1/*
2 * Copyright é 2006-2011 Intel Corporation
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc.,
15 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16 *
17 * Authors:
18 *	Eric Anholt <eric@anholt.net>
19 */
20
21#include <linux/i2c.h>
22#include <linux/pm_runtime.h>
23
24#include <drm/drmP.h>
25#include "framebuffer.h"
26#include "psb_drv.h"
27#include "psb_intel_drv.h"
28#include "psb_intel_reg.h"
29#include "psb_intel_display.h"
30#include "power.h"
31
32struct psb_intel_clock_t {
33	/* given values */
34	int n;
35	int m1, m2;
36	int p1, p2;
37	/* derived values */
38	int dot;
39	int vco;
40	int m;
41	int p;
42};
43
44struct psb_intel_range_t {
45	int min, max;
46};
47
48struct psb_intel_p2_t {
49	int dot_limit;
50	int p2_slow, p2_fast;
51};
52
53#define INTEL_P2_NUM		      2
54
55struct psb_intel_limit_t {
56	struct psb_intel_range_t dot, vco, n, m, m1, m2, p, p1;
57	struct psb_intel_p2_t p2;
58};
59
60#define I8XX_DOT_MIN		  25000
61#define I8XX_DOT_MAX		 350000
62#define I8XX_VCO_MIN		 930000
63#define I8XX_VCO_MAX		1400000
64#define I8XX_N_MIN		      3
65#define I8XX_N_MAX		     16
66#define I8XX_M_MIN		     96
67#define I8XX_M_MAX		    140
68#define I8XX_M1_MIN		     18
69#define I8XX_M1_MAX		     26
70#define I8XX_M2_MIN		      6
71#define I8XX_M2_MAX		     16
72#define I8XX_P_MIN		      4
73#define I8XX_P_MAX		    128
74#define I8XX_P1_MIN		      2
75#define I8XX_P1_MAX		     33
76#define I8XX_P1_LVDS_MIN	      1
77#define I8XX_P1_LVDS_MAX	      6
78#define I8XX_P2_SLOW		      4
79#define I8XX_P2_FAST		      2
80#define I8XX_P2_LVDS_SLOW	      14
81#define I8XX_P2_LVDS_FAST	      14	/* No fast option */
82#define I8XX_P2_SLOW_LIMIT	 165000
83
84#define I9XX_DOT_MIN		  20000
85#define I9XX_DOT_MAX		 400000
86#define I9XX_VCO_MIN		1400000
87#define I9XX_VCO_MAX		2800000
88#define I9XX_N_MIN		      3
89#define I9XX_N_MAX		      8
90#define I9XX_M_MIN		     70
91#define I9XX_M_MAX		    120
92#define I9XX_M1_MIN		     10
93#define I9XX_M1_MAX		     20
94#define I9XX_M2_MIN		      5
95#define I9XX_M2_MAX		      9
96#define I9XX_P_SDVO_DAC_MIN	      5
97#define I9XX_P_SDVO_DAC_MAX	     80
98#define I9XX_P_LVDS_MIN		      7
99#define I9XX_P_LVDS_MAX		     98
100#define I9XX_P1_MIN		      1
101#define I9XX_P1_MAX		      8
102#define I9XX_P2_SDVO_DAC_SLOW		     10
103#define I9XX_P2_SDVO_DAC_FAST		      5
104#define I9XX_P2_SDVO_DAC_SLOW_LIMIT	 200000
105#define I9XX_P2_LVDS_SLOW		     14
106#define I9XX_P2_LVDS_FAST		      7
107#define I9XX_P2_LVDS_SLOW_LIMIT		 112000
108
109#define INTEL_LIMIT_I8XX_DVO_DAC    0
110#define INTEL_LIMIT_I8XX_LVDS	    1
111#define INTEL_LIMIT_I9XX_SDVO_DAC   2
112#define INTEL_LIMIT_I9XX_LVDS	    3
113
114static const struct psb_intel_limit_t psb_intel_limits[] = {
115	{			/* INTEL_LIMIT_I8XX_DVO_DAC */
116	 .dot = {.min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX},
117	 .vco = {.min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX},
118	 .n = {.min = I8XX_N_MIN, .max = I8XX_N_MAX},
119	 .m = {.min = I8XX_M_MIN, .max = I8XX_M_MAX},
120	 .m1 = {.min = I8XX_M1_MIN, .max = I8XX_M1_MAX},
121	 .m2 = {.min = I8XX_M2_MIN, .max = I8XX_M2_MAX},
122	 .p = {.min = I8XX_P_MIN, .max = I8XX_P_MAX},
123	 .p1 = {.min = I8XX_P1_MIN, .max = I8XX_P1_MAX},
124	 .p2 = {.dot_limit = I8XX_P2_SLOW_LIMIT,
125		.p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST},
126	 },
127	{			/* INTEL_LIMIT_I8XX_LVDS */
128	 .dot = {.min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX},
129	 .vco = {.min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX},
130	 .n = {.min = I8XX_N_MIN, .max = I8XX_N_MAX},
131	 .m = {.min = I8XX_M_MIN, .max = I8XX_M_MAX},
132	 .m1 = {.min = I8XX_M1_MIN, .max = I8XX_M1_MAX},
133	 .m2 = {.min = I8XX_M2_MIN, .max = I8XX_M2_MAX},
134	 .p = {.min = I8XX_P_MIN, .max = I8XX_P_MAX},
135	 .p1 = {.min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX},
136	 .p2 = {.dot_limit = I8XX_P2_SLOW_LIMIT,
137		.p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST},
138	 },
139	{			/* INTEL_LIMIT_I9XX_SDVO_DAC */
140	 .dot = {.min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
141	 .vco = {.min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX},
142	 .n = {.min = I9XX_N_MIN, .max = I9XX_N_MAX},
143	 .m = {.min = I9XX_M_MIN, .max = I9XX_M_MAX},
144	 .m1 = {.min = I9XX_M1_MIN, .max = I9XX_M1_MAX},
145	 .m2 = {.min = I9XX_M2_MIN, .max = I9XX_M2_MAX},
146	 .p = {.min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX},
147	 .p1 = {.min = I9XX_P1_MIN, .max = I9XX_P1_MAX},
148	 .p2 = {.dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
149		.p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast =
150		I9XX_P2_SDVO_DAC_FAST},
151	 },
152	{			/* INTEL_LIMIT_I9XX_LVDS */
153	 .dot = {.min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
154	 .vco = {.min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX},
155	 .n = {.min = I9XX_N_MIN, .max = I9XX_N_MAX},
156	 .m = {.min = I9XX_M_MIN, .max = I9XX_M_MAX},
157	 .m1 = {.min = I9XX_M1_MIN, .max = I9XX_M1_MAX},
158	 .m2 = {.min = I9XX_M2_MIN, .max = I9XX_M2_MAX},
159	 .p = {.min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX},
160	 .p1 = {.min = I9XX_P1_MIN, .max = I9XX_P1_MAX},
161	 /* The single-channel range is 25-112Mhz, and dual-channel
162	  * is 80-224Mhz.  Prefer single channel as much as possible.
163	  */
164	 .p2 = {.dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
165		.p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST},
166	 },
167};
168
169static const struct psb_intel_limit_t *psb_intel_limit(struct drm_crtc *crtc)
170{
171	const struct psb_intel_limit_t *limit;
172
173	if (psb_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
174		limit = &psb_intel_limits[INTEL_LIMIT_I9XX_LVDS];
175	else
176		limit = &psb_intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
177	return limit;
178}
179
180/** Derive the pixel clock for the given refclk and divisors for 8xx chips. */
181
182static void i8xx_clock(int refclk, struct psb_intel_clock_t *clock)
183{
184	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
185	clock->p = clock->p1 * clock->p2;
186	clock->vco = refclk * clock->m / (clock->n + 2);
187	clock->dot = clock->vco / clock->p;
188}
189
190/** Derive the pixel clock for the given refclk and divisors for 9xx chips. */
191
192static void i9xx_clock(int refclk, struct psb_intel_clock_t *clock)
193{
194	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
195	clock->p = clock->p1 * clock->p2;
196	clock->vco = refclk * clock->m / (clock->n + 2);
197	clock->dot = clock->vco / clock->p;
198}
199
200static void psb_intel_clock(struct drm_device *dev, int refclk,
201			struct psb_intel_clock_t *clock)
202{
203	return i9xx_clock(refclk, clock);
204}
205
206/**
207 * Returns whether any output on the specified pipe is of the specified type
208 */
209bool psb_intel_pipe_has_type(struct drm_crtc *crtc, int type)
210{
211	struct drm_device *dev = crtc->dev;
212	struct drm_mode_config *mode_config = &dev->mode_config;
213	struct drm_connector *l_entry;
214
215	list_for_each_entry(l_entry, &mode_config->connector_list, head) {
216		if (l_entry->encoder && l_entry->encoder->crtc == crtc) {
217			struct psb_intel_encoder *psb_intel_encoder =
218					psb_intel_attached_encoder(l_entry);
219			if (psb_intel_encoder->type == type)
220				return true;
221		}
222	}
223	return false;
224}
225
226#define INTELPllInvalid(s)   { /* ErrorF (s) */; return false; }
227/**
228 * Returns whether the given set of divisors are valid for a given refclk with
229 * the given connectors.
230 */
231
232static bool psb_intel_PLL_is_valid(struct drm_crtc *crtc,
233			       struct psb_intel_clock_t *clock)
234{
235	const struct psb_intel_limit_t *limit = psb_intel_limit(crtc);
236
237	if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
238		INTELPllInvalid("p1 out of range\n");
239	if (clock->p < limit->p.min || limit->p.max < clock->p)
240		INTELPllInvalid("p out of range\n");
241	if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
242		INTELPllInvalid("m2 out of range\n");
243	if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
244		INTELPllInvalid("m1 out of range\n");
245	if (clock->m1 <= clock->m2)
246		INTELPllInvalid("m1 <= m2\n");
247	if (clock->m < limit->m.min || limit->m.max < clock->m)
248		INTELPllInvalid("m out of range\n");
249	if (clock->n < limit->n.min || limit->n.max < clock->n)
250		INTELPllInvalid("n out of range\n");
251	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
252		INTELPllInvalid("vco out of range\n");
253	/* XXX: We may need to be checking "Dot clock"
254	 * depending on the multiplier, connector, etc.,
255	 * rather than just a single range.
256	 */
257	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
258		INTELPllInvalid("dot out of range\n");
259
260	return true;
261}
262
263/**
264 * Returns a set of divisors for the desired target clock with the given
265 * refclk, or FALSE.  The returned values represent the clock equation:
266 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
267 */
268static bool psb_intel_find_best_PLL(struct drm_crtc *crtc, int target,
269				int refclk,
270				struct psb_intel_clock_t *best_clock)
271{
272	struct drm_device *dev = crtc->dev;
273	struct psb_intel_clock_t clock;
274	const struct psb_intel_limit_t *limit = psb_intel_limit(crtc);
275	int err = target;
276
277	if (psb_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
278	    (REG_READ(LVDS) & LVDS_PORT_EN) != 0) {
279		/*
280		 * For LVDS, if the panel is on, just rely on its current
281		 * settings for dual-channel.  We haven't figured out how to
282		 * reliably set up different single/dual channel state, if we
283		 * even can.
284		 */
285		if ((REG_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
286		    LVDS_CLKB_POWER_UP)
287			clock.p2 = limit->p2.p2_fast;
288		else
289			clock.p2 = limit->p2.p2_slow;
290	} else {
291		if (target < limit->p2.dot_limit)
292			clock.p2 = limit->p2.p2_slow;
293		else
294			clock.p2 = limit->p2.p2_fast;
295	}
296
297	memset(best_clock, 0, sizeof(*best_clock));
298
299	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
300	     clock.m1++) {
301		for (clock.m2 = limit->m2.min;
302		     clock.m2 < clock.m1 && clock.m2 <= limit->m2.max;
303		     clock.m2++) {
304			for (clock.n = limit->n.min;
305			     clock.n <= limit->n.max; clock.n++) {
306				for (clock.p1 = limit->p1.min;
307				     clock.p1 <= limit->p1.max;
308				     clock.p1++) {
309					int this_err;
310
311					psb_intel_clock(dev, refclk, &clock);
312
313					if (!psb_intel_PLL_is_valid
314					    (crtc, &clock))
315						continue;
316
317					this_err = abs(clock.dot - target);
318					if (this_err < err) {
319						*best_clock = clock;
320						err = this_err;
321					}
322				}
323			}
324		}
325	}
326
327	return err != target;
328}
329
330void psb_intel_wait_for_vblank(struct drm_device *dev)
331{
332	/* Wait for 20ms, i.e. one cycle at 50hz. */
333	mdelay(20);
334}
335
336static int psb_intel_pipe_set_base(struct drm_crtc *crtc,
337			    int x, int y, struct drm_framebuffer *old_fb)
338{
339	struct drm_device *dev = crtc->dev;
340	/* struct drm_i915_master_private *master_priv; */
341	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
342	struct psb_framebuffer *psbfb = to_psb_fb(crtc->fb);
343	int pipe = psb_intel_crtc->pipe;
344	unsigned long start, offset;
345	int dspbase = (pipe == 0 ? DSPABASE : DSPBBASE);
346	int dspsurf = (pipe == 0 ? DSPASURF : DSPBSURF);
347	int dspstride = (pipe == 0) ? DSPASTRIDE : DSPBSTRIDE;
348	int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
349	u32 dspcntr;
350	int ret = 0;
351
352	if (!gma_power_begin(dev, true))
353		return 0;
354
355	/* no fb bound */
356	if (!crtc->fb) {
357		dev_dbg(dev->dev, "No FB bound\n");
358		goto psb_intel_pipe_cleaner;
359	}
360
361	/* We are displaying this buffer, make sure it is actually loaded
362	   into the GTT */
363	ret = psb_gtt_pin(psbfb->gtt);
364	if (ret < 0)
365		goto psb_intel_pipe_set_base_exit;
366	start = psbfb->gtt->offset;
367
368	offset = y * crtc->fb->pitches[0] + x * (crtc->fb->bits_per_pixel / 8);
369
370	REG_WRITE(dspstride, crtc->fb->pitches[0]);
371
372	dspcntr = REG_READ(dspcntr_reg);
373	dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
374
375	switch (crtc->fb->bits_per_pixel) {
376	case 8:
377		dspcntr |= DISPPLANE_8BPP;
378		break;
379	case 16:
380		if (crtc->fb->depth == 15)
381			dspcntr |= DISPPLANE_15_16BPP;
382		else
383			dspcntr |= DISPPLANE_16BPP;
384		break;
385	case 24:
386	case 32:
387		dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
388		break;
389	default:
390		dev_err(dev->dev, "Unknown color depth\n");
391		ret = -EINVAL;
392		psb_gtt_unpin(psbfb->gtt);
393		goto psb_intel_pipe_set_base_exit;
394	}
395	REG_WRITE(dspcntr_reg, dspcntr);
396
397
398	if (0 /* FIXMEAC - check what PSB needs */) {
399		REG_WRITE(dspbase, offset);
400		REG_READ(dspbase);
401		REG_WRITE(dspsurf, start);
402		REG_READ(dspsurf);
403	} else {
404		REG_WRITE(dspbase, start + offset);
405		REG_READ(dspbase);
406	}
407
408psb_intel_pipe_cleaner:
409	/* If there was a previous display we can now unpin it */
410	if (old_fb)
411		psb_gtt_unpin(to_psb_fb(old_fb)->gtt);
412
413psb_intel_pipe_set_base_exit:
414	gma_power_end(dev);
415	return ret;
416}
417
418/**
419 * Sets the power management mode of the pipe and plane.
420 *
421 * This code should probably grow support for turning the cursor off and back
422 * on appropriately at the same time as we're turning the pipe off/on.
423 */
424static void psb_intel_crtc_dpms(struct drm_crtc *crtc, int mode)
425{
426	struct drm_device *dev = crtc->dev;
427	/* struct drm_i915_master_private *master_priv; */
428	/* struct drm_i915_private *dev_priv = dev->dev_private; */
429	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
430	int pipe = psb_intel_crtc->pipe;
431	int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
432	int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
433	int dspbase_reg = (pipe == 0) ? DSPABASE : DSPBBASE;
434	int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
435	u32 temp;
436
437	/* XXX: When our outputs are all unaware of DPMS modes other than off
438	 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
439	 */
440	switch (mode) {
441	case DRM_MODE_DPMS_ON:
442	case DRM_MODE_DPMS_STANDBY:
443	case DRM_MODE_DPMS_SUSPEND:
444		/* Enable the DPLL */
445		temp = REG_READ(dpll_reg);
446		if ((temp & DPLL_VCO_ENABLE) == 0) {
447			REG_WRITE(dpll_reg, temp);
448			REG_READ(dpll_reg);
449			/* Wait for the clocks to stabilize. */
450			udelay(150);
451			REG_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
452			REG_READ(dpll_reg);
453			/* Wait for the clocks to stabilize. */
454			udelay(150);
455			REG_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
456			REG_READ(dpll_reg);
457			/* Wait for the clocks to stabilize. */
458			udelay(150);
459		}
460
461		/* Enable the pipe */
462		temp = REG_READ(pipeconf_reg);
463		if ((temp & PIPEACONF_ENABLE) == 0)
464			REG_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
465
466		/* Enable the plane */
467		temp = REG_READ(dspcntr_reg);
468		if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
469			REG_WRITE(dspcntr_reg,
470				  temp | DISPLAY_PLANE_ENABLE);
471			/* Flush the plane changes */
472			REG_WRITE(dspbase_reg, REG_READ(dspbase_reg));
473		}
474
475		psb_intel_crtc_load_lut(crtc);
476
477		/* Give the overlay scaler a chance to enable
478		 * if it's on this pipe */
479		/* psb_intel_crtc_dpms_video(crtc, true); TODO */
480		break;
481	case DRM_MODE_DPMS_OFF:
482		/* Give the overlay scaler a chance to disable
483		 * if it's on this pipe */
484		/* psb_intel_crtc_dpms_video(crtc, FALSE); TODO */
485
486		/* Disable the VGA plane that we never use */
487		REG_WRITE(VGACNTRL, VGA_DISP_DISABLE);
488
489		/* Disable display plane */
490		temp = REG_READ(dspcntr_reg);
491		if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
492			REG_WRITE(dspcntr_reg,
493				  temp & ~DISPLAY_PLANE_ENABLE);
494			/* Flush the plane changes */
495			REG_WRITE(dspbase_reg, REG_READ(dspbase_reg));
496			REG_READ(dspbase_reg);
497		}
498
499		/* Next, disable display pipes */
500		temp = REG_READ(pipeconf_reg);
501		if ((temp & PIPEACONF_ENABLE) != 0) {
502			REG_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
503			REG_READ(pipeconf_reg);
504		}
505
506		/* Wait for vblank for the disable to take effect. */
507		psb_intel_wait_for_vblank(dev);
508
509		temp = REG_READ(dpll_reg);
510		if ((temp & DPLL_VCO_ENABLE) != 0) {
511			REG_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
512			REG_READ(dpll_reg);
513		}
514
515		/* Wait for the clocks to turn off. */
516		udelay(150);
517		break;
518	}
519
520	/*Set FIFO Watermarks*/
521	REG_WRITE(DSPARB, 0x3F3E);
522}
523
524static void psb_intel_crtc_prepare(struct drm_crtc *crtc)
525{
526	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
527	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
528}
529
530static void psb_intel_crtc_commit(struct drm_crtc *crtc)
531{
532	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
533	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
534}
535
536void psb_intel_encoder_prepare(struct drm_encoder *encoder)
537{
538	struct drm_encoder_helper_funcs *encoder_funcs =
539	    encoder->helper_private;
540	/* lvds has its own version of prepare see psb_intel_lvds_prepare */
541	encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
542}
543
544void psb_intel_encoder_commit(struct drm_encoder *encoder)
545{
546	struct drm_encoder_helper_funcs *encoder_funcs =
547	    encoder->helper_private;
548	/* lvds has its own version of commit see psb_intel_lvds_commit */
549	encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
550}
551
552void psb_intel_encoder_destroy(struct drm_encoder *encoder)
553{
554	struct psb_intel_encoder *intel_encoder = to_psb_intel_encoder(encoder);
555
556	drm_encoder_cleanup(encoder);
557	kfree(intel_encoder);
558}
559
560static bool psb_intel_crtc_mode_fixup(struct drm_crtc *crtc,
561				  struct drm_display_mode *mode,
562				  struct drm_display_mode *adjusted_mode)
563{
564	return true;
565}
566
567
568/**
569 * Return the pipe currently connected to the panel fitter,
570 * or -1 if the panel fitter is not present or not in use
571 */
572static int psb_intel_panel_fitter_pipe(struct drm_device *dev)
573{
574	u32 pfit_control;
575
576	pfit_control = REG_READ(PFIT_CONTROL);
577
578	/* See if the panel fitter is in use */
579	if ((pfit_control & PFIT_ENABLE) == 0)
580		return -1;
581	/* Must be on PIPE 1 for PSB */
582	return 1;
583}
584
585static int psb_intel_crtc_mode_set(struct drm_crtc *crtc,
586			       struct drm_display_mode *mode,
587			       struct drm_display_mode *adjusted_mode,
588			       int x, int y,
589			       struct drm_framebuffer *old_fb)
590{
591	struct drm_device *dev = crtc->dev;
592	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
593	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
594	int pipe = psb_intel_crtc->pipe;
595	int fp_reg = (pipe == 0) ? FPA0 : FPB0;
596	int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
597	int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
598	int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
599	int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
600	int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
601	int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
602	int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
603	int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
604	int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
605	int dspsize_reg = (pipe == 0) ? DSPASIZE : DSPBSIZE;
606	int dsppos_reg = (pipe == 0) ? DSPAPOS : DSPBPOS;
607	int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
608	int refclk;
609	struct psb_intel_clock_t clock;
610	u32 dpll = 0, fp = 0, dspcntr, pipeconf;
611	bool ok, is_sdvo = false;
612	bool is_lvds = false, is_tv = false;
613	struct drm_mode_config *mode_config = &dev->mode_config;
614	struct drm_connector *connector;
615
616	/* No scan out no play */
617	if (crtc->fb == NULL) {
618		crtc_funcs->mode_set_base(crtc, x, y, old_fb);
619		return 0;
620	}
621
622	list_for_each_entry(connector, &mode_config->connector_list, head) {
623		struct psb_intel_encoder *psb_intel_encoder =
624					psb_intel_attached_encoder(connector);
625
626		if (!connector->encoder
627		    || connector->encoder->crtc != crtc)
628			continue;
629
630		switch (psb_intel_encoder->type) {
631		case INTEL_OUTPUT_LVDS:
632			is_lvds = true;
633			break;
634		case INTEL_OUTPUT_SDVO:
635			is_sdvo = true;
636			break;
637		case INTEL_OUTPUT_TVOUT:
638			is_tv = true;
639			break;
640		}
641	}
642
643	refclk = 96000;
644
645	ok = psb_intel_find_best_PLL(crtc, adjusted_mode->clock, refclk,
646				 &clock);
647	if (!ok) {
648		dev_err(dev->dev, "Couldn't find PLL settings for mode!\n");
649		return 0;
650	}
651
652	fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
653
654	dpll = DPLL_VGA_MODE_DIS;
655	if (is_lvds) {
656		dpll |= DPLLB_MODE_LVDS;
657		dpll |= DPLL_DVO_HIGH_SPEED;
658	} else
659		dpll |= DPLLB_MODE_DAC_SERIAL;
660	if (is_sdvo) {
661		int sdvo_pixel_multiply =
662			    adjusted_mode->clock / mode->clock;
663		dpll |= DPLL_DVO_HIGH_SPEED;
664		dpll |=
665		    (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
666	}
667
668	/* compute bitmask from p1 value */
669	dpll |= (1 << (clock.p1 - 1)) << 16;
670	switch (clock.p2) {
671	case 5:
672		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
673		break;
674	case 7:
675		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
676		break;
677	case 10:
678		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
679		break;
680	case 14:
681		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
682		break;
683	}
684
685	if (is_tv) {
686		/* XXX: just matching BIOS for now */
687/*	dpll |= PLL_REF_INPUT_TVCLKINBC; */
688		dpll |= 3;
689	}
690	dpll |= PLL_REF_INPUT_DREFCLK;
691
692	/* setup pipeconf */
693	pipeconf = REG_READ(pipeconf_reg);
694
695	/* Set up the display plane register */
696	dspcntr = DISPPLANE_GAMMA_ENABLE;
697
698	if (pipe == 0)
699		dspcntr |= DISPPLANE_SEL_PIPE_A;
700	else
701		dspcntr |= DISPPLANE_SEL_PIPE_B;
702
703	dspcntr |= DISPLAY_PLANE_ENABLE;
704	pipeconf |= PIPEACONF_ENABLE;
705	dpll |= DPLL_VCO_ENABLE;
706
707
708	/* Disable the panel fitter if it was on our pipe */
709	if (psb_intel_panel_fitter_pipe(dev) == pipe)
710		REG_WRITE(PFIT_CONTROL, 0);
711
712	drm_mode_debug_printmodeline(mode);
713
714	if (dpll & DPLL_VCO_ENABLE) {
715		REG_WRITE(fp_reg, fp);
716		REG_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
717		REG_READ(dpll_reg);
718		udelay(150);
719	}
720
721	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
722	 * This is an exception to the general rule that mode_set doesn't turn
723	 * things on.
724	 */
725	if (is_lvds) {
726		u32 lvds = REG_READ(LVDS);
727
728		lvds &= ~LVDS_PIPEB_SELECT;
729		if (pipe == 1)
730			lvds |= LVDS_PIPEB_SELECT;
731
732		lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
733		/* Set the B0-B3 data pairs corresponding to
734		 * whether we're going to
735		 * set the DPLLs for dual-channel mode or not.
736		 */
737		lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
738		if (clock.p2 == 7)
739			lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
740
741		/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
742		 * appropriately here, but we need to look more
743		 * thoroughly into how panels behave in the two modes.
744		 */
745
746		REG_WRITE(LVDS, lvds);
747		REG_READ(LVDS);
748	}
749
750	REG_WRITE(fp_reg, fp);
751	REG_WRITE(dpll_reg, dpll);
752	REG_READ(dpll_reg);
753	/* Wait for the clocks to stabilize. */
754	udelay(150);
755
756	/* write it again -- the BIOS does, after all */
757	REG_WRITE(dpll_reg, dpll);
758
759	REG_READ(dpll_reg);
760	/* Wait for the clocks to stabilize. */
761	udelay(150);
762
763	REG_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
764		  ((adjusted_mode->crtc_htotal - 1) << 16));
765	REG_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
766		  ((adjusted_mode->crtc_hblank_end - 1) << 16));
767	REG_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
768		  ((adjusted_mode->crtc_hsync_end - 1) << 16));
769	REG_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
770		  ((adjusted_mode->crtc_vtotal - 1) << 16));
771	REG_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
772		  ((adjusted_mode->crtc_vblank_end - 1) << 16));
773	REG_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
774		  ((adjusted_mode->crtc_vsync_end - 1) << 16));
775	/* pipesrc and dspsize control the size that is scaled from,
776	 * which should always be the user's requested size.
777	 */
778	REG_WRITE(dspsize_reg,
779		  ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
780	REG_WRITE(dsppos_reg, 0);
781	REG_WRITE(pipesrc_reg,
782		  ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
783	REG_WRITE(pipeconf_reg, pipeconf);
784	REG_READ(pipeconf_reg);
785
786	psb_intel_wait_for_vblank(dev);
787
788	REG_WRITE(dspcntr_reg, dspcntr);
789
790	/* Flush the plane changes */
791	crtc_funcs->mode_set_base(crtc, x, y, old_fb);
792
793	psb_intel_wait_for_vblank(dev);
794
795	return 0;
796}
797
798/** Loads the palette/gamma unit for the CRTC with the prepared values */
799void psb_intel_crtc_load_lut(struct drm_crtc *crtc)
800{
801	struct drm_device *dev = crtc->dev;
802	struct drm_psb_private *dev_priv =
803				(struct drm_psb_private *)dev->dev_private;
804	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
805	int palreg = PALETTE_A;
806	int i;
807
808	/* The clocks have to be on to load the palette. */
809	if (!crtc->enabled)
810		return;
811
812	switch (psb_intel_crtc->pipe) {
813	case 0:
814		break;
815	case 1:
816		palreg = PALETTE_B;
817		break;
818	case 2:
819		palreg = PALETTE_C;
820		break;
821	default:
822		dev_err(dev->dev, "Illegal Pipe Number.\n");
823		return;
824	}
825
826	if (gma_power_begin(dev, false)) {
827		for (i = 0; i < 256; i++) {
828			REG_WRITE(palreg + 4 * i,
829				  ((psb_intel_crtc->lut_r[i] +
830				  psb_intel_crtc->lut_adj[i]) << 16) |
831				  ((psb_intel_crtc->lut_g[i] +
832				  psb_intel_crtc->lut_adj[i]) << 8) |
833				  (psb_intel_crtc->lut_b[i] +
834				  psb_intel_crtc->lut_adj[i]));
835		}
836		gma_power_end(dev);
837	} else {
838		for (i = 0; i < 256; i++) {
839			dev_priv->regs.psb.save_palette_a[i] =
840				  ((psb_intel_crtc->lut_r[i] +
841				  psb_intel_crtc->lut_adj[i]) << 16) |
842				  ((psb_intel_crtc->lut_g[i] +
843				  psb_intel_crtc->lut_adj[i]) << 8) |
844				  (psb_intel_crtc->lut_b[i] +
845				  psb_intel_crtc->lut_adj[i]);
846		}
847
848	}
849}
850
851/**
852 * Save HW states of giving crtc
853 */
854static void psb_intel_crtc_save(struct drm_crtc *crtc)
855{
856	struct drm_device *dev = crtc->dev;
857	/* struct drm_psb_private *dev_priv =
858			(struct drm_psb_private *)dev->dev_private; */
859	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
860	struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state;
861	int pipeA = (psb_intel_crtc->pipe == 0);
862	uint32_t paletteReg;
863	int i;
864
865	if (!crtc_state) {
866		dev_err(dev->dev, "No CRTC state found\n");
867		return;
868	}
869
870	crtc_state->saveDSPCNTR = REG_READ(pipeA ? DSPACNTR : DSPBCNTR);
871	crtc_state->savePIPECONF = REG_READ(pipeA ? PIPEACONF : PIPEBCONF);
872	crtc_state->savePIPESRC = REG_READ(pipeA ? PIPEASRC : PIPEBSRC);
873	crtc_state->saveFP0 = REG_READ(pipeA ? FPA0 : FPB0);
874	crtc_state->saveFP1 = REG_READ(pipeA ? FPA1 : FPB1);
875	crtc_state->saveDPLL = REG_READ(pipeA ? DPLL_A : DPLL_B);
876	crtc_state->saveHTOTAL = REG_READ(pipeA ? HTOTAL_A : HTOTAL_B);
877	crtc_state->saveHBLANK = REG_READ(pipeA ? HBLANK_A : HBLANK_B);
878	crtc_state->saveHSYNC = REG_READ(pipeA ? HSYNC_A : HSYNC_B);
879	crtc_state->saveVTOTAL = REG_READ(pipeA ? VTOTAL_A : VTOTAL_B);
880	crtc_state->saveVBLANK = REG_READ(pipeA ? VBLANK_A : VBLANK_B);
881	crtc_state->saveVSYNC = REG_READ(pipeA ? VSYNC_A : VSYNC_B);
882	crtc_state->saveDSPSTRIDE = REG_READ(pipeA ? DSPASTRIDE : DSPBSTRIDE);
883
884	/*NOTE: DSPSIZE DSPPOS only for psb*/
885	crtc_state->saveDSPSIZE = REG_READ(pipeA ? DSPASIZE : DSPBSIZE);
886	crtc_state->saveDSPPOS = REG_READ(pipeA ? DSPAPOS : DSPBPOS);
887
888	crtc_state->saveDSPBASE = REG_READ(pipeA ? DSPABASE : DSPBBASE);
889
890	paletteReg = pipeA ? PALETTE_A : PALETTE_B;
891	for (i = 0; i < 256; ++i)
892		crtc_state->savePalette[i] = REG_READ(paletteReg + (i << 2));
893}
894
895/**
896 * Restore HW states of giving crtc
897 */
898static void psb_intel_crtc_restore(struct drm_crtc *crtc)
899{
900	struct drm_device *dev = crtc->dev;
901	/* struct drm_psb_private * dev_priv =
902				(struct drm_psb_private *)dev->dev_private; */
903	struct psb_intel_crtc *psb_intel_crtc =  to_psb_intel_crtc(crtc);
904	struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state;
905	/* struct drm_crtc_helper_funcs * crtc_funcs = crtc->helper_private; */
906	int pipeA = (psb_intel_crtc->pipe == 0);
907	uint32_t paletteReg;
908	int i;
909
910	if (!crtc_state) {
911		dev_err(dev->dev, "No crtc state\n");
912		return;
913	}
914
915	if (crtc_state->saveDPLL & DPLL_VCO_ENABLE) {
916		REG_WRITE(pipeA ? DPLL_A : DPLL_B,
917			crtc_state->saveDPLL & ~DPLL_VCO_ENABLE);
918		REG_READ(pipeA ? DPLL_A : DPLL_B);
919		udelay(150);
920	}
921
922	REG_WRITE(pipeA ? FPA0 : FPB0, crtc_state->saveFP0);
923	REG_READ(pipeA ? FPA0 : FPB0);
924
925	REG_WRITE(pipeA ? FPA1 : FPB1, crtc_state->saveFP1);
926	REG_READ(pipeA ? FPA1 : FPB1);
927
928	REG_WRITE(pipeA ? DPLL_A : DPLL_B, crtc_state->saveDPLL);
929	REG_READ(pipeA ? DPLL_A : DPLL_B);
930	udelay(150);
931
932	REG_WRITE(pipeA ? HTOTAL_A : HTOTAL_B, crtc_state->saveHTOTAL);
933	REG_WRITE(pipeA ? HBLANK_A : HBLANK_B, crtc_state->saveHBLANK);
934	REG_WRITE(pipeA ? HSYNC_A : HSYNC_B, crtc_state->saveHSYNC);
935	REG_WRITE(pipeA ? VTOTAL_A : VTOTAL_B, crtc_state->saveVTOTAL);
936	REG_WRITE(pipeA ? VBLANK_A : VBLANK_B, crtc_state->saveVBLANK);
937	REG_WRITE(pipeA ? VSYNC_A : VSYNC_B, crtc_state->saveVSYNC);
938	REG_WRITE(pipeA ? DSPASTRIDE : DSPBSTRIDE, crtc_state->saveDSPSTRIDE);
939
940	REG_WRITE(pipeA ? DSPASIZE : DSPBSIZE, crtc_state->saveDSPSIZE);
941	REG_WRITE(pipeA ? DSPAPOS : DSPBPOS, crtc_state->saveDSPPOS);
942
943	REG_WRITE(pipeA ? PIPEASRC : PIPEBSRC, crtc_state->savePIPESRC);
944	REG_WRITE(pipeA ? DSPABASE : DSPBBASE, crtc_state->saveDSPBASE);
945	REG_WRITE(pipeA ? PIPEACONF : PIPEBCONF, crtc_state->savePIPECONF);
946
947	psb_intel_wait_for_vblank(dev);
948
949	REG_WRITE(pipeA ? DSPACNTR : DSPBCNTR, crtc_state->saveDSPCNTR);
950	REG_WRITE(pipeA ? DSPABASE : DSPBBASE, crtc_state->saveDSPBASE);
951
952	psb_intel_wait_for_vblank(dev);
953
954	paletteReg = pipeA ? PALETTE_A : PALETTE_B;
955	for (i = 0; i < 256; ++i)
956		REG_WRITE(paletteReg + (i << 2), crtc_state->savePalette[i]);
957}
958
959static int psb_intel_crtc_cursor_set(struct drm_crtc *crtc,
960				 struct drm_file *file_priv,
961				 uint32_t handle,
962				 uint32_t width, uint32_t height)
963{
964	struct drm_device *dev = crtc->dev;
965	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
966	int pipe = psb_intel_crtc->pipe;
967	uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
968	uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
969	uint32_t temp;
970	size_t addr = 0;
971	struct gtt_range *gt;
972	struct drm_gem_object *obj;
973	int ret;
974
975	/* if we want to turn of the cursor ignore width and height */
976	if (!handle) {
977		/* turn off the cursor */
978		temp = CURSOR_MODE_DISABLE;
979
980		if (gma_power_begin(dev, false)) {
981			REG_WRITE(control, temp);
982			REG_WRITE(base, 0);
983			gma_power_end(dev);
984		}
985
986		/* Unpin the old GEM object */
987		if (psb_intel_crtc->cursor_obj) {
988			gt = container_of(psb_intel_crtc->cursor_obj,
989							struct gtt_range, gem);
990			psb_gtt_unpin(gt);
991			drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
992			psb_intel_crtc->cursor_obj = NULL;
993		}
994
995		return 0;
996	}
997
998	/* Currently we only support 64x64 cursors */
999	if (width != 64 || height != 64) {
1000		dev_dbg(dev->dev, "we currently only support 64x64 cursors\n");
1001		return -EINVAL;
1002	}
1003
1004	obj = drm_gem_object_lookup(dev, file_priv, handle);
1005	if (!obj)
1006		return -ENOENT;
1007
1008	if (obj->size < width * height * 4) {
1009		dev_dbg(dev->dev, "buffer is to small\n");
1010		return -ENOMEM;
1011	}
1012
1013	gt = container_of(obj, struct gtt_range, gem);
1014
1015	/* Pin the memory into the GTT */
1016	ret = psb_gtt_pin(gt);
1017	if (ret) {
1018		dev_err(dev->dev, "Can not pin down handle 0x%x\n", handle);
1019		return ret;
1020	}
1021
1022
1023	addr = gt->offset;	/* Or resource.start ??? */
1024
1025	psb_intel_crtc->cursor_addr = addr;
1026
1027	temp = 0;
1028	/* set the pipe for the cursor */
1029	temp |= (pipe << 28);
1030	temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
1031
1032	if (gma_power_begin(dev, false)) {
1033		REG_WRITE(control, temp);
1034		REG_WRITE(base, addr);
1035		gma_power_end(dev);
1036	}
1037
1038	/* unpin the old bo */
1039	if (psb_intel_crtc->cursor_obj) {
1040		gt = container_of(psb_intel_crtc->cursor_obj,
1041							struct gtt_range, gem);
1042		psb_gtt_unpin(gt);
1043		drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
1044		psb_intel_crtc->cursor_obj = obj;
1045	}
1046	return 0;
1047}
1048
1049static int psb_intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
1050{
1051	struct drm_device *dev = crtc->dev;
1052	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1053	int pipe = psb_intel_crtc->pipe;
1054	uint32_t temp = 0;
1055	uint32_t addr;
1056
1057
1058	if (x < 0) {
1059		temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT);
1060		x = -x;
1061	}
1062	if (y < 0) {
1063		temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT);
1064		y = -y;
1065	}
1066
1067	temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT);
1068	temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1069
1070	addr = psb_intel_crtc->cursor_addr;
1071
1072	if (gma_power_begin(dev, false)) {
1073		REG_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
1074		REG_WRITE((pipe == 0) ? CURABASE : CURBBASE, addr);
1075		gma_power_end(dev);
1076	}
1077	return 0;
1078}
1079
1080void psb_intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red,
1081			 u16 *green, u16 *blue, uint32_t type, uint32_t size)
1082{
1083	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1084	int i;
1085
1086	if (size != 256)
1087		return;
1088
1089	for (i = 0; i < 256; i++) {
1090		psb_intel_crtc->lut_r[i] = red[i] >> 8;
1091		psb_intel_crtc->lut_g[i] = green[i] >> 8;
1092		psb_intel_crtc->lut_b[i] = blue[i] >> 8;
1093	}
1094
1095	psb_intel_crtc_load_lut(crtc);
1096}
1097
1098static int psb_crtc_set_config(struct drm_mode_set *set)
1099{
1100	int ret;
1101	struct drm_device *dev = set->crtc->dev;
1102	struct drm_psb_private *dev_priv = dev->dev_private;
1103
1104	if (!dev_priv->rpm_enabled)
1105		return drm_crtc_helper_set_config(set);
1106
1107	pm_runtime_forbid(&dev->pdev->dev);
1108	ret = drm_crtc_helper_set_config(set);
1109	pm_runtime_allow(&dev->pdev->dev);
1110	return ret;
1111}
1112
1113/* Returns the clock of the currently programmed mode of the given pipe. */
1114static int psb_intel_crtc_clock_get(struct drm_device *dev,
1115				struct drm_crtc *crtc)
1116{
1117	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1118	int pipe = psb_intel_crtc->pipe;
1119	u32 dpll;
1120	u32 fp;
1121	struct psb_intel_clock_t clock;
1122	bool is_lvds;
1123	struct drm_psb_private *dev_priv = dev->dev_private;
1124
1125	if (gma_power_begin(dev, false)) {
1126		dpll = REG_READ((pipe == 0) ? DPLL_A : DPLL_B);
1127		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1128			fp = REG_READ((pipe == 0) ? FPA0 : FPB0);
1129		else
1130			fp = REG_READ((pipe == 0) ? FPA1 : FPB1);
1131		is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
1132		gma_power_end(dev);
1133	} else {
1134		dpll = (pipe == 0) ?
1135			dev_priv->regs.psb.saveDPLL_A :
1136			dev_priv->regs.psb.saveDPLL_B;
1137
1138		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1139			fp = (pipe == 0) ?
1140				dev_priv->regs.psb.saveFPA0 :
1141				dev_priv->regs.psb.saveFPB0;
1142		else
1143			fp = (pipe == 0) ?
1144				dev_priv->regs.psb.saveFPA1 :
1145				dev_priv->regs.psb.saveFPB1;
1146
1147		is_lvds = (pipe == 1) && (dev_priv->regs.psb.saveLVDS &
1148								LVDS_PORT_EN);
1149	}
1150
1151	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
1152	clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
1153	clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
1154
1155	if (is_lvds) {
1156		clock.p1 =
1157		    ffs((dpll &
1158			 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
1159			DPLL_FPA01_P1_POST_DIV_SHIFT);
1160		clock.p2 = 14;
1161
1162		if ((dpll & PLL_REF_INPUT_MASK) ==
1163		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
1164			/* XXX: might not be 66MHz */
1165			i8xx_clock(66000, &clock);
1166		} else
1167			i8xx_clock(48000, &clock);
1168	} else {
1169		if (dpll & PLL_P1_DIVIDE_BY_TWO)
1170			clock.p1 = 2;
1171		else {
1172			clock.p1 =
1173			    ((dpll &
1174			      DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
1175			     DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
1176		}
1177		if (dpll & PLL_P2_DIVIDE_BY_4)
1178			clock.p2 = 4;
1179		else
1180			clock.p2 = 2;
1181
1182		i8xx_clock(48000, &clock);
1183	}
1184
1185	/* XXX: It would be nice to validate the clocks, but we can't reuse
1186	 * i830PllIsValid() because it relies on the xf86_config connector
1187	 * configuration being accurate, which it isn't necessarily.
1188	 */
1189
1190	return clock.dot;
1191}
1192
1193/** Returns the currently programmed mode of the given pipe. */
1194struct drm_display_mode *psb_intel_crtc_mode_get(struct drm_device *dev,
1195					     struct drm_crtc *crtc)
1196{
1197	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1198	int pipe = psb_intel_crtc->pipe;
1199	struct drm_display_mode *mode;
1200	int htot;
1201	int hsync;
1202	int vtot;
1203	int vsync;
1204	struct drm_psb_private *dev_priv = dev->dev_private;
1205
1206	if (gma_power_begin(dev, false)) {
1207		htot = REG_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
1208		hsync = REG_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
1209		vtot = REG_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
1210		vsync = REG_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
1211		gma_power_end(dev);
1212	} else {
1213		htot = (pipe == 0) ?
1214			dev_priv->regs.psb.saveHTOTAL_A :
1215			dev_priv->regs.psb.saveHTOTAL_B;
1216		hsync = (pipe == 0) ?
1217			dev_priv->regs.psb.saveHSYNC_A :
1218			dev_priv->regs.psb.saveHSYNC_B;
1219		vtot = (pipe == 0) ?
1220			dev_priv->regs.psb.saveVTOTAL_A :
1221			dev_priv->regs.psb.saveVTOTAL_B;
1222		vsync = (pipe == 0) ?
1223			dev_priv->regs.psb.saveVSYNC_A :
1224			dev_priv->regs.psb.saveVSYNC_B;
1225	}
1226
1227	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
1228	if (!mode)
1229		return NULL;
1230
1231	mode->clock = psb_intel_crtc_clock_get(dev, crtc);
1232	mode->hdisplay = (htot & 0xffff) + 1;
1233	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
1234	mode->hsync_start = (hsync & 0xffff) + 1;
1235	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
1236	mode->vdisplay = (vtot & 0xffff) + 1;
1237	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
1238	mode->vsync_start = (vsync & 0xffff) + 1;
1239	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
1240
1241	drm_mode_set_name(mode);
1242	drm_mode_set_crtcinfo(mode, 0);
1243
1244	return mode;
1245}
1246
1247void psb_intel_crtc_destroy(struct drm_crtc *crtc)
1248{
1249	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1250	struct gtt_range *gt;
1251
1252	/* Unpin the old GEM object */
1253	if (psb_intel_crtc->cursor_obj) {
1254		gt = container_of(psb_intel_crtc->cursor_obj,
1255						struct gtt_range, gem);
1256		psb_gtt_unpin(gt);
1257		drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
1258		psb_intel_crtc->cursor_obj = NULL;
1259	}
1260	kfree(psb_intel_crtc->crtc_state);
1261	drm_crtc_cleanup(crtc);
1262	kfree(psb_intel_crtc);
1263}
1264
1265const struct drm_crtc_helper_funcs psb_intel_helper_funcs = {
1266	.dpms = psb_intel_crtc_dpms,
1267	.mode_fixup = psb_intel_crtc_mode_fixup,
1268	.mode_set = psb_intel_crtc_mode_set,
1269	.mode_set_base = psb_intel_pipe_set_base,
1270	.prepare = psb_intel_crtc_prepare,
1271	.commit = psb_intel_crtc_commit,
1272};
1273
1274const struct drm_crtc_funcs psb_intel_crtc_funcs = {
1275	.save = psb_intel_crtc_save,
1276	.restore = psb_intel_crtc_restore,
1277	.cursor_set = psb_intel_crtc_cursor_set,
1278	.cursor_move = psb_intel_crtc_cursor_move,
1279	.gamma_set = psb_intel_crtc_gamma_set,
1280	.set_config = psb_crtc_set_config,
1281	.destroy = psb_intel_crtc_destroy,
1282};
1283
1284/*
1285 * Set the default value of cursor control and base register
1286 * to zero. This is a workaround for h/w defect on Oaktrail
1287 */
1288static void psb_intel_cursor_init(struct drm_device *dev, int pipe)
1289{
1290	u32 control[3] = { CURACNTR, CURBCNTR, CURCCNTR };
1291	u32 base[3] = { CURABASE, CURBBASE, CURCBASE };
1292
1293	REG_WRITE(control[pipe], 0);
1294	REG_WRITE(base[pipe], 0);
1295}
1296
1297void psb_intel_crtc_init(struct drm_device *dev, int pipe,
1298		     struct psb_intel_mode_device *mode_dev)
1299{
1300	struct drm_psb_private *dev_priv = dev->dev_private;
1301	struct psb_intel_crtc *psb_intel_crtc;
1302	int i;
1303	uint16_t *r_base, *g_base, *b_base;
1304
1305	/* We allocate a extra array of drm_connector pointers
1306	 * for fbdev after the crtc */
1307	psb_intel_crtc =
1308	    kzalloc(sizeof(struct psb_intel_crtc) +
1309		    (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)),
1310		    GFP_KERNEL);
1311	if (psb_intel_crtc == NULL)
1312		return;
1313
1314	psb_intel_crtc->crtc_state =
1315		kzalloc(sizeof(struct psb_intel_crtc_state), GFP_KERNEL);
1316	if (!psb_intel_crtc->crtc_state) {
1317		dev_err(dev->dev, "Crtc state error: No memory\n");
1318		kfree(psb_intel_crtc);
1319		return;
1320	}
1321
1322	/* Set the CRTC operations from the chip specific data */
1323	drm_crtc_init(dev, &psb_intel_crtc->base, dev_priv->ops->crtc_funcs);
1324
1325	drm_mode_crtc_set_gamma_size(&psb_intel_crtc->base, 256);
1326	psb_intel_crtc->pipe = pipe;
1327	psb_intel_crtc->plane = pipe;
1328
1329	r_base = psb_intel_crtc->base.gamma_store;
1330	g_base = r_base + 256;
1331	b_base = g_base + 256;
1332	for (i = 0; i < 256; i++) {
1333		psb_intel_crtc->lut_r[i] = i;
1334		psb_intel_crtc->lut_g[i] = i;
1335		psb_intel_crtc->lut_b[i] = i;
1336		r_base[i] = i << 8;
1337		g_base[i] = i << 8;
1338		b_base[i] = i << 8;
1339
1340		psb_intel_crtc->lut_adj[i] = 0;
1341	}
1342
1343	psb_intel_crtc->mode_dev = mode_dev;
1344	psb_intel_crtc->cursor_addr = 0;
1345
1346	drm_crtc_helper_add(&psb_intel_crtc->base,
1347						dev_priv->ops->crtc_helper);
1348
1349	/* Setup the array of drm_connector pointer array */
1350	psb_intel_crtc->mode_set.crtc = &psb_intel_crtc->base;
1351	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
1352	       dev_priv->plane_to_crtc_mapping[psb_intel_crtc->plane] != NULL);
1353	dev_priv->plane_to_crtc_mapping[psb_intel_crtc->plane] =
1354							&psb_intel_crtc->base;
1355	dev_priv->pipe_to_crtc_mapping[psb_intel_crtc->pipe] =
1356							&psb_intel_crtc->base;
1357	psb_intel_crtc->mode_set.connectors =
1358	    (struct drm_connector **) (psb_intel_crtc + 1);
1359	psb_intel_crtc->mode_set.num_connectors = 0;
1360	psb_intel_cursor_init(dev, pipe);
1361}
1362
1363int psb_intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
1364				struct drm_file *file_priv)
1365{
1366	struct drm_psb_private *dev_priv = dev->dev_private;
1367	struct drm_psb_get_pipe_from_crtc_id_arg *pipe_from_crtc_id = data;
1368	struct drm_mode_object *drmmode_obj;
1369	struct psb_intel_crtc *crtc;
1370
1371	if (!dev_priv) {
1372		dev_err(dev->dev, "called with no initialization\n");
1373		return -EINVAL;
1374	}
1375
1376	drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
1377			DRM_MODE_OBJECT_CRTC);
1378
1379	if (!drmmode_obj) {
1380		dev_err(dev->dev, "no such CRTC id\n");
1381		return -EINVAL;
1382	}
1383
1384	crtc = to_psb_intel_crtc(obj_to_crtc(drmmode_obj));
1385	pipe_from_crtc_id->pipe = crtc->pipe;
1386
1387	return 0;
1388}
1389
1390struct drm_crtc *psb_intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
1391{
1392	struct drm_crtc *crtc = NULL;
1393
1394	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1395		struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1396		if (psb_intel_crtc->pipe == pipe)
1397			break;
1398	}
1399	return crtc;
1400}
1401
1402int psb_intel_connector_clones(struct drm_device *dev, int type_mask)
1403{
1404	int index_mask = 0;
1405	struct drm_connector *connector;
1406	int entry = 0;
1407
1408	list_for_each_entry(connector, &dev->mode_config.connector_list,
1409			    head) {
1410		struct psb_intel_encoder *psb_intel_encoder =
1411					psb_intel_attached_encoder(connector);
1412		if (type_mask & (1 << psb_intel_encoder->type))
1413			index_mask |= (1 << entry);
1414		entry++;
1415	}
1416	return index_mask;
1417}
1418
1419/* current intel driver doesn't take advantage of encoders
1420   always give back the encoder for the connector
1421*/
1422struct drm_encoder *psb_intel_best_encoder(struct drm_connector *connector)
1423{
1424	struct psb_intel_encoder *psb_intel_encoder =
1425					psb_intel_attached_encoder(connector);
1426
1427	return &psb_intel_encoder->base;
1428}
1429
1430void psb_intel_connector_attach_encoder(struct psb_intel_connector *connector,
1431					struct psb_intel_encoder *encoder)
1432{
1433	connector->encoder = encoder;
1434	drm_mode_connector_attach_encoder(&connector->base,
1435					  &encoder->base);
1436}
1437