EXT);
345
346	/* select the key slot */
347	value = aes_readl(dd, TEGRA_AES_SECURE_CONFIG);
348	value &= ~TEGRA_AES_SECURE_KEY_INDEX_FIELD;
349	value |= (ctx->slot->slot_num << TEGRA_AES_SECURE_KEY_INDEX_SHIFT);
350	aes_writel(dd, value, TEGRA_AES_SECURE_CONFIG);
351
352	if (use_ssk)
353		return 0;
354
355	/* copy the key table from sdram to vram */
356	cmdq[0] = CMD_MEMDMAVD << CMDQ_OPCODE_SHIFT |
357		MEMDMA_DIR_DTOVRAM << MEMDMA_DIR_SHIFT |
358		AES_HW_KEY_TABLE_LENGTH_BYTES / sizeof(u32) <<
359			MEMDMA_NUM_WORDS_SHIFT;
360	cmdq[1] = (u32)dd->ivkey_phys_base;
361
362	aes_writel(dd, cmdq[0], TEGRA_AES_ICMDQUE_WR);
363	aes_writel(dd, cmdq[1], TEGRA_AES_ICMDQUE_WR);
364
365	do {
366		value = aes_readl(dd, TEGRA_AES_INTR_STATUS);
367		eng_busy = value & TEGRA_AES_ENGINE_BUSY_FIELD;
368		icq_empty = value & TEGRA_AES_ICQ_EMPTY_FIELD;
369		dma_busy = value & TEGRA_AES_DMA_BUSY_FIELD;
370	} while (eng_busy & (!icq_empty) & dma_busy);
371
372	/* settable command to get key into internal registers */
373	value = CMD_SETTABLE << CMDQ_OPCODE_SHIFT |
374		SUBCMD_CRYPTO_TABLE_SEL << CMDQ_TABLESEL_SHIFT |
375		SUBCMD_VRAM_SEL << CMDQ_VRAMSEL_SHIFT |
376		(SUBCMD_KEY_TABLE_SEL | ctx->slot->slot_num) <<
377			CMDQ_KEYTABLEID_SHIFT;
378	aes_writel(dd, value, TEGRA_AES_ICMDQUE_WR);
379
380	do {
381		value = aes_readl(dd, TEGRA_AES_INTR_STATUS);
382		eng_busy = value & TEGRA_AES_ENGINE_BUSY_FIELD;
383		icq_empty = value & TEGRA_AES_ICQ_EMPTY_FIELD;
384	} while (eng_busy & (!icq_empty));
385
386	return 0;
387}
388
389static int tegra_aes_handle_req(struct tegra_aes_dev *dd)
390{
391	struct crypto_async_request *async_req, *backlog;
392	struct crypto_ablkcipher *tfm;
393	struct tegra_aes_ctx *ctx;
394	struct tegra_aes_reqctx *rctx;
395	struct ablkcipher_request *req;
396	unsigned long flags;
397	int dma_max = AES_HW_DMA_BUFFER_SIZE_BYTES;
398	int ret = 0, nblocks, total;
399	int count = 0;
400	dma_addr_t addr_in, addr_out;
401	struct scatterlist *in_sg, *out_sg;
402
403	if (!dd)
404		return -EINVAL;
405
406	spin_lock_irqsave(&dd->lock, flags);
407	backlog = crypto_get_backlog(&dd->queue);
408	async_req = crypto_dequeue_request(&dd->queue);
409	if (!async_req)
410		clear_bit(FLAGS_BUSY, &dd->flags);
411	spin_unlock_irqrestore(&dd->lock, flags);
412
413	if (!async_req)
414		return -ENODATA;
415
416	if (backlog)
417		backlog->complete(backlog, -EINPROGRESS);
418
419	req = ablkcipher_request_cast(async_req);
420
421	dev_dbg(dd->dev, "%s: get new req\n", __func__);
422
423	if (!req->src || !req->dst)
424		return -EINVAL;
425
426	/* take mutex to access the aes hw */
427	mutex_lock(&aes_lock);
428
429	/* assign new request to device */
430	dd->req = req;
431	dd->total = req->nbytes;
432	dd->in_offset = 0;
433	dd->in_sg = req->src;
434	dd->out_offset = 0;
435	dd->out_sg = req->dst;
436
437	in_sg = dd->in_sg;
438	out_sg = dd->out_sg;
439
440	total = dd->total;
441
442	tfm = crypto_ablkcipher_reqtfm(req);
443	rctx = ablkcipher_request_ctx(req);
444	ctx = crypto_ablkcipher_ctx(tfm);
445	rctx->mode &= FLAGS_MODE_MASK;
446	dd->flags = (dd->flags & ~FLAGS_MODE_MASK) | rctx->mode;
447
448	dd->iv = (u8 *)req->info;
449	dd->ivlen = crypto_ablkcipher_ivsize(tfm);
450
451	/* assign new context to device */
452	ctx->dd = dd;
453	dd->ctx = ctx;
454
455	if (ctx->flags & FLAGS_NEW_KEY) {
456		/* copy the key */
457		memcpy(dd->ivkey_base, ctx->key, ctx->keylen);
458		memset(dd->ivkey_base + ctx->keylen, 0, AES_HW_KEY_TABLE_LENGTH_BYTES - ctx->keylen);
459		aes_set_key(dd);
460		ctx->flags &= ~FLAGS_NEW_KEY;
461	}
462
463	if (((dd->flags & FLAGS_CBC) || (dd->flags & FLAGS_OFB)) && dd->iv) {
464		/* set iv to the aes hw slot
465		 * Hw generates updated iv only after iv is set in slot.
466		 * So key and iv is passed asynchronously.
467		 */
468		memcpy(dd->buf_in, dd->iv, dd->ivlen);
469
470		ret = aes_start_crypt(dd, (u32)dd->dma_buf_in,
471				      dd->dma_buf_out, 1, FLAGS_CBC, false);
472		if (ret < 0) {
473			dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret);
474			goto out;
475		}
476	}
477
478	while (total) {
479		dev_dbg(dd->dev, "remain: %d\n", total);
480		ret = dma_map_sg(dd->dev, in_sg, 1, DMA_TO_DEVICE);
481		if (!ret) {
482			dev_err(dd->dev, "dma_map_sg() error\n");
483			goto out;
484		}
485
486		ret = dma_map_sg(dd->dev, out_sg, 1, DMA_FROM_DEVICE);
487		if (!ret) {
488			dev_err(dd->dev, "dma_map_sg() error\n");
489			dma_unmap_sg(dd->dev, dd->in_sg,
490				1, DMA_TO_DEVICE);
491			goto out;
492		}
493
494		addr_in = sg_dma_address(in_sg);
495		addr_out = sg_dma_address(out_sg);
496		dd->flags |= FLAGS_FAST;
497		count = min_t(int, sg_dma_len(in_sg), dma_max);
498		WARN_ON(sg_dma_len(in_sg) != sg_dma_len(out_sg));
499		nblocks = DIV_ROUND_UP(count, AES_BLOCK_SIZE);
500
501		ret = aes_start_crypt(dd, addr_in, addr_out, nblocks,
502			dd->flags, true);
503
504		dma_unmap_sg(dd->dev, out_sg, 1, DMA_FROM_DEVICE);
505		dma_unmap_sg(dd->dev, in_sg, 1, DMA_TO_DEVICE);
506
507		if (ret < 0) {
508			dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret);
509			goto out;
510		}
511		dd->flags &= ~FLAGS_FAST;
512
513		dev_dbg(dd->dev, "out: copied %d\n", count);
514		total -= count;
515		in_sg = sg_next(in_sg);
516		out_sg = sg_next(out_sg);
517		WARN_ON(((total != 0) && (!in_sg || !out_sg)));
518	}
519
520out:
521	mutex_unlock(&aes_lock);
522
523	dd->total = total;
524
525	if (dd->req->base.complete)
526		dd->req->base.complete(&dd->req->base, ret);
527
528	dev_dbg(dd->dev, "%s: exit\n", __func__);
529	return ret;
530}
531
532static int tegra_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
533			    unsigned int keylen)
534{
535	struct tegra_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
536	struct tegra_aes_dev *dd = aes_dev;
537	struct tegra_aes_slot *key_slot;
538
539	if ((keylen != AES_KEYSIZE_128) && (keylen != AES_KEYSIZE_192) &&
540		(keylen != AES_KEYSIZE_256)) {
541		dev_err(dd->dev, "unsupported key size\n");
542		crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
543		return -EINVAL;
544	}
545
546	dev_dbg(dd->dev, "keylen: %d\n", keylen);
547
548	ctx->dd = dd;
549
550	if (key) {
551		if (!ctx->slot) {
552			key_slot = aes_find_key_slot();
553			if (!key_slot) {
554				dev_err(dd->dev, "no empty slot\n");
555				return -ENOMEM;
556			}
557
558			ctx->slot = key_slot;
559		}
560
561		memcpy(ctx->key, key, keylen);
562		ctx->keylen = keylen;
563	}
564
565	ctx->flags |= FLAGS_NEW_KEY;
566	dev_dbg(dd->dev, "done\n");
567	return 0;
568}
569
570static void aes_workqueue_handler(struct work_struct *work)
571{
572	struct tegra_aes_dev *dd = aes_dev;
573	int ret;
574
575	ret = clk_enable(dd->aes_clk);
576	if (ret)
577		BUG_ON("clock enable failed");
578
579	/* empty the crypto queue and then return */
580	do {
581		ret = tegra_aes_handle_req(dd);
582	} while (!ret);
583
584	clk_disable(dd->aes_clk);
585}
586
587static irqreturn_t aes_irq(int irq, void *dev_id)
588{
589	struct tegra_aes_dev *dd = (struct tegra_aes_dev *)dev_id;
590	u32 value = aes_readl(dd, TEGRA_AES_INTR_STATUS);
591	int busy = test_bit(FLAGS_BUSY, &dd->flags);
592
593	if (!busy) {
594		dev_dbg(dd->dev, "spurious interrupt\n");
595		return IRQ_NONE;
596	}
597
598	dev_dbg(dd->dev, "irq_stat: 0x%x\n", value);
599	if (value & TEGRA_AES_INT_ERROR_MASK)
600		aes_writel(dd, TEGRA_AES_INT_ERROR_MASK, TEGRA_AES_INTR_STATUS);
601
602	if (!(value & TEGRA_AES_ENGINE_BUSY_FIELD))
603		complete(&dd->op_complete);
604	else
605		return IRQ_NONE;
606
607	return IRQ_HANDLED;
608}
609
610static int tegra_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
611{
612	struct tegra_aes_reqctx *rctx = ablkcipher_request_ctx(req);
613	struct tegra_aes_dev *dd = aes_dev;
614	unsigned long flags;
615	int err = 0;
616	int busy;
617
618	dev_dbg(dd->dev, "nbytes: %d, enc: %d, cbc: %d, ofb: %d\n",
619		req->nbytes, !!(mode & FLAGS_ENCRYPT),
620		!!(mode & FLAGS_CBC), !!(mode & FLAGS_OFB));
621
622	rctx->mode = mode;
623
624	spin_lock_irqsave(&dd->lock, flags);
625	err = ablkcipher_enqueue_request(&dd->queue, req);
626	busy = test_and_set_bit(FLAGS_BUSY, &dd->flags);
627	spin_unlock_irqrestore(&dd->lock, flags);
628
629	if (!busy)
630		queue_work(aes_wq, &aes_work);
631
632	return err;
633}
634
635static int tegra_aes_ecb_encrypt(struct ablkcipher_request *req)
636{
637	return tegra_aes_crypt(req, FLAGS_ENCRYPT);
638}
639
640static int tegra_aes_ecb_decrypt(struct ablkcipher_request *req)
641{
642	return tegra_aes_crypt(req, 0);
643}
644
645static int tegra_aes_cbc_encrypt(struct ablkcipher_request *req)
646{
647	return tegra_aes_crypt(req, FLAGS_ENCRYPT | FLAGS_CBC);
648}
649
650static int tegra_aes_cbc_decrypt(struct ablkcipher_request *req)
651{
652	return tegra_aes_crypt(req, FLAGS_CBC);
653}
654
655static int tegra_aes_ofb_encrypt(struct ablkcipher_request *req)
656{
657	return tegra_aes_crypt(req, FLAGS_ENCRYPT | FLAGS_OFB);
658}
659
660static int tegra_aes_ofb_decrypt(struct ablkcipher_request *req)
661{
662	return tegra_aes_crypt(req, FLAGS_OFB);
663}
664
665static int tegra_aes_get_random(struct crypto_rng *tfm, u8 *rdata,
666				unsigned int dlen)
667{
668	struct tegra_aes_dev *dd = aes_dev;
669	struct tegra_aes_ctx *ctx = &rng_ctx;
670	int ret, i;
671	u8 *dest = rdata, *dt = dd->dt;
672
673	/* take mutex to access the aes hw */
674	mutex_lock(&aes_lock);
675
676	ret = clk_enable(dd->aes_clk);
677	if (ret)
678		return ret;
679
680	ctx->dd = dd;
681	dd->ctx = ctx;
682	dd->flags = FLAGS_ENCRYPT | FLAGS_RNG;
683
684	memcpy(dd->buf_in, dt, DEFAULT_RNG_BLK_SZ);
685
686	ret = aes_start_crypt(dd, (u32)dd->dma_buf_in,
687			      (u32)dd->dma_buf_out, 1, dd->flags, true);
688	if (ret < 0) {
689		dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret);
690		dlen = ret;
691		goto out;
692	}
693	memcpy(dest, dd->buf_out, dlen);
694
695	/* update the DT */
696	for (i = DEFAULT_RNG_BLK_SZ - 1; i >= 0; i--) {
697		dt[i] += 1;
698		if (dt[i] != 0)
699			break;
700	}
701
702out:
703	clk_disable(dd->aes_clk);
704	mutex_unlock(&aes_lock);
705
706	dev_dbg(dd->dev, "%s: done\n", __func__);
707	return dlen;
708}
709
710static int tegra_aes_rng_reset(struct crypto_rng *tfm, u8 *seed,
711			       unsigned int slen)
712{
713	struct tegra_aes_dev *dd = aes_dev;
714	struct tegra_aes_ctx *ctx = &rng_ctx;
715	struct tegra_aes_slot *key_slot;
716	struct timespec ts;
717	int ret = 0;
718	u64 nsec, tmp[2];
719	u8 *dt;
720
721	if (!ctx || !dd) {
722		dev_err(dd->dev, "ctx=0x%x, dd=0x%x\n",
723			(unsigned int)ctx, (unsigned int)dd);
724		return -EINVAL;
725	}
726
727	if (slen < (DEFAULT_RNG_BLK_SZ + AES_KEYSIZE_128)) {
728		dev_err(dd->dev, "seed size invalid");
729		return -ENOMEM;
730	}
731
732	/* take mutex to access the aes hw */
733	mutex_lock(&aes_lock);
734
735	if (!ctx->slot) {
736		key_slot = aes_find_key_slot();
737		if (!key_slot) {
738			dev_err(dd->dev, "no empty slot\n");
739			mutex_unlock(&aes_lock);
740			return -ENOMEM;
741		}
742		ctx->slot = key_slot;
743	}
744
745	ctx->dd = dd;
746	dd->ctx = ctx;
747	dd->ctr = 0;
748
749	ctx->keylen = AES_KEYSIZE_128;
750	ctx->flags |= FLAGS_NEW_KEY;
751
752	/* copy the key to the key slot */
753	memcpy(dd->ivkey_base, seed + DEFAULT_RNG_BLK_SZ, AES_KEYSIZE_128);
754	memset(dd->ivkey_base + AES_KEYSIZE_128, 0, AES_HW_KEY_TABLE_LENGTH_BYTES - AES_KEYSIZE_128);
755
756	dd->iv = seed;
757	dd->ivlen = slen;
758
759	dd->flags = FLAGS_ENCRYPT | FLAGS_RNG;
760
761	ret = clk_enable(dd->aes_clk);
762	if (ret)
763		return ret;
764
765	aes_set_key(dd);
766
767	/* set seed to the aes hw slot */
768	memcpy(dd->buf_in, dd->iv, DEFAULT_RNG_BLK_SZ);
769	ret = aes_start_crypt(dd, (u32)dd->dma_buf_in,
770			      dd->dma_buf_out, 1, FLAGS_CBC, false);
771	if (ret < 0) {
772		dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret);
773		goto out;
774	}
775
776	if (dd->ivlen >= (2 * DEFAULT_RNG_BLK_SZ + AES_KEYSIZE_128)) {
777		dt = dd->iv + DEFAULT_RNG_BLK_SZ + AES_KEYSIZE_128;
778	} else {
779		getnstimeofday(&ts);
780		nsec = timespec_to_ns(&ts);
781		do_div(nsec, 1000);
782		nsec ^= dd->ctr << 56;
783		dd->ctr++;
784		tmp[0] = nsec;
785		tmp[1] = tegra_chip_uid();
786		dt = (u8 *)tmp;
787	}
788	memcpy(dd->dt, dt, DEFAULT_RNG_BLK_SZ);
789
790out:
791	clk_disable(dd->aes_clk);
792	mutex_unlock(&aes_lock);
793
794	dev_dbg(dd->dev, "%s: done\n", __func__);
795	return ret;
796}
797
798static int tegra_aes_cra_init(struct crypto_tfm *tfm)
799{
800	tfm->crt_ablkcipher.reqsize = sizeof(struct tegra_aes_reqctx);
801
802	return 0;
803}
804
805void tegra_aes_cra_exit(struct crypto_tfm *tfm)
806{
807	struct tegra_aes_ctx *ctx =
808		crypto_ablkcipher_ctx((struct crypto_ablkcipher *)tfm);
809
810	if (ctx && ctx->slot)
811		aes_release_key_slot(ctx->slot);
812}
813
814static struct crypto_alg algs[] = {
815	{
816		.cra_name = "ecb(aes)",
817		.cra_driver_name = "ecb-aes-tegra",
818		.cra_priority = 300,
819		.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
820		.cra_blocksize = AES_BLOCK_SIZE,
821		.cra_alignmask = 3,
822		.cra_type = &crypto_ablkcipher_type,
823		.cra_u.ablkcipher = {
824			.min_keysize = AES_MIN_KEY_SIZE,
825			.max_keysize = AES_MAX_KEY_SIZE,
826			.setkey = tegra_aes_setkey,
827			.encrypt = tegra_aes_ecb_encrypt,
828			.decrypt = tegra_aes_ecb_decrypt,
829		},
830	}, {
831		.cra_name = "cbc(aes)",
832		.cra_driver_name = "cbc-aes-tegra",
833		.cra_priority = 300,
834		.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
835		.cra_blocksize = AES_BLOCK_SIZE,
836		.cra_alignmask = 3,
837		.cra_type = &crypto_ablkcipher_type,
838		.cra_u.ablkcipher = {
839			.min_keysize = AES_MIN_KEY_SIZE,
840			.max_keysize = AES_MAX_KEY_SIZE,
841			.ivsize = AES_MIN_KEY_SIZE,
842			.setkey = tegra_aes_setkey,
843			.encrypt = tegra_aes_cbc_encrypt,
844			.decrypt = tegra_aes_cbc_decrypt,
845		}
846	}, {
847		.cra_name = "ofb(aes)",
848		.cra_driver_name = "ofb-aes-tegra",
849		.cra_priority = 300,
850		.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
851		.cra_blocksize = AES_BLOCK_SIZE,
852		.cra_alignmask = 3,
853		.cra_type = &crypto_ablkcipher_type,
854		.cra_u.ablkcipher = {
855			.min_keysize = AES_MIN_KEY_SIZE,
856			.max_keysize = AES_MAX_KEY_SIZE,
857			.ivsize = AES_MIN_KEY_SIZE,
858			.setkey = tegra_aes_setkey,
859			.encrypt = tegra_aes_ofb_encrypt,
860			.decrypt = tegra_aes_ofb_decrypt,
861		}
862	}, {
863		.cra_name = "ansi_cprng",
864		.cra_driver_name = "rng-aes-tegra",
865		.cra_flags = CRYPTO_ALG_TYPE_RNG,
866		.cra_ctxsize = sizeof(struct tegra_aes_ctx),
867		.cra_type = &crypto_rng_type,
868		.cra_u.rng = {
869			.rng_make_random = tegra_aes_get_random,
870			.rng_reset = tegra_aes_rng_reset,
871			.seedsize = AES_KEYSIZE_128 + (2 * DEFAULT_RNG_BLK_SZ),
872		}
873	}
874};
875
876static int tegra_aes_probe(struct platform_device *pdev)
877{
878	struct device *dev = &pdev->dev;
879	struct tegra_aes_dev *dd;
880	struct resource *res;
881	int err = -ENOMEM, i = 0, j;
882
883	dd = devm_kzalloc(dev, sizeof(struct tegra_aes_dev), GFP_KERNEL);
884	if (dd == NULL) {
885		dev_err(dev, "unable to alloc data struct.\n");
886		return err;
887	}
888
889	dd->dev = dev;
890	platform_set_drvdata(pdev, dd);
891
892	dd->slots = devm_kzalloc(dev, sizeof(struct tegra_aes_slot) *
893				 AES_NR_KEYSLOTS, GFP_KERNEL);
894	if (dd->slots == NULL) {
895		dev_err(dev, "unable to alloc slot struct.\n");
896		goto out;
897	}
898
899	spin_lock_init(&dd->lock);
900	crypto_init_queue(&dd->queue, TEGRA_AES_QUEUE_LENGTH);
901
902	/* Get the module base address */
903	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
904	if (!res) {
905		dev_err(dev, "invalid resource type: base\n");
906		err = -ENODEV;
907		goto out;
908	}
909
910	if (!devm_request_mem_region(&pdev->dev, res->start,
911				     resource_size(res),
912				     dev_name(&pdev->dev))) {
913		dev_err(&pdev->dev, "Couldn't request MEM resource\n");
914		return -ENODEV;
915	}
916
917	dd->io_base = devm_ioremap(dev, res->start, resource_size(res));
918	if (!dd->io_base) {
919		dev_err(dev, "can't ioremap register space\n");
920		err = -ENOMEM;
921		goto out;
922	}
923
924	/* Initialize the vde clock */
925	dd->aes_clk = clk_get(dev, "vde");
926	if (IS_ERR(dd->aes_clk)) {
927		dev_err(dev, "iclock intialization failed.\n");
928		err = -ENODEV;
929		goto out;
930	}
931
932	err = clk_set_rate(dd->aes_clk, ULONG_MAX);
933	if (err) {
934		dev_err(dd->dev, "iclk set_rate fail(%d)\n", err);
935		goto out;
936	}
937
938	/*
939	 * the foll contiguous memory is allocated as follows -
940	 * - hardware key table
941	 * - key schedule
942	 */
943	dd->ivkey_base = dma_alloc_coherent(dev, AES_HW_KEY_TABLE_LENGTH_BYTES,
944					    &dd->ivkey_phys_base,
945		GFP_KERNEL);
946	if (!dd->ivkey_base) {
947		dev_err(dev, "can not allocate iv/key buffer\n");
948		err = -ENOMEM;
949		goto out;
950	}
951
952	dd->buf_in = dma_alloc_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES,
953					&dd->dma_buf_in, GFP_KERNEL);
954	if (!dd->buf_in) {
955		dev_err(dev, "can not allocate dma-in buffer\n");
956		err = -ENOMEM;
957		goto out;
958	}
959
960	dd->buf_out = dma_alloc_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES,
961					 &dd->dma_buf_out, GFP_KERNEL);
962	if (!dd->buf_out) {
963		dev_err(dev, "can not allocate dma-out buffer\n");
964		err = -ENOMEM;
965		goto out;
966	}
967
968	init_completion(&dd->op_complete);
969	aes_wq = alloc_workqueue("tegra_aes_wq", WQ_HIGHPRI | WQ_UNBOUND, 1);
970	if (!aes_wq) {
971		dev_err(dev, "alloc_workqueue failed\n");
972		goto out;
973	}
974
975	/* get the irq */
976	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
977	if (!res) {
978		dev_err(dev, "invalid resource type: base\n");
979		err = -ENODEV;
980		goto out;
981	}
982	dd->irq = res->start;
983
984	err = devm_request_irq(dev, dd->irq, aes_irq, IRQF_TRIGGER_HIGH |
985				IRQF_SHARED, "tegra-aes", dd);
986	if (err) {
987		dev_err(dev, "request_irq failed\n");
988		goto out;
989	}
990
991	mutex_init(&aes_lock);
992	INIT_LIST_HEAD(&dev_list);
993
994	spin_lock_init(&list_lock);
995	spin_lock(&list_lock);
996	for (i = 0; i < AES_NR_KEYSLOTS; i++) {
997		if (i == SSK_SLOT_NUM)
998			continue;
999		dd->slots[i].slot_num = i;
1000		INIT_LIST_HEAD(&dd->slots[i].node);
1001		list_add_tail(&dd->slots[i].node, &dev_list);
1002	}
1003	spin_unlock(&list_lock);
1004
1005	aes_dev = dd;
1006	for (i = 0; i < ARRAY_SIZE(algs); i++) {
1007		INIT_LIST_HEAD(&algs[i].cra_list);
1008
1009		algs[i].cra_priority = 300;
1010		algs[i].cra_ctxsize = sizeof(struct tegra_aes_ctx);
1011		algs[i].cra_module = THIS_MODULE;
1012		algs[i].cra_init = tegra_aes_cra_init;
1013		algs[i].cra_exit = tegra_aes_cra_exit;
1014
1015		err = crypto_register_alg(&algs[i]);
1016		if (err)
1017			goto out;
1018	}
1019
1020	dev_info(dev, "registered");
1021	return 0;
1022
1023out:
1024	for (j = 0; j < i; j++)
1025		crypto_unregister_alg(&algs[j]);
1026	if (dd->ivkey_base)
1027		dma_free_coherent(dev, AES_HW_KEY_TABLE_LENGTH_BYTES,
1028			dd->ivkey_base, dd->ivkey_phys_base);
1029	if (dd->buf_in)
1030		dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES,
1031			dd->buf_in, dd->dma_buf_in);
1032	if (dd->buf_out)
1033		dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES,
1034			dd->buf_out, dd->dma_buf_out);
1035	if (IS_ERR(dd->aes_clk))
1036		clk_put(dd->aes_clk);
1037	if (aes_wq)
1038		destroy_workqueue(aes_wq);
1039	spin_lock(&list_lock);
1040	list_del(&dev_list);
1041	spin_unlock(&list_lock);
1042
1043	aes_dev = NULL;
1044
1045	dev_err(dev, "%s: initialization failed.\n", __func__);
1046	return err;
1047}
1048
1049static int __devexit tegra_aes_remove(struct platform_device *pdev)
1050{
1051	struct device *dev = &pdev->dev;
1052	struct tegra_aes_dev *dd = platform_get_drvdata(pdev);
1053	int i;
1054
1055	for (i = 0; i < ARRAY_SIZE(algs); i++)
1056		crypto_unregister_alg(&algs[i]);
1057
1058	cancel_work_sync(&aes_work);
1059	destroy_workqueue(aes_wq);
1060	spin_lock(&list_lock);
1061	list_del(&dev_list);
1062	spin_unlock(&list_lock);
1063
1064	dma_free_coherent(dev, AES_HW_KEY_TABLE_LENGTH_BYTES,
1065			  dd->ivkey_base, dd->ivkey_phys_base);
1066	dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES,
1067			  dd->buf_in, dd->dma_buf_in);
1068	dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES,
1069			  dd->buf_out, dd->dma_buf_out);
1070	clk_put(dd->aes_clk);
1071	aes_dev = NULL;
1072
1073	return 0;
1074}
1075
1076static struct of_device_id tegra_aes_of_match[] __devinitdata = {
1077	{ .compatible = "nvidia,tegra20-aes", },
1078	{ .compatible = "nvidia,tegra30-aes", },
1079	{ },
1080};
1081
1082static struct platform_driver tegra_aes_driver = {
1083	.probe  = tegra_aes_probe,
1084	.remove = __devexit_p(tegra_aes_remove),
1085	.driver = {
1086		.name   = "tegra-aes",
1087		.owner  = THIS_MODULE,
1088		.of_match_table = tegra_aes_of_match,
1089	},
1090};
1091
1092module_platform_driver(tegra_aes_driver);
1093
1094MODULE_DESCRIPTION("Tegra AES/OFB/CPRNG hw acceleration support.");
1095MODULE_AUTHOR("NVIDIA Corporation");
1096MODULE_LICENSE("GPL v2");
1097