1/*
2 * Copyright 2011 (c) Oracle Corp.
3
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sub license,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the
12 * next paragraph) shall be included in all copies or substantial portions
13 * of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Author: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
24 */
25
26/*
27 * A simple DMA pool losely based on dmapool.c. It has certain advantages
28 * over the DMA pools:
29 * - Pool collects resently freed pages for reuse (and hooks up to
30 *   the shrinker).
31 * - Tracks currently in use pages
32 * - Tracks whether the page is UC, WB or cached (and reverts to WB
33 *   when freed).
34 */
35
36#define pr_fmt(fmt) "[TTM] " fmt
37
38#include <linux/dma-mapping.h>
39#include <linux/list.h>
40#include <linux/seq_file.h> /* for seq_printf */
41#include <linux/slab.h>
42#include <linux/spinlock.h>
43#include <linux/highmem.h>
44#include <linux/mm_types.h>
45#include <linux/module.h>
46#include <linux/mm.h>
47#include <linux/atomic.h>
48#include <linux/device.h>
49#include <linux/kthread.h>
50#include "ttm/ttm_bo_driver.h"
51#include "ttm/ttm_page_alloc.h"
52#ifdef TTM_HAS_AGP
53#include <asm/agp.h>
54#endif
55
56#define NUM_PAGES_TO_ALLOC		(PAGE_SIZE/sizeof(struct page *))
57#define SMALL_ALLOCATION		4
58#define FREE_ALL_PAGES			(~0U)
59/* times are in msecs */
60#define IS_UNDEFINED			(0)
61#define IS_WC				(1<<1)
62#define IS_UC				(1<<2)
63#define IS_CACHED			(1<<3)
64#define IS_DMA32			(1<<4)
65
66enum pool_type {
67	POOL_IS_UNDEFINED,
68	POOL_IS_WC = IS_WC,
69	POOL_IS_UC = IS_UC,
70	POOL_IS_CACHED = IS_CACHED,
71	POOL_IS_WC_DMA32 = IS_WC | IS_DMA32,
72	POOL_IS_UC_DMA32 = IS_UC | IS_DMA32,
73	POOL_IS_CACHED_DMA32 = IS_CACHED | IS_DMA32,
74};
75/*
76 * The pool structure. There are usually six pools:
77 *  - generic (not restricted to DMA32):
78 *      - write combined, uncached, cached.
79 *  - dma32 (up to 2^32 - so up 4GB):
80 *      - write combined, uncached, cached.
81 * for each 'struct device'. The 'cached' is for pages that are actively used.
82 * The other ones can be shrunk by the shrinker API if neccessary.
83 * @pools: The 'struct device->dma_pools' link.
84 * @type: Type of the pool
85 * @lock: Protects the inuse_list and free_list from concurrnet access. Must be
86 * used with irqsave/irqrestore variants because pool allocator maybe called
87 * from delayed work.
88 * @inuse_list: Pool of pages that are in use. The order is very important and
89 *   it is in the order that the TTM pages that are put back are in.
90 * @free_list: Pool of pages that are free to be used. No order requirements.
91 * @dev: The device that is associated with these pools.
92 * @size: Size used during DMA allocation.
93 * @npages_free: Count of available pages for re-use.
94 * @npages_in_use: Count of pages that are in use.
95 * @nfrees: Stats when pool is shrinking.
96 * @nrefills: Stats when the pool is grown.
97 * @gfp_flags: Flags to pass for alloc_page.
98 * @name: Name of the pool.
99 * @dev_name: Name derieved from dev - similar to how dev_info works.
100 *   Used during shutdown as the dev_info during release is unavailable.
101 */
102struct dma_pool {
103	struct list_head pools; /* The 'struct device->dma_pools link */
104	enum pool_type type;
105	spinlock_t lock;
106	struct list_head inuse_list;
107	struct list_head free_list;
108	struct device *dev;
109	unsigned size;
110	unsigned npages_free;
111	unsigned npages_in_use;
112	unsigned long nfrees; /* Stats when shrunk. */
113	unsigned long nrefills; /* Stats when grown. */
114	gfp_t gfp_flags;
115	char name[13]; /* "cached dma32" */
116	char dev_name[64]; /* Constructed from dev */
117};
118
119/*
120 * The accounting page keeping track of the allocated page along with
121 * the DMA address.
122 * @page_list: The link to the 'page_list' in 'struct dma_pool'.
123 * @vaddr: The virtual address of the page
124 * @dma: The bus address of the page. If the page is not allocated
125 *   via the DMA API, it will be -1.
126 */
127struct dma_page {
128	struct list_head page_list;
129	void *vaddr;
130	struct page *p;
131	dma_addr_t dma;
132};
133
134/*
135 * Limits for the pool. They are handled without locks because only place where
136 * they may change is in sysfs store. They won't have immediate effect anyway
137 * so forcing serialization to access them is pointless.
138 */
139
140struct ttm_pool_opts {
141	unsigned	alloc_size;
142	unsigned	max_size;
143	unsigned	small;
144};
145
146/*
147 * Contains the list of all of the 'struct device' and their corresponding
148 * DMA pools. Guarded by _mutex->lock.
149 * @pools: The link to 'struct ttm_pool_manager->pools'
150 * @dev: The 'struct device' associated with the 'pool'
151 * @pool: The 'struct dma_pool' associated with the 'dev'
152 */
153struct device_pools {
154	struct list_head pools;
155	struct device *dev;
156	struct dma_pool *pool;
157};
158
159/*
160 * struct ttm_pool_manager - Holds memory pools for fast allocation
161 *
162 * @lock: Lock used when adding/removing from pools
163 * @pools: List of 'struct device' and 'struct dma_pool' tuples.
164 * @options: Limits for the pool.
165 * @npools: Total amount of pools in existence.
166 * @shrinker: The structure used by [un|]register_shrinker
167 */
168struct ttm_pool_manager {
169	struct mutex		lock;
170	struct list_head	pools;
171	struct ttm_pool_opts	options;
172	unsigned		npools;
173	struct shrinker		mm_shrink;
174	struct kobject		kobj;
175};
176
177static struct ttm_pool_manager *_manager;
178
179static struct attribute ttm_page_pool_max = {
180	.name = "pool_max_size",
181	.mode = S_IRUGO | S_IWUSR
182};
183static struct attribute ttm_page_pool_small = {
184	.name = "pool_small_allocation",
185	.mode = S_IRUGO | S_IWUSR
186};
187static struct attribute ttm_page_pool_alloc_size = {
188	.name = "pool_allocation_size",
189	.mode = S_IRUGO | S_IWUSR
190};
191
192static struct attribute *ttm_pool_attrs[] = {
193	&ttm_page_pool_max,
194	&ttm_page_pool_small,
195	&ttm_page_pool_alloc_size,
196	NULL
197};
198
199static void ttm_pool_kobj_release(struct kobject *kobj)
200{
201	struct ttm_pool_manager *m =
202		container_of(kobj, struct ttm_pool_manager, kobj);
203	kfree(m);
204}
205
206static ssize_t ttm_pool_store(struct kobject *kobj, struct attribute *attr,
207			      const char *buffer, size_t size)
208{
209	struct ttm_pool_manager *m =
210		container_of(kobj, struct ttm_pool_manager, kobj);
211	int chars;
212	unsigned val;
213	chars = sscanf(buffer, "%u", &val);
214	if (chars == 0)
215		return size;
216
217	/* Convert kb to number of pages */
218	val = val / (PAGE_SIZE >> 10);
219
220	if (attr == &ttm_page_pool_max)
221		m->options.max_size = val;
222	else if (attr == &ttm_page_pool_small)
223		m->options.small = val;
224	else if (attr == &ttm_page_pool_alloc_size) {
225		if (val > NUM_PAGES_TO_ALLOC*8) {
226			pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
227			       NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
228			       NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
229			return size;
230		} else if (val > NUM_PAGES_TO_ALLOC) {
231			pr_warn("Setting allocation size to larger than %lu is not recommended\n",
232				NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
233		}
234		m->options.alloc_size = val;
235	}
236
237	return size;
238}
239
240static ssize_t ttm_pool_show(struct kobject *kobj, struct attribute *attr,
241			     char *buffer)
242{
243	struct ttm_pool_manager *m =
244		container_of(kobj, struct ttm_pool_manager, kobj);
245	unsigned val = 0;
246
247	if (attr == &ttm_page_pool_max)
248		val = m->options.max_size;
249	else if (attr == &ttm_page_pool_small)
250		val = m->options.small;
251	else if (attr == &ttm_page_pool_alloc_size)
252		val = m->options.alloc_size;
253
254	val = val * (PAGE_SIZE >> 10);
255
256	return snprintf(buffer, PAGE_SIZE, "%u\n", val);
257}
258
259static const struct sysfs_ops ttm_pool_sysfs_ops = {
260	.show = &ttm_pool_show,
261	.store = &ttm_pool_store,
262};
263
264static struct kobj_type ttm_pool_kobj_type = {
265	.release = &ttm_pool_kobj_release,
266	.sysfs_ops = &ttm_pool_sysfs_ops,
267	.default_attrs = ttm_pool_attrs,
268};
269
270#ifndef CONFIG_X86
271static int set_pages_array_wb(struct page **pages, int addrinarray)
272{
273#ifdef TTM_HAS_AGP
274	int i;
275
276	for (i = 0; i < addrinarray; i++)
277		unmap_page_from_agp(pages[i]);
278#endif
279	return 0;
280}
281
282static int set_pages_array_wc(struct page **pages, int addrinarray)
283{
284#ifdef TTM_HAS_AGP
285	int i;
286
287	for (i = 0; i < addrinarray; i++)
288		map_page_into_agp(pages[i]);
289#endif
290	return 0;
291}
292
293static int set_pages_array_uc(struct page **pages, int addrinarray)
294{
295#ifdef TTM_HAS_AGP
296	int i;
297
298	for (i = 0; i < addrinarray; i++)
299		map_page_into_agp(pages[i]);
300#endif
301	return 0;
302}
303#endif /* for !CONFIG_X86 */
304
305static int ttm_set_pages_caching(struct dma_pool *pool,
306				 struct page **pages, unsigned cpages)
307{
308	int r = 0;
309	/* Set page caching */
310	if (pool->type & IS_UC) {
311		r = set_pages_array_uc(pages, cpages);
312		if (r)
313			pr_err("%s: Failed to set %d pages to uc!\n",
314			       pool->dev_name, cpages);
315	}
316	if (pool->type & IS_WC) {
317		r = set_pages_array_wc(pages, cpages);
318		if (r)
319			pr_err("%s: Failed to set %d pages to wc!\n",
320			       pool->dev_name, cpages);
321	}
322	return r;
323}
324
325static void __ttm_dma_free_page(struct dma_pool *pool, struct dma_page *d_page)
326{
327	dma_addr_t dma = d_page->dma;
328	dma_free_coherent(pool->dev, pool->size, d_page->vaddr, dma);
329
330	kfree(d_page);
331	d_page = NULL;
332}
333static struct dma_page *__ttm_dma_alloc_page(struct dma_pool *pool)
334{
335	struct dma_page *d_page;
336
337	d_page = kmalloc(sizeof(struct dma_page), GFP_KERNEL);
338	if (!d_page)
339		return NULL;
340
341	d_page->vaddr = dma_alloc_coherent(pool->dev, pool->size,
342					   &d_page->dma,
343					   pool->gfp_flags);
344	if (d_page->vaddr)
345		d_page->p = virt_to_page(d_page->vaddr);
346	else {
347		kfree(d_page);
348		d_page = NULL;
349	}
350	return d_page;
351}
352static enum pool_type ttm_to_type(int flags, enum ttm_caching_state cstate)
353{
354	enum pool_type type = IS_UNDEFINED;
355
356	if (flags & TTM_PAGE_FLAG_DMA32)
357		type |= IS_DMA32;
358	if (cstate == tt_cached)
359		type |= IS_CACHED;
360	else if (cstate == tt_uncached)
361		type |= IS_UC;
362	else
363		type |= IS_WC;
364
365	return type;
366}
367
368static void ttm_pool_update_free_locked(struct dma_pool *pool,
369					unsigned freed_pages)
370{
371	pool->npages_free -= freed_pages;
372	pool->nfrees += freed_pages;
373
374}
375
376/* set memory back to wb and free the pages. */
377static void ttm_dma_pages_put(struct dma_pool *pool, struct list_head *d_pages,
378			      struct page *pages[], unsigned npages)
379{
380	struct dma_page *d_page, *tmp;
381
382	/* Don't set WB on WB page pool. */
383	if (npages && !(pool->type & IS_CACHED) &&
384	    set_pages_array_wb(pages, npages))
385		pr_err("%s: Failed to set %d pages to wb!\n",
386		       pool->dev_name, npages);
387
388	list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
389		list_del(&d_page->page_list);
390		__ttm_dma_free_page(pool, d_page);
391	}
392}
393
394static void ttm_dma_page_put(struct dma_pool *pool, struct dma_page *d_page)
395{
396	/* Don't set WB on WB page pool. */
397	if (!(pool->type & IS_CACHED) && set_pages_array_wb(&d_page->p, 1))
398		pr_err("%s: Failed to set %d pages to wb!\n",
399		       pool->dev_name, 1);
400
401	list_del(&d_page->page_list);
402	__ttm_dma_free_page(pool, d_page);
403}
404
405/*
406 * Free pages from pool.
407 *
408 * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
409 * number of pages in one go.
410 *
411 * @pool: to free the pages from
412 * @nr_free: If set to true will free all pages in pool
413 **/
414static unsigned ttm_dma_page_pool_free(struct dma_pool *pool, unsigned nr_free)
415{
416	unsigned long irq_flags;
417	struct dma_page *dma_p, *tmp;
418	struct page **pages_to_free;
419	struct list_head d_pages;
420	unsigned freed_pages = 0,
421		 npages_to_free = nr_free;
422
423	if (NUM_PAGES_TO_ALLOC < nr_free)
424		npages_to_free = NUM_PAGES_TO_ALLOC;
425#if 0
426	if (nr_free > 1) {
427		pr_debug("%s: (%s:%d) Attempting to free %d (%d) pages\n",
428			 pool->dev_name, pool->name, current->pid,
429			 npages_to_free, nr_free);
430	}
431#endif
432	pages_to_free = kmalloc(npages_to_free * sizeof(struct page *),
433			GFP_KERNEL);
434
435	if (!pages_to_free) {
436		pr_err("%s: Failed to allocate memory for pool free operation\n",
437		       pool->dev_name);
438		return 0;
439	}
440	INIT_LIST_HEAD(&d_pages);
441restart:
442	spin_lock_irqsave(&pool->lock, irq_flags);
443
444	/* We picking the oldest ones off the list */
445	list_for_each_entry_safe_reverse(dma_p, tmp, &pool->free_list,
446					 page_list) {
447		if (freed_pages >= npages_to_free)
448			break;
449
450		/* Move the dma_page from one list to another. */
451		list_move(&dma_p->page_list, &d_pages);
452
453		pages_to_free[freed_pages++] = dma_p->p;
454		/* We can only remove NUM_PAGES_TO_ALLOC at a time. */
455		if (freed_pages >= NUM_PAGES_TO_ALLOC) {
456
457			ttm_pool_update_free_locked(pool, freed_pages);
458			/**
459			 * Because changing page caching is costly
460			 * we unlock the pool to prevent stalling.
461			 */
462			spin_unlock_irqrestore(&pool->lock, irq_flags);
463
464			ttm_dma_pages_put(pool, &d_pages, pages_to_free,
465					  freed_pages);
466
467			INIT_LIST_HEAD(&d_pages);
468
469			if (likely(nr_free != FREE_ALL_PAGES))
470				nr_free -= freed_pages;
471
472			if (NUM_PAGES_TO_ALLOC >= nr_free)
473				npages_to_free = nr_free;
474			else
475				npages_to_free = NUM_PAGES_TO_ALLOC;
476
477			freed_pages = 0;
478
479			/* free all so restart the processing */
480			if (nr_free)
481				goto restart;
482
483			/* Not allowed to fall through or break because
484			 * following context is inside spinlock while we are
485			 * outside here.
486			 */
487			goto out;
488
489		}
490	}
491
492	/* remove range of pages from the pool */
493	if (freed_pages) {
494		ttm_pool_update_free_locked(pool, freed_pages);
495		nr_free -= freed_pages;
496	}
497
498	spin_unlock_irqrestore(&pool->lock, irq_flags);
499
500	if (freed_pages)
501		ttm_dma_pages_put(pool, &d_pages, pages_to_free, freed_pages);
502out:
503	kfree(pages_to_free);
504	return nr_free;
505}
506
507static void ttm_dma_free_pool(struct device *dev, enum pool_type type)
508{
509	struct device_pools *p;
510	struct dma_pool *pool;
511
512	if (!dev)
513		return;
514
515	mutex_lock(&_manager->lock);
516	list_for_each_entry_reverse(p, &_manager->pools, pools) {
517		if (p->dev != dev)
518			continue;
519		pool = p->pool;
520		if (pool->type != type)
521			continue;
522
523		list_del(&p->pools);
524		kfree(p);
525		_manager->npools--;
526		break;
527	}
528	list_for_each_entry_reverse(pool, &dev->dma_pools, pools) {
529		if (pool->type != type)
530			continue;
531		/* Takes a spinlock.. */
532		ttm_dma_page_pool_free(pool, FREE_ALL_PAGES);
533		WARN_ON(((pool->npages_in_use + pool->npages_free) != 0));
534		/* This code path is called after _all_ references to the
535		 * struct device has been dropped - so nobody should be
536		 * touching it. In case somebody is trying to _add_ we are
537		 * guarded by the mutex. */
538		list_del(&pool->pools);
539		kfree(pool);
540		break;
541	}
542	mutex_unlock(&_manager->lock);
543}
544
545/*
546 * On free-ing of the 'struct device' this deconstructor is run.
547 * Albeit the pool might have already been freed earlier.
548 */
549static void ttm_dma_pool_release(struct device *dev, void *res)
550{
551	struct dma_pool *pool = *(struct dma_pool **)res;
552
553	if (pool)
554		ttm_dma_free_pool(dev, pool->type);
555}
556
557static int ttm_dma_pool_match(struct device *dev, void *res, void *match_data)
558{
559	return *(struct dma_pool **)res == match_data;
560}
561
562static struct dma_pool *ttm_dma_pool_init(struct device *dev, gfp_t flags,
563					  enum pool_type type)
564{
565	char *n[] = {"wc", "uc", "cached", " dma32", "unknown",};
566	enum pool_type t[] = {IS_WC, IS_UC, IS_CACHED, IS_DMA32, IS_UNDEFINED};
567	struct device_pools *sec_pool = NULL;
568	struct dma_pool *pool = NULL, **ptr;
569	unsigned i;
570	int ret = -ENODEV;
571	char *p;
572
573	if (!dev)
574		return NULL;
575
576	ptr = devres_alloc(ttm_dma_pool_release, sizeof(*ptr), GFP_KERNEL);
577	if (!ptr)
578		return NULL;
579
580	ret = -ENOMEM;
581
582	pool = kmalloc_node(sizeof(struct dma_pool), GFP_KERNEL,
583			    dev_to_node(dev));
584	if (!pool)
585		goto err_mem;
586
587	sec_pool = kmalloc_node(sizeof(struct device_pools), GFP_KERNEL,
588				dev_to_node(dev));
589	if (!sec_pool)
590		goto err_mem;
591
592	INIT_LIST_HEAD(&sec_pool->pools);
593	sec_pool->dev = dev;
594	sec_pool->pool =  pool;
595
596	INIT_LIST_HEAD(&pool->free_list);
597	INIT_LIST_HEAD(&pool->inuse_list);
598	INIT_LIST_HEAD(&pool->pools);
599	spin_lock_init(&pool->lock);
600	pool->dev = dev;
601	pool->npages_free = pool->npages_in_use = 0;
602	pool->nfrees = 0;
603	pool->gfp_flags = flags;
604	pool->size = PAGE_SIZE;
605	pool->type = type;
606	pool->nrefills = 0;
607	p = pool->name;
608	for (i = 0; i < 5; i++) {
609		if (type & t[i]) {
610			p += snprintf(p, sizeof(pool->name) - (p - pool->name),
611				      "%s", n[i]);
612		}
613	}
614	*p = 0;
615	/* We copy the name for pr_ calls b/c when dma_pool_destroy is called
616	 * - the kobj->name has already been deallocated.*/
617	snprintf(pool->dev_name, sizeof(pool->dev_name), "%s %s",
618		 dev_driver_string(dev), dev_name(dev));
619	mutex_lock(&_manager->lock);
620	/* You can get the dma_pool from either the global: */
621	list_add(&sec_pool->pools, &_manager->pools);
622	_manager->npools++;
623	/* or from 'struct device': */
624	list_add(&pool->pools, &dev->dma_pools);
625	mutex_unlock(&_manager->lock);
626
627	*ptr = pool;
628	devres_add(dev, ptr);
629
630	return pool;
631err_mem:
632	devres_free(ptr);
633	kfree(sec_pool);
634	kfree(pool);
635	return ERR_PTR(ret);
636}
637
638static struct dma_pool *ttm_dma_find_pool(struct device *dev,
639					  enum pool_type type)
640{
641	struct dma_pool *pool, *tmp, *found = NULL;
642
643	if (type == IS_UNDEFINED)
644		return found;
645
646	/* NB: We iterate on the 'struct dev' which has no spinlock, but
647	 * it does have a kref which we have taken. The kref is taken during
648	 * graphic driver loading - in the drm_pci_init it calls either
649	 * pci_dev_get or pci_register_driver which both end up taking a kref
650	 * on 'struct device'.
651	 *
652	 * On teardown, the graphic drivers end up quiescing the TTM (put_pages)
653	 * and calls the dev_res deconstructors: ttm_dma_pool_release. The nice
654	 * thing is at that point of time there are no pages associated with the
655	 * driver so this function will not be called.
656	 */
657	list_for_each_entry_safe(pool, tmp, &dev->dma_pools, pools) {
658		if (pool->type != type)
659			continue;
660		found = pool;
661		break;
662	}
663	return found;
664}
665
666/*
667 * Free pages the pages that failed to change the caching state. If there
668 * are pages that have changed their caching state already put them to the
669 * pool.
670 */
671static void ttm_dma_handle_caching_state_failure(struct dma_pool *pool,
672						 struct list_head *d_pages,
673						 struct page **failed_pages,
674						 unsigned cpages)
675{
676	struct dma_page *d_page, *tmp;
677	struct page *p;
678	unsigned i = 0;
679
680	p = failed_pages[0];
681	if (!p)
682		return;
683	/* Find the failed page. */
684	list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
685		if (d_page->p != p)
686			continue;
687		/* .. and then progress over the full list. */
688		list_del(&d_page->page_list);
689		__ttm_dma_free_page(pool, d_page);
690		if (++i < cpages)
691			p = failed_pages[i];
692		else
693			break;
694	}
695
696}
697
698/*
699 * Allocate 'count' pages, and put 'need' number of them on the
700 * 'pages' and as well on the 'dma_address' starting at 'dma_offset' offset.
701 * The full list of pages should also be on 'd_pages'.
702 * We return zero for success, and negative numbers as errors.
703 */
704static int ttm_dma_pool_alloc_new_pages(struct dma_pool *pool,
705					struct list_head *d_pages,
706					unsigned count)
707{
708	struct page **caching_array;
709	struct dma_page *dma_p;
710	struct page *p;
711	int r = 0;
712	unsigned i, cpages;
713	unsigned max_cpages = min(count,
714			(unsigned)(PAGE_SIZE/sizeof(struct page *)));
715
716	/* allocate array for page caching change */
717	caching_array = kmalloc(max_cpages*sizeof(struct page *), GFP_KERNEL);
718
719	if (!caching_array) {
720		pr_err("%s: Unable to allocate table for new pages\n",
721		       pool->dev_name);
722		return -ENOMEM;
723	}
724
725	if (count > 1) {
726		pr_debug("%s: (%s:%d) Getting %d pages\n",
727			 pool->dev_name, pool->name, current->pid, count);
728	}
729
730	for (i = 0, cpages = 0; i < count; ++i) {
731		dma_p = __ttm_dma_alloc_page(pool);
732		if (!dma_p) {
733			pr_err("%s: Unable to get page %u\n",
734			       pool->dev_name, i);
735
736			/* store already allocated pages in the pool after
737			 * setting the caching state */
738			if (cpages) {
739				r = ttm_set_pages_caching(pool, caching_array,
740							  cpages);
741				if (r)
742					ttm_dma_handle_caching_state_failure(
743						pool, d_pages, caching_array,
744						cpages);
745			}
746			r = -ENOMEM;
747			goto out;
748		}
749		p = dma_p->p;
750#ifdef CONFIG_HIGHMEM
751		/* gfp flags of highmem page should never be dma32 so we
752		 * we should be fine in such case
753		 */
754		if (!PageHighMem(p))
755#endif
756		{
757			caching_array[cpages++] = p;
758			if (cpages == max_cpages) {
759				/* Note: Cannot hold the spinlock */
760				r = ttm_set_pages_caching(pool, caching_array,
761						 cpages);
762				if (r) {
763					ttm_dma_handle_caching_state_failure(
764						pool, d_pages, caching_array,
765						cpages);
766					goto out;
767				}
768				cpages = 0;
769			}
770		}
771		list_add(&dma_p->page_list, d_pages);
772	}
773
774	if (cpages) {
775		r = ttm_set_pages_caching(pool, caching_array, cpages);
776		if (r)
777			ttm_dma_handle_caching_state_failure(pool, d_pages,
778					caching_array, cpages);
779	}
780out:
781	kfree(caching_array);
782	return r;
783}
784
785/*
786 * @return count of pages still required to fulfill the request.
787 */
788static int ttm_dma_page_pool_fill_locked(struct dma_pool *pool,
789					 unsigned long *irq_flags)
790{
791	unsigned count = _manager->options.small;
792	int r = pool->npages_free;
793
794	if (count > pool->npages_free) {
795		struct list_head d_pages;
796
797		INIT_LIST_HEAD(&d_pages);
798
799		spin_unlock_irqrestore(&pool->lock, *irq_flags);
800
801		/* Returns how many more are neccessary to fulfill the
802		 * request. */
803		r = ttm_dma_pool_alloc_new_pages(pool, &d_pages, count);
804
805		spin_lock_irqsave(&pool->lock, *irq_flags);
806		if (!r) {
807			/* Add the fresh to the end.. */
808			list_splice(&d_pages, &pool->free_list);
809			++pool->nrefills;
810			pool->npages_free += count;
811			r = count;
812		} else {
813			struct dma_page *d_page;
814			unsigned cpages = 0;
815
816			pr_err("%s: Failed to fill %s pool (r:%d)!\n",
817			       pool->dev_name, pool->name, r);
818
819			list_for_each_entry(d_page, &d_pages, page_list) {
820				cpages++;
821			}
822			list_splice_tail(&d_pages, &pool->free_list);
823			pool->npages_free += cpages;
824			r = cpages;
825		}
826	}
827	return r;
828}
829
830/*
831 * @return count of pages still required to fulfill the request.
832 * The populate list is actually a stack (not that is matters as TTM
833 * allocates one page at a time.
834 */
835static int ttm_dma_pool_get_pages(struct dma_pool *pool,
836				  struct ttm_dma_tt *ttm_dma,
837				  unsigned index)
838{
839	struct dma_page *d_page;
840	struct ttm_tt *ttm = &ttm_dma->ttm;
841	unsigned long irq_flags;
842	int count, r = -ENOMEM;
843
844	spin_lock_irqsave(&pool->lock, irq_flags);
845	count = ttm_dma_page_pool_fill_locked(pool, &irq_flags);
846	if (count) {
847		d_page = list_first_entry(&pool->free_list, struct dma_page, page_list);
848		ttm->pages[index] = d_page->p;
849		ttm_dma->dma_address[index] = d_page->dma;
850		list_move_tail(&d_page->page_list, &ttm_dma->pages_list);
851		r = 0;
852		pool->npages_in_use += 1;
853		pool->npages_free -= 1;
854	}
855	spin_unlock_irqrestore(&pool->lock, irq_flags);
856	return r;
857}
858
859/*
860 * On success pages list will hold count number of correctly
861 * cached pages. On failure will hold the negative return value (-ENOMEM, etc).
862 */
863int ttm_dma_populate(struct ttm_dma_tt *ttm_dma, struct device *dev)
864{
865	struct ttm_tt *ttm = &ttm_dma->ttm;
866	struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
867	struct dma_pool *pool;
868	enum pool_type type;
869	unsigned i;
870	gfp_t gfp_flags;
871	int ret;
872
873	if (ttm->state != tt_unpopulated)
874		return 0;
875
876	type = ttm_to_type(ttm->page_flags, ttm->caching_state);
877	if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
878		gfp_flags = GFP_USER | GFP_DMA32;
879	else
880		gfp_flags = GFP_HIGHUSER;
881	if (ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
882		gfp_flags |= __GFP_ZERO;
883
884	pool = ttm_dma_find_pool(dev, type);
885	if (!pool) {
886		pool = ttm_dma_pool_init(dev, gfp_flags, type);
887		if (IS_ERR_OR_NULL(pool)) {
888			return -ENOMEM;
889		}
890	}
891
892	INIT_LIST_HEAD(&ttm_dma->pages_list);
893	for (i = 0; i < ttm->num_pages; ++i) {
894		ret = ttm_dma_pool_get_pages(pool, ttm_dma, i);
895		if (ret != 0) {
896			ttm_dma_unpopulate(ttm_dma, dev);
897			return -ENOMEM;
898		}
899
900		ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
901						false, false);
902		if (unlikely(ret != 0)) {
903			ttm_dma_unpopulate(ttm_dma, dev);
904			return -ENOMEM;
905		}
906	}
907
908	if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
909		ret = ttm_tt_swapin(ttm);
910		if (unlikely(ret != 0)) {
911			ttm_dma_unpopulate(ttm_dma, dev);
912			return ret;
913		}
914	}
915
916	ttm->state = tt_unbound;
917	return 0;
918}
919EXPORT_SYMBOL_GPL(ttm_dma_populate);
920
921/* Get good estimation how many pages are free in pools */
922static int ttm_dma_pool_get_num_unused_pages(void)
923{
924	struct device_pools *p;
925	unsigned total = 0;
926
927	mutex_lock(&_manager->lock);
928	list_for_each_entry(p, &_manager->pools, pools)
929		total += p->pool->npages_free;
930	mutex_unlock(&_manager->lock);
931	return total;
932}
933
934/* Put all pages in pages list to correct pool to wait for reuse */
935void ttm_dma_unpopulate(struct ttm_dma_tt *ttm_dma, struct device *dev)
936{
937	struct ttm_tt *ttm = &ttm_dma->ttm;
938	struct dma_pool *pool;
939	struct dma_page *d_page, *next;
940	enum pool_type type;
941	bool is_cached = false;
942	unsigned count = 0, i, npages = 0;
943	unsigned long irq_flags;
944
945	type = ttm_to_type(ttm->page_flags, ttm->caching_state);
946	pool = ttm_dma_find_pool(dev, type);
947	if (!pool)
948		return;
949
950	is_cached = (ttm_dma_find_pool(pool->dev,
951		     ttm_to_type(ttm->page_flags, tt_cached)) == pool);
952
953	/* make sure pages array match list and count number of pages */
954	list_for_each_entry(d_page, &ttm_dma->pages_list, page_list) {
955		ttm->pages[count] = d_page->p;
956		count++;
957	}
958
959	spin_lock_irqsave(&pool->lock, irq_flags);
960	pool->npages_in_use -= count;
961	if (is_cached) {
962		pool->nfrees += count;
963	} else {
964		pool->npages_free += count;
965		list_splice(&ttm_dma->pages_list, &pool->free_list);
966		npages = count;
967		if (pool->npages_free > _manager->options.max_size) {
968			npages = pool->npages_free - _manager->options.max_size;
969			/* free at least NUM_PAGES_TO_ALLOC number of pages
970			 * to reduce calls to set_memory_wb */
971			if (npages < NUM_PAGES_TO_ALLOC)
972				npages = NUM_PAGES_TO_ALLOC;
973		}
974	}
975	spin_unlock_irqrestore(&pool->lock, irq_flags);
976
977	if (is_cached) {
978		list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list, page_list) {
979			ttm_mem_global_free_page(ttm->glob->mem_glob,
980						 d_page->p);
981			ttm_dma_page_put(pool, d_page);
982		}
983	} else {
984		for (i = 0; i < count; i++) {
985			ttm_mem_global_free_page(ttm->glob->mem_glob,
986						 ttm->pages[i]);
987		}
988	}
989
990	INIT_LIST_HEAD(&ttm_dma->pages_list);
991	for (i = 0; i < ttm->num_pages; i++) {
992		ttm->pages[i] = NULL;
993		ttm_dma->dma_address[i] = 0;
994	}
995
996	/* shrink pool if necessary (only on !is_cached pools)*/
997	if (npages)
998		ttm_dma_page_pool_free(pool, npages);
999	ttm->state = tt_unpopulated;
1000}
1001EXPORT_SYMBOL_GPL(ttm_dma_unpopulate);
1002
1003/**
1004 * Callback for mm to request pool to reduce number of page held.
1005 */
1006static int ttm_dma_pool_mm_shrink(struct shrinker *shrink,
1007				  struct shrink_control *sc)
1008{
1009	static atomic_t start_pool = ATOMIC_INIT(0);
1010	unsigned idx = 0;
1011	unsigned pool_offset = atomic_add_return(1, &start_pool);
1012	unsigned shrink_pages = sc->nr_to_scan;
1013	struct device_pools *p;
1014
1015	if (list_empty(&_manager->pools))
1016		return 0;
1017
1018	mutex_lock(&_manager->lock);
1019	pool_offset = pool_offset % _manager->npools;
1020	list_for_each_entry(p, &_manager->pools, pools) {
1021		unsigned nr_free;
1022
1023		if (!p->dev)
1024			continue;
1025		if (shrink_pages == 0)
1026			break;
1027		/* Do it in round-robin fashion. */
1028		if (++idx < pool_offset)
1029			continue;
1030		nr_free = shrink_pages;
1031		shrink_pages = ttm_dma_page_pool_free(p->pool, nr_free);
1032		pr_debug("%s: (%s:%d) Asked to shrink %d, have %d more to go\n",
1033			 p->pool->dev_name, p->pool->name, current->pid,
1034			 nr_free, shrink_pages);
1035	}
1036	mutex_unlock(&_manager->lock);
1037	/* return estimated number of unused pages in pool */
1038	return ttm_dma_pool_get_num_unused_pages();
1039}
1040
1041static void ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager *manager)
1042{
1043	manager->mm_shrink.shrink = &ttm_dma_pool_mm_shrink;
1044	manager->mm_shrink.seeks = 1;
1045	register_shrinker(&manager->mm_shrink);
1046}
1047
1048static void ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
1049{
1050	unregister_shrinker(&manager->mm_shrink);
1051}
1052
1053int ttm_dma_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
1054{
1055	int ret = -ENOMEM;
1056
1057	WARN_ON(_manager);
1058
1059	pr_info("Initializing DMA pool allocator\n");
1060
1061	_manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
1062	if (!_manager)
1063		goto err_manager;
1064
1065	mutex_init(&_manager->lock);
1066	INIT_LIST_HEAD(&_manager->pools);
1067
1068	_manager->options.max_size = max_pages;
1069	_manager->options.small = SMALL_ALLOCATION;
1070	_manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
1071
1072	/* This takes care of auto-freeing the _manager */
1073	ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
1074				   &glob->kobj, "dma_pool");
1075	if (unlikely(ret != 0)) {
1076		kobject_put(&_manager->kobj);
1077		goto err;
1078	}
1079	ttm_dma_pool_mm_shrink_init(_manager);
1080	return 0;
1081err_manager:
1082	kfree(_manager);
1083	_manager = NULL;
1084err:
1085	return ret;
1086}
1087
1088void ttm_dma_page_alloc_fini(void)
1089{
1090	struct device_pools *p, *t;
1091
1092	pr_info("Finalizing DMA pool allocator\n");
1093	ttm_dma_pool_mm_shrink_fini(_manager);
1094
1095	list_for_each_entry_safe_reverse(p, t, &_manager->pools, pools) {
1096		dev_dbg(p->dev, "(%s:%d) Freeing.\n", p->pool->name,
1097			current->pid);
1098		WARN_ON(devres_destroy(p->dev, ttm_dma_pool_release,
1099			ttm_dma_pool_match, p->pool));
1100		ttm_dma_free_pool(p->dev, p->pool->type);
1101	}
1102	kobject_put(&_manager->kobj);
1103	_manager = NULL;
1104}
1105
1106int ttm_dma_page_alloc_debugfs(struct seq_file *m, void *data)
1107{
1108	struct device_pools *p;
1109	struct dma_pool *pool = NULL;
1110	char *h[] = {"pool", "refills", "pages freed", "inuse", "available",
1111		     "name", "virt", "busaddr"};
1112
1113	if (!_manager) {
1114		seq_printf(m, "No pool allocator running.\n");
1115		return 0;
1116	}
1117	seq_printf(m, "%13s %12s %13s %8s %8s %8s\n",
1118		   h[0], h[1], h[2], h[3], h[4], h[5]);
1119	mutex_lock(&_manager->lock);
1120	list_for_each_entry(p, &_manager->pools, pools) {
1121		struct device *dev = p->dev;
1122		if (!dev)
1123			continue;
1124		pool = p->pool;
1125		seq_printf(m, "%13s %12ld %13ld %8d %8d %8s\n",
1126				pool->name, pool->nrefills,
1127				pool->nfrees, pool->npages_in_use,
1128				pool->npages_free,
1129				pool->dev_name);
1130	}
1131	mutex_unlock(&_manager->lock);
1132	return 0;
1133}
1134EXPORT_SYMBOL_GPL(ttm_dma_page_alloc_debugfs);
1135